INTRODUCCION AL ANALISIS NO STANDARD Y A SUS APLICACIONES EN PROBABILIDAD

Leopoldo Bertossi D.

No 14

EDITORES
JORGE GONZALEZ
ROLANDO REBOLLEDO
JORGE SOTO

PUBLICACION DE LA PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

FACULTAD DE MATEMATICAS
AUSPICIO SOCIEDAD
MATEMATICA DE CHILE

NOTAS MATEMATICAS es una colepción publicada por la Facultad de Matemáticas de la Pontificia Universidad Católica de Chile con el auspicio de la Sociedad Matemática de Chile.

Propósito de la colección.

La colección NOTAS MATEMATICAS intenta ser un medio de publicación rápida de textos matemáticos de alguno de los siguientes tipos:

1. Tésis y memorias que contengan resultados orginales.
2. Artículos de síntesis sobre resultados recientes en un tema dado o nuevas presentaciones de temas clásicos.
3. Textos de cursos y seminarios de postgrado.
4. Actas de coloquios y congresos.

Presentación de los proyectos.

Los proyectos de volúmenes para publicación deben ser presentados a cualquier miembro del comité editor que se indica más abajo. Sólo se admiten trabajos en los siguientes idiomas: español, portugués, francés, inglés o alemán. Cada volumen debe tener una extensión no inferior a 70 páginas y ser dactilografiado en formato A4 ($22 \mathrm{~cm} . \times 27,5$ cm .) dejando márgenes superior e inferior de 4 cm . cada uno y laterales de 3 cm . a cada lado.
Los manuscritos serán reducidos al formato $17,5 \mathrm{~cm} . \times 24,5$.cm. por lo que se recomienda usar doble espacio en la dactilografía.

Director de la colección

Rolando Rebolledo Berroeta

Comité editor:

Jorge González Guzmán, Instituto de Matemáticas Universidad Católica de Valparaíso - Casilla 4059, Valparaíso.
Rolando Rebolledo Berroeta, Facultad de Matemáticas
Pontificia Universidad Católica de Chile - Casilla 114-D, Santiago.
Jorge Soto Andrade, Depto. de Matemáticas, Fac. Cs. Básicas y Farmaceúticas Universidad de Chile - Casilla 653, Santiago.

NOTAS MATEMATICAS is published by the Faculty of Mathematics of the Pontificia Universidad Católica de Chile and sponsored by the Sociedad de Matemática de Chile

Purpose of the series.

The series NOTAS MATEMATICAS is intended as a medium of rapid publication for mathematics papers; it is devoted to the following kinds of material:

1. Theses and dissertations containing original results.
2. Expository papers on recently obtained results on a given subject or new treatments of classical topics.
3. Notes from graduate courses and seminars.
4. Collections of papers presented at meetings.

Submission of Projects.

A volume to be considered for publication may be submitted to any member of the editorial committee listed below. Only works in the following languages will be considered: Spanish, Portugese, French, English or German.
Volumes submitted must be at least 70 pages in length and must be carefully typed in A4 format ($22 \times 27,5 \mathrm{cms}$) with 4 cm . margins at the top and bottom and 3 cm . margins at the sides of each page.
Since manuscripts will be reduced to $17,5 \times 24,5 \mathrm{cms}$. format it is recommended that they be double spaced.

Director of the Series.
 Rolando Rebolledo Berroeta.

Editorial Committee.
Jorge Gonzallez Guzmán, Instituto de Matemáticas
Universidad Católica de Valparaíso - Casila 4059, Valparaíso.
Rolando Rebolledo Berroeta, Facultad de Matemáticas Pontificia Universidad Católica de Chile - Casilla 114-D, Santiago.
Jorge Soto Andrade, Dpto. Matemáticas, Fac. Cs. Básicas y Farmacéuticas Universidad de Chile - Casilla 653, Santiago.

INTRODUCCION AL ANALISIS NO STANDARD Y A SUS APLICACIONES EN PROBABILIDAD

LEOPOLSO BERTOSS! [.

