ERBIlox: Combining Matching Dependencies with
Machine Learning for Entity Resolution

Zeinab Bahmani®, Leopoldo Bertossi' and Nikolaos Vasiloglou?

1 Carleton University, School of Computer Science, Ottawa, Canada
2 LogicBlox Inc., Atlanta, GA 30309, USA

Abstract. Entity resolution (ER), an important and common data cleaning prob-
lem, is about detecting data duplicate representations for the same externa en-
tities, and merging them into single representations. Relatively recently, declar-
ative rules called matching dependencies (MDs) have been proposed for speci-
fying similarity conditions under which attribute values in database records are
merged. In this work we show the process and the benefits of integrating three
components of ER: (a) Classifiers for duplicate/non-duplicate record pairs built
using machine learning (ML) techniques, (b) MDs for supporting both the block-
ing phase of ML and the mergeitself; and (c) The use of the declarative language
LogiQL -an extended form of Datalog supported by the LogicBlox platform- for
data processing, and the specification and enforcement of MDs.

Keywords: Entity resolution, matching dependencies, support-vector machines, classification, Datalog

1 Introduction

Entity resolution (ER) is a common and difficult problem in data cleaning that has to
do with handling unintended multiple representationsin a database of the same external
objects. Multiple representations lead to uncertainty in data and the problem of manag-
ing it. Cleaning the database reduces uncertainty. In more precise terms, ER is about the
identification and fusion of database records (think of rows or tuplesin tables) that rep-
resent the same real-world entity [8, 15]. As a consequence, ER usually goes through
two main consecutive phases: (a) detecting duplicates, and (b) merging theminto single
representations.

For duplicate detection, one must first analyze multiple pairs of records, comparing
the two records in them, and discriminating between: pairs of duplicate records and
pairs of non-duplicate records. This classification problem is approached with machine
learning (ML) methods, to learn from previously known or already made classifications
(atraining set for supervised learning), building a classification model (a classifier) for
deciding about other record pairs[10, 15].

Inprinciple, in ER every two records (forming apair) have to be compared, and then
classified. Most of the work on applying ML to ER work at therecord level [22, 10, 11],
and only some of the attributes, or their features, i.e. numerical values associated to
them, may be involved in duplicate detection. The choice of relevant sets of attributes
and features is application dependent.

ER may be atask of quadratic complexity since it requires comparing every two
records. To reduce the large number two-record comparisons, blocking techniques are

used [2, 19, 24]. Commonly, asingle record attribute, or acombination of attributes, the
so-called blocking key, is used to split the database recordsinto blocks. Next, under the
assumption that any two records in different blocks are unlikely to be duplicates, only
every two recordsin asame block are compared for duplicate detection.

Although blocking will discard many record pairs that are obvious non-duplicates,
some true duplicate pairs might be missed (by putting them in different blocks), due
to errors or typographical variations in attribute values. More interestingly, similarity
between blocking keys alone may fail to capture the relationships that naturally hold in
the data and could be used for blocking. Thus, entity blocking based only on blocking
key similarities may cause low recall. Thisis amajor drawback of traditional blocking
techniques.

In this work we consider different and coexisting entities. For each of them, there
is a collection of records. Records for different entities may be related via attributesin
common or referential constraints. Blocking can be performed on each of the partic-
ipating entities, and the way records for an entity are placed in blocks may influence
the way the records for another entity are assigned to blocks. This is called “collec-
tive blocking”. Semantic information, in addition to that provided by blocking keys for
single entities, can be used to state relationships between different entities and their
corresponding similarity criteria. So, blocking decision making forms a collective and
intertwined processinvolving several entities. Inthe end, the recordsfor each individual
entity will be placed in blocks associated to that entity.

Example 1. Consider two entities, Author and Paper. For each of them, there is a set
of records (for all practical purposes, think of database tuples in a single table). For
Author we have records of theforma = (name, . . ., affiliation, . . ., paper title, . ..),
with {name, affiliation} the blocking key; and for Paper, records of the form p =
(title, ..., author name, .. .), with title the blocking key. We want to group Author
and Paper records at the same time, in an entwined process. We block together two
Author entities on the basis of the similarities of authors' names and affiliations.

Assume that Author entities a;, ay have similar names, but their ffiliations are not.
So, the two records would not be put in the same block. However, a1, a; are authors
of papers (in Paper records) p1, p2, resp., which have been put in the same block
(of papers) on the basis of similarities of paper titles. In this case, additional semantic
knowledge might specify that if two papers are in the same block, then corresponding
Author records that have similar author names should be put in the same block too.
Then, a; and a; would end up in the same block.

In this example, we are blocking Author and Paper entities, separately, but collec-
tively and in interaction. |

Collective blocking is based on bl ocking keys and the enforcement of semantic informa-
tion about the relational closeness of entities Author and Paper, which is captured by a
set of matching dependencies (MDs). So, we propose “M D-based collective blocking”
(more on MDs right below).

After records are divided in blocks, the proper duplicate detection process starts,
and is carried out by comparing every two records in a block, and classifying the pair
as “duplicates’ or “non-duplicates’ using the trained ML model at hand. In the end,

recordsin duplicate pairs are considered to represent the same external entity, and have
to be merged into a single representation, i.e. into a single record. This second phase is
also application dependent. MDs were originally proposed to support this task.

