
Answer Sets Programs for Querying Inconsistent
Databases: The Consistency Extractor System

Monica Caniupan
Universidad del Bio-Bio

Departamento de Sistemas de Informacion
Concepcion, Chile.

mcaniupa@ubiobio.cl

Leopoldo Bertossi
Carleton University

School of Computer Science
Ottawa, Canada.

bertossi@scs.carleton.ca

Abstract— The Consistency Extractor System (ConsEx) is a
general implementation of consistent query answering, i.e. the
computation of consistent answers to queries posed to databases
that may fail to satisfy certain desirable integrity constraints. The
system is based on the specification of the repairs of the original
instance as the stable models of disjunctive logic programs(aka.
answer set programs). This paper describes the architecture and
functionalities of the system, some of its theoretical foundations,
the optimization of logic programs, and the interaction with
DBMSs and DLV, as evaluator of logic programs. We also report
on experimental results.

I. I NTRODUCTION

Integrity constraints (ICs) capture the semantics of a
database instance, which is expected to satisfy them. Unfor-
tunately, this is not always the case and we have to live with
an inconsistent database [2]. As introduced in [2],consistent
query answering(CQA) is the problem of characterizing and
retrieving consistent answers to queries posed to inconsistent
databases. Intuitively, an answerā to a queryQ in a relational
database instanceD is consistentwrt a setIC of ICs if ā is an
answer (in the usual sense) toQ in everyrepair of D . Here, a
repair ofD is an instance over the same schema that satisfies
IC and is obtained fromD by deleting or inserting a minimal
set -under set inclusion- of whole database tuples.

Disjunctive logic programs with stable model semantics [7]
(aka. answer set programs) can be used to specify database
repairs. There is a one-to-one correspondence between the sta-
ble models of therepair programand the database repairs, and
the programs can be used to compute consistent answers. In
ConsEx we use, implement, and optimize the repair programs
introduced in [3], providing the most general methodology
for CQA through logic programs. The repair semantics and
the logic program semantics take into consideration possible
occurrences of null values as they are used and found in real
DBMSs that follow the SQL standard. Moreover, null values
are also used to restore consistency wrt referential ICs.

ConsEx can be used for CQA wrt arbitrary universal ICs,
acyclic sets of referential ICs, and NOT-NULL constraints.
The queries supported are Datalog queries with negation;
thus, it can handle first-order queries in particular. Consistent
answers to queries can be computed by evaluating queries
against the repair programs, e.g. using theDLV system, that
implements the cautions (or skeptical) stable model semantics
of disjunctive logic programs [8].

Answer set programs capture the rather high intrinsic data
complexity of CQA [2]. However, for several classes of ICs
and queries, CQA has a lower complexity than the one of
query evaluation against general answer set programs. Fur-
thermore, the straightforward and naive evaluation of these
programs may not be very efficient. Instead, repair programs
may be evaluated applying the so-calledmagic sets(MS)
techniques that transform the combination of the query and
the repair program into a new program that can be evaluated
more efficiently. These MS techniques have been developed for
logic programs with stable model semantics [6]. The rewritten
program contains a subset of the original rules in the program,
those that are relevant to evaluate the query.ConsEx imple-
ments the MS methodology proposed in [4] for disjunctive
repair programs with program constraints (cf. Section II).In
ConsExCQA improves considerably in comparison with the
direct evaluation, and also shows quite a good performance
and scalability. The experimental results are quite encouraging
wrt the applicability ofConsEx in real database practice. We
present here the architecture and main features ofConsEx, and
also experimental results.

II. DATABASE REPAIRS AND REPAIR PROGRAMS

We consider a relational database schemaΣ = (U ,R,B),
whereU is the possibly infinite database domain withnull ∈
U ,R is a fixed set of database predicates, each of them with a
finite, and ordered set of attributes, andB is a fixed set of built-
in predicates e.g.{<, >, =, 6=}. There is a predicateIsNull(·),
andIsNull(c) is true iff c is null . Instances for a schemaΣ are
finite collectionsD of ground atoms of the formR(c1, ..., cn),
calleddatabase tuples, whereR ∈ R, and(c1, ..., cn) is atuple
of constants, i.e. elements ofU . The extensions for built-in
predicates are fixed, and possibly infinite in every database
instance. There is also a fixed setIC of integrity constraints,
that are sentences in the first-order languageL(Σ) determined
by Σ. They are expected to be satisfied by any instance forΣ,
but they may not.