NOTAS MATEMATICAS - N 14

INTRODUCCION AL ANALISIS NO STANDARD Y A SUS APLI CACIONES, Leopoldo Bertossi D. *
§ 1. Elementos de Análisis no Standard 1
§ 2. Un Modelo no Standard para la Su- perestructura Completa del Análisis 7
§ 3. El Espacio de Probabilidad de Loeb 18
§ 4. Procesos Estocásticos Hiperfinitos 36
§ 5. Construcción no Standard del Movimiento Browniano 52

Estas notas contienen los temas expuestos en el curso "Análisis no Standard y Análisis Estocástico", dictado el Segundo Semestre de 1982, a cargo del autor de estas notas y del Prof. Rolando Rebolledo, como parte de las actividades del Gru po de Investigación en Probabilidades de nuestra Facultad de Matemáticas.

El contenido del curso estuvo basado en artículos recientemente publicados sobre el tema y debidos principalmente a P. Loeb, R.A. Anderson y J. Keisler.

Se espera que estas notas sirvan como material de consulta e inspiración para futuras investigaciones en la materia y que, a la vez, permitan un fácil acceso a los artículos originales.

En este capítulo introductorio aplicaremos el siguien te teorema de la Lógica matemática debido a K. Gödel:

TEOREMA: (Compacidad). Sea T un conjunto de oraciones de la lógica de primer orden (sólo hay cuantificación sobre elementos del universo y no, p.e., sobre subconjuntos, re laciones, etc.),finitaria (oraciones con sólo un número finito de cuantificaciones, conjunciones, disyunciones). Si cada subconjunto finito de T tiene un modelo, entonces T tiene un modelo.

APLICACION: Construimos un lenguaje formal de primer orden finitario con el conjunto de símbolos $S=\{ \pm, \dot{\sim}, \underset{\sim}{\sim}, \underset{\sim}{0}, \underset{\sim}{1}\}$.
Por ejemplo, una oración de este lenguaje es

$$
\phi=\forall x \mid x \neq \underset{\sim}{0} \rightarrow \exists y(x \underset{\sim}{y} y=\underset{\sim}{1}))
$$

Si en la estructura $R=\langle\mathbb{R},+,\langle, \quad, \quad 1\rangle$ inter pretamos los símbolos de S en forma natural, entonces ϕ es sa tisfecha por R; decimos también que R es un modelo de ϕ (esto se denota usualmente en la forma $R \mid=\phi$). Obviamente R es modelo de todos los axiomas de cuerpo ordenado escritos con los símbolos de S.

Llamamos teoría de a al conjunto de todas las oraciones del lenguaje correspondiente a S que tienen a a como mode10:

Th $R:=\{\phi: \phi$ es oraciön $y R \mid=\phi\}$

Queremos ver si hay un cuerpo ordenado que satisfaga las mismas oraciones de primer orden que R, pero que, además de contener esencialmente a 6 , tenga elementos "infinitamen te grandes" y elementos 'infinitamente pequeños" (una extensión no standard). E1 hecho que este cuerpo satisfaga las mismas oraciones de primer orden que Ω permitirá operar con sus elementos como con los números reales, ya que, en particular, será modelo de los axiomas de cuerpo. Para verificar la existencia de un tal cuerpo, diganos $<{ }^{*} \mathbb{R},{ }^{*}+{ }^{*}<,{ }^{*},{ }^{*} 0, * 1>$, agregamos a nuestro conjunto de símbolos S nuevos elementos: un $\underset{\sim}{\pi}$ por cada $r \in I R$ y un nuevo simbolo de constante $\underset{\sim}{C}$ li.e. $r_{1} \neq r_{2} \Rightarrow r_{2} \neq r_{2}$ y $\underset{\sim}{C} \neq r_{\sim}^{r}$ para tolo $r \in I R 1$. En a inter pretamos los simbolos $\underset{\sim}{r}$ en forma natural: $\underset{\sim}{r}$ es interpretado como r. Para ser precisos, ahora tenemos la estructura

$$
\Omega_{I P}=\left\langle I R,+,<, \cdots, 0,1,(r)_{r \in I R}\right\rangle \text { para inter - }
$$

pretar los simbolos del nuevo conjunto de símholos

$$
S_{I R}=S \cup\{\underset{\sim}{r}: r \in I R\}
$$

Como antes, podemos formar Th $\mathbb{R}_{I R} y$ obviamente ${ }^{n}$ IR $\mid=T h T_{T D}$.

