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Abstract-The goal of operating system (OS) discovery is
to learn which OS is running on a distant computer. There
are two main strategies for OS discovery: active and passive.
Each of them has advantages as well as drawbacks. This paper
discusses how answer set programming, a new logic programming
paradigm, can be used to address, in a simple and elegant way, the
problem of operating system discovery in computer networks by
logically specifying the problem and providing solutions through
automated reasoning. As a result of using such a knowledge
representation framework, it is possible to unify the active and
the passive methods to OS discovery in a single hybrid approach
that has the advantages of both strategies while being much
more versatile. Moreover, this paper presents a proof of concept
prototype for hybrid operating system discovery.

I. INTRODUCTION

It is increasingly difficult for an administrator (or a pro-
gram) to monitor a computer network for possible problems.
For instance, the once simple task of keeping track of the
operating systems running on the networked computers is
now tedious and time consuming. The importance to know
what are the operating systems (OS) out on the network is
substantial: assuring compatibility with software or hardware,
providing technical support, and preventing security breaches
are few examples where such knowledge is essential. Recently,
researchers in security have begun to look at the possibility
of using the OS information of a machine to correlate if an
attack attempt reported by an intrusion detection system (IDS)
has some chances to succeed on the specified target or not [1],
[2]. Furthermore, [3] discusses different strategies to gather OS
information in the context of IDS; and it is clear that neither
passive nor active techniques are ideal for this purpose. On the
other hand, it seems likely that a hybrid approach, such as the
one proposed here, would work well. In this paper, we focuss
on using operating system discovery (OSD) in the context of
intrusion detection.

There are many requirements for OSD in the context of
intrusion detection. First, it is not appropriate to generate
abnormal network traffic nor huge amount of normal traffic in
order to obtain information about a machine's OS (thus current
active technique are not suitable) Second when information
on a given machine is needed, this information must be
provided as soon as possible (thus a purely passive technique
is not ideal). Third, the queries to a OSD tool would be of the
form "Does machine Ip run the operating system 099', or in a

more general way "Is machine Ip running an operating system
that belongs to the set (0". State of the art OSD tools are not
able to answer such queries without going through the, often
useless, work of solving the query "Which operating system
is running on machine Ip?". Finally, it is important to have
an easy and flexible way of rapidly updating the rules used to
deduce OS, to take care of new operating system releases.

A. Contributions
In this paper, we make 3 contributions.
* We propose a new strategy for OS discovery called hybrid

operating system discovery.
* We argue that hybrid OSD needs an appropriate knowl-

edge representation and formal specification language,
and that Answer Set Programming (ASP)' [5] is a
judicious choice for such a language. Some powerful
implementations of ASP already exist, among others DLV
[6] and SMODELS [7].

* To validate our hybrid OSD approach and demonstrate its
feasibility, we present a proof of concept tools and some
preliminary experiment results.

The hybrid approach proposed in this paper works as
follows. When the system receives a query about the OS
running on a given machine, it tries to use past events to
deduce the OS. When it is not possible, the system will use as
few active tests as possible to gather the missing information
(instead of using all available tests). This should generate a
small amount of network traffic, but still identify the OS very
fast (in fact faster than with purely active techniques since only
some active tests will be performed). Our hybrid approach is
detailed in Section III. As far as we know, this is the first
attempt to design a hybrid approach to OS discovery, and
certainly the first to use ASP for this purpose.

To allow passive and active OS discovery to coexist in an
elegant and useful way there are some requirements on the un-
derlying language used for knowledge representation. First, a
declarative language is preferable since it gives the possibility
to automatically generate the program from a repository, i.e.
from a database of operating system behaviors, thus allowing
to easily update the deduction rules. Second, the language

'Sometimes called A-Prolog [4, but ASP goes much beyond Prolog in that
it is more expressive and it has a clear declarative semantics.
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must support non-monotonic reasoning (that is the ability to
draw conclusions which can be invalidated when adding new
information), see [8]. This feature is important since whenever
we add a new network packet originating from machine Ip, we
want to tighten as much as possible the set of possible OS for
Ip. Next, the logic must support both reasoning in dynamic
domains (to infer knowledge passively in a changing world,
i.e. computers reboot, change their network configuration, etc.)
and planning (to obtain the missing information actively).
Finally, it is important that the logic has a sound and complete
semantic to assure that the conclusions we make are exactly
the good ones. We chose ASP as our language for hybrid
OS discovery since it fulfills all of the above requirements,
gives us some other interesting features, and there is some
literature on frameworks to use ASP for knowledge-base
management and planning. see [9]. Section II-B presents a
short introduction to ASP and argues why it is a good choice
for the task of hybrid OS discovery.

To apply our approach, we also present a proof of concept
prototype built with Java and answer set programming that
gathers knowledge about the operating systems on a network.
The goal of the prototype is to show how, and to a greater
extend why, ASP is a judicious choice for hybrid OS discovery.
For the sake of clarity, we present here a simplified version
of the prototype in which we use only 8 operating systems
(Windows 2000, Windows XP, SunOS, MacOS, Free BSD 5.0,
and Linux Red Hat 5.2, 7.1, and 8.0), without trying to get
detailed information about the particular version of the OS,
such as the service pack for Windows systems or the kernel
for Linux systems. We mainly focus on answering the question:
Is a given machine Ip running a given operating system 0?.
The rest of the paper is structured as follows: first, Section

II provides the background material for both OS discovery and
ASP; then, Section III describes the ASP implementation of
hybrid OS discovery; Section IV discusses some preliminary
experimentation done with the prototype, Section V wraps
up the paper with some discussion; and finally, Section VI
discusses some potential areas for future work.

II. BACKGROUND

This section presents basic material on both OS discovery
and ASP. For more information about OSD and ASP, the
reader is referred to [10], [11] and [4], [5], respectively.

A. Operating System Discovery

There are many ways to do OSD. We focus on the analysis
of the communication behavior of a machine (more specif-
ically the content of such communications) to deduce the
underlying operating system. The basic idea is that in some
specific situations there is no standardized way to behave
and each OS constructor must implement the behavior of
their choice There are two main approaches for network OS
discovery: passive (see Section II-Al) and active (see Section
11-A2).