Matching dependencies are declarative logical rules that tell us under what condi-
tions of similarity between attribute values, any two records must have certain attribute
values merged, i.e. made identical [16, 17]. For example, the MD

Deptg|dept] = Deptgldept] — Deptg|city] = Deptg|city] (1)
tells us that for any two recordsfor entity (or relation or table) Dept ; that have similar
values for attribute dept attribute, their values for attribute city should be matched, i.e.
made the same.

MDsas introduced in [17] do not specify how to merge values. In[6, 7], MDs were
extended with matching functions (MFs). For a data domain, an MF specifies how to
assign a value in common to two values. We adopt MDs with MFs in thiswork. In the
end, the enforcement of MDs with MFs should produce a duplicate-free instance (cf.
Section 2 for more details).

MDs have to be specified in a declarative manner, and at some point enforced, by
producing changes on the data. For this purpose, we use the LogicBlox platform, adata
management system developed by the LogicBlox! company, that is centered around
its declarative language, LogiQL. LogiQL supports relational data management and,
among several other features[1], an extended form of Datalog with stratified negation
[9]. Thislanguageis expressive enough for the kind of MDs considered in this work. 2

Inthis paper, we describe our ERBIlox system. It is built on top of the LogicBlox plat-
form, and implements entity resolution (ER) applying to LogiQL, ML techniques, and
the specification and enforcement of MDs. More specifically, ERBlox has three main
components: (a) MD-based collective blocking, (b) ML-based duplicate detection, and
(c) MD-based merging. The sets of MDs are fixed and different for the first and last
components. In both cases, the set of MDs are interaction-free [7], which results, for
each entity, in the unique set of blocks, and eventually into a single, duplicate-free in-
stance [7]. We use LogicQL to declaratively implement the two M D-based components
of ERBIox.

The blocking phase uses M Ds to specify the blocking strategy. They express con-
ditionsin terms of blocking key similarities and also relational closeness (the semantic
knowledge) to assign two recordsto asame block (by making the block identifiersiden-
tical). Then, under MD-based collective blocking different records of possibly severa
related entities are simultaneously assigned to blocks through the enforcement of MDs
(cf. Section 5 for details).

Onthe ML side, the problem is about detecting pairs of duplicate records. The ML
algorithm is trained using record-pairs known to be duplicates or non-duplicates. We
independently used three established classification algorithms: support vector machines
(SVMs) [25], k-nearest neighbor (K-NN) [14], and non-parametric Bayes classifier
(NBC) [4]. We used the Ismion® implementations of them due to the in-house expertise

L www.logicblox.com

2 For arbitrary sets of MDs, we need higher expressive power [7], such as that provided by
answer set programming [3].

8 http://www.ismion.com

at LogicBlox. Since the emphasis of this work is on the use of LogiQL and MDs, we
will refer only to our use of SVMs.

We experimented with our ERBlox system using as dataset a snapshot of Microsoft
Academic Search (MAS)* (as of January 2013) including 250K authors and 2.5M pa-
pers. It contains a training set. The experimental results show that our system improves
ER accuracy over traditional blocking techniques [18], which we will call standard
blocking, where just blocking-key similarities are used. Actually, MD-based collective
blocking leads to higher precision and recall on the given datasets.

This paper is structured as follows. Section 2 introduces background on matching
dependenciesand their semantics, and SVMs. A general overview of the ERBIox system
is presented in Section 3. The specific components of ERBIox are discussed in Sections
4,5, and 6. Experimental results are shown in Section 7. Section 8 presents conclusions.

2 Preliminaries

2.1 Matching dependencies

We consider an application-dependent relational schema R, with a data domain U. For
an attribute A, Dom. isitsfinite domain. We assume predicates do not share attributes,
but different attributes may shareadomain. Aninstance D for R isafinite set of ground
atoms of theform R(cy,...,¢cn),WithR € R, ¢; € U.

We assume that each entity is represented by arelational predicate, and its tuples or
rowsin its extension correspond to records for the entity. Asin [7], we assume records
have unique, fixed, global identifiers, rids, which are positive integers. Thisalows usto
trace changes of attribute values in records. Record ids are placed in an extra attribute
for R € R that acts as a key. Then, records take the form R(r, %), with r therid, and
7 = (c1,...,c,). Sometimes we leave rids implicit, and sometimes we use them to
denote whole records: if r is arecord identifier in instance D, 7 denotes the record in
D identified by r. Similarly, if A isasublist of the attributes of predicate R, then r[A]
denotesthe restriction of 7 to A.

MDs are formulas of the form: R,[X;] ~ Ra[Xs] — Ri[Y1] = Ra[Yz] [16, 17].
Here, R,, R, € R (and may be the same); and X, X, are lists of attribute names
of the same length that are pairwise comparable, that is, X} and X3, and also Y3, Y5,
share the same domain.® The MD says that, for every pair of tuples (one in relation
Ry, the other in relation R-) where the LHS is true, the attribute values in them on the
RHS have to be made identical. Symbol ~ denotes generic, reflexive, symmetric, and
application/domain dependent similarity relations on shared attribute domains.