Consideramos ahora un conjunto T de oraciones en el lenguaje correspondiente al conjunto de simbolos $S_{\mathbb{T}} \cup\{\underset{\sim}{C}\}$:

$$
T:=T h R_{I R} \cup\{\underset{\sim}{0} \leqslant \underset{\sim}{C} \underset{\sim}{r}: r>0\}
$$

Usando el teorema de compacidad podemos probar que T tiene un modelo: cualquier subconjunto finito $T_{0} d e T$ es -
tá contenido en un conjunto de oraciones de la forma:
$T h \Omega_{\text {IP }} \cup\left\{\underset{\sim}{0} \leq \underset{\sim}{C} \leq r_{i}: r_{i}>0, i=1, \ldots, n\right\}$,
para algún $n \in \mathbb{I N}$. Este ultimo conjunto de oraciones tiene un modelo, por ejemplo, <IR, $\left.+,<, \cdot, 0,1,|r|_{r} \in I R, C_{0}\right\rangle$ don de $C_{0} \in I R$ es la interpretación de $\underset{\sim}{C}$ dada por

$$
c_{0}:=\frac{1}{2} \min \left\{r_{i}: i=1, \ldots, n\right\} .
$$

Asi T tiene un modelo, digamos

$$
*_{R}=\left\langle * I R, *+*<, *, * 0, * 1,(* r)_{r \in \mathbb{R}} ; C\right\rangle
$$

(con*r, C E *IR y c * * *0)
Como * $\quad=$ Th Ω, en particular *a satisface los axio mas de cuerpo ordenado: <*IR, " + , *<, *., *O, * $1>$ es un cuerpo ordenado.

R está sumergido en < ${ }^{*}$ IR , $\left.{ }^{*}+{ }^{*}{ }^{<},{ }^{*} .,{ }^{*} 0,{ }^{*}{ }_{1}\right\rangle$.

En efecto, basta hacer la inmersión
r_{\in} IR $\longmapsto * r_{\in} * I R \quad y$ es fácil ver que las operacio nes en < *IR, *+, *<, *., *O, * $\mid \gg$ son extensiones de 1 las operaciones en $\&$ y que la relación de orden *< en * 伿 es extensión de la relación de orden en 保:

Supongamos $a<b$ en $I R$, entonces $R_{I R} \mid=\underset{\sim}{a} \underset{\sim}{\sim} \underset{\sim}{b}$. Luego, $\underset{\sim}{a} \leq \underset{\sim}{b} \in T h R_{I D}$, pero ${ }^{*} \sigma_{R} \mid=T h R_{I R}$, entonces $*_{\beta} \mid=\underset{\sim}{a} \underset{\sim}{b}$, es decir, *a *<*b en *IR.

Identificamos en adelante ${ }^{*} r$ con r.

Como $C \in{ }^{*} I R \backslash I R$, tenemos que *IR contiene propiamente a IP: R es subcampo propio ordenado de $\leqslant^{*} I R .{ }^{*}+$, * $<,{ }^{*},{ }^{*} 0$, * $\rho>$ (en adelante, si no hay confusión, omitiremos el asterisco, es cribiendo simplemente $<* I R,+,<, \quad, 0,1>1$.

* \mathbb{R} tiene un elemento que es "infinitesimal", en el sen tido que es menor que todo real positivo y no negativo. Enefec to, en $<\ln ,+,<, \cdots, 0,1>$ se tiene $0<C<r$ para todo $r \in I R_{+}$ También hay "infinitesimales" negativos (por ejemplo, -C) y nú meros "infinitamente" grandes: $1 / C>$ r para todo $r \in I R_{+} .0 b-$ viamente hay mảs infinitesimales: $\frac{C}{2}, 2 C$, etc.