1) Passive OS Discovery: In passive OS discovery one
is only allowed to listen on the network and deduce some
information from the recorded packets. In particular, it is
not possible to probe a machine to check how it reacts in
a very specific situation. From the sometimes incomplete
information gathered, one has to deduce the OS running on the
machine. An example of a passive deduction test is presented
in Example 1.
Example I (passive test). When capturing the network traf-

fic, if one sees an ARP request from a machine with IP
address Ip in which the destination MAC address is set to
FF:FF:FF:FF:FF:FF, then one can conclude that Ip is running
either SunOS or MacOS prior to version 10. If the field
contains random uninitialized data, then one can conclude that
Ip is running FreeBSD 4.6, 4.6.2, 4.7, 4.8 or 5.0. All other OS
initialize the field to 00.00.00.00.00.00. L:
The main problem of this approach is that the information

may not be available when needed. For instance, with passive
OS discovery, the system will only see packets generated as
part of valid communication sequences. Usually, less infor-
mation can be deduced from usual communication than from
carefully engineered stimulus-response sequences. It seems
likely that passive tools should monitor the network and update
their knowledge base on a continuous basis; but in fact, they
simply gather packets for a specific window (time or number of
packets) and then deduce information from the data collected
in that window (by matching the data against some possible
signature), regardless of any other information that could have
been known beforehand. In particular, SinFP and POf seem
to use a window of one packet; they analyze each received
packet and output the best operating system matching. This
implementation choice can be anoying for someone wanting
continuous monitoring of the network and greatly limits the
ability of passive tools to detect some network events such
as IP spoofing, reboot or the presence of Network Address
Translation (NAT) devices (POf detects NAT devices but it
requires a module independent of the fingerprinting part). p0f
[12] and siphon [13] are examples of passive OSD tools.

2) Active OS Discovery: In active OSD one can directly
probe a machine in order to deduce its operating system,
depending on the reaction to the synthesized stimuli. For
instance, one iiay send an abnuormal packet to see how
the target will react. Since the packet is malformed, there
should be no standard way to react and different operating
systems may respond differently. Another example would be
to stimulate the target with a normal packet and analyzing
the way the response correlate with the stimulus. Example 2
presents a stimulus-response active test using normal traffic.
Another kind of active tests consists in placing the target
machine in unusual conditions and monitoring how it behaves.
However, putting a machine in extreme conditions often results
in disrupting normal activities. [14] describes such a test called
SynFlood Resistance and also presents other active OSD tests.

Example 2 (active test with normal traffic): By sending a
Syn packet to a closed port of machine Ip, we can get a
RstAck packet from Ip and correlate the respoonse with the
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stimulus. For instance, some version of MacOS will set the
DF bit of the RstAck packet to the same value as the DF bit
in the corresponding Syn packet, SunOS will set it to Yes,
and Windows to No. MacOS prior to 9.1 seems to use the
TTL of the Syn packet as the TTL for the RstAck and QNX
6.0 even use the TCP options of the Syn packet as the TCP
options in the RstAck. As discussed in [15], this test can also
be performed passively since the stimulus could be sent by a
third party machine as part of normal communication. E

The main problem with active OS discovery is the large
amouint of traffic generated in order to discover the OS. For
instance, most active tools need to know about one open and
one closed port on the target to perform the tests. Many of
those tools, such as Nmap, perform a port scan before doing
any active test. A port scan by itself can sometimes generate
more than a thousand network packets. On the other hand,
with hybrid OS discovery, the state of the target ports could
be inferred passively. Moreover, since there does not exist a
single test such that one can be sure to learn the OS, it is
necessary to align a sequence of tests in order to correctly
determine the operating system. This gives rise to multiple
sequences of actions that may all lead to achieve the goal. Most
active tools don't bother with planning and simply execute
all available tests. Furthermore, active tools are designed to
answer questions of the form "Which OS is running on a
given machine?", as it is the case with passive tools. To answer
effectively (i.e. without doing all the work to know the exact
OS) a less restrictive question, such as "Is a given machine
running an OS among 0?", an active tool would have to use
planning to generate a judicious sequence of actions; an option
that is not available in today's active tools. Another problem
of using active tools in the context of IDS comes from the
lack of continuous monitoring. An active tool executes the
tests, gives the result and then shuts down until the next query.
When the next query comes in, the active tool must do all the
work again, even if the query is the same. It is thus necessary
to run all tests again. This is not acceptable in the context
of IDS since we expect the same query to be repeated and
we don't want to generate too much traffic. Another major
drawback of active tools is the injection of abnormal packets
on the network; which becomes a huge problem when those
packets interfere with other network equipmieints, for instance
an intrusion detection system. By using planning, we could try
to avoid as much as possible the injection of abnormal packet.
Nmap [16] and Xprobe [17] are well known active OSD

tools. Another effort in OSD comes from Core Security
Technologies where they use neural networks instead of rule
matching. Unfortunately their product is commercial and thus
not much information is available. It seems like their tool is
active and closely related to Nmap (it uses the same tests)
Thus it should suffer the same problems as most active tools.

3) Hybrid OS Discovery: In hybrid OS discovery, the tool
should continuously monitor the network to passively gather
as much information as possible The tool should enter in
active mode only when needed (when a query that cannot be
answered with the available information is made) and should

use the information gathered passively to minimize the number
of active tests performed. Example 3 discusses a situation
when a hybrid tool should go into active mode.
Example 3 (hybrid OS discovery). Suppose a user wants to

know if machine Ip is running "Windows 2000 server spl"
but the information gathered passively so far only allow us to
deduce that it is running a Windows system. Here we will use
some active tests in order to answer the query. However, the set
of active tests should only include tests that will discriminate
between different kinds of Windows systems. For instance, it
would be useless to execute a test that distinguish between
Linux and Windows systems since we already know that Ip is
running a Windows system. E

The author of RallahB, see [18], claims that his tool can
do hybrid OSD. However, RallahB simply does passive OS
discovery and if no information is provided by the passive
mode, one active test, and always the same, is launched. There
is no interaction at all between the passive and the active
module. Thus, this is not hybrid OS discovery in the sense we
discuss here. We are not aware of any work that effectively
combine passive and active OS discovery.
A hybrid approach offers many advantages over an active

and a passive one. First, constantly monitoring the network
implies using a good knowledge management system which
will offer more possibility than usual passive tools (detecting,
and reacting to, some network events). Second, the objective
to only execute tests that are necessary implies the use of
planning which in turn offers more flexibility as to what
kind of queries the system can answer. Finally, by combining
active and passive, we will reduce the amount of traffic
generated (and also the amount of time required) for OS
discovery purpose (compared to active tools) while achieving
the required level of precision (which is not always the case
with passive tools).