A dynamic, chase-based semantics for MDs with matching functions (MFs) was
introduced in[7]. Given aninitia instance D, the set X’ of MDsis iteratively enforced
until they cannot be be applied any further, at which point aresolved instance has been
produced. In order to enforce (the RHSs of) MDs, there are binary matching functions
(MFs) my : Doma x Doma — Domg; and m4(a,a’) is used to replace two values
a,a’ € Domy that have to be made identical. MFs are idempotent, commutative, and

4 http://academic.research.microsoft.com. For comparison, we also tested our system with data
from DBLP and Cora. _ _
® A more precise notation for the MD would be: Vi ---Vy5*(A\; Rifa]] ~; Ro[z}] —

Ay, Rilyt] = Ra[y5)).

associative, and then induce a partial-order structure (Dom 4, <4), with: a <4 o’ &
ma(a,a’) = a' [6, 5]. It dways holds: a,a’ <4 ma(a,a’). In this work, MFs are
treated as built-in relations.

There may be several resolved instances for D and Y. However, when (a) MFs are
similarity-preserving (i.e., a ~ o’ impliesa ~ m(a’,a”)); or (b) X isinteraction-free
(i.e., each attribute may appear in either the RHS or LHS of MDs in X)), there is a
unique resolved instance that is computablein polynomial timein | D| [7].

2.2 Support vector machines

The SVMs technique [25] is a form of kernel-based learning. SVMs can be used for
classifying vectors in an inner-product vector space V over R. Vectors are classified
in two classes, with a label in {0, 1}. The agorithm learns from a training set, say
{(e1, f(e1)), (e2, f(e2)), (es, f(e3)), ..., (en, f(en))}. Here, e; € V), and for the
feature (function) f: f(e;) € {0,1}.

SVMsfind an optimal hyperplane, H, in V' that separates the two classes where the
training vectors are classified. Hyperplane H has an equation of the form w e x + b,
where e denotes the inner product, x is a vector variable, w is a weight vector of real
values, and b is areal number. Now, a new vector e in) can be classified as positive or
negative depending on the side of A it lies. Thisis determined by computing h(e) :=
sign(w e e +b).If h(e) > 0, e belongsto class 1; otherwise, to class 0.

It is possible to compute real numbers oy, . . ., a,, Such that the classifier h can be
computed through: h(e) = sign(>_, a; - f(e;) - e; @ e +b) (cf. Figure 3).

3 Overview of ERBlox

A high-level description of the components of ERBlox is givenin Figure 1. It showsthe
workflow supported by ERBIox when doing ER. ERBlox’s three main components are:
(1) MD-based callective blocking (path 1, 3, 5, {6, 8}), (2) ML-based record duplicate
detection (the wholeinitial workflow up to task 13, inclusive), and (3) MD-based merg-
ing (path 14, 15). In thefigure, all the boxesin light grey are supported by LogiQL. As
just done. intherest of this section. numbersin boldfacerefer to the edaesin thisfiaure.

Fig. 1. Overview of ERBlox

Theinitia input datais stored in structured text files.
(We assume these data are already standardized and free of
misspellings, etc., but duplicates may be present.) Our general LogiQL program that
supports the whole workflow contains some rules for importing data from the files into
the extensions of relational predicates (think of tables, thisis edge 1). Thisresultsin a
relational database instance T" containing the training data (edge 2), and the instance D
on which ER will be performed (edge 3).

The next main task is blocking, which . [] N N
requires similarity computation of pairs of — \
records in D (edge 5). For record pairs ' L] NN
(r1,m2) in T, similarities have to be com- N SN
puted as well (edge 4). Similarity computa- w(r,r) = <w,(f(r,n), ... >
tion is based on similarity functions, Sfi : Fig. 2. Feature-based similarity
Dom a, x Domy, — [0, 1], each of which
assigns a numerical value, called similarity weight, to the comparisons of values for a
record attribute A; (from apre-chosen subset of attributes) (cf. Figure 2). A weight vec-
tor w(ry,re) = (---, Sf;(r1[A;], m2[As]), - - -) isformed by similarity weights (edge
7). For more details on similarity computation see Section 4.

Since some pairsin T are considered to be duplicates and others non-duplicates, the
result of this processleads to a“similarity-enhanced” database 7* of tuples of the form
(r1,re,w(r1,m2), L), with label L € {0, 1} indicating if the two records are duplicates
(L = 1) ornot (L = 0). Thelabelsare consistent with the corresponding weight vectors.
The classifier istrained using 7%, leading to a classification model (edges 9, 10).

For records in D, similarity measures are needed for blocking, to decide if two
records 1, 2 go to the same block. Initially, every record has its rid assigned as block
(number). To assign two records to the same block, we use matching dependenciesthat
specify and enforce (through their RHSs) that their blocks have to be identical. This
happens when certain similarities between pairs of attribute values appearing in the
LHSs of the MDs hold. For this reason, similarity computation is also needed before
blocking (workflow 5, 6, 8). This similarity computation process is similar to the one
for T'. However, in the case of D, this does not lead directly to the same kind of weight
vector computation. Instead, the computation of similarity measures is only for the
similarity predicates appearing in the LHSs of the blocking-MDs. (So, as the evaluation
of the LHSin (1) requires the computation of similaritiesfor dept-string values.)

Notice that these blocking-MDs may capture semantic knowledge, so they could
involve in their LHSs similarities of attribute values in records for different kinds of
entities. For example, in relation to Example 1, there could be similarity comparisons
involving attributes for entities Author and Paper, e.g.