A universal integrity constraint(UIC) is sentence of the
form [3]: ∀x̄(

∧m

i=1
Pi(x̄i) →

∨n

j=1
Qj(ȳj) ∨ ϕ), where

Pi, Qj ∈ R, x̄ =
⋃m

i=1
x̄i, ȳj ⊆ x̄, m ≥ 1, and ϕ

is a formula containing only disjunctions of built-in atoms
from B whose variables appear in the antecedent of the
implication. We will assume that there exists a propositional

atom false ∈ B that is always false in the database. Domain
constants different fromnull may appear in a UIC. Arefer-
ential integrity constraint(RIC) is a sentence of the form:1

∀x̄(P (x̄) → ∃z̄ Q(ȳ, z̄)), where ȳ ⊆ x̄ and P, Q ∈ R. A
NOT NULL-constraint (NNC) is a denial constraint of the
form: ∀̄x̄(P (x̄)∧ IsNull(xi)→ false), wherexi ∈ x̄ is in the
position of the attribute that cannot take null values.

CQA implemented inConsEx works forRIC-acyclicsets of
UIC, RICs, and NNCs. When consideringRIC-acyclicsets of
ICs, there is a one-to-one correspondence between the stable
models of the repair program and the database repairs [3].
Intuitively, a set of ICs is RIC-acyclic if there are no cycles
involving RICs (cf. [4], [3] for details). We will assume that
IC is a fixed, finite and RIC-acyclic set of UICs, RICs and
NNCs. A database instanceD is said to beconsistentif it
satisfiesIC . Otherwise, it isinconsistentwrt IC .

When null values are introduced to restore consistency, it
becomes necessary to modify the repair semantics introduced
in [1], in order to give priority to null values over arbitrary
domain constants when restoring consistency wrt RICs. This
is achieved by modifying accordingly the notion of minimality
as shown in the following example (cf. [3] for details).

Example 1:D = {P (a,null), P (b, c), R(a, b)} is inconsis-
tent wrt IC : ∀ xy (P (x, y) → ∃zR(x, z)). There are two
repairs:D1 = {P (a,null), P (b, c), R(a, b), R(b,null)}, with
∆(D, D1) = {R(b,null)}, andD2 = {P (a,null), R(a, b)},
with ∆(D, D2) = {P (b, c)}. For everyd ∈ U r {null}, the
instanceD3 = {P (a,null), P (b, c), R(a, b), R(b, d)} is not
a repair, because it is not minimal. 2

Database repairs can be specified as stable models of dis-
junctive logic programs. The latter programs use annotation
constants to indicate the atoms that may become true or false
in the repairs in order to satisfy the ICs. Each atom of the form
P (ā) (except for those that refer to the extensional database)
receives one of the annotation constants. InP (ā, ta), the
annotationta (fa) means that the atom is advised to made
true (false) (i.e. inserted into (deleted) the database). For each
IC, a disjunctive rule is constructed in such a way that the body
of the rule captures the violation condition for the IC; and the
head describes the alternatives for restoring consistency, by
deleting or inserting the participating tuples (cf. rules 2. and
3. in Example 2). Annotationt⋆ indicates that the atom is true
or becomes true in the program. Finally, atoms with constant
t
⋆⋆ are those that become true in the repairs. They are use to

read off the database atoms in the repairs. All this is illustrated
in the following example (cf. [3] for the general form of the
repair programs).