B. Knowledge Representation Language
W hen building an application that relies extensively on the

management of a knowledge base, it is important to choose
the underlying language wisely. In the context of hybrid
OS discovery, we want a language that meets the following
requirements:

0

Is declarative.
Supports non-monotonic reasoning.
Can be used for knowledge management and planning.
Has a sound and complete semantic.

Having a declarative language minimizes the effort needed
to update the program with new scenarios, i.e. new signatures
for new operating systems. It also opens the door to automatic
generation of the program (from the database of fingerprints).
The language must support non-monotonic reasoning (that is
the ability to draw conclusions that can be retracted as soon as
more information becomes available) since from a given set
of network packets, it should produce the set of all possible
OS so far and as soon as a new packet comes in, we expect
the set of possible OS to decrease as much as possible, thus
retracting some previously made conclusion.
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A quick glance at these requirements should trigger the
idea of using a language like Prolog for our task. Albeit
Prolog is widely used for knowledge based applications, it has
several limitation for OS discovery purpose. First, Prolog is
in principle a declarative language, but it has some procedural
elements that make its semaantics somewhat unclear. Further-
more, due to its top-down and depth-first evaluation strategy,
the ordering of the rules (and the ordering of the terms inside
a rule) is significant in Prolog; thus, this could greatly restrict
the possibility of automatically generating the program. Also,
Prolog does not explicitly support non-monotonnic reasoning.
Finally, Prolog does not have a complete semantic. Thus the
set of answers given by Prolog is not always the set of all
intended answers.
As an alternative to Prolog, we chose to use another logic

programming language paradigm, called Answer Set Program-
ming (ASP). Let us give a brief introduction to ASP and then
it will be possible to show why ASP is appropriate for hybrid
OS discovery.

C. Answer Set Programming
ASP consists of declarative programming using extended

disjunctive logic programs (EDLPs) with an answer set se-
mantic. EDLPs admit rules of the form
LI V VLk Lk+I, , L, not L,,+,, . . .,not Lr
where each Lj is a classical literal, i.e. an atorm A or

its classical negation A; and not denotes weak nega-
tion. We call {L1,. Lk} the head of the rule, while
{Lk+1, Lm not Lm+ I: . . .nr ot Ln} forms its body. Right
here we can see two major extensions from Prolog:

* we can have disjunction in the head of rules. A rule like
Q(a) V S(a) P(a). means that if P(a) is true, then
at least one of Q(a) or S(a) must also be true,

* we have both classical (or strong) negation and weak
negation (or negation as failure). -P(a) is true iff P(a)
is false, while not P(a) is true if P(a) is false or the
truth value of P(a) is unknown.

These extensions give more expressiveness to ASP. For
instance, a rule describing that a TCP Syn packet with the
DF bit set and a TTL of 128 must originate from a machine
running Windows 2000 or Windows XP would look like:

os (Ip, 2k) V os(Ip, xp) tcp(Ip tyes, syn, 128).
Having strong and weak negation allows us to write rules

representing laws such as the closed world assumption some
thing is false unless it is explicitly designed to be true:
os(Ip, OS) rnot os(Ip, OS)

P(x) QQ) - R ), S(y), rnot T(x), rot -U(x) (1)

The rule of Equation I is valid and it means that if R(x) is
true, S(y) is false, TQx) can be assumed to be false, and U(x)
can be assumed to be true then either P(x) is true or Q(x)
is false. We may consider that the program is ground, i.e. it
has all its variables instantiated in the underlying domain of

R(a)
S(b)
P(a)
P(a)
P(b) I

P(b)

Q(a)
Q(a)

-Q(b)
-Q(b)

R(a), -S(a), not T(a), not -U(a)
R(a), S(b), not T(a), not -U(a)
R(b), -S(a), not T(b), not -U(b)
R(b), -Sb) ro T(b) not --U(b)

TABLE I
THE C(R(UNI) PRO(GRAM OF RU LE (1)

Rna)
P(b)
P(.) Q(. R(.)

TABLE II
A SIMPLE PROGRAM

the program (its Herbrand universe, see [5]). For instance, the
ground program formed by the rule of Equation (1) together
with the facts R(a) and S(b) (where a and b are constants) is
shown in table 1.

Definition 1 (Answer Set): An answer set S of a program
II is some particular set of ground literals such that-

* the literals of S are those that are made true by 11;
. the literals of S are sufficient to respect the constraints

of Ul's rules,
. no proper subset of S is also an answer set of UI.
Note that a program may have zero, one or more answer

sets. If an answer set contain both a literal and its negation (L
and L), then the program is considered to be inconsistent.

Example 4 (answer sets). Let's consider the program of ta-
ble II. The answer sets of this program are {R(a), P(b), P(a)}
and fR(a), P(b), Q(a)}. Note that {R(a), P(b), P(a), Q(a)}
is not an answer set since it is not minimal (we can remove
either P(a) or Q(a) and still satisfy the constraints defined
by the program rules). {R(a),P(b)} is not an answer set
since it does not satisfy the constraint induced by the rule
PQ() V Q(x) - R(x) (since R(a) is true, one of P(a) or
Q(a) must also be true). :1
ASP can be queried to know if a ground literal L is true in

a given program U. The querying process of ASP offers two
different reasoning modes. The cautious reasoning claims L
is true when L appears in all the answer sets of U-1. The brave
reasoning sanctions L as being true when L appears in at
least one of IU s answer sets. By combining the two reasoning
modes, we can get a three-valued logic(true, false, unknown).
As we can see, ASP is a declarative programming language,

but unlike Prolog, which uses top-down and depth-first, the
evaluation strategy is not fixed in ASP and the semantics
assure that the ordering of the rules is not important. Thus,
automatically generating an ASP program seems possible.
ASP has a clear declarative semantics that Prolog lacks.
Moreover, in ASP it is possible to specify some meta-rules,
like hard weak and weighted constraints to prune undesirable
models and customize the inference engine. A constraint is
a rule with an empty head that prevents the body from ever
being true. A weak constraint also has an empty head and tries
to prevent as much as possible the body from being true If
it is not possible to find a model without violating any weak
constraint, then the models violating as few weak constraints
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as possible are returned. Weighted constraints are essenrtially
the same thing but a cost is associated to every weak constraint
and instead of minimizing the total number of violated weak
constraints, the goal is to minimize the total cost of the violated
weak constraints.