Author(z1,y1, bl1) A Paper(y1, z1, bls) A Author(z2,y2, bl2) A

Paper(yz,zz, bl4) ANT1~1TaN\2z1 R 20 — bli = blz, (2)
expressing that when the similarities on the LHS hold, the blocks bl 1, bl2 have to be
made identical .® The similarity comparison atoms on the LHS are considered to be true
when the similarity values are above predefined thresholds (edges 5, 8). ’

Thisisthe MD-based collective blocking stage that results in database D enhanced
with information about the blocks to which the records are assigned. Pairs of records
with the same block form candidate duplicate record pairs, and any two records with
different blocks are simply not tested as possible duplicates (of each other).

5 These MDs are more general than those introduced in Section 2.1: they may contain regular
database atoms, which are used to give context to the similarity atoms in the same antecedent.

7 At this point, since all we want is to do blocking, and not yet decisions about duplicates, we
could, in comparison with what is done with pairsin 7", compute less similarity measures and
and even with low thresholds.

After the records have been assigned to (ry r, duplicates)
blocks, pairsof records (r, r2) inthe sameblock
are considered for the duplicatetest. Asthispoint
we proceed aswedid for 7': thesimilarity vectors
w(ry,72) have to be computed (edges 11,12).8
Next, tuples (ry, r2, w(ry,72)) are used as input
for the trained classification algorithm (edge 12).

The result of the trained ML-based classifier, in this case obtained through SVMs
as a separation hyperplane #, isaset M of record pairs (rq, 72, 1) that come from the
same block and are considered to be duplicates (edge 13).° The records in these pairs
will be merged on the basis of an ad hoc set of MDs (edge 15), different from those
used in edges 6, 8.

Informally, the merge-MDs are of the form: 1 ~ ro — 71 = 79, Where the
antecedent istrue when (r1, r2, 1) isan output of the classifier. The RHS is a shorthand
for: r1[A1] = ro[A1] A+ Ar1[An] = r2]As], where m is the total number of record
attributes. Merge at the attribute level uses the matching functionsm 4, .

We point out that MD-based merging takes care of transitive cases provided by
the classifier, e.g. if it returns (rq,r2, 1), (ra,rs, 1), but not (ry,rs, 1), we still merge
r1,73 (even when r1 =~ r3 does not hold). Actually, we do this by by merging all
the records r1, ro, 73 into the same record. Our system is capable of recognizing this
situation and solving it as expected. This relies on the way we store and manage -via
our LogiQL program- the positive cases obtained from the classifier (details can be
found in Section 6). In essence, this makes our set of merging-MDs interaction-free,
and leads to a unique resolved instance [7].

The following sections provide more details on ERBlox and our approach to ER.

<y, 1>
<rs 1y, 0>

(r5 r, not duplicates)

Fig.3. Classification hyperplane

4 Initial Dataand Similarity Computation

We describe now some aspects of the MAS dataset, highlighting the input for- and out-
put of each component of the ERBlox system. The datais represented and provided as
follows. The Author relation contains authors names and their ffiliations. The Paper
relation contains paper titles, years, conference IDs, journa IDs, and keywords. The
PaperAuthor relation contains papers | Ds, authors I Ds, authors names, and their affilia-
tions. The Journal and Conference relations contain short names, full names, and home
pages of journals and conferences, respectively. By using ERBlox on this dataset, we
determine which papersin MAS data are written by a given author. Thisis clear case of
ER since there are many authors who publish under several variations of their names.
Also the same paper may appear under slightly different titles, etc. X

From the MAS dataset, which contains the data in structured files, extensions for
intentional, relational predicates are computed by LogiQL-rules of the general program,
eg.

8 Similarity computations are kept in appropriate program predicates. So similarity values com-
puted before blocking can be reused at this stage, or whenever needed.
® The classifier also returns pairs or records that come from the same block, but are not consid-
ered to be duplicate. The set thereof in not interesting, at least as a workflow component.
10 For our experiments, we independently used two other datasets: DBLP and Cora Citation.

Author|AID|Name Affiliation Bl#

659| Jean-Pierre Olivier de| Ecole des Hautes 659
2546 | Olivier de Sardan Recherche Scientifique 2546
612 Matthias Roeckl German Aerospace Center 612
4994 | Matthias Roeckl Institute of Communications|4994
Paper|PID| Title Year|CID|JID|Keyword Bl#
123|Iliness entities in West Africa 1998 179 West Africa, Illness| 123
205|Illness entities in Africa 1998 179 Africa, Illness 205
769| DLR Simulation Environment m8|2007| 146 Simulation m3 769
195| DL R Stmulation Environment 2007 | 146 Simulation 195
PaperAuthor|PID|AID|Name Affiliation
123 | 659|Jean-Pierre Olivier de|Ecole des Hautes
205 2546| Olivier de Sardan Recherche Scientifique
769 | 612 Matthias Roeckl German Aerospace Center
195 {4994 | Matthias Roeckl Institute of Communications

Fig. 4. Relation extensions from MAS using LogiQL rules
filesin(x1, 22, 23) — string(x1), string(z2), string(x3). 3)
lang : physical : filePath[_file_in] =7 author.csv”. (4)
+author(idl, 22, x3) + _file_in(x1, x2, x3), string : int64 : convert[z1] = id1. (5)

Here, (3) is a predicate schema declaration (metadata uses “—"), in this case of the
“_file_in” predicate with three string-valued attributes, 1* which is used to store the con-
tents extracted from the source file, whose path is specified by (4). Derivation rules,
such as (5), use the usual “<«". Inthis case, it defines the author predicate, and the “+”
in the rule head inserts the data into the predicate extension. The first attribute is made
an identifier [1]. Figure 4 illustrates a small part of the dataset obtained by importing
datainto the relational predicates. (There may be missing attributes values.)