Example 2:Consider the database schemaΣ =
{S (x , y), R(x , y), T (x , y), W (x , y, z)}, the instance
D = {S(a, c), S(b, c), R(b, c), T (a,null), W (null , b, c)},
and IC = {∀xy(S(x, y) → R(x, y)), ∀xy(T (x, y)
→ ∃zW (x, y, z)), ∀xyz(W (x, y, z) ∧ IsNull(x) → false)}.

1For simplification purposes, we assume that the existentialvariables appear
in the last attributes ofQ, but they may appear anywhere else inQ.

The repair programΠ(D , IC) contains the following rules:2

1. S(a, c). S(b, c). R(b, c). T (a,null). W (null , b, c).

2. S(x, y, fa) ∨ R(x, y, ta)← S(x, y, t⋆), R(x, y, fa).

S(x, y, fa) ∨R(x, y, ta)← S(x, y, t⋆), not R(x, y).

3. T (x, y, fa) ∨W (x, y, null, ta)← T (x, y, t⋆), not aux(x, y).

aux(x, y)←W (x, y, z, t⋆), not W (x, y, z, fa).

4. W (x, y, z, fa)←W (x, y, z, t⋆), x = null .
5. S(x, y, t⋆)← S(x, y).
S(x, y, t⋆)← S(x, y, ta).

6. S(x, y, t⋆⋆)← S(x, y, t⋆), not S(x, y, fa).

9

>

=

>

;

(for R, T, W)

7.←W (x, y, z, ta), W (x, y, z, fa).

The rules in 2. establish how to repair the database wrt the
first IC: by makingS(x, y) false orR(x, y) true. The rules in
3. specify the form of restoring consistency wrt the RIC: by
deletingT (x, y) or insertingW (x, y, null). Rule 4. indicates
how to restore consistency wrt the NNC: by eliminating
W (x, y, z). Theprogram constraint7. filters out possiblenon-
coherentstable models of the program, those that have anW -
atom annotated with bothta and fa.3

The program has two stable models:4 M1 = { S(a, c, t⋆),

S(b, c, t⋆), R(b, c, t⋆), T (a, null , t⋆), W (null , b, c, t⋆),

W (null , b, c, fa), R(a, c, ta), S(a, c, t⋆⋆), S(b, c, t⋆⋆), R(b, c, t⋆⋆),

R(a, c, t⋆), R(a, c, t⋆⋆), T (a,null , t⋆⋆)}, M2 = { S(a, c, t⋆),

S(b, c, t⋆), R(b, c, t⋆), T (a, null , t⋆), W (null , b, c, t⋆),

W (null , b, c, fa), S(a, c, fa), S(b, c, t⋆⋆), R(b, c, t⋆⋆), T (a,null ,

t
⋆⋆)}. Thus, consistency is recovered, according toM1 by

inserting atomR(a, c) and deleting atomW (null , b, c); or,
according toM2 by deleting atoms{S(a, c), W (null , b, c)}.
If we concentrate on the underlined atoms in the stable
models we obtain the repairs:{S(a, c), S(b, c), R(b, c),
R(a, c), T (a,null)} and {S(b, c), R(b, c), T (a,null)}, as
expected. 2

To compute consistent answers to a queryQ, the query
is expressed as a logic programΠ(Q), where the positive
literals of the formP (s̄), with P an extensional predicate,
are replaced byP (s̄, t⋆⋆), and negative literals of the form
not P (s̄) by not P (s̄, t⋆⋆). The query program is “run”
together with programΠ(D , IC). In this way, CQA is trans-
lated into cautious or skeptical reasoning under the stable
models semantics. For the repair program in Example 2, the
Datalog queryQ : Ans(x) ← S(b, x), becomes the program
Π(Q) : Ans(x) ← S(b, x, t⋆⋆). The combined program
Π(D , IC ,Q) := Π(D , IC) ∪ Π(Q) has two stable models,
both of them containing the atomAns(c). Therefore, the
consistent answer toQ is (c).

III. A RCHITECTURE OF THESYSTEM

Figure 1 describes the general architecture ofConsEx. The
Database Connectionmodule receives the database parameters
(database name, user and password) and connects to the
database instance.