Aknswer set programming can be used to represent knowl-
edge, including non-monotonicity, and reason on the basis
of this knowledge in a non-trivial way. The domain can
be specified in a declarative manner and problem solving
becomes a reasoning task. For example, many problems of
a cormbinatorial nature can be represented and solved under
this powerful and expressive programming paradigm [5]. ASP
has also been used for planning purposes [19], [20], [21],
[22]. Here one specifies the initial situation, the goal situation,
and a description of the possible actions together with their
effects. The system should return a series of actions that will
lead from the current situation to the goal situation. Finally,
as discussed earlier, ASP is more expressive than Prolog,
allowing disjunction in the head of rules and strong negation.
These two extensions will allow to write deductive rules in a
simple and intuitive way. The interested reader is referred to
[5] for a deeper presentation of ASP.

III. OS DISCOVERY WITH ASP

In this section we show how to combine knowledge base
management (passive module) and planning (active module) to
do both passive and active OSD using ASP. The hybrid OSD
tool we present works as follows. First, the passive module
gathers network packets and update the knowledge base. When
a user makes a query to the system to know if a given machine
Ip runs a given OS 0, the system consults its knowledge base
to get the set of possible OS P for Ip. If the knowledge base
contains enough information to answer the query, the answer
is returned (yes when P = {O} no when 0 V P). Otherwise,
planning is used to generate a series of active tests to reduce
P enough so that the query can be answered. The rest of the
section is structured as follows: Section III-A explains how to
perform passive OSD using ASP and Section III-B presents
active OS discovery.

A. Passive OS discovery with ASP
The passive OS discovery module is essentially a knowledge

base, it is updated for every new captured network packet and
queried whenever one wants to know the operating system
of a given machine. Section III-Al presents the Intensional
DataBase (IDB) file containing ASP rules that model the be-
haviolr of different operating sy stems, Section III-A2 presents
the Extensional DataBase (EDB) file containing the recorded
network packets and explains the querying process and Section
III-A3 discusses the kind of queries that is supported by the
passive module vs other passive tools.

1) Passive IDB: Figure 1 presents a fragment of our
actual IDB file for passive OS discovery (passiveOSfinger-
printing.IDB). The first rule is a weak constraint stating that
unless it is necessary, one machine should not be assigned
two different operating systems in a single answer set (each

%One IP should not correspond to two different 05
os(XY)oos(X.Z), Z I= Y

%ARP Request
os(X windows2000) V os(X windowsXP) V

os(XhinuxRedHat7_1) V os(X,onuxRedHat5 2) V
os(X inouxRedHat8 0) :- arp(X,_l,mac00 00 00 00_00 00).

os(X,macOS) V os(X,sunOS) :- arp(X,I,macFF FF FF FF FF FF).
os(X,freeBSD5 0) :- arp(X1,_Y), Y mac0_00 00 00 00 00,

Y macFF_FF FF FF FF FF.
%ICP Syn
os(X,hinuxRedHat5-2) tcp(X,_,__,no,syn,64).
os(X,windows2000) V os(X windowsXP) :- tcp(X._,__yes syn 128).
os(X,freeBSD5 0) V os(XjinuxRedHat7 1) V os(X,iinuxRedHat8 0) V

os(X,macOS) V os(XsunOS) :- tcp(X._,__y s,yn,64).
%ICP SynAck
os(X,hinuxRedHat5-2) tcp(Y,X,Yport,Xport,_,syn,_),

tcp(X,Y,Xport,Yport,no,syn_ack,64).
os(X,windows2000) V os(X,windowsXP) :- tcp(YX,Yport,Xport,_,syn,_),

tcp(X,Y,Xport,Yport,yes,synoack, 128).
os(X,macOS) V os(X,sunOS) tcp(YX,Yport,Xport,r,syn',),

tcp(X,Y,Xport,Yport,yes,syn_ack.255).
os(X,freeBSD5 0) V os(X,inuxRedHat7_1) V os(X,isnuxReHat8 0)
to(YYootXpo ynJ) tcp(X,YXport,Yport,yes,sraykn

Fig. 1. Soimne Rules for Passive OS discovery

answer set will correspond to a possible assignment of OS for
the computers).

The set of rules in the group ARP Request models different
behaviors of an OS regarding the destination MAC address in
an ARP request (as explained in Example 1). The predicate
arp(X, Y, Type, Iac) represents an ARP packet sent from
X to Y with a given message type Type (request, reply) and
where MIac contains the destination MAC address.
The second set of rules, those in the TCP Syn

group, represent different possible behaviors for the sender
of the first packet of a TCP handshake. The predicate
tcp(X, Y, Xport, Yport, DF, Flags, TTL) represents a TCP
packet sent from X through port Xport to Y on port Yport
where DF indicates whether or not the DF bit is set, Flags
lists the TCP flags that are set (Syn, Ack, Rst, ...), and TTL
contains the time to live.
The last rules presented here, those in the TCP SynAck

group, capture the possible behaviors for the sender of the
second packet of a TCP handshake. Here again the value of
the TTL as well as the DF bit are monitored.