Asdescribed above, in ERBIlox, similarity computation generates similarity weights,
which are used to: (a) compute the weight vectorsfor the training data’7” and the datain
D under classification; and (b) do the blocking, where similarity weights are compared
with predefined thresholds for the similarity conditionsin the LHSs of blocking-MDs. *2

We used three well-known similarity functions[13], depending on the attribute do-
mains. “TF-IDF cosine similarity” [23] used for computing similarities for text-valued
attributes, whose values are string vectors. It assigns low weights to frequent strings
and high weights to rare strings. It was used for attribute values that contain frequent
strings, such as affiliation. For attributes with short string values, such as author name,
we applied “Jaro-Winkler similarity” [26]. Finaly, for numerical attributes, such as
publication year, we used “Levenshtein distance” [21], which computes similarity of
two numbers on the basis of the minimum number of operations required to transform
oneinto the other.

Similarity computation for ERBlox is supported by LogiQL-rules that define simi-
larity functions. In particular, similarity computations are kept in extensions of program
predicates. For example, if the similarity weight of values a1, ay for attribute Title is
above the threshold, atuple TitleSim (a1, az) is created by the program.

Tin LogiQL, each predicate has to be declared, unless it can be inferred from the rest of the
program.

12 As described at the end of Section 3, these similarity computations are not used with the MDs
that support the final merging process (cf. Section 6).

5 MD-Based Collective Blocking and Duplicate Detection

Since every record has an identifier, rid, initially each record uses its rid as its block
number, in an extra attribute BI#. In this way, we create the initial blocking instance
fromtheinitial instance D, also denoted with D. Now, blocking strategies are captured
by means of (blocking) MDs of the form:
Rq;(Xl, Bll) A Ri(XQ, Blg) A ’L/)(Xg) — Bll = Blg.
Here Bl;, Bl arevariablesfor block numbers, and R ; is a database (record) predicate.
The lists of variables X, X, stand for al the attributesin R;, but Bl#. Formula is
aconjunction of relational atoms and comparison atoms viasimilarity predicates; but it
does not contain similarity comparisons of blocking numbers, such as Bl 3~ Bl,.*3 The
variablesin the list X3 appear in R; or in another database predicate or in a similarity
atom. It holdsthat (X; U X5) N X3 # (). For an example, see (2), where R; is Author.
In order to enforce these MDs on two records, we use a binary matching function
m,,.., to make two block numbersidentical: m,,, (4,) := 4 if j <i.Moregenerally, for
the application-dependent set, X7 B!, of blocking-M Dswe adopt the chase-based seman-
tics for entity resolution [7]. Since this set of MDs is interaction-free, its enforcement
resultsin asingleinstance D?!, where now records may share block numbers, in which
case they belong to the the same block. Every record is assigned to a single block.
Example 2. These are some of the blocking-MDs used for the MAS dataset:
Paper(pidy, x1,y1, 21, w1, v1, bl1) A Paper(pid,, 2, y2, z2, w2, v2, bla) A @
T1 Rpile T2 A Y1 = Y2 A z1 = 22 — bly = bla.
Author(aidy, z1,y1, bl1) N Author(aids, z2,ys2, bla) A (8)
T1 RName T2 N Y1 Rag y2 — bly = bla.
Paper(pid,,z1,y1, 21, w1,v1, bli) A Paper(pidy, x2,y2, z2, w2, va, bla) A 9)
PaperAuthor(pid,, aidy, 1/11 yi) A PaperAuthor(pid,, aidsa, 1/2, y;) A
Author(aidy, 7, yy, bla) A Author(aids, x5, ys, blz) A @1 ~qie T2 — bly = bla.
Author(aidi, x1,y1, bl1) A Author(aids, x2,ys2, bla) N T1 RName T2 A (10
PaperAuthor(pid,, aid1, x1,y1) A PaperAuthor(pid,, aidz, x2,y2) A
Paper(pid, m'l, y’l, z’l, wi, 1)1, bl3) A Paper(pid,, m.’z, y;, z;, w;, ’U;, blz) — bly = bls.
Informally, (7) tells us that, for every two Paper entities p 1, p2 for which the values
for attribute Title are similar and with same publication year, conference ID, the values
for attribute Bl# must be made the same. By (8), whenever there are similar values for
name and affiliation in Author, the corresponding authors should be in the same block.
Furthermore, (9) and (10) collectively block Paper and Author entities. For instance, (9)
states that if two authors are in the same block, their papersp 1, p2 having similar titles
must be in the same block. Notice that if papers p; and p» have similar titles, but they
do not have same publication year or conference ID, we cannot block them together
using (7) aone. [|
We now show how these MDs are represented in LogiQL, and how we use LogiQL
programs for declarative specification of MD-based collective blocking. ** In LogiQL,
an MD takesthe form:

13 Actually, this natural condition makes the set of blocking-MDs interaction-free, i.e. for every
two blocking-MDs m1, m2, the set of attributes on the RHS of m; and the set of attributes on
the LHS of m2 on which there are similarity predicates, are digoint [7].

4 Notice that since we have interaction-free sets of blocking-MDs, stratified Datalog programs
are expressive enough to express and enforce them [3]. LogiQL supports stratified Datal og.

