A Hybrid Approach to Operating System Discovery
using Answer Set Programming

Francois Gagnon
fpagnon@sce.carlelon.ca
www.sce.carlefon.ca/~-fgagnon
Carleton University, Canada

Abstraci—The goal of operating system {(08) discovery is
to learn which O8 is running on a distant computer. There
are two main sirategies for 08 discovery: active and passive.
Each of themn has advantages as well as drawbacks. This paper
dizcusses how answer el prograrming, a new logle programining
paradigm, can be used (o address, in a simple and elegani way, ihe
problem of operating systems discovery in computer networks by
iogically specifying the problem and providing solutions through
aitoinated reasoning. As a result of using such a knowledge
represeniation framework, it is possible o unify the active and
the passive methods {6 O85 discovery in a single hybrid approach
thual hay the advaniuges of both strategies while being much
more versatile. Moreover, this paper presents & proof of concept
profotype tor hybrid operating system discoverw

I INTRODUCTION

It is increasingly diffienlt for an administrator {or a pro-
gramn) o monttor a computer network for possible problems.
For instance, the once simple task of keeping track of the
operaling systemns running on the networked computers is
now fedious and time consaming. The importance 1o know
what are the operating systems {OS) out on the network is
substantial: assuring compatibility with software or hardware,
providing technical support, and preventing security breaches
are few examples where such knowledge s essential. Recently,
researchers in securily have begun fo look at the possibility
of using the OS information of a machine o comelaie if an
attack attempt reported by an intrusion detection system (DS
has some chances to succeed on the specified target or not [1],
[2]. Furthermore, [3] discusses different strategies to gather O5
mformation i the context of IDS; and it is clear that neither
passive nor active techniques are ideal for this purpose. On the
other hand, it seems likely that a hybrid approach, soch as the
ome proposed here, would work well. Tn this paper, we focuss
o011 using operating system discovery (O5SD) in the context of
mdrusion detection.

There are many requirements for OSD m the context of
intrusion detection. First, it Is not appropriate to generate
abnormal network iraffic nor huge amount of normal raffic in
order to obtain information ahout a machineg’s O8 (thus current.
active technique are not suitable). Second, when information
on a given machine 15 needed, this miormation must be
provided as soon as possible (thus a purely passive technigque
is not ideal). Third, the gueries to a 05D tool would be of the
form “Dloes machine fp run the operating system OQ77, or in a

1-4244-0799-0/07/$25.00 ©2007 IEEE

Babak Esfandiari
bubuak @see.carlelon.ca
www.sce.carletonca/faculty/estandiar
Carleton University, Canada

Leopoldo Bertossi
bertossi@ses.carleton.ca
www.scs.carleton.cal/~bertossi
Carleton University, Canada

more general way “ls machine £ running an operating system
that belongs (o the set ©77. Stale of the art OSD tools are not
able to answer such queries without going through the, often
useless, work of solving the gquery “Which operating system
is rumning on machine Ip?”. Finally, it is important to have
an easy and flexible way of rapidly updating the rules used to
deduce O8, to take care of new operaling system releases.

A, Contributions

In this paper, we make 3 confributions.

¢« We propose a new strategy for OS discovery called hybrid

operating system discovery.
¢ We argue that hybrid OSD needs an appropriate knowl-
edge representation and formal specification language,
and (hal Answer Sel Programming (ASPY [5] is a
judicious choice for such a language. Some powerful
implementations of ASP already exist, among others DLV
(6] and SMODELS [7].

¢ To validate our hybrid OSD approach and demonstrate its
feasibility, we present a proofl of concept tools and some
preliminary experiment resulis.

The hybrid approach proposed in this paper works as
follows. When the syslem receives a guery aboul the OS
manning on a2 given machine, it tries fo use past events to
deduce the OS5, When il is niot possible, the system will use as
fow active fests as possible to gather the missing information
(instead of using all available tests). This should generate a
small amount of netwark traffic, but still identify the OS5 very
{fast {in fact laster than with purely active techniques since only
gsome active tests will be performed). Our hybrid approach is
detailed in Section lIL As far as we know, this is the first
attempt to design a hybrid approach to OS5 discovery, and
certainly the first to use ASP for this purpose.

To allow passive and aclive O8 discovery 1o coexist in an
elegant and uselul way, there are some reguirements on the un-
derlyving language used for knowledge representation. First, a
declarafive language is preferable since it gives the possibilily
to automatically generate the program from a repository, i.e.
from a database of operating system behaviors, thus allowing
to easily updale the deduction rules. Second, the language

! Sometimes called A-Prolog [4], but ASP goes much beyond Prolog in that
it iz more expressive and it has a clear declarative somantics.

391

must support non-monotonic reasoning (that 18 the ability to
draw conclusions which can be invalidated when adding new
information), see [8]. This feature is important since whenever
we add a new network packet originating from machine fp, we
want to tighten as much as possible the set of possible OS for
Ip. Next, the logic must suppoit both reasoning in dynamic
domains (lo mier knowledge passively in a changing world,
i.e. computers reboot, change thelr network confipuration, etc.)
and planning (Lo obtain the missing informnation actively).
Finally, it is important that the logic has a sound and complete
semantic to assure that the conclusions we make are exactly
the good ones. We chose ASP as our langoage for hybrid
05 discovery since it fulfills all of the above requirements,
gives us some other interesting features, and there 13 some
literalure on [rameworks to use ASP for knowledge-hase
management and plamming, see [9]. Section II-B presents a
short introduction to ASP and argues why if 8 2 good choice
for the task of hybrid OS discovery.

To apply our approach, we also present a proof of concept
prototype built with Java and answer set programming that
gathers knowledge aboul the operating systems on a netwaork.
The goal of the prototype is to show how, and to a greater
extend why, ASP 15 a judicious choice Tor hybrid O8 discovery.
For the sake of clarity, we present here a simplified version
of the prototype in which we use ounly 8 operating systems
{(Windows 2000, Windows XP, SunO8, MacOS, Free BSD 5.0,
and Linux Red Har 5.2, 7.1, and 8.0}, without trying to get
detailed information aboul the parlicular version of the 08,
such as the service pack for Windows systems or the kemel
for Linux systems. We mainly focus on answering the question:
“Is a given machine fp runming a given operating system (77,

The rest of the paper is structared as follows: first, Section
I provides the background material for both OS discovery and
ASP; then, Section III describes the ASP implementation of
liybrid O8 discovery; Section IV discusses some prelininary
experimentation done with the prototype; Section V wraps
up the paper with some discussion; and finally, Section VI
discusses some potential areas for future work.

II. BACKGROUND

This section presents basic material on both OS discovery
and ASPE For more inforioation aboul OSD and ASE the
reader is referred to [10], [117 and [4], [5], respectively.

A Operating System Discovery

There are many ways to do O8I, We locus on the analysis
of the communication behavior of a machine (more specif-
ically the content of such communications) to deduce the
underlying operating systern. The hasic idea is that in some
specific situations, there is no standardized way to behave
and each O8 constructor must implement the behavior of
their choice. There are two main approaches for network O5
discovery: passive (see Section II-A1) and active (see Section
-A2).