ALGUNAS PROPIEDADES DE LA EXTENSION NO STANDARD:

Trabajaremos ahora en la estructura

$$
<{ }^{*} I P,+,<, \quad, 0,1>
$$

Dos elementos a y en *If que difieren en un infini tesimal se dicen infinitesinalmente próximos y escribimos $a \approx b$ (i.e. $a \approx b$ ssi $a-b$ es infinitesimal). Recordemos que a es infinitesimal si $|r|<r$ para todo $r \in I R_{+}$. Sabe
mos ya que hay infinitesimales no nulos, entonces *IR IR es no vacío; *IR es extensión propia de $I R$. a es finito si existe $r \in I R$ tal que $|a|<r, a$ es infinito $s i|a|>r$ para todo $r \in I R_{+}$

Todo número finito es infinitesimalmente cercano a un único número real (un elemento de IR 0 standard) Ilamado su parte standard: si a es finito, st $(a)\left(0^{\circ} a\right)$ es el único $b \in I R$ tal que $b \approx a$.

En efecto: i) Existencia:
Primer Caso: $a \in I R, s t(a):=a$

Segundo Caso: $a \notin P$, sea $\|:=\{r \in I P: r \leq a\}$
Como a es finito, existe $r^{\prime} \in I R$ tal que $a<r^{\prime}$; enton ces if es acotado sup. en $I P \Rightarrow$ existe $r_{0}=\sup . \|$ (en IR). Afirmación: $a \approx r_{o}$ (dem. trivial).
ii) Unicidad:

Sean $r_{1}, r_{2} \in I P$ con $r_{1} \neq r_{2} y a \approx r_{1} y a \approx r_{2}$, enton-
ces


```
= rr1 - r r & IR - {0} Contrad.:
    no infinites.
```

Observaciones: 1) Dijimos que *R satisface (exactamente) las mismas oraciones de primer orden que ${ }^{R}$ IP. Esto también puede ser expresado de la siguiente manera: $S i \quad \phi\left(x_{1}, \ldots, x_{n}\right)$ es una fórmula del lenguaje corres pondiente a S con variables libres $x_{1}, \ldots, x_{n} ; r_{1}, \ldots, r_{n} \in \mathbb{R}$, entonces $R \mid=\phi\left[r_{1}, \ldots, r_{n}\right]$ ssi $*_{Q} \mid=\phi\left[\pi_{r_{1}}, \ldots .{ }^{*} r_{n}\right]$ (ϕ no contiene a $\underset{\sim}{C}$).

Lo reciën formulado se 11 ama principio de tranferencia.
2) Puede ser útil tener en mente la siguien te observación: Hemos encontrado un cuerpo ordenado $<^{*} I R,+$, - , $0,1,<>$ (omitimos la escritura * + ., etc. cuando no hay peligro de confusión) que es una extensión propia de $<$ IR $,+, \cdot, 0,1,<>$ tal que ambos cuerpos satisfacen las mismas oraciones del lenguaje correspondiente al conjunto de símbolos $S=\{ \pm, \underset{\sim}{\sim}, \underset{\sim}{1}, \underset{\sim}{0}\}$ (lenguaje de primer orden, finitario). De esto podemos deducir que el axioma del sunre-
mo no puede ser escrito usando una oración de este lenguaje, es decir, la cuantificación sobre subconjuntos del universo que se usa para expresar el axiona es, podemos decir, inevitable (si se pudiera expresar el axioma, entonces $*_{Q}$ y Ω serí an isomorfos).
3) Decimos que * ${ }_{R}$ es una extensión no standard de a.
§2 UN MODELO NO STANDARD PARA LA SUPERESTRUCTURA COMPLETA DEL ANALISIS