2For simplification, we have omitted in the body of the rules in2., and 3.,
conditions of the formx 6= null , which capture occurrences of null values
in relevant attributes [3].

3For the program in this example, given the logical relationship between
ICs, this phenomenon could happen only for predicateW , as analyzed in [4].

4The stable models are displayed without program facts.

 Relevant
Predicates

Identification

 Dependency
Graph

Construction

MS
Rewriting

 Database
Connection

Answers
Collection

DLVDB

Query
Processing

RIC-acyclic
Checking

Consistency
Checking

ConsEx System

Consistent
Answers

ICs

Query

Options

Repair Program
Construction

Connection

Fig. 1. ConsEx Architecture

The Query Processingmodule receives the query and ICs;
and coordinates the tasks needed to compute consistent an-
swers. First, it checks queries for syntactic correctness.In
ConsEx, FO queries can be written as logic programs in
DLV notation, or as queries in SQL. The former are non-
recursive Datalog queries with weak negation and built-ins,
which includes FO queries. SQL queries may have disjunction
(i.e.UNION), built-in literals in theWHERE clause, but neither
negation nor recursion, i.e. unions of conjunctive querieswith
built-ins. After checking the syntaxis of a query, the query
program is generated.

For a given query, there might be ICs that are not re-
lated to the query. Moreover, their satisfaction or not by the
given instance does not influence the consistent answers to
the query.ConsEx, via the Relevant Predicates Identification
module, analyzes the interaction between the predicates in
the query and those in the ICs. This is done by appealing
to a dependency graphG(IC) [4] that is generated by the
Dependency Graph Constructionmodule. For instance, the
dependency graph for the ICs in Example 2 contains as nodes
the predicatesS, R, T, W , and the edges(S, R), (T, W). For
the queryAns(x)← S(b, x) the relevant predicates areS and
R, because they are in the same component as the predicate
S that appears in the query. Thus, the relevant IC to check is
∀xy(S(x, y)→ R(x, y)) (cf. [4] for more details).

Next, ConsExchecks (moduleConsistency Checking) if the
database is consistent wrt the relevant ICs to the query. If this
is the case,ConsExevaluates the query directly on the original
database instance, i.e. without computing repairs. For example,
in Example 2 the database is inconsistent wrt∀xy(S(x, y)→
R(x, y)). In consequence, in order to consistently answer the
query, the repair program has to be generated.

The dependency graphs is also used to check if the set of
ICs is RIC-acyclic. This is done by theRIC-acyclic Checking
module. If it is, the generation of programs is avoided, and
a warning message is sent to the user. Otherwise, theRepair
Program Constructionmodule generates the repair program,
which is constructed “on the fly”, that is, all the annotations
that appear in them are generated by the system, and the
database is not affected. The facts of the program are not

imported from the database intoConsEx.
In ConsEx queries are evaluated efficiently by using the

magic sets(MS) methodology presented in [4], that is an
adaptation of the one in [6] (cf. [4] for details). That is,
ConsEx transforms the combination of the query program
and the repair program into a new program that, essentially,
contains a subset of the original rules in the repair program,
those that are relevant to evaluate the query. This newmagic
program, with its own stable models, can be used to answer
the original query more efficiently.

The MS Rewritingmodule generates the magic version of
a program, which includes at the end appropriate database
import sentences to retrieve tuples from the database, namely
the tuples that are relevant to compute the consistent answers
to the original query. For example, the programMS(Π) below
is the magic version of the programΠ consisting of the query
programAns(x) ← S(b, x, t⋆⋆) plus the repair program in
Example 2.
Program MS(Π): mg Ansf. mg S bfb(b, t⋆⋆)← mg Ansf.

mg S bfb(x, ta)← mg S bfb(x, t⋆).

mg S bfb(x, t⋆)← mg S bfb(x, t⋆⋆).

mg S bfb(x, fa)← mg S bfb(x, t⋆⋆).

mg Rbfb(x, ta)← mg S bfb(x, fa).

mg S bfb(x, t⋆)← mg S bfb(x, fa).

mg Rbfb(x, fa)← mg S bfb(x, fa).

mg S bfb(x, fa)← mg Rbfb(x, ta).

mg S bfb(x, t⋆)← mg Rbfb(x, ta).

mg Rbfb(x, fa)← mg Rbfb(x, ta).

mg Rbfb(x, ta)← mg Rbfb(x, t⋆).

mg Rbfb(x, t⋆)← mg Rbfb(x, t⋆⋆).

mg Rbfb(x, fa)← mg Rbfb(x, t⋆⋆).