£} Pasgive QS Discovery: In passive OS discovery one
is only allowed lo Hsten on the network and dedoce some
information from the recorded packets. In particular, it is
not possible to probe a machine to check how il reacts in
a very specific situation. From the sometimes ncomplete
information gathered, one has to deduce the OS5 running on the
machine. An example of a passive deduction test is presented
in Example 1.

Example 1 (passive fesf): When capluring the network traf-
fic, il one sees an ARP reguest from a machine with IP
address fp in which the destination MAC address is set fo
FH:FRFFFFEFE:FE then one can conclude that Ip is rumming
either Sun0S or MacOS prior to version 10, If the field
contains random uninitialized data, then one can conclude that
Ip is rurming FreeBSD 4.6, 4.6.2, 47, 4.8 or 5.0. All other OS
initialize the field to 00:00:00:00:00:00. O

The main problem of this approach is that the information
thay nol be available when needed. For mstance, with passive
05 discovery, the system will only see packets generated as
part. of valid comunumication sequences. Usually, less infor-
mation can be deduced from usual communication than from
carefully engineered stimnulus-response sequences. 1L secims
likely that passive tools should monitor the network and update
their knowledge base on a continuous basis; but in fact, they
simply gather packets for a specific window (lime or number of
packets) and then deduce information from the data collected
in that window (by matching the data against some possible
signalure), regardless of any other information that could have
been known beforehand. In particular, SinFP and POf seem
to use a window of one packet; they analyze each received
packel and oulput the hest operating system maltcehing. This
implementation choice can be anoying for somecne wanting
continuous monitoring of the network and greatly hmits the
ability of passive tools to detect some network events such
as IP spoofing, reboot or the presence of Network Address
Translation (NATY devices (POl delects NAT devices but it
requires a module independent of the fingarprinting parD). pOf
(12} and siphon [13] are examples of passive O8SD) tools.

2} Active 5 Discovery: In active OSD one can directly
probe a machine in order to deduce its operating system,
depending on the reaction o the synthesized stimuli. For
instance, one may send an abnormal packet to see how
the target will react. Since the packet is malformed, there
should be no standard way 1o react and different operating
systems may respond differently. Ancther example would be
to stimmulate the target with a normal packel and analyzing
the way the response correlate with the stimulus. Example 2
presents a stimulus-response active test using normal traffic.
Another kind of active tests consists in placing the largel
machine in unusual conditions and monitoring how it behaves.
However, pulling a machine i extreme conditions often results
in disropting normal activities. [14] describes such a test called
Syilicod Resistance and also presents other active OSD tests.

Example 2 (aciive fes! with normal fraffici: By sending a
Sy packet to a closed port of machine Ip, we can get a
RstAck packetl from fp and correlate the response with the

392

stimulus. For mstance, some version of MacOS will set the
DF bit of the RstAck packel to the same value as the DF bit
in the corresponding Syn packet, SunOS will set it to Yes,
and Windows o No. MacQOS prior 1o 9.1 seems to use the
TTL of the Svn packet as the TTL for the RstAck and QNX
6.0 even use the TCP options of the Syn packet as the TCP
oplions in the RstAck. As discussed in [15], this test can also
be performed passively since the stimulus could be sent by a
third parly machine as part of normal communication.

The mam problem with active O8 discovery is the large
amounit of traffic generated In order to discover the OS5, For
mstance, most active t0ols need to know ahoul one open and
one closed port on the target to perform the tests. Many of
those fools, such as Nmap, perform a port scan before doing
any active test. A porl scan by ilsell can somelines generale
more than a thousand network packets. On the other hand,
with hybrid OF discovery, the state of the target ports could
be inferred passively. Moreover, since there does not exist a
single test such that one can be sure to learn the 05, it is
necessary Lo align a sequence of fests in order to comectly
determine the operating system. This gives rigse to multiple
sequences of actions thal may all lead Lo achieve the goal. Most
active tools don't bother with planning and simply execute
all available tests. Furthermore, active tools are designed to
answer questions of the form “Which O8 is running on a
given machine?”, as it is the case with passive tools. To answer
effectively (L.e. without doing all the work to know the exact
(35} a less restrictive guestion, such as “ls a given machine
running an O3S among #7977, an active tool would have to use
planning to generate a judicious sequence of aclions; an oplion
that is not available in today’s active tools. Another problem
of using active tools in the context of IDS comes from the
lack of contimuous moniloring. An active ol execules the
tests, gives the result and then shuts down until the next query.
When the next guery comes in, the aclive tool must do all the
work again, even if the guery 1s the same. It is thus necessary
to run all tests again. This is not scceptable in the context
of T since we expect the same query (o be repeated and
we don’t wanl {o generate too mwuch fraffic. Another major
drawback of active tools is the injection of abnormal packets
om the network; which becornes o huge problem when those
packets interfere with other network equipments, for instance
an intrusion detection system. By using planning, we could try
to avoid as much as possible the injection of abnormal packet.

Nmap [16] and Xprobe [17] are well known active O5D
tools. Another effort wm OSD comes from Core Securily
Technologies where they use neural networks instead of rule
matching. Unfortunately, their product is comnercial and thus
not much information is available. It seems like their tool is
active and closely related to Nmap (it uses the same tests).
Thus it should suffer the same problems as most active tools.

3) Hybrid 05 Discovery: In hybrid O5 discovery, the tool
should contimously monitor the network to passively gather
as much information as possible. The leool should enter in
active mode only when needed (when a query that cannot be
answered with the available information is made) and should

nse the information gathered passively to minimize the number
of active tests performed. BExample 3 discusses a situalion
when a hybrid tool should go into active mode.

Example 3 (hybrid (8 discovery): Suppose a user wants fo
know if machine fp 1s rurming “Windows 2000 server spl”
but the information gathered passively so far only allow us to
deduce that it 1s running & Windows system. Here we will use
some active tests in order to answer the query. However, the set
of active tests should only include tests that will discriminate
between different kinds of Windows systems. For instance, it
would be useless to execute a test that distinguish between
Finux and Windows systems since we already know that fp is
running a Windows system. O

The author of RallahB, see [18], claims that his tool can
do hybrid O81D. However, RallahB simply does passive 08
discovery and if no information is provided by the passive
mode, one active test, and always the same, 18 launched. There
is no inferaction at all between the passive and the active
module. Thus, this is not hybrid O5 discovery in the sense we
discuss here. We are not aware of any work that effectively
combine passive and active OS discovery.

A hybrid approach offers many advanlages over an aclive
and a passive one. First, constantly monitoring the network
implies using a good knowledge management system which
will offer more possibility than usual passive tools (detecting,
and reacting to, some network eveits), Second, the objective
to only execute fests thal are necessary implies the use of
planning which in turn offers more flexibility as to what
kind of queries the system can answer. Finally, by combining
active and passive, we will reduce the amount of traffic
generated (and alsc the amount of time required) for OS5
discovery purpose (compared to active tools) while achicving
the required level of precision (which is not always the case
with passive tools).