Ri[Xl]:Blg, RZ[XQ]:BZQ — Rz[Xll = Bll, RZ[XQ] = Blg, 1/)()?3), Bl1 < Blg,

subject to the same conditions asin (6). An atom R;[X |=BI states that predicate R(Z1 |1%
functional on X [1]. It means each record in R; can have only one block number Bi+.

Given an initial instance D, a LogiQL program P Z(D) that specifies MD-based
collective blocking contains the following (kind of) rules:

1. For every atom R(rid, z, bl) € D, thefact R[rid,z] = bl. (Initidly, bl := rid.)

2. For every attribute A of R;, facts of the form A-Sm(a1, as), with aq, a2 € Doma,
the finite attribute domain. They are obtained by similarity computation.

3. Theblocking-MDsasin (11).

4. Rulesto represent the consecutive versions of entities during M D-enforcement:
R-OldVersion(rl,fl, bll) — R[rl,i’l] = bll, R[Tl,.fl] = blg, bl1 < bls.

For eachrid, r, there could be several atoms of the form R|r, Z] = bl, corresponding to
the evolution of the record identified by » due to MD-enforcement. The rule specifies
that versions of records with lower block numbers are old.

5. Rulesthat collect the latest versions of records. They are used to form blocks:
R-MDBIlock[ri,T1] = bl1 < R[ri,Z1] = bl1, ! R-OldVersion(r1,Z1, bl1).

In LogiQL, “!”, asin the body above, is used for negation [1]. The rule collects R-
recordsthat are not old versions.

Programs P B (D) as above are stratified (there is no recursion involving negation).
Then, as expected in relation to the blocking-MDs, they have a single model, which can
be used to read the final block number for each record.

Example 3. (ex. 2 cont.) Considering only MDs (7) and (9), the portion of P Z(D) for
blocking Paper entities has the following rules:

2. Factssuch as: TitleSim (Iliness entities in West Africa, Iliness entities in Africa).
TitleSim (DLR Simulation Environment m3, DLR Simulation Environment).
3. Paper[pid,,z1,y1, z1, w1,v1] = blz, Paper|pid,, T2, Yz, 22, w2, va] = bla +
Paper([pid,, x1,y1, z1, w1, v1] = bly, Paper[pidy, x2,y2, z2, w2, v2] = bla,
TitleSim(z1,x2),y1 = y2, 21 = 22, bl1 < bla.

Paper|[pidy, 1, y1, 21, w1, v1] = bla, Paper[pidy, 2, y2, 22, w2, v2] = bla <+
Paper|pid,,z1,y1, 21, w1, v1] = bl1, Paper|[pid,, x2, y2, z2, wa, v2] = bla, TitleSim(z1, z2),
PaperAuthor(pid,, aid1, ', y), PaperAuthor(pid,, aidz, x5, y5),

Author[aid1, x},y}] = blg, Author[aids, xh, yh] = bls, bl1 < bla.
4. PaperOldVersion(pid,, x1,y1, 21, w1, v1, bl1) < Paper[pid,, z1, y1, z1, w1, v1] = bly,
Paper|pid,,x1,y1, 21, w1, v1] = bla, bly < bls.
5. PaperMDBlock[pid, #,] = bly + Paper[pid,,z1,y1, z1, w1, v1] = bl1,
PaperOldVersion(pid,, x1,y1, 21, w1, v1, bl1).

Restricting the model of the program to the relevant attributes of predicate PaperMD-
Block returns: {{123,205}, {195,769}}, i.e. the papers with pids 123 and 205 are
blocked together; similarly for those with pids 195 and 769. |

10

As described above, the input to the trained classifier is a set of tuples of the form
(ri,ra,w(ry,r2)), with w(ry, r2) the computed weight vector for records (with ids)
1,79 in asame block.®®

Example 4. (ex. 3 cont.) Consider the blocks for entity Paper. If the “journal ID” val-
ues are null in both records, but not the “conference ID” values, “journa ID” is not
considered for a feature. Similarly, when the conference ID values are null. However,
the values for “journal ID” and “conference ID” are replaced by “journal full name’
and “conference full name” values, found in Conference and Journal records, resp. In
this case then, attributes Title, Year, ConfFullName or Jour FullName and Keyword are
used for corresponding feature for weight vector computation.

Considering the previous Paper records, the input to the classifier con-

sists of: (123, 205,w(123,205)), with w(123,205) = [0.8,1.0,1.0,0.7], and
(195,769, w(195,769)), with w(195,769) = [0.93,1.0,1.0,0.5] (actualy the con-
tents of the two square brackets only). []

Several ML techniques are accessible from LogicBlox platform through the BloxML-
Pack library, that provides a generic Datalog interface. Then, ERBlox can call an ML-
based record duplicate detection component through the general LogiQL program. In
this way, the SVMs packageisinvoked by ERBIoX.

Theoutput isaset of tuplesof theform (ry, 72, 1) or (r1,72,0), wherery, v areids
for recordsof entity (table) R. Intheformer case, atuple R- Duplicate(r 1,72) iscreated
(as defined by the LogicQL program). In the previous exampl e, the SV Ms method return
([0.8,1.0,1.0,0.7], 1) and ([0.93, 1.0, 1.0, 0.5], 1), then PaperDuplicate(123,205) and
PaperDuplicate(195, 769) are created.