Para desarrollar el análisis necesitamos considerar no sólo ciertos elementos distinguidos como el 0 y el 1 y las relaciones $+, \therefore,<1+y$. pueden ser vistas como relaciones), sino también otros objetos y estructuras: otras funciones, sub conjuntos de I, otras relaciones, productos cartesianos, topologias, espacios de medida, etc. Para considerar todos estos objetos en nuestro contexto general, formamos la superestructura completa de IR:

$$
\begin{gathered}
V_{0}(I R):=I R, v_{n+1}(I R):=v_{n}(I R) \cup P\left(V_{n}(I R)\right), \\
V(I R):=\underset{I N}{u} v_{n}(\mathbb{R}) .
\end{gathered}
$$

(VIT.) es la superestructura completa de $I R$ y contiene como elementos todos los objetos antes nombrados. En par ticular, $I D \in U(I R), I N \in V(I R),\left(a_{n}\right)_{n \in I N} \in V(I R)$ para cual-
quier sucesión de números reales, $r \in \mathcal{G}$ (IP) para cualquier número real $\pi, 2 \in V(I R)$ para cualquier relación en n argumentos ? sobre IR, etc. Para verificar esto basta tener en cuenta la definición usual de par ordenado:

$$
(a, b):=\{\{a\},\{a, b\}\}
$$

y para n-tuplos la definición inductiva:

$$
\left.|a|=a,\left(a_{1}, \ldots, a_{n}\right)=\left(\mid a_{1}, \ldots, a_{n-1}\right), a_{k}\right)
$$

Además, $V_{n}(I R) \in V(I P)$ para cada $n \in \mathbb{N}$. Como en §1. se puede probar que existe una extensión no standard de U(IR) cuando consideramos un lenguaje con fórmulas de un cier to tipo:

Una fórmula acotada es una fórmula de primer orden, finitaria cuyos cuantificadores están acotados, i.e. aparecen en la forma $(\forall x \in u),(\exists x \in y)$, más precisamente, las fór mulas están formadas sobre la base de las relaciones $u=v, u \in v$, los conectivos lógicos " y ", "o", "no" y cuantificadores acota dos. Por ejemplo, $(\forall x \in(y)(\exists z \in u)(x \neq z)$ es una fórmula de nuestro lenguaje formal, aqui y aparece como variable libre (no está bajo el alcance de un cuantificador).

Debería estar claro que basta tomar sólo " \in " (pertenencia) y " $=$ " (igualdad) como relaciones primitivas y fórmulas acotadas para, una vez que se ha dado una interpretación a las variables libres, expresar proposiciones sobre los núme ros reales, conjuntos de números, relaciones entre números, relaciones entre conjuntos y números, etc. Por ejemplo

$$
(\forall x \in u) \quad(\forall u \in u) \quad(\mid x, y) \in \omega)
$$

no es estrictamente fórmula del lenguaje formal. Sin embargo, recordando que $(x, y):=\{\{x\},\{x, y\}\}$, podemos reducir esta "fór mula" a una que contiene sólo cuantificadores acotados, $\in y=$. !ara abreviar, escribimos, sin embargo, $(\forall x \in u)(\forall y \in u)((x, y)$ $\epsilon \omega)$.

> Como otro ejemplo, consideremos la fórmula $\phi(u, \omega)=(\forall x \in u)(\forall u \in u)(\forall z \in u)((x, y, z) \in \omega \rightarrow(y, x, z) \in \omega)$
las variables libres aparecen indicadas a la izquierda, entonces $\phi(u, \omega)$ es válida en $V(I R)$ interpretando u como $I R$ y ω como la relación suma S definida en $V(\mathbb{R})$ mediante $(a, b, c) \in S \ll$ $a, b, c \in \mathbb{I}, y a+b=c$, ya que $1 a$ suma de reales es conmutativa en $V(I R)$ (notar que $I P$ y $S \in V^{\prime}(I R)$). En símbolos:

$$
V(I N) \quad \mid=\phi(u,: v)[I R, S]
$$

y esto quiere decir que " $\phi(u, \omega)$ es verdadera en V(IR) interpre tando u como 10 y como $S^{\prime \prime}$. Si no hay peligro de confusión, escribimos simplemente:

$$
V(I R) \quad \mid=\phi[I R, S]
$$

Tenemos, entonces, el siguiente teorema que puede ser demostrado usando argumentos de compacidad más generales.