B. Knowledge Representation Language

When building an application that relies extensively on the
management of a knowledge base, it is important to choose
the underlving language wisely. In the context of hybrid
O8 discovery, we want a language that meets the following
requirements:

+ Is declarative.

¢ Supports non-monotonic reasoning,

¢ Can be used for knowledge management and planning.

¢ Has a sound and complele semantic.

Having a declarative language minimizes the effort needed
to update the program with new scenarios, i.e. new signatures
for new operating systems. [L also opens the door Lo automalic
generation of the program (from the database of fingerprints).
The language must support non-mmonotonic reasoning (that is
the ahility Lo draw conclusions that can be refracted as soon as
mare information becomes available) since from a given set
of network packets, it should produce the set ol all possible
OS5 so far and as soon as a new packet comes in, we expect
the set of possible OS5 to decrease as much as possible, thus
refracting some previously made conclusion.

393

A guick glance ab these requirements should trigger the
idea of using a language like Prolog lor our task. Albeil
Prolog is widely used for knowledge based applications, it has
several limitation for OF discovery purpose. First, Prolog is
in principle a declarative language, but it has some procedural
elements that make its semantics somewhat unclear. Further-
more, due to its top-down and depth-first evalualion strategy,
the ordering of the rules {and the ordering of the terms inside
a rule) is significant i Prolog; thus, this could greatly restrict
the possibility of antomatically generating the program. Also,
Prolog does not explicitly support non-monotonic reasoning.
Finally, Prolog does nol have a complele semantic. Thus the
set of answers given by Prolog is not always the set of all
imtended answers.

As an allemalive to Prolog, we chose Lo use another logic
programming language paradigm, called Answer Set Program-
ming (ASP). Let us give a brief introduction to ASP and then
it will be possible to show why ASP is appropriate for hybrid
05 discovery.

C. Answer Sef Programming
ASP consists of declarative programming using extended
disjunctive logic programs (EDLPs) with an answer set se-
mantic. EDLPs admit rules of the form
IFRVERERVE PSS PRI

s L, ot Lypyq, .o not Ly,

where each L; is a classical literal, i.e. an atom A or
its classical negation 4, and net denotes weak nega-
tion. We call {4, L} the head of the rule, while
Ilpra, o by mot Ly, o not Ly} forms its body. Right
here we can see lwo mnajor exlensions rom Prolog:

+ we can have disjunction in the head of rules. A rule like
Qay v S(a) +— Pla). means that i Pa) is true, then
at least one of Q(a) or S{a) must also be true;

¢+ we have both classical (or strong) nepation and weak
negalion {or negation as failure). —=FP{a} is true iff P(a)
is false, while not '(a) is true if P(a) is false or the
truth value of Flo) is unknown

These extensions give more expressiveness fo ASP. For

mstance, a rule describing that a TCP Syn packet with the
DF bit set and a TTL of 128 must originate from a machine
running Windowy 2000 or Windowy XP would look hike:

os(lp, 28V os{Ip, zp) — tep(lp, _, _,_, yes, syn, 128).

Having strong and weak negation allows us to write mles
representing laws such as the closed world assumption, some-
thing is false unless it is explicitly designed to be true:
—os{lp, 08} e not os(Ip, O5).

Py v ~Q(z) — R{x), ~5(y), not Tixz),not ~U{z) 1)

The rule of Bquation 1 is valid and it means that if H(z) is
true, &{y) is false, T'{z) can be assumed to be false, and U{z)
can be assumed to be true then either F(x) is true or Q{x)
is false., We may consider that the program is ground, ie. it

has all iis variables instantiated in the underlying domain of

Sib)
Piay v Q{a)

pa— Ria}, S{a), not T{a), not

Piay Vv = Q{a) ¢ Ria), -9, not Tig), not -1
PBYyw —3{d) [Rk, 8(a), not T}, n

Piby v = (h) — R(BY, =&k}, not T(b), nat

TABLE]

THE G¥ PROGRANM OF

N
(13

the program (its Herbrand universe, see [51). For instance, the
ground program formed by the rule of Equation (1) together
with the facts £(a) and 5 (b) (where o and b are constants) is
shown m fable L

Definition 1 (Answer Set); An answer set 5 of a program
IT is some particular set of ground literals such that:

s the literals of § are those that are made true by 11

e the literals of 5 are sufficient to respect the constraints

of II's rules;

e no proper subset of S is also an answer set of 11

Note that a program may have zero, one or more answer
sets. If an answer set contain both a literal and its negation (L
and -0, then the program is considered 1o be inconsistent.

Example 4 {answer seis): Lels consider the program of ta-
ble II. The answer sets of this program are { R(a), P{b), Pla)}
and {R{a}, P(B), Q{a)}. Note that {R{a), P(b), Pla), Q{a)}
is not an answer set since it is not minimal (we can remove
gither Pla) or Q{a) and still salisly the constraints defined
by the program rules). {R{a), P(H)} is not an answer set
since it does not satisfy the constraint induced by the mle
F{z) v Q(x) +— R{z) (since R{a) is true, one of Fla) or
{Ha)y must also be true). a

ASP can be queried to know if a ground literal L is true in
a given programn L The guerying process of ASP offers two
different reasoning modes. The eautious reasoning claims L
is true when £, appears in all the answer sets of 11, The brave
reasoning sanctions L ag being true when I appears in at
least one of I's answer sets. By combining the two reasoning
modes, we can get a three-valued logiclirue, fulse, unknown).

As we can see, ASP is a declarative programming language,
but unlike Prolog, which uses top-down and depth-first, the
evaluation siralegy is not fixed in ASP and the semantics
assure that the ordering of the rules is not important. Thus,
automatically pgenerating an ASP program seems possible.
ASP has a clear declarative semantics thal Prolog lacks.
Moreover, In ASP it is possible to specify some meta-rules,
like hard, weak and weighted coustraints to prune undesirable
models and customize the mference engine. A constrainl is
a tule with an empty head that prevents the body from ever
being ftrue. A weak constraint also has an empty head and fries
o prevent as much as possible the body from being true. If
it is not possible to find a model without violating any weak
constraint, then the models violaling as few weak constrainis

394

as possible are retumed. Weighted constraints are essentially
the same thing but a cosl is associaled Lo every weak constraint
and instead of minimizing the total number of violated weak
consiraints, the goal is (o minimize the total cost of the violated
weak constraints.

Answer set programming can be used to represent knowl-
edge, including non-monotonicity, and reason on the basis
of this knowledge in a non-trivial way. The domain can
be specified in a declarative manner and problem solving
hecomes a reasoning task. For example, many problems of
a combinatorial nature can be represented and solved under
this powerful and expressive programiming paradigm {5]. ASP
hias also been used for planming purposes [19], [20], [21],
[22}. Here, one specifies the initial situation, the goal situation,
and a deseription of the possible aclions logether with their
effects. The svystem should refurn a series of actions that will
lead from the current sifuation o the goal situation. Finally,
as discussed carlier, ASP is more expressive than Prolog,
allowing disjunction in the head of rules and strong negation.
These two extensions will allow fo write deductive rules in a
sitnple and infuitive way. The nterested reader is referred Lo
[5] for a deeper presentation of ASP.