2) Passive EDB and Querying: Everytime a network packet
is captured, it must be added to the knowledge base. This is
done by adding a fact representing the packet to the EDB
file (passiveOSdiscovery.EDB). It is possible to get an overall
view of the knowledge we have so far concerning which OS
is possibly running on every computer. To do this, we simply
invoke DLV asking for every possible answer set. Below are
two examples to explain how passive OS discovery works in
ASP.
Example S (a first paclcket). Suppose the only captured

packet so far is an ARP request from machine 10..1.6 to
machine 10.1.1.1 where the destination MAC field is filled
with zeroes; this is represented, in the EDB file, by the fact
arp(iplO1_1_6, iplO_1l1_1, 1, macOO 00 00 00 00 00).
By asking DLV to compute all possible answer sets, we end
up with five of them. Each answer set contains one possible
operating system for 10.1. 1.6. The first rule of the ARP
Request group (see Figure 1) is used and one of the terms
in the head has to be true. That is, the OS for 10 1.1 6 is
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either Windows 2000, Windows XP, Linux RedHat 5.2, Linux
RedHat 7.0 or Linux RedHat 8.0. D
Example 6 (a second packet). Now suppose that a second

packet is captured. This second packet is a TCP Syn packet
from 10.1.1.6 to 10.1.1.1 with the DF bit set and a TTL
of 64. So, the knowledge base currently contains two facts:
arp(iplO 1 116,7iplO1_1__1, 1, macOO_ 00 0000 00 00)
and tcp(iplO_1_1_6, iplO_1l1_l, 3952, 80, yes, synr 64). By
asking DLV to compute all possible answer sets, we end
up with only two. Each answer set contains one possible
operating system for 10.1. 1.6 and they are: Linux RedHat
7.0 and Linux RedHat 8.0. The answer corresponds to the
intersection of the possible OS for each rule triggered by the
facts (the first rule of the ARP Request group and the last
rule of the TCP Syn group, see Figure 1). D:

At the end of Example 6, one could wonder why DLV
did not output an answer set where 10.1.1.6 is assigned both
Windows XP and SunOS. This would indeed be an answer set
but it is not allowed thanks to the weak constraint discussed at
the beginning of Section III-Al that prevents a machine to be
assigned multiple OS when a single one is sufficient. However,
there exist some situations where the knowledge base will
contain some facts such that it is not possible to assign a single
OS to a given machine and still form a consistent answer set.
For instance, if a group of computers are behind a Network
Address Translation (NAT) module, they may generate packets
containing different OS fingerprint all generated from the
same IP address. The weak constraint is flexible enough to
permit such situations while making a difference between OS
ambiguity and multiple OS hidden behind a single IP address.
One drawback of answer sets is the combinatorial explosion.

If we put packets for 2 different IP addresses in the EDB
file, each answer set will contain a possible OS for each
machine. The number of answer sets can thus become very
large. Example 7 present an example of such combinatorial
explosion. To circumvent this problem, we can maintain one
EDB file for each IP address. This is discussed in Section IV.
Example 7 (a third packet). At the end of Example 6,

we know that 10.1.1.6 is running either Linux RedHat 7.0
or Linux RedHat 8.0. Suppose we had a third packet
which is an ARP request from 10. 1.1 .7 to 10. 1.11
with the destination MAC address set to all zeroes
(arp(iplO_1_1_7,iplO l_l_l, macOO00 00 00 000)).
A quick look at Figure 1 allows us to deduce that 10.1.1 .7
is running either Windows 2000, Windows XP, Linux RedHat
5.2, Linux RedHat 7.0 or Linux RedHat 8.0. Since there is
two possible OS for 10.1.1.6 and 5 for 10.1.1.7, there will
be 10 answer sets (one to encode each possible assignment).
By splitting the EDB file in two (the packets that belongs
to 10 11 6 vs those that belongs to 10 11.7) we would
have only 7 answer sets (2 for 10.1.1.6 and 5 for 10.1.1.7).
Such an optimization becomes increasingly important as the
number of monitored hosts grows. l

3) Queries for the Passive Module: While other passive
fingerprinting tools are designed to output the exact operating
system (when such information is available) running on a

machine, the one presented in this section can provide a set of
possible operating systems for a machine. To see the benefits
of having the set of possible OS instead of the exact OS, we
present how two different systems would answer 3 different
queries.
"Is machine Ip running the OS 0?

* O'is the exact OS if O'is defined, then the answer would
be yes if 0 = O' and no otherwise (O 0tO'). Whenever
0' is not defined, the answer would be maybe.

* P is the set of possible OS. the answer would be yes if
P= {O}, no if 0 V P and nmaybe otherwise.

"Is machine Ip running an OS 60?"
* 0'is the exact OS. if O'is defined, then the answer would

be yes if O' C 0 and no otherwise (O' 60). Whenever
O' is not defined, the answer would be maybe.

* P is the set of possible OS: the answer would be yes if
P C 0 no if P n 0 = 0 and maybe otherwise.

"Which OS is running on Ip ?"
* O' is the exact OS. if O' is defined, then the answer

would be 0'. Otherwise, the answer would be unknown.
* P is the set of possible OS: if P = {0}, then the answer

would be 0. Otherwise, the answer would be unknown.
Note that since most passive tools only give an answer when

they know the exact OS, they won't be of any help to answer
these queries unless they know the exact OS. On the other
hand, our tool will sometimes be able to answer those queries
without knowing the exact OS.

B. Active OS Discovery with ASP
When a query is made to the knowledge base to know

if a given machine Ip is running a given operating system
O and the query result turns out to be "unknown", then it
would be interesting to build a plan (a series of active OS
discovery tests) such that after the execution of those tests,
the knowledge base will have enough information to decide
if Ip is ruinning 0. So here, we use the planning abilities
of ASP. Section III-BI presents the IDB file containing the
ASP description of possible actions (the active OS discovery
tests) and Section III-B2 describes the EDB file containing the
description of the initial situation and explains how to query
the system for a plan. Finally, Section III-B3 discusses the
kind of queries that are supported by the active module vs
other active tools while Section III-B4 discusses how we can
build "good" plans using DLV as the engine to compute the
answer sets.