6 MD-Based Merging

When EntityDuplicate(r1,r2) is created, the corresponding full records 74, 72 haveto
be merged via record-level merge-MDs of the form R[ri] ~ R[r:] — R[F] =
R[r3], where R[r1] ~ R]ro] is true when R-Duplicate(ry,r2) has been created ac-
cording to the output of the SVMs classifier. The RHS means that the two records are
merged into anew full record 7, with 7[A;] := m , (71[A;], 72[Ai]) [7].

Example5. (ex. 4 cont) We merge duplicate Paper entities enforcing the
MD: Paper [pid,] =~ Paper[pid,] — Paper|[Title, Year, CID, Keyword] =
Paper|Title, Year, CID, Keyword). |

The portion, P, of the general LogiQL program that represents M D-based merging
containsrulesasin 1.-4. below:

1. The atoms of the form R-Duplicate mentioned above, and those representing the
matching functions (MFs) m,.

2. ForanMD R[ri] = R[rs] — R[r1] = R]r2], therule:
R[r1,Z3] = bl, R[r2,T3] = bl +— R-Duplicate(ri,72), R[ri,Z1] = bl,
R[’I’Q,i’g] = bl, m(fl,i’z) = I3,

15 The features considered in aweight vector computation depend on whether they have a strong
discrimination power, i.e. do not contain missing values.

11

which creates two records (one of them can be purged afterwards) with different ids but
al the other attribute values the same, and computed componentwise according to the
MFsfor m. Here, z1, Z2, Z3 Stand each for all attributes of relation R, except for theid
and the block number (represented by b7). (Block numbers play no role in merging.)

3. Asfor program P B (D) givenin Section 5, rules specify the old versions of arecord:
R-OldVersion(r1,T1) < R[ri,Z1] = bl, Rlri,T2| = bl, 1 < Z2.

Here, 7, standsfor all attributes other than theid and the block number; and onthe RHS
1 < Ty means componentwise comparison of values according to the partial orders
defined by the MFs.

4. Finally, rulesto collect the latest version of each record, building the final resolved
instance: R-ER(r1,Z1) + R[ri,Z1] = bl, ! R-OldVersion(r1,%1).

Notice that the derived tables R-Duplicate that appear in the LHSs of the MDs
(or in the bodies of the corresponding rules) are all computed before (and kept fixed
during) the enforcement of the merge-MDs. In particular, a duplicate relationship be-
tween any two recordsis not lost. This hasthe effect of making the set of merging-MDs
interaction-free, which resultsin a unique resolved instance.

7 Experimental Evaluation

We now show that our approach to ER can improve accuracy in comparison with stan-
dard blocking. In additionto the MAS, we used datasets from DBL P and Cora Citation.

MAS

In order to emphasize the impor- 1
tance of semantic knowledge in block- 77 /,.-;_,_.ﬁ-’
ing, we consider standard blockingand o7 -
two different sets of MDs, (1) and (2), 5% e ~ ReductionRatio
for MD-based collective blocking. Un- 0« e i

0.3

der (1), we define blocking-MDs for
all the blocking keys used for standard ~ °*

Q

blocking, but under (2) we have MDs Swndad MDbased(1) MD-based (2)

for only some of the used blocking keys. : :

In both cases, in addition to properly Fig. 5. The experiments (MAS)
collective blocking MDs.

We use three measures for the comparisons of bl ocking techniques. Oneisreduction
ratio, which is the the ratio (minus 1) of the number of candidate record-pairs over the
initial number of records. The higher this value, the less candidate record-pairs are
being generated, but the quality of the generated candidate record pairs is not taken
into account. We also use recall and precision measures. The former is the number of
true duplicate candidate record-pairs divided by the number of true duplicate pairs, and
precision is the number of true candidate duplicate record-pairs divided by the total
number of candidate pairs[12].

Figures 5, 6 and 7 show the comparative performance of ERBlIox. They show that
standard bl ocking has higher reduction ratio than M D-based collective blocking version
(1). Thismeans that less candidate record-pairs are being generated by standard block-
ing. However, the precision and recall of M D-based blocking version (1) are higher than

12

standard blocking, meaning that M D-based blocking version (1) can lead to improved
ER results at the cost of larger blocks, and thus more candidate record pairs that need

to be compared. e
A
In blocking, thisis acommon trade- e /_/--';ZJ/
off that needs to be considered. On the 7 o /,//
one hand, having a large number of s _// . e
smaller blocks will result in fewer can- ¢ Precsicin

didate record-pairs that will be gener- mi
ated, probably increasing the number — °;

of true duplicate record-pairs that are Stndard MDbased(1) MO-based 2]

missed. On the other hand, blocking Fig. 6. The experiments (DBLP)
techniques that result in larger blocks generate a higher number of candidate record-
pairs that will likely cover more true duplicate pairs, at the cost of having to compare

more candidate pairs[12]. The experiments are all done before M D-based merging.

1

Interestingly, MD-based blocking os —=t
version (2) has higher reduction ra- o° i /;_"’;'/'/
tio, recal, and precision than stan- os ——pe e I
dard blocking. This emphasizestheim- . -‘/ recll
portance of MDs supporting collective °2 R
blocking, and showsthat blockingbased ..
on string similarity alonefailsto capture L

Standard MD-based (1) MD-based (2)

the relationships that naturally hold in
the data.

As expected, the experiments show that different sets of MDs for M D-based collec-
tive blocking have different impact on reduction ratio, so as standard blocking depends
on the choice of blocking keys. However, the quality of MD-based collective blocking,
in its two versions, dominates standard blocking for the three datasets.