111, O8 DISCOVERY WITH ASP

In this section we show how (o combine knowledge base
management (passive module) and plamiing (active module) to
do both passive and active OSD using ASF The hybrid OSD
tool we present works as [ollows. First, the passive module
gathers network packets and update the knowledge base, When
auser makes a query (o the system to know if a given machine
Ip tuns a given 08 O, the systemn consulls its knowledge base
to get the set of possible OS P for Ip. If the knowledge base
contains enough mlormation to answer the guery, the answer

planning is used to generate a series of active tests fo reduce
F enough so that the gquery can be answered. The rest of the
section is structured as follows: Section TI-A explains how (o
perform passive O8I using ASP and Section HI-B presents
active OF digcovery.

A, Passive OF discovery with ASP

The passive OF discovery module is essentially a knowledge
base; if is updated for every new capiured network packet and
queried whenever one waunts to know the operating system
of a given machine. Section [H-AT presents the Imtensional
DataBase (IDB) file containing ASP rules that medel the be-
havior of different operating systems; Section H-A2 presents
the Bxtensional DalaBase (EDB) file containing the recorded
network packets and explains the querving process and Section
[II-A3 discusses the kind of queries thatl is supported by the
passive module vs other passive tools.

1) Passive IDB: Figure 1 presents a fragment of our
actual DB file for passive OF8 discovery {(passiveOSfinger-
printing 1A, The fivst rule 18 8 wesk constraint stating that
unless it is necessary, one machine should not be assigned
two different operating systems in a single answer sef {each

o Ope IP shoold not orrespond fo fwo different (38
e os0Y) os(NE), 7 = Y
% ARP Reguest
o802 windows2000} v os(X window XD} v
os{ X inuxRedHat 7 1) v os(X, linuxRedHal5_2) v
os{ X inuxRedHat8_0) - arp(X, 1 mact0_00_00_G0_00_00).
os (X mac(S) Voos{ sunS) - apdX, L LmactE T H_EE _FE _FT.
oa(X FreeBSDE 0 - arpdX, 1LY Y b mmac00 00 00 00_00_00,
Y ke macER_FE PR FE PR RE
% TCP Syn
os (X B RedHats 2) o~ topiX, , . ,no,syn,nd)
os (X windowsZ000) Vo os(windowsXP) - feplX, ., _yes,swn, 128)
os(X, freeBBSDS 0) v os (X bnuxRedUat7 1) v os(finuxRedHat§ 0) v
os(X,macO8) VvV e smOS) - teplX, ., yessyo,od).
% TCP synAck
o820 BnuxRedHats 2) - tep(YX Yport Xport, svn,),
fepd X, Y, Xport, Yport no,syn_ack, 64,
os windows2000) V os(X windowsXP) - opl X, Yport, Xport, _syn,),
epX Y. Xport, Ypod yes,syn_ack, 128}
os(X,mac08) vV oos{E sun058) - ep{Y, X, Ypori Xport,_syn,),
ep(, Y, Xport, Ypori yes,syn_ack, 255
08X, freeBSDI_0) v oK b Redlat7_1) Vv os{, finuxRelald_0) -
ep(Y, X, Yport Xporl,_syn,_), top{X, Y, Xport,Yporl yes syn_ack, 64}

Fig. L. Some Rules for Passive OS5 discovery
answer set will correspond to a possible assignment of OS for
the computers).

The set of rules in the group ARP Request models different
behaviors of an OF8 regarding the destination MAC address in
an ARP request (as explained in Example 1). The predicate
arp{ X, Y, Type, Mac) represents an ARP packet sent from
X 10V with a given message type Type (request, reply) and
where Moo contains the destination MAC address.

The second set of rules, those i the TCP Syn
group, represent different possible behaviors for the sender
of the first packet of a TCP handshake. The predicate
tep{ X, Y, Xport, Yport, DF, Flags, TT L) represents a TCP
packet sent from X through port Xport to Y on port Yport
where DF indicates whether or not the DF bit is sel, Flags
ligts the TCP Hags that are set (Syn, Ack, Rst, .., and TTL
containg the time to live,

The last rules presented here, those in the TCP SynAck
group, capture the possible behaviors for the sender of the
second packet of a TCP handshake. Here again the valoe of
the TTL as well as the DT bit are monitored.

2} Pasgsive EDEB and Querving: Bverytime a network packet
is captured, it must be added to the knowledge base. This is
done by adding a fact representing the packet to the EDB
fle (passiveOSdiscoverv EDE). I is possible 1o get an overall
view of the knowledge we have so far concerning which OS
is possibly ranning on every compuier. To do this, we simply
invoke LV asking for every possible answer sel. Below are
two examples to explain how passive OS discovery works in
ASP

Example 5 {a first packet): Suppose the only captured
packet s0 far 1s an ARP reguest from machine 10.1.1.6 1o
machine 10,1,1.1 where the destination MAC field is filled
with zeroes; this is represented, in the EDB file, by the fact
ar p{? plO 11 63pl0 11 1,1, m:;r,nﬂ(}_ﬁO_OD_(]U_(}(}_Q{)}.
By asking DLV to compute all possible answer sets, we end
up with five of them. Hach answer set conlains one possible
operating system for 10.1.1.6. The first rule of the ARP
Request group (see Figure 1) is used and one of the terms
in the head has 1o be true. That 18, the 0§ for 10.1.1.6 15

395

cither Windows 2000, Windows XP, Linux RedHat 5.2, !mux
RedHat 7.0 or Limx RedHaof 8.0.

Example 6 (a second packet): Now suppose that a second
packet is captured. This second packel is a TCP Syn packet
from 10.1.1.6 to 10.1,1.1 with the DF bit set and a TIL
of 64. So, the knowledge base currently contains two facts:
arplipl0_1_1_6,ip10_1_1_1,1,mac00_00_00_00_00_00)
and dep(épl0 1 1 6,4p10_1_1_1,3952,80, yes, syn,64), By
asking DLV 1o compule all possible answer sels, we end
up with only fwo. Bach amswer set containg one possible
operating svstem for 10.1.1.6 and they are: Linux RedHat
7.0 and Linux RedHar B.0. The answer comresponds to the
intersection of the possible OS5 for each rule triggered by the
facts (the first rule of the ARP Reguest group and the LN
rule of the TCP Byn group, see Figure 1)

At the end of Example 6, one could wonder why DLV
did not oufput sn answer set where 10.1.1.6 18 assigned both
Windows XP and Sun@5. This would indeed be an answer set
but it is not allowed thanks to the weak constraint discussed at
the beginming of Section [1-A] that prevents a machine to be
assigned multiple OS when a single one is sufficient. However,
there exist some situations where the knowledge base will
cortain some facts such that it is not possible o assign a single
OS5 to a given machine and still form a consistent answer set.
For instance, il a group of compulers are behind a Network
Address Translation (NAT) module, they may generate packets
containing dilterent O8 fingerprint all generated from the
sarne 1P address. The weak constraint is flexible enough (o
permit such situations while making a difference between 05
ambiguity and multiple O8 hidden behind a single 1P address.