TEOREMA: Hay un conjunto *IR y una aplicación * : V $\left.(I R) \rightarrow V{ }^{*} I R\right)$ tal que:
i) *IR es campo ordenado que extiende propiamente a $I R$.
ii) * es la identidad en I ?
iii) * preserva la validez de fórmulas acotadas, en forma mâs precisa, cada fórmula $p\left(v_{1}, \ldots, v_{n}\right)$ (de la forma convenida) que es verdadera en $V(I R)$ con $S_{1}, \ldots, S_{n} \in V(I R)$
también es verdadera en $V(* T R)$ con ${ }^{*} s_{1}, \ldots * S_{n}(\in V(* T R))$, en símbolos:

$$
\begin{aligned}
& v(\text { TR }) \mid=p\left[s_{1}, \ldots S_{n}\right] \Leftrightarrow \\
& V(* \text { IR })=p\left[* s_{1}, \ldots * S_{n}\right]
\end{aligned}
$$

iv) Para cada $0<n \in I N$ y cualquier cadena decreciente $x_{0} \supseteq x_{1} \supseteq \ldots$ de conjuntos no vacíos, $x_{m} \in *\left(v_{n}(I R)\right)$, $\cap X_{m} \neq \phi$.
$m \in I N$

Observaciones: 1) Tal como formamos la superestructura completa $V($ IR $)$ de $I R$ se puede formar la super estructura $V(* I R)$ de*IR que es la mencionada en el teorema.
2) Una demostración del teorema que no usa directamente un teorema de compacidad y que es "más o menos constructiva" (usa el axiona de elección) puede ser encontrada, por ejemplo, en "Foundations of Infinitesimal Calculus" de J. Keisler p. 31, (Prindie, Weber of Schmidt, Inc. 1976).
3) La propiedad (iii) se llama usualmente "principio de transferencia"; la propiedad (iv) se llama usu almente "principio de saturacion". Este último principio no siempre es requerido, pero es necesario para nuestros propósitos. Hay formulaciones equivalentes del principio de satu ración que indicaremos más adelante y que a veces son más manejables.

Definición: *[U(IR)]:= $\cup_{n \in I N}^{*}\left[V_{n}(I R)\right]$.
Los objetos de *[V(IR)] se llaman objetos inter-
nos.
Observaciones: 1) Como $V_{n}(I R) \in V(I R)$ para cada $n \in I N$, cada uno de éstos tiene su imagen $*\left[V_{n}(\mathbb{R})\right]$ bajo *. Notar que no existe la imagen de $V(I R)$ bajo*, ya que * : V(IP) $\rightarrow V($ IP. $)$, por 10 tanto, la de arriba es una auténtica definición.
2) Se tiene $\{* a: a \in V(I R)\} \equiv V(I R) \underset{\neq}{c} *[V(I R)]$ $\underset{\neq}{c} V(I R)$ como veremos pronto. Los objetos internos de $V\left({ }^{*} I R\right)$ son aquellos que nos interesan especialmente por sus "buenas propiedades". Los objetos en V(IR) se llaman objetos standard y los de $V(I R) \mid$ " $[V(I R)]$, objetos externos.