1) Active IDB: A fragment of our actual intensional
database (activeOSdiscovery.IDB) is presented in Figure 2.
The first rule states that tests are executed only if necessary
(as few tests as possible are used in a plan) This rule is very
important in our planning module and cannot be used in less
expressive languages like Prolog, that do not support weak
constraints. The next four rules define the planning, their
meaning is-

2The predicate holds/3 expresses the possible OS at each state while
possible/i denotes what is possible with respect to the outcome of 1 test.
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1) if an association (IP, OS) does not hold before the
execution of an action, it will not hold after;

2) if an association (IP, OS) holds before the execution of
an action and the outcome of this action confirm that
possibility, then IP, OS) still holds after the execution
of the action;

3) all association (IP, OS) that are true remain true when
no action is executed-,

4) what is not explicitly said to be possible by the outcome
of a test should be considered as not being possible.

Again here, some of those rules would not be expressible in
Prolog since they use strong negation. The last part of Figure
2 describes one possible active test, namely the TCP SynAck.
Note that this active test corresponds to the passive knowledge
updating rules presented in the TCP SynAck group of Figure
1. If the TCP SynAck test is executed against Ip at time T,
this will cause at least (and exactly) one of the predicates
giA(Ip, TI), giB(Ip, TI), giC(Ip, TI), or giD(Ip, TI) to
be true. When such a predicate is true, this means that only a
certain set of OS is possible for the given Ip. Thus here the set
of possible OS is the intersection of what was possible before
the execution of the test with what is possible with respect
to the result of the test. Which of these gi predicates will
end up being true depends on the actual result of the test and
thus on the actual operating system running on the machine.
Example 8 details the effects of an action. A complete example
of planning will be presented in Section III-B2.
Example 8 (effects of actions): Suppose that the test TCP

SynAck is executed against Ip at time T where we know
that Ip is running Linux Red Hat, but we don't know if it
is running 5.2, 7.1, or 8.0. Then at time Ti, exactly one
of giA(Ip, Ti), glB(Ip, Ti), glC(Ip, Ti), or giD(Ip, Ti)
will be true. Now suppose the result of the test is such
that giD(Ip,Ti) is true. With the definition of gID from
Figure 2 we can see that possible(IP freeBSD5_0,Ti),
possible(IF onuxRcedHat7 1, T1) and finally possible
(IP, rintuRiediHat8 U0,T) are forced to be true. Thus we
can conclude that Ip is running Linux Red Hat 7.1 or 8.0.
Ip cannot be running Linux Red Hat 5.2 since the test result
eliminates it (possible/3 is not true in rule 2) and cannot be
running Free BSD 5.0 since it was not a possibility before the
execution of the test (holds/3 is not true in rule 2). Li

2) Active EDB and Querying: What is interesting in using
both active and passive OS discovery techniques in a tool is
that the knowledge acquired by the passive module can serve
to reduce the amount of work that has to be done actively, see
Example 9

Example 9 (using passive and active information).
Suppose the current knowledge allows us to state that Ip
is running either Linux Red Hat 7 1 or MacOS Then it is
possible to learn the actual operating system by doing a
single test namely the TCP SvnAck test On the other hand
if we do not use the information provided by the knowledge
base and assume that Ip can be running any operating system
it may not be possible to learn the exact OS of Ip by doing
only the TCP SynAck test. We may have to do more tests. L:

%Execute actions only when needed
:-execute( __)
%Planning
1) -holds(IP0S,Ti) -holds(IPOS,T), T < T1.
2) holds(IP,OS T1) holds(IPOSIT), possible(iPOS 1), next(T,T1).
3) holds(IP,OS,Tl) holds(iPOST), not actionExecuted(iPT), rext(Tj).
4) -possib1e(IPO0S T) :-not possible(IPOS T).
%The TCP SynAck test
gllA(IpTI) v glB(IpjT) v g1CIpjT) v gDjIpjT)

next(T,Tl), execute(testTCP-SynAck,Ip,T).

%glA (os is linux Red Hat5.2)
possible(IP, inuxRedHat5_2,Tl):- gIA(IP,T).
%glB (os is windows 2000 or XP)
possible(IP,windows2000,T1):- glB(IPT1).
possible(IP,windowsXP,T 1):- g1B(IPT1).
%g1C (os is mac or sun OS)
possible(IP,macOS,T ):- g C(iP,T ).
possible(IP,sunGS TI):- glC(IP,TI).
%glD (os is free BSD 5.0 or linux Red Hat 7.1 or 8.0)
possible(IP,freeBSD50,Tl):- g D(IP,TI).
possible(IPIinuxRedHat7_I TI): gID IPT1).
possible(IP, inuxRedHat8_ ,Tl):- g11 (IPT ).

Fig. 2. Some Rules for Active OS Discovery

Passively gathered information can be used to reduce the
amount of active work in the following way. To learn if a given
operating system 0 is running on machine Ip, the first thing
to do is to ask for an overview of the knowledge coincerniing
machine Ip; we get P, the set of currently possible OS for Ip.
If 0 V P, then clearly Ip is not running 0. If P = O, then
clearly Ip is running 0. Otherwise, some active tests have to
be performed in order to discover if Ip is running 0. To know
which tests should be performed, planning can (and should)
be used. The current state needs to be given to the planning
module together with a goal state. This information will be
written in the EDB file (activeOSDiscovery.EDB). Example 10
explains the process of planning using the current knowledge.
Example 10 (planning actions): Suppose that the current

knowledge base allows us to infer that machine 10.1.1.5 is
running either Windows 2000, SunOS, or Linux Red Hat 8.0
and that we want to know if 10.1.1.5 is running Windows
2000. Since it is possible but not certain that 10.1.1.5 is
running Windows 2000, we must rely on active OS discovery
through planning. Figure 3 presents the content of our EDB
file for this particular case. The first group with predicate
holds(ipIO_1_1_5, p, 0), where p represents the three possible
OS, describes the initial state. The next line imposes that there
is only one possible OS for 10.1.1.5 at the goal state3. The
last line corresponds to the query about the possibility to reach
the given goal state. If we ask DLV to solve this planning
problem it will give us a plan to execute the TCP SynAck
test Doing this test will result in updating the knowledge base
with the result of the test and from there the same query to
the knowledge base will return either yes or no depending if
10.1.1.5 is actually running Windows 2000 (the outcome of
the test is gIB) or not (the outcome of the test is anything but
gIB). Li