One drawback of answer sets is the combinatorial explosion.
If we put packets for 2 different IP addresses in the EDB
file, each answer sel will contain a possible 05 for each
machine, The mumber of answer sets can thus become very
large. BExample 7 present an example of such commbinatorial
explosion. To circumvent this problem, we can maintain one
EDB file for each TP address. This is discussed in Section TV.

Example 7 (a third packet): At the end of Example 5,
we know that 10.1.1.6 is running sither Limux RedHat 7.0
or Linux RedHai 8.0, Suppose we had a third packet
which s an ARP reguest from 10.1.17 o 10.1.1.1
with the destination MAC address set to all zeroes
{ a,rp(é pI0_1_1_7.#p10_1_1_1,1,mac0i_00_00_00_00_O).
A quick lock at Figure 1 allows us to deduce that 10.1.1.7
is runming either Windows 2000, Windows XP, Linux RedHof
5.2, Limuy RedHar 7.0 or Limux RedHaf 8.0, Since there is
two possible OS5 for 10.1.1.6 and 5 for 10.1.1.7, there will
be 10 answer sels (one to encode each possible assigmment).
By splitting the BEDB file in two (the packets that belongs
to 10.1.1.6 vs those that belongs to 10.1.1. 7), we would
have only 7 answer sets (2 for 16.1.1.6 and 5 for 10.1.1.7).
Such an optimization becomes increasingly important as the
number of monitored hosts grows.

3} Queries for the Passive Module: While other passive
fingerprinting tools are designed to output the exact operating
systern {(when such information is available) running on a

machine, the one presented in this section can provide a set of
possible operating systems for 2 machine. To see the benefils
of having the set of possible OF instead of the exact OS5, we
present how two different systermns would answer 3 different
querics.
“Is machine Ip running the OS5 07
e (O isthe exact OS: if O is defined, then the answer would
be yes if O = (O and no othorwise (O £ 7). Whenever
(' is not defined, the answer would be maybe,
8 F g the set of pmﬁhie 085 the answer would be yes 1f
P=d0% no if O & P and maybe otherwise.
“Is machine Ip running an OS5 € 477
¢ (' isthe exact OS: if (' is defined, then the answer would
be yes if O € 0 and no otherwise (O &). Whenever
¥ is not defined, the answer would be mayhe.
& /' iz the set of possible O5: the answer would be yes if
P Guoil Prf =& and mavbe otherwise.
“Which O8 15 running on fp?”
& (¥ is the exact O8: if (¥ is defined, then the answer
would be (. Otherwise, the answer would be unknown.
¢ 1 ig the set of possible OS: if P = [0}, then the answer
would be O, Gtherwise, the answer would be usknown.
Note that since most passive Lools only give an answer when
they know the exact OS5, they won't be of any help to answer
these queries unless they know the exacl 05, On the other
hand, our tool will sometimes be able to answer those queries
without knowing the exact OS.

B, Active 05 Discovery with ASP

When a query is made to the knowledge base to know
il a given machine fp is runming & given operaling system
& and the guery result turns out to be “unknown”, then it
would be interesting to build a plan {(a series of active O8
discovery tests) such that after the execulion of those tests,
the knowledge base will have enough information to decide
il Ip is rumming . So here, we use the planming abilities
of ASP Section IIE-B1 presents the IDB file containing the
ASP description of possible actions (the active OS5 discovery
tests) and Section TH-B2 describes the EDB file contatnung the
description of the initial situation and explains how to query
the systern for a plan. Finally, Section [H1-B3 discusses the
kind of queries that are supporied by the active module vs
other active tools while Section III-B4 discusses how we can
build “good” plans using DIV ag the engine to compule the
answer sets.

I} Active 1DB: A fragment of our actual intensional
database {activeOSdiscovervIDE) is presented in Figure 2.
The first rule states thal tests are execuled only i necessary
{as few lests as possible are used 0 a plan). This rule 15 very
important in our planning module and cannot be used in less
expressive languages, like Prolog, thal do notl support weak
constraints, The next four rules® define the planning, their
meaning is:

“The predicate holds/? expresses the possible OFS at each state while
possible/3 denotes what is possible with respect to the outcome of 1 test.

396

1y i an association {(IP,08} does not hold before the
execution of an action, it will not hold after;

2y if an association ({ P, 05} holds before the execution of
an action and the outcome of this action confirm that
possibility, then (I P, (5} still holds after the execution
of the action;

3y all association {F P, (05 that are
1o action is executed;

4y whal s nol exphicitly said 1o he possible by the oulcome
of a test should be considered as not being possible.

rue remain true when

Again here, some of those rules would not e expressible in
Prolog since they use strong negation. The last part of Figure
2 describes one possible active test, namely the TCP SynAck.
Note that this active test corresponds Lo the passive knowledge
updating rules presented in the TCP SynAck group of Figwre
LI the TCP SynAck test is exeeuted against Ip af time T,
this will cause at least (and exactly) one of the predicates
glA(Ip, 7D, gl B(Tp, T, g1 C(Ip, T, or g1 D{Tp, T to
he true. When such a predicate is true, this means that only a
certain set of OS is possible for the given Ip. Thus here the set
of possible O8 is the intersection of whal was possible belore
the execution of the test with what is possible with respect
to the result of the fest. Which of these ¢l predicates will
end up heing true depends on the actual result of the fest and
thus on the actal operating system rmnning on the machine.
Example 8 delails the effects of an action. A complele example
of planming will be presented i Section [H-B2.

Example & (effects of aciions): Suppose that the test TCP
SynAck is executed against Jp at time 7' where we know
that Ip is running Linux Red Hat, but we don't know if it
is runming 5.2, 7.1, or B.0. Then at time T, exactly one
of gl A{lp,I'D, gl B{{p, 1), g1C{ip, 4", or g1 D {{p, 1)
will be lrue. Now suppose the result of the test is such
that ¢10(Ip, 1) is true. With the definition of glD from
Figure 2 we can see that possible(I P, free BSD5 0,T1),
possible(T F, inur Red HatT_1,T1) and finally possible
(P, linue RedH a8 0,77 are forced to be true. Thus we
can conclude that fp s rurming Famee Red Har 7.1 or 8.0,
Ip cannot be ruming Linux Red Har 5.2 since the test result
eliminates it (possible/3 is not true in rule 2) and cannot be
running Free BSD 3.0 since it was not a possibility before the
execution of the test (holds/3 Is not true in rule 2). O

2) Active EDB and Querving: What is interesting in using
hoth active and passive O8 discovery technigues in a ool is
that the knowledge acquired by the passive module can seive
to reduce the amount of work that has to be done actively, see
Example 9.