Fig. 7. The experiments (Cora)

8 Conclusions

We have shown that matching dependencies, a new class of data quality/cleaning
semantic constraints in databases, can be profitably integrated with traditional ML-
methods, in our case for entity resolution. They play a role not only in the intended
goal of merging duplicate representations, but also in the record blocking process that
precedes the learning task. At that stage they allow to declaratively capture semantic
information that can be used to enrich the blocking activity. MDs declaration and en-
forcement, data processing in general, and machine learning can al be integrated using
the LogiQL language.

Acknowledgments: Part of this research was funded by an NSERC Discovery grant and the
NSERC Strategic Network on Business Intelligence (BIN). Z. Bahmani and L. Bertossi are very
much grateful for the support from LogicBlox during their internship and sabbatical visit.
References

[1] Aref, M., ten Cate, B., Green, T.J,, Kimelfeld, B., Olteanu, D., Pasdlic, E., Veldhuizen, T.L.

and Washburn, G. Design and Implementation of the LogicBlox System. Proc. SSIGMOD
2015, pp. 125-141.

13

[2] Baxter, R., Christen, P.and Churches, T. A Comparison of Fast Blocking Methods for Record
Linkage. Proc. ACM SSGKDD Wobrkshop on Data Cleaning, Record Linkage, and Object
I dentification 2003, pp. 234-256.

[3] Bahmani, Z., Bertossi, L., Kolahi, S. and Lakshmanan, L. Declarative Entity Resolution via
Matching Dependencies and Answer Set Programs. Proc. KR 2012, pp. 380-390.

[4] Baudat G. and Anouar, F. Generalized Discriminant Analysis using a Kernel Approach.
Neural Computation, 2000, 12(3):2385-2404.

[5] Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., EuijongWhang, S. and Widom,
J. Swoosh: A Generic Approach to Entity Resolution. VLDB Journal, 2009, 18(1):255-276.

[6] Bertoss, L., Kolahi, S. and Lakshmanan, L. Data Cleaning and Query Answering with
Matching Dependencies and Matching Functions. Proc. ICDT 2011, ACM Press, 2011.

[7] Bertossi, L., Kolahi, S. and Lakshmanan, L. Data Cleaning and Query Answering with
Matching Dependencies and Matching Functions. Th. Comp. Systems, 2013, 52(3):441-482.

[8] Bleiholder, J. and Naumann, F. Data Fusion. ACM Computing Surveys, 2008, 41(1).

[9] Ceri, S., Gottlob, G. and Tanca, L. Logic Programming and Databases. Springer, 1989.

[10] Christen, P. and Goiser, K. Quality and Complexity Measures for Data Linkage and Dedu-
plication. In Quality Measures in Data Mining, ser. Studies in Computational Intelligence,
(Guillet, F. and Hamilton, H., Eds.), 2007, 43:127-151.

[11] Christen, P. Automatic Record Linkage using Seeded Nearest Neighbour and Support Vec-
tor Machine Classification. Proc. SIGKDD 2008, pp. 151-159.

[12] Christen, P. A Survey of Indexing Techniques for Scalable Record Linkage and Deduplica-
tion. |[EEE Transactions in Knowledge and Data Engineering, 2011, 19(1):1-16.

[13] Cohen, W., Ravikumar, P. and Fienberg, S. A Comparison of String Metrics for Matching
Names and Records. Proc. Workshop on Data Cleaning and Object Consolidation 2003, pp.
123-134.

[14] Cover, T.M. and Hart, PE. Nearest Neighbor Pattern Classification. |EEE Transactions on
Information Theory, 1967, 13(1): 21-27.

[15] Elmagarmid, A., Ipeirotis, P. and Verykios, V. Duplicate Record Detection: a Survey. IEEE
Transactions in Knowledge and Data Engineering, 2007, 19(1):1-16.

[16] Fan, W. Dependencies Revisited for Improving Data Quality. Proc. PODS 2008.

[17] Fan, W., Jia, X., Li, J. and Ma, S. Reasoning about Record Matching Rules. PVLDB, 2009,
2(1):407-418.

[18] Fellegi, I.P. and Sunter, A.B. A Theory for Record Linkage. Journal of the American Sta-
tistical Society, 1969, 64(1):328-339.

[19] Herzog, T.N., Scheuren,F.J. and Winkler, W.E. Data Quality and Record Linkage Tech-
niques. Springer, 2007.

[20] Jaro, M.A.UNIMATCH: A Record Linkage System: User'sManual, Technical Report, U.S.
Bureau of the Census, 1976.

[21] Navarro, G. A Guided Tour to Approximate String Matching. ACM Computing Surveys,
2001, 33(1): 31-88.

[22] Rastogi, V., Dalvi, N.N. and Garofalakis, M.N. Large-scale Collective Entity Matching.
PVLDB, 2011, 4(4):208-218.

[23] Salton, G. and Buckley, C. Term-weighting Approaches in Automatic Text Retrieval. In-
formation Processing and Management, 1988, 24(5): 513-523.

[24] Euijong Whang, S., Menestring, D., Koutrika, G., Theobald, M. and Garcia-Molina, H.
Entity Resolution with Iterative Blocking. Proc. SIGMOD 2009, pp. 219-232.

[25] Vapnik, V.N. Satistical Learning Theory. Wiley, 1998.

[26] Winkler, W. E. The State of Record Linkage and Current Research Problems. Technical
Report, U.S. Census Bureau, 1999.

14