3Here we make the assumption that it is always possible to distinguish
between two different OS (otherwise it would not always be possible to find
a plan). One way to make such a assumption true would be to group all OS
that behave exactly the same under a unique label and use this label in the
deducotion rul1es and qeyn gtTXJu1_1Ssuu1 usJ1b
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holds(iolO 1-15, vindowvs2000,0)
holds(iplO 1 5 sunOS 0).
holds(olO I15Aliru] dHat8 0, 0)
:-#countA :holds(ipl01-15A41>A}

holds(oplO I1 5. vindovs2000 4))

Fig. 3. Description of Current State for Planning

3) Queries or the Active Module: State of the art active
tools for OS discovery aim to learn which operating system is
running on a given machine. Answering other questions such
as "Is machine IP running the OS O? or "Is machine IP
running an OS that belongs to 0?" can only be done by first
learning the exact OS running on machine IP and interpreting
the result. Here, we discuss how our active module could
answer those different queries and we argue that it should
require less active tests than other active tools. Note however
that the current version of the prototype can only answer
queries of the form "Is machine IP running the OS O?.
The case for the query "Is machine Ip running the OS O?"

has been discussed throughout this section and we already
mentioned that the resulting plan will contain as few tests as
possible (remember the weak constraint used at the top of
Figure 2). Even in the worst case where no information has
been gathered passively before the query (the set of possible
OS is the set of all OS), we should be able to get the answer
without executing all tests since we know the objective 0.
The query "Is machine IP running an OS that belongs to

0?" consists of reducing the set of possible OS P such that
either P C 0 or P 0= 0. The best strategy (remove from P
the element that are not in 0 or remove from P the element
that are in 0) depends on the number of element of 0 that are
in P and the number of element that are in P but not in 0, but
it also depends on the actual OS running on IP. Thus, even if
P = 0 U {O} it will be essential to bring P to {O} if 0 is
the actual OS of IP. However, by executing tests that remove
as much elements from P as possible, we should reduce the
number of tests required far below usual active tools.

The query "Which OS is running on machine IP" consists
of removing as many elements as possible from P until it
becomes a singleton. By executing tests that will partition P
into classes as small as possible and since we use passively
gathered information to reduce the set of possible OS, we
should reduce the number of tests required below what is
required by other active tools.

For now, a plan simply consists of a set of actions that can
be executed in any order and even all at the same time. But,
by using a branching plan, it's possible to generate a nearly
optimal plan. A branching plan is a plan where the action to
take at a specific time point depends on the outcome of the
previous action (see [23]). It has a tree like structure where
the root is the first action to take, the level one nodes dictate
what is the second action to take depending on the outcome of
the first action, and so on. Each leaf contains a final answer.

4) Building Good Planss The main reason why it is impor-
taut to use planning in order to select the series of actions to
be executed is that we want to use the best plan available
As discussed earlier, the notion of best include a minimal
number of active tests to be performed Other than that, we

NEtw=rkTraffic

knswe
Sets

IPi .I..IPX

(a) Centralized (b) Distributed

Fig. 4. Operation Modes

can argue that some tests are more costly than other (some
tests need more network resources, some are more intrusive
than others, some require the use of abnormal network traffic,
...). DLV offers a convenient way to assign a cost to each
test in such a way that the best plan will correspond to
the plan minimizing the total cost. This can be done using
weighted weak constraints [6]. If the best plan available is
very expensive, one option could be to avoid the execution of
such a plan at the cost of being unable to answer the query.

IV. EXPERIMENTS

A. Time Benchmarks

Our main concern with ASP was the time complexity of
computing the answer sets of a program. To assure that it is
a practical solution, we used two different operation modes,
distributed and centralized, to evaluate the time required by the
passive module4. The centralized case consists of placing all
recorded packets in a single EDB file, see Figure 4(a), to get a
general overview of the knowledge base, one simply needs to
compute the answer sets of this extensional database. Here an
answer set contains a possible OS for each IP address found in
the EDB file. On the other hand, the distributed mode consists
of having one EDB file per IP address, see Figure 4(b), to get
a general overview of the knowledge base, one must compute
the answer sets of each EDB file5. Note that the two operation
modes are equivalent with respect to knowledge; that is, they
both provide the same amount of information from a given set
of packets. Thus, it is strictly an implementation choice. Note
also that both operation modes could be implemented on a
single computer, it is not necessary that the distributed mode
be actually distributed over several computers; distribution is
over several EDB files (several knowledge bases).

For this experiment we used a set of packets generated
by 7 hosts and we measured two values the total number
of answer sets and the time required to compute them. We
computed those metrics for 7, 14, 21, 42, 84, and 140 packets6

4The passive module, continuously triggered by the new packets arriving
on the network, wilil be under more stress than the active module, triggered
by a u er request.

51Here, it is possible to get an overview of the knowledge base with respect
to a given host without computing the general overview.

6The number of packets is equally distributed among the 7 hosts, so 7
packets means I packet per host
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In centralized mode, we simply executed DLV to compute the
answer sets and timed the execution. For the distributed mode,
we called the DLV resolution engine for each of the 7 EDB
files and added the time and number of answer sets of each
execution to get the total cost of asking for an overview of the
whole database. The tests were done on a Pentium 4 1.9 GHz
computer running Windows 2000 SP4 with 784 Mo of RAM.
The results for this experiment are shown in Table III.

First, we can compare the number of answer sets produced
by the two modes. In both cases, the number of answer sets
decreases as the number of packets increases. This is due to
the fact that with just a single packet it is hard to have a
precise idea of the actual operating system on a machine: the
less information we have, the more possible operating systems
we get, and the more answer sets we need to describe the
knowledge base. By comparing the number of answer sets for
the two modes, we see two things: the maximum number of
answer sets is way smaller in the distributed mode, never more
than 40 compared to sometimes more than 2000, the minimum
number of answer sets is a bit smaller in the centralized
mode. The first observation is explained by the combinatorial
explosion experienced in the centralized mode. For instance,
suppose that at some state of the knowledge base each of
the seven hosts has 6 possible OS. In distributed mode, this
would require 7 x 6 = 42 answer sets, while 67 = 279936 are
required in centralized mode. The second observation, while
surprising at first, can be explained by recalling that in the
centralized mode we compute the answer sets for one EDB
file (in the best case this could give one answer set); while for
the distributed mode we compute the answer sets for seven
EDB files (so the best case is seven answer sets).