Example O (using pussive and aofive informalion):
Suppose the current knowledge allows us to state that Ip
is running either Linux Red Har 7.1 or MacOS. Then it is
possible to learn the aclual operating system by doing a
single test, namely the TCP SynAck test. On the other hand,
if we do not use the information provided by the knowledge
bage and assume that fp can be ruming any operating system,
it may not be possible to learn the exact OS5 of Iy by doing
only the TCP SynAck test. We may have o do more tests. U

fo¥xecute actions ooy when oeeded
e ezecided %
% Planming
1y -holds(ID,OS,TL) - -holds@ROS,T). T « T
23 holds{3P,OS.TT) o holds{IBOS, T, pussﬂ)ir{i!-’ O5,11), next(1,T1)
3y holds(IP,05.T1) - holds(1R,0S, T, not actionbBxeculed(IP,T), nex{{T,T1}
4} -possible(IP.0S5 T - not possible(IR,05,).
% The TCP Synack fest
gladp Tl v giBIp, T v p1CIp T v g 1DIpTL) -
nextiT,T1), execute(testTCP Synsck Ip T

Fopld o s Hoax Red Had52
possible(IPnuxRedtiat3 271k g1A0P T
ZglB (os is windows 2004 or XP)
possibledPwindows2G00, 11 - gIBIRTL)
possible(Bwindows X BT g1BIP T
TeglC tos is maw or sun O5)
possible(IPmacOS Thy- g IC(IPTL
possibledPsunOS5 T- I CARTIL

%glD {us is free BSD 50 or Unux Red Hat 7.1 or §.0)
possible(IP freeBSDS_O,TL)- pID{IPTI)
possible(IP linuxRedHat7 1 T1y- g IDIPTL
possible(dP linuxRedHat8 0T - gID(IRTL

Fig. 2. Some Rules for Active 08 Discovery

Passively gathered information can be used to reduce the
amount of aclive work in the following way. To learn if a given
operating system O is running on machine Ip, the first thing
to do is to ask for an overview of the knowledge concerning
machine fp; we gel P, the set of currently possible OS for 1.
If O ¢ P, then clearly Ip is not runing &, If F = {0}, then
clearly Ip is running (. Otherwise, some aclive tests have to
be performed in order to discover if fp is tunning O. To know
which tests should be performed, planning can {and should)
be used. The current state needs to he given to the planning
module together with a poal state. This information will be
wrillen in the EDB file (aciiveOSDiscovery EDB). Bxample 10
explains the process of planning using the current knowledge.

Example 10 (planning actions): Suppose that the current
knowledge base allows us to infer that machine 10.1.1.5 is
rurming either Windows 2000, SunOS, or Linux Red Haf 8.0
and that we want to know if 10.1.1.5 is running Windows
2000, Smcee it is possible bul not certain that 10.1.1.5 is
ruming Windows 2000, we must rely on active O8 discovery
through planning. Higure 3 presents the content of our EDB
file for this pe{riiculux cage. The first group with predicate
holds(ipl0_1_1_5,p,0), where p represents the three possible
08, describes the initial state. The next line imnposes that there
is only one possible 08 for 10.1.1.5 at the goal state®. The
last line corresponds to the guery about the possibility to reach
the given goal state. I we ask DLV 1o solve this plamiing
problem it will give us a plan to execute the TCP SynAck
test. Droing this test will result in updating the knowledge base
with the result of the test and from there the same guery o
the knowledge base will return either ves or no depending if
10.1.1.5 is actually running Windows 2000 (the outcome of
the test is g1 B) or not ({the outcome of the test is anything but
gl i), O

%Here we make the assumption that it is always possible to distinguish
between two different OF (otherwise it would uot always be possible to find
a plan). One way to make such a assumption true would be to group all OS
that behave exaclly the same under a unigue label and use this label in the
deduction rules and querying.

397

holds(ip10_1_1_35, windows2000,0).
holds(ipl0_1_1_5, sun0S,0).
holds(ipl0_1_1_5, linuxRedHat§_0,0).

- #oount{A : holds(ipl0 1 1 5A 47T > L

holds(ipl0_I_1_5, windows2000, 477

Fig. 3.

3) Queries for the Acfive Module: State of the art active
tools for OS discovery aim to learn which operating system is
running on a given machine. Answering other questions such
as “Is machine IP running the OS O7” or “Is machine [P
running an OS that belongs to #7” can only be done by first
learning the exact OS running on machine /P and interpreting
the result. Here, we discuss how our active module could
answer those different queries and we argue that it should
require less active tests than other active tools. Note however
that the current version of the prototype can only answer
queries of the form “Is machine /P running the OS 077.

The case for the query “Is machine Ip running the OS 07
has been discussed throughout this section and we already
mentioned that the resulting plan will contain as few tests as
possible (remember the weak constraint used at the top of
Figure 2). Even in the worst case where no information has
been gathered passively before the query (the set of possible
0OS is the set of all OS), we should be able to get the answer
without executing all tests since we know the objective O.

The query “Is machine IP running an OS that belongs to
87 consists of reducing the set of possible OS P such that
either P C 0 or Pn# = §. The best strategy (remove from P
the element that are not in & or remove from P the element
that are in #) depends on the number of element of 8 that are
in P and the number of element that are in P but not in 4, but
it also depends on the actual OS running on fP. Thus, even if
P =8U{0} it will be essential to bring # to {O} if O is
the actual OS of IP. However, by executing tests that remove
as much elements from P as possible, we should reduce the
number of tests required far below usual active tools.

The query “Which OS is running on machine /P” consists
of removing as many elements as possible from F until it
becomes a singleton. By execuling tests that will partition P
into classes as small as possible and since we use passively
gathered information to reduce the set of possible OS, we
should reduce the number of tests required below what is
required by other active tools.

For now, a plan simply consists of a set of actions that can
be executed in any order and even all at the same time. But,
by using a branching plan, it's possible to generate a nearly
optimal plan. A branching plan is a plan where the action to
take at a specific time point depends on the outcome of the
previous action (see [23]). It has a tree like structure where
the root is the first action to take; the level one nodes dictate
what is the second action to take depending on the outcome of
the first action, and so on. Each leaf contains a final answer.

4) Building Good Plans: The main reason why it is impor-
tant to use planning in order to select the series of actions to
be executed is that we want to use the besf plan available.
As discussed earlier, the notion of best include a minimal
number of active tests to be performed. Other than that, we

Description of Cumrent State for Planning

EDB
Answe swerl
Sets Sets
IP,.. .IP,
(a) Centralized (b) Distributed

Fig. 4. Operation Modes

can argue that some tests are more costly than other (some
tests need more network resources, some are more intrusive
than others, some require the use of abnormal network traffic,
..). DLV offers a convenient way to assign a cost to each
test in such a way that the best plan will correspond to
the plan minimizing the total cost. This can be done using
weighted weak constraints [6]. If the best plan available is
very expensive, one option could be to avoid the execution of
such a plan at the cost of being unable to answer the query.