Ejemplo: Como $\mathbb{I N} \in V(I R)$ (de hecho a $V_{\mathcal{I}}(\mathbb{F} \|)$, \mathbb{N} tiene su ima gen $* \mathbb{N}$ hajo* en $V\left({ }^{*} I R\right)$. Como $I N$ es una relación en V(IR), IN es una extensión de esta relación; tenemos entonces $I N \subset * I N, y$ se puede probar fácilmente que $I N$ es segmento inicial de *IN. En VI*IR) trabajamos con*IN en lugar de $I N$, en general. Notemos que $I N \in V\left({ }^{*} I R\right)$ tambiên (ya que $n \in V\left({ }^{*} I R\right)$ para cada $n \in I N$. *IN es el conjunto de los hiperenteros no ne gativos. Como en $V(I R)$ es válida 1 a proposición
$(\forall x \in \ln \mid \quad(\exists \| \in \mathbb{N})(\ddot{y}>x)$ (notar que es fórmula acotada), tenemos que en V ("If) es válida la proporción ($\forall x \in$ * IR) (|! $\|\in\|^{\prime \prime} \mid\left(\| \|^{*}\right)$. Si llamamos hiperreales a los eltos. de - IR, entonces tenemos que para cada núnero hiperreal existe un hiperentero que es mayor que êl. Como en $\$ 1$, se demuestra que * $>$, es una extensión de la relación $>$ en $V(I R)$. En general, si $n \in v(I f)$ es una relación, entonces $n \in V(* T p)$ cs
una extensiónte? En particular, cada función $\{\in U(I R)$ tiene una extensión *s en $V(* I R)$.

Continuando con nuestro ejemplo, podemos demostrar que *IN es un objeto interno: $V(I R) \mid=(u \in u)[I N, V,(I R) \|$ (i.e.en $V(I R)$ es vảlido que $\mathbb{N} \in V$, (IR)), entonces, por el principio de transferencia, se tienc

```
    V(*IR) = (u\inu) [*IN,*[V,(IR,)]]
ó *N E*[V,(IR)], pero *[V, (IR)] \subseteq *[V(IR)]
* *IN E *V|IR|], o sea, es interno.
```

Observaciones: 1) La siguiente discusión nos mostrará la importancia de los objetos internos y del papel que desempeñan las fórmulas acotadas: Por un lado, V(IR) y $V($ * $I R)$ tienen las mismas propiedades expresables a través de fórmulas en el sentido de la condición (iii) del teorema anterior; por otro lado, sabemos que todo cuerpo ordenado completo es isomorfo al de los numeros reales standardy, por 10 tanto, no puede ser una extensión propia de este último, isignifica es to que el axioma de completitud no es expresable en nuestro ler guaje?, o bien, nos preguntamos isi es formalablc, qué expresa al ser interpretado en $V(* I R)$?

```
El axioma es formulable mosiante
```

$\left|\because x \in V_{\mathcal{F}}(\mathbb{I R})\right|\{x \notin \mathbb{R}$ a "x es acotado suneriormente" \rightarrow "x tiene un supremo") (obviamente "x es acotado sup." y "x tiene un supremo" pueden ser expresados en nucstro lenguaje), más preci samente tenemos:

```
    V(IR) F (\forallx\inu) (x\not\inv, "x acotado sup".
        * "x tiene un supremo')|V,(IR.), IR);
por el principio de transferencia queda
    v(IR) = (\forallx\inu) (x\not\inva "x\ldots) [*[v,(IR)],"IR],
es decir, en V(*IS):
    (\forallx\in*[V,(IR)])|x\in*IR a "x acotado sur" }
"x tiene un supremo') (obviamente aparece la relaciobn *< en
lugar de & donde corresponda). En otros términos, todo sub
conjunto de *IT que está en * (V,(IR)] y que es acotado supe-
riomente tiene supremo. Pero los subconjuntos de *If que es
tán en *[V,|lP.)] son precisamente los subconjuntos internos
de IR, entonces, el axioma del supremo en V(IR) dice lo si-
guiente:
'Todo suhconiunto interno de "IR acotado superiormen te tiene un supremo'.
La palabra interno no puede ser omitida porque, como veremos luego, hay subconjuntos de \(*\) 佂 que no son internos.
2) Nel mismo modo se puede demostrar que en \(V(\) "If ): 'Todo subconjunto interno no vacio de FN tiene un elcuentominimal".
Ejemplo: iN es externo (en \(V(* I R)\). Fn efecto, supongamos que \(I N\) es interno, entonces podemos demostrar que * IN 1 IN es también interno:
```

$$
\begin{aligned}
& \phi=\left|\forall x \in v_{1}(I R) \backslash T\right|\left(H_{y} \in v_{1}(I R) \mid I R\right) \\
& \left(y\left|x \in v_{1}(I R)\right| \text { es verdadera en } V(I R)\right.
\end{aligned}
$$