Ans(x)← mg Ansf , S (b, x, t⋆⋆).

S (x, y, fa) ∨R (x, y, ta)← mg S bfb(x, fa),mg Rbfb(x, ta),

S (x, y, t⋆), R (x, y, fa).

S (x, y, fa) ∨R (x, y, ta)← mg S bfb(x, fa),mg Rbfb(x, ta),

S (x, y, t⋆), not R(x, y).

S (x, y, t⋆)← mg S bfb(x, t⋆), S (x, y, ta).

S (x, y, t⋆)← mg S bfb(x, t⋆), S(x, y).

R(x, y, t⋆)← mg Rbfb(x, t⋆), R(x, y, ta).

R(x, y, t⋆)← mg Rbfb(x, t⋆), R(x, y).

S (x, y, t⋆⋆)← mg S bfb(x, t⋆⋆), S (x, y, t⋆), not S (x, y, fa).

R(x, y, t⋆⋆)← mg Rbfb(x, t⋆⋆), R(x, y, t⋆), not R(x, y, fa).

←W (x, y, z, ta), W (x, y, z, fa).

Notice that sinceMS(Π) contains rules related to pred-
icates S, R only, the program constraint will be trivially
satisfied. The import sentences are generated by inspection
of the magic program (cf. [5] for details), identifying first
in the rule bodies the extensional database atoms (they
have no annotations constants). Next, for each of these
extensional atoms, it is checked if the magic atoms will
have the effect of bounding their variables during the pro-
gram evaluation. The generated import sentences for predi-
cateS is #import(dbName , dbUser , dbPass , “SELECT *
FROM S WHERE ID = ‘b’”,S). This will retrieve into
DLV only the corresponding subsets of the relations in the
database. A similar import sentence is generated for relation

R.
The MS program is evaluated inDLV, that is automati-

cally called byConsEx, and the query answers are returned
to the Answer Collectionmodule, which formats the an-
swers and returns them to the user as the consistent an-
swers. ProgramMS(Π) has only one stable model:M =
{S(b, c, t⋆), S(b, c, t⋆⋆), Ans(c)} (displayed here without the
magic atoms), which indicates through itsAns predicate that
(c) is the consistent answer to the original query, as expected.

IV. EXPERIMENTAL EVALUATION

We quantify the gain in execution time when using magic
sets instead of the direct evaluation of the repair programs.
The experiments were run on an Intel Pentium 4 PC, processor
of 3.00 Ghz, 512 MB of RAM, and with Linux distribution
UBUNTU 6.0. The database instance was stored in the IBM
DB2 Universal Database Server Edition, version 8.2 for Linux.
We use the version ofDLV for Linux released on Jan 12, 2006.

The database schema was composed by eight relations, the
set of ICs was composed of two primary key constraints, and
three RICs. The databases instanceD was composed of 6400
stored tuples. The numberN of inconsistent tuples, i.e. those
participating in an IC violation, varied between20 and400.5

Here, we report the execution time for two conjunctive
queries. In the charts,R&Q indicates the straightforward
evaluation of the repair program combined with the query
program, whereas its magic sets optimization is indicated
with MS. Figure 2 (a) shows the running time for the first
query, which is of the form,Ans(x̄) ← P (ȳ),R(z̄), with
x̄ ⊆ ȳ ∪ z̄, with free variables (an open query), joins
(ȳ ∩ z̄ 6= ∅), and no constants. We can see that MS is
faster than the straightforward evaluation. ForN = 200, the
MS methodology returns answers in less than ten seconds,
while the straightforward evaluation returns answers after one
minute. Moreover, the execution time of the MS methodology
is almost invariant wrt percentage of inconsistency. Despite the
absence of constants in the query, MS still offers a substantial
improvement because the magic program essentially keeps
only the rules and relations that are relevant to the query, which
reduces the ground instantiation of the program byDLV.