IV. EXPERIMENTS
A. Time Benchmarks

Our main concern with ASP was the time complexity of
computing the answer sets of a program. To assure that it is
a practical solution, we used two different operation modes,
distributed and centralized, to evaluate the time required by the
passive module*. The centralized case consists of placing all
recorded packets in a single EDB file, see Figure 4(a); to get a
general overview of the knowledge base, one simply needs to
compute the answer sets of this extensional database. Here an
answer set contains a possible OS for each IP address found in
the EDB file. On the other hand, the distributed mode consists
of having one EDB file per IP address, see Figure 4(b); to get
a general overview of the knowledge base, one must compute
the answer sets of each EDB file®. Note that the two operation
modes are equivalent with respect to knowledge; that is, they
both provide the same amount of information from a given set
of packets. Thus, it is strictly an implementation choice. Note
also that both operation modes could be implemented on a
single computer, it is not necessary that the distributed mode
be actually distributed over several computers; distribution is
over several EDB files (several knowledge bases).

For this experiment we used a set of packets generated
by 7 hosts and we measured two values: the total number
of answer sets and the time required to compute them. We
computed those metrics for 7, 14, 21, 42, 84, and 140 packets{’.

*The passive module, continucusly triggered by the new packets arriving
on the network, will be under more stress than the active module, triggered
by a user request.

Here, it is possible to get an overview of the knowledge base with respect
to a given host without computing the general overview.

“The number of packets is equally distributed among the 7 hosts, so 7
packets means 1 packet per host

398

In centralized mode, we simply executed 2LV o compute the
answer sets and ted the execution. For the distributed mode,
we called the DLV resolution engine for each of the 7 EDB
files and added the time and number of answer sets of each
execution to get the total cost of asking for an overview of the
whole database. The tests were done on a Pentium 4 1.9 Gllz
computer rarning Windows 2000 5P4 with 784 Mo of RAM.
The results for this experiment are shown in Table I

First, we can compare the number of answer sets produced
by the two modes. In both cases, the number of answer sels
decreases as the number of packets increases. This is due to
the fact that with just a single packet it 18 hard to have a
precise idea of the actual operating system on a machine: the
less information we have, the more possible operating systems
we get, and the more answer sefs we need (o describe the
knowladge base. By comparing the number of answer sets for

the two modes, we see two things: the maximuam mumber of

answer sefs is way smaller in the distributed mode, never more
than 40 compared to sometimes more than 2000, the minimum
number of answer sels is a bit smaller m the centralized
mode, The first observation is explained by the combinatorial
explosion experienced in the cenlralized mode. For instance,

suppose that al some stale of the knowledge base each of

the seven hosts has 6 possible 05, In distributed mode, this

required in centralized mode. The second observation, while
surprising ab fivst, can be explamed by recalling thal in the
cenlralized mode we compute the answer sets for one BEDR
file (in the best case this could give cne answer set), while for
the distributed mode we compute the answer sets for seven
EDB files (50 the best case is seven answer sets).

Second, we can compare the computation time required by
the two modes. In the cenfralized case, the time dramatically
decreases (from more than 5 seconds to less than 0.1 second)
as the nwnber of packels increases. This can be explained by
the number of answer sets required when we have only a few
packets, For the distributed mode, the time is a lot more stable
{always between 0.3 and 04 gec). Remember that the munber
of answer seis produced was also a lot more stable in the
distributed mode (between 8 and 38). It is inferesting Lo see
the small amount of time required by the distributed mode (0.4
second is always sufficient’) and that the number of packets
seems to have litfle influence on the distributed mode.

Thus, using a strategy similar to the distributed mode to
avold combinatorial explosion seems 1o enable the use of ASP
as a practical tool for hybrid OF discovery. Note also thal the
above analysis is a bit pessimistic. Each run was done starting
with an empty knowledge base, where all O8 are possible
for each machine. We believe that when the knowledge base
already contains information, i.e. when the set of possible OS5
18 not the set of all 08, the number of answer sets and thas the
time required to compute them will be significantly reduced.

Other prelimmary experiments (nol shown here) have heen

"Remember, this is the Hme mquited o do 7 computations. So each
individual computation takes about 0.06 second.

. Nb Packets
Mode Metric 7 oo)42 | & | 140
Centralized time {ms) 500(_) 2:'?63 2G3 78 94 24
aREWEr St G000 4608 240 8 2 2
Pristributed time {ms) 35% 344 360 3*1_4 328 | 313
ahgwer sets g 24 17 10 8 2
TARLE I

TiniE BENCHMARKS

done to see the effect of the number of deduction rules and the
number of possible OS5 on the execution time. Not surprisingly,
it. seems like the nuwmnber of rules has an impact on the
compulalion time (the bigger is the program, the longer it
takes to execute), but the time variation does not seem to grow
rapidly. A deeper analysis and more experiments are needed
to assure the practicality of ASP on a larger scale.

B, Aceuracy

To test the accuracy of our hybrid tool®, we set up an
experiment to compare our resulls with those of pOf 2.0.8.
Tior this experiment we used 2949 traffic fraces generated by
52 dillerent operating systems. Those traces are the result of
attacking one of the 52 targets using a vulnerability exploita-
ton program. Details sbout those traces can be found m [24].

We choose Lo use the Syn mode of pOf since it is carrently
the only non-experimental mode available. Since pOf outputs
an answer for cach packel, we gathered the set of answers
concerning the targel of a trace 1o form the set of possible
OS5, For 2528 traces, p0Of gave no answers for the target. For
16 traces, pOf gave some answers bul none were the actual
target OS, For only 166 traces did pOf give the actual OS
among some wrong answers (usually 30 wrong answers plos
the good onel; in only 4 cases of those 166 we had a set of
possible OF of size less or equal to 10,

The results of our hybird tool look very promising. For
only 435 traces out of 2949, the tool gave no answeis or {00
many answers 1o be useful (more than 140 possibilities out of
the mitial 171 O8). For 7 fraces, the hybrid tool gave some
answers but none were the actual target O8. For the 2507
remaining traces, the tool gave the actual 0§ among some
wrong answer {always less than 30 wrong answers plus the
good one); in B1¥ cases out of those 2507, we had a set of
possible O8 of size less or equal 1o 10,

The accuracy results presented here seem to support two of
our initial assumptions:

e Using a knowledge base to keep previously dedoced

nformation enhance the accuracy.

& A fully passive tool may not be sufficient in the context

of intrusion detection.
V. DISCUSSION

I this paper, we presented a hybrid approach to operating
systeins discovery. The hybrid approach combines the advan-
tages of both passive and active techniques while being much
more versatile. The passive module continuously monitors the
network allowing to detect abnormal behavier (IP spoofing,

8 Actually we have tested only the accuracy of the passive module.

399

NAT, ete) and is mmult-packets based thus allowing a maore
precise and accurate identification of O8. The aclive module
relies on the information gathered passively to reduce the
amaount of work needed 1o answer a guery and uses planning
the execute only pertinent tests.

We argoed thal to support sach a hybnd approach, the
underlying representation language must respect some crite-
ria such as: support non-monotonic reasoning, planning and
knowledge management, be declarative and have a sound
and complele semanlic. As a consequence of using a good
knowledge representation language, a hybrid O8D tool can
deal with more types of queries than other OSD tools.