Second, we can compare the computation time required by
the two modes. In the centralized case, the time dramatically
decreases (from more than 5 seconds to less than 0.1 second)
as the number of packets increases. This can be explained by
the number of answer sets required when we have only a few
packets. For the distributed mode, the time is a lot more stable
(always between 0.3 and 0.4 sec). Remember that the number
of answer sets produced was also a lot more stable in the
distributed mode (between 8 and 38). It is interesting to see
the small amount of time required by the distributed mode (0.4
second is always sufficient7) and that the number of packets
seems to have little influence on the distributed mode.

Thus, using a strategy similar to the distributed mode to
avoid combinatorial explosion seems to enable the use of ASP
as a practical tool for hybrid OS discovery. Note also that the
above analysls is a bit pessimistic. Each run was done starting
with an empty knowledge base, where all OS are possible
for each machine We believe that when the knowledge base
already contains information, i.e. when the set of possible OS
is not the set of all OS, the number of answer sets and thus the
time required to compute them will be significantly reduced

Other preliminary experiments (not shown here) have been

7Remember, this is the time required to do 7 computations. So each
individual computation takes about 0.06 second.

Mode Metr Nb Packets
7 14 2 142 84 140

Celtalized time (ms) 5000 2563 203 78 94 94
answer sets 6000 4608 240 8 2 2

Distributed time (ms) 359 344 360 344 328 313
arswer sets 3 24 7 10 83

TABLE III
TIME BENCHMAReKS

done to see the effect of the number of deduction rules and the
number of possible OS on the execution time. Not surprisingly,
it seems like the number of rules has an impact on the
computation time (the bigger is the program, the longer it
takes to execute), but the time variation does not seem to grow
rapidly. A deeper analysis and more experiments are needed
to assure the practicality of ASP on a larger scale.

B. Accuracy
To test the accuracy of our hybrid tool8, we set up an

experiment to compare our results with those of pOf 2.0.8.
For this experiment we used 2949 traffic traces generated by
52 different operating systems. Those traces are the result of
attacking one of the 52 targets USing a vulnerability exploita-
tion program. Details about those traces can be found in [24].
We choose to use the Syn mode of pOf since it is currently

the only non-experimental mode available. Since pOf outputs
an answer for each packet, we gathered the set of answers
concerning the target of a trace to form the set of possible
OS. For 2528 traces, pOf gave no answers for the target. For
16 traces, pOf gave some answers but none were the actual
target OS. For only 166 traces did pOf give the actual OS
among some wrong answers (usually 30 wrong answers plus
the good one), in only 4 cases of those 166 we had a set of
possible OS of size less or equal to 110.

The results of our hybird tool look very promising. For
only 435 traces out of 2949, the tool gave no answers or too
many answers to be useful (more than 140 possibilities out of
the initial 171 OS). For 7 traces, the hybrid tool gave some
answers but none were the actual target OS. For the 2507
remaining traces, the tool gave the actual OS among some
wrong answer (always less than 30 wrong answers plus the
good one), in 818 cases out of those 2507, we had a set of
possible OS of size less or equal to 10.

The accuracy results presented here seem to support two of
our initial assumptions-

* Using a knowledge base to keep previously deduced
information enhance the accuracy

* A fully passive tool may not be sufficient in the context
of intrusion detection

V. DISCUSSION

In this paper, we presented a hybrid approach to operating
systems discovery. The hybrid approach combines the advan-
tages of both passive anid active techniques while being much
more versatile. The passive module continuously monitors the
network allowing to detect abnormal behavior (IP spoofing,

8Actualy we have tested oniy the accuracy ot the passive module
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NAT, etc.) and is multi-packets based thus allowing a more
precise and accurate identification of OS. The active module
relies on the information gathered passively to reduce the
amount of work needed to answer a query and uses planning
the execute only pertinent tests.
We argued that to support such a hybrid approach, the

underlying representation language must respect some crite-
ria such as: support non-monotonic reasoning, planning and
knowledge management, be declarative and have a sound
and complete semantic. As a consequence of using a good
knowledge representation language, a hybrid OSD tool can
deal with more types of queries than other OSD tools.

Finally, we proposed to use ASP as a knowledge represen-
tation language to implement the concept of hybrid OS dis-
covery. ASP seems a judicious choice since it respects all the
aforementioned requirements and offers some other interesting
features such as: weak and weighted constraints, disjunction in
the head of rules and both strong and weak negation. Of course
this expressiveness comes at the cost of time complexity. To
make sure that ASP is practically suitable for hybrid OS
discovery, we build a proof of concept implementation and we
presented some experimentation results. Among other things,
we discussed a strategy to easily reduce the combinatorial
explosion underlying the computation of answer sets in ASP.

VI. FUTURE WORK
Many aspects of the work presented here will be further

developed in order to exploit the full power of ASP and to
build a tool that is suitable for OS discovery in a real world
environment and that could be used by third party applications.
One of the main advantage of using a declarative language

such as ASP is the possibility to automatically generate the
rule set required by the program. In our particular case, it
would be extremely interesting to have a script that automat-
ically generates both the passiveOSdiscover) 1DB and the ac-
tiveOSdiscovery.IDB files from a database of OS fingerprints.
With such a script, one could update the fingerprint database
with new data as soon as a new OS is released (using a tool
such as [15]) and then update the intensional database for both
the passive and active part of OS discovery.

In order to extend the work presented here, it would be
interesting to allow more general queries for the active module.
Instead of building a plan to find out whether machine Ip runs
a given operating system 0, it would be nice to build a plan to
learn if Ip runs one of the OS among a given set 0. Another
important query is of course 'which OS is running on Ip".

Section III-B4 discussed about the possibility to specify a
cost to each action. We have not yet fully investigated how this
could be applied to the field of OS discovery and we believe
there is still interesting features to seek there.

Extending the hybrid approach to application discovery
would be extremely relevant from a security point of view.
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