Figure 2 (b) shows the execution time for a partially-ground
query (e.g.Ans(x) ← S(b, x)). In this case, MS has an
even better performance due to the occurrence of constants in
the query, which the magic rules push down to the database
relations. As a consequence, less tuples are imported intoDLV,
and the ground instantiation of the MS program is reduced (wrt
the original program).

V. CONCLUSIONS

ConsExcomputes database repairs and consistent answers
to first-order queries (and beyond) by evaluation of logic pro-
grams with stable model semantics. It also implements magic
set techniques for disjunctive repair programs with program
constraints [4].ConsEx takes advantage of the interaction

5The files used in the experiments are available at
http://www.face.ubiobio.cl/∼mcaniupa/ConsEx

 (a) (b)

Fig. 2. Running Time for Conjunctive Queries

between the logic programming environment and the database
management systems (DBMS), as enabled byDLV. In this
way, it is possible to exploit capabilities of the DBMS, such
as storing and indexing. Furthermore, the instance is kept in
the DBMS, and only the relevant data is imported into the logic
programming system.ConsExshows an excellent performance
on query evaluation, which makes us think that CQA is viable
and can be used in practical cases. In general, real databases
do not contain such a high percentage of inconsistent data as
those used in our experiments.

VI. A CKNOWLEDGMENTS

Research supported by a NSERC Discovery Grant, and the
University of Bio-Bio (UBB-Chile) (Grant DIUBB 076215
4/R). L. Bertossi is Faculty Fellow of IBM Center for Ad-
vanced Studies (Toronto Lab.). We are grateful to Claudio
Gutiérrez and Pedro Campos, both from UBB, for their help
with the interface ofConsEx. Conversations with Wolfgang
Faber and Nicola Leone are very much appreciated.

REFERENCES

[1] Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query Answers in
Inconsistent Databases. InProc. 18th ACM Symposium on Principles of
Database Systems (PODS 99), ACM Press, 1999, pp. 68–79.

[2] Bertossi, L. and Chomicki, J. Query Answering in Inconsistent Databases.
In Logics for Emerging Applications of Databases. Springer, 2003, pp.
43-83.

[3] Bravo, L. and Bertossi, L. Semantically Correct Query Answers in the
Presence of Null Values. InPre-Proc. EDBT WS on Inconsistency and
Incompleteness in Databases (IIDB 06), J. Chomicki and J. Wijsen (eds.),
2006, pp. 33–47.

[4] Caniupan, M. and Bertossi, L. Optimizing Repair Programs for Consistent
Query Answering. InProc. 25th International Conference of the Chilean
Computer Science Society (SCCC 2005), IEEE Computer Society Press,
2005, pp. 3–12.

[5] Caniupan, M. Optimizing and Implementing Repair Programs
for Consistent Query Answering in Databases. PhD. Thesis,
Carleton University, Department of Computer Science, 2007,
http://www.face.ubiobio.cl/∼mcaniupa/publications.htm

[6] Cumbo, C., Faber, W., Greco, G. and Leone, N. Enhancing the Magic-Set
Method for Disjunctive Datalog Programs. InProc. 20th International
Conference on Logic Programming (ICLP 04), Springer LNCS 3132,
2004, pp. 371–385.

[7] Gelfond, M. and Lifschitz, V. Classical Negation in Logic Programs and
Disjunctive Databases.New Generation Computing, 1991, 9:365–385.

[8] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and
Scarcello, F. The DLV System for Knowledge Representation and
Reasoning.ACM Transactions on Computational Logic, 2006, 7(3):499–
562.