Finally, we proposed to use ASP as a knowledge represen-
tation language o implement the concept of hybrid 8 dis-
covery. ASP seems a judicious choice sinee it respects all the
aforementioned requirements and offers some other interesting
features speh ag: weak and weighted constrainds, disjunction in
the head of rules and both strong and weak negation. Of course
this expressiveness comes al the cost of time complexity. To
make sure that ASP s practically suitable for hyhbrid O8
discovery, we build a proof of concept implementation and we
presented some experimentation resulls. Among other things,
we discussed a stralepy to easily reduce the combinatorial
explosion underlying the computation of answer sets in ASP

VI FUTURE WORK

Many aspects of the work presented here will be further
developed in order o exploit the full power of ASP and (o
build a tool that is sultable for OS discovery in a real world
environiment and that could be used by third party applications.

One of the main advantage of nsing a declarative langnage
such as ASP is the possibility (o awtomatically generale the
rule set required by the program. In owr particular case, it
would be exfremely inferesting to have a script that automat-
ically generates both the passiveOSdiscoveryIDE and the ac-
fiveOSdiscovery.IDB files from a database of OS5 fingerprints.
With such a script, one could update the fingerprint database
with new data as soon a8 a new O8 is released {using a ool
such ag [15D and then update the intensional database for both
the pasgsive and active part of O8 discovery.

In order o extend the work presented here, it would be
interesting to allow more general queries for the active module.
Instead of building a plan to {ind out whether machine fp runs
a given operating systern O, it would be nice to build a plan to
learn if fp runs one of the OS among a given set €. Another
important guery is of course “which O8 is running on fp7

Section H-B4 discussed about the possibility to specify a
cost to each action. We have not vet fully investigated how this
could be applied to the field of OS discovery and we believe
there is st interesting leatures (o seek there.

Extending the hybrid approach to application discovery
would be extremely relevant from a security point of view.

ACKNOWLEDGEMENT
We would like to thank Frédéric Massicotfe and Anaie De

Montigny-Leboeuf from Canada’s Communication Research
Center for their help throughout this project.

{1

2]

=

{9

[10]

1t

f12]

21

22,

24]

F Massicotte, M. Couture, Y. Labiche, and L. Briand, “Context Bazed
Intrasion Detection Using Snost, Nessus and Bugtraq Databases” Fre
ceedings of the Third Annual Conference on Privacy, Security and Trus!
(PS1°05), Qetober 2005,

G. Taleck, “Ambiguity Resolution via Passive OS Fingerprinting”
Froceedings of the 6th Interafiona! Symposivm on Recent Advances in
Intrusion Delection (RAIDC03) - LNCS, vol. 2820, pp. 192206, 2003
R. Gula, “Correlating 105 Aleds with Vulnerability Information,” hiep:
ffwww lenablesecurity com/images/pdis/va-ids pdf, December 2002,

M. Gelfond and N. Leone, “Logic Programming and Knowledge Rep
msentation: The A-Prolog Perspective.” Artificial Intelligence. vol. 13§,
no. 122, pp. 3-38, 2002,

C. Baral, Enowledge Representufion, Reasoning and Declarative Prob-
lesm Selving. Cambridge University Press, 2003

N. Leone, (3. Pleifer, W. Faber, T\ Eiter, (3. Gottlob, 8. Perri, and
F ScarceHo, “The DIV Sysernn for Koowledge Reprsenialion and
Reasoning,” ACM Transactions on Compuiational Logic {fo appear),
2007,

T, Syrjdnen and I Niemeld, “The Smodels System,” in Proc. 6
Internctional Confevence on Logie FProgramming and Nownonotonic
Reasoning, (LENMR 20045 Sponger LNCS 2173, 2001, pp. 434-438.
W. Lukaszewicz, Noa-Monotonic Reasoning: Fermalization of Common-
sense Reasoning, ser. Bllis Horwood Series In Artificial Intelligence,
I, Carnpbell, Ed. New York, Horwood, 1990

(. Baral and M. Gelfond, “Reasoning Agents in Dynamic Domains,”
Proceedings of the 1999 Werkshop on Logic-Based Artificial Infellipence
{LBAF99), pp. 257279, 1999,

K. Lippmann, D. Fded, K. Piwowarski, and W. Streilein, “Passive
Operating Systemn Identification From TCP/AP Packet Headess” Fro-
ceedings of the 2003 Weorkshop en Data Mining for Computer Security
(DMSEC03), 20603,

O Trowbridge, “An Overview of Remote Operating System Fingerpring-
” SANS InfoSec Reading Roowm - Penetration Testing, October 2003,
M. Zalewski, “p0f 2.0.7,7 http:HMleaniuf coredump.ex/pOf.shim], August
2006, {Augast 2006},

Subterrain Security Group, “The Siphon Project)” httpi/siphon.
datanerds.net/, 2000, (Tune 2008).
H Yarochkin, “Hemote 8 detection via TCP/AP Stack Hin

geiPrinting,” hitp/Awww insecure. org/nimap/imap-fingerprinting - article.
fitml, October 1998,

A. De Montigny-Leboeuf, “A Mulli-Packet Signature Approach to
Passive Operativg Systern Detection,” Communications Reseawch Cenler
Canada, Tech. Rep. CRCTN-2005-001, January 2005.

E Yarochldn, “Nimap,” hitp/Avwwinsecnme. org/nimap/, June 2006, (June
2006).

Sys-Security Group, “Kprobe 2.03) http:/vwways-security.comfindex.
php’page=xprobe, July 2005, (June 2006).

. Wilks, “RallahB A Network Intrusion Detection Swystern (NIDS)
With Hybod Fimgerprinting.” Wip/fzoo.cs.yale edu/classes/cst 90/
O0-Olbfwilks cherdelyn cow®s, April 2001, (June 2006).

T. Hiter, W. Faber, N. Leone, 3. Pteifer, and A. Polleres, “A Logic
Programming Approach (o Knowledge-State Planning, IL The DLV
System” Argificial Intelligence, vol. 144, no. 12, pp. 157-211, 2003,
T. Hiter, W, Faber, N. Lesne, (G. Pfeifer, and A Polleres, “A Logic
Programmming Approach to Koeowledge-State Planning: Semmanbics and
Complexity,” ACM Transactions on Computational Logic, vol. 3, no. 2,
pp. 206-263, 2004,

Y. Lifschitz, “Action Languages, Answer Sets, and Planning,” The Logic
Programming Paradigm, A 25-Year Perspective, pp. 357-373, 1994,

V. Lifschitz, “Answer Set Planning,” FPrecesdings of the 15t Interna-
tional Conference on Logic Programming (ICLP°92), pp. 23-37, 1959
H. Levesque, “What is planning in the presence of sensing?” Fre
ceedings of the [3th National Conference on Artificial Infelligence
(AAAlG6), pp. 1139-1146, 1096

H Massicotte, E (Gagnon, M. Couture, Y. Labiche, and L. Briand, "Au-
toinatic Evalawtion of Intrusion Delection Systers,” Proceedings of the
2006 Anaual Compiiter Security Applications Conference (ACSAC06),
2006.

400