(la diferencia de dos subconjuntos de $I R$ es un subconjunto de IR $)$, luego, es verdadera en $V\left({ }^{*} I R\right)$ en la forma:

$$
\begin{aligned}
* \phi= & \left(\psi_{x} \in *\left[v_{1}(I R)\right] \backslash * I R\right)\left(\forall \nmid \in *\left[v_{1}(I R)\right] \backslash * I R\right) \\
& \left.\left.(\|) \mid x \in *\left[v_{1} \mid I R .\right)\right]\right)
\end{aligned}
$$

Tomando $x=$ *IN (sabemos que es interno)

$$
!=I N \text { (suponemos que es interno), queda }
$$

*IN $\backslash I N \in *\left[V_{1}(I R)\right]$, entonces *IV $\backslash \mathbb{N}$ es interno. Además, * IV \backslash IN es no vacio (hay enteros infinitos), luego, por (2) de la observación anterior, ${ }^{*} I N \backslash \mathbb{N}$ tiene un primer elemen to w. Como $w-1 \in I N,(w-1)+1=w \in I N$. Contradicción!

Observación: Ya nos podemos dar cuenta de la importancia que pueda tener el saber reconocer los objetos internos. Para esto hay algunos criterios y teoremas utiles que citamos a continuación:

Proposiciones: 1) Un objeto $a \in V(* I R)$ se llama standard ssi $a=* b$ para algún $b \in V(I R)$. Todo objeto standard es interno. En efecto, sup. a es standard, entonces $a=* b$ con $b \in V(I R)$, cntonces $V(I R) \neq b \in V_{n}(I R)$ (para algún n fijo), luego $V(* I R) \mid=* b \in{ }^{*}\left[V_{n}(I R)\right]$. Así $a=* b \in *[V(I R)]$.
2) Los elementos de un objeto interno son internos.
3) Un objeto C es interno ssi es elemento de un ob jeto standard. En efecto, si C es interno, entonces $C \in \underset{I N}{\cup}{ }^{*}\left[V_{n}(I R)\right] \Rightarrow C \in{ }^{*}\left[V_{n}(I R)\right]$ para algún n. Tomar $\left.b=V_{n}(I R) \mid \in V(I R)\right)$, entonces $c \in * b$. Reciprocamente, si C es elemento de un objeto standard b, entonces. C es ele mento de un objeto interno, a saber, b (por (1)). Por (2), tenemos que C es interno.
4) La unión de los elementos de un objeto interno es objeto interno.
5) El conjunto de todos los objetos internos que son subconjuntos de un objeto interno es un objeto interno.
6) El dominio y el rango de cualquier relación binaria interna son internos.
7) La imagen de un objeto interno bajo una relación binaria interna es interna.
8) (Criterio de definición interna). Sea
$\phi\left(v_{1}, \ldots v_{n}, u\right)$ una fórmula acotada con variables libres $v_{1}, \ldots v_{n}, u . S e a n a_{1} \ldots, a_{n}$ objetos internos, entonces el conjunto $\left\{b \in a_{1}: \phi\left[a_{1}, \ldots a_{n}, b\right]\right.$ es verdadera en $V($ * I) $\}$ es un objeto interno.

Dem. Para algún $m \in I N$, todos los a_{i} pertenecen a *[V_{m} (IR)]. Por otra parte,
$V(I R)\left|=\left|\forall U_{1}, \ldots, v_{n} \in V_{m}\right| \mathbb{R}\right) \mid\left(\exists u \in V_{m+1}(I R)\right)$

$$
\left.\mid u=\left\{x \in y_{1}: \phi\left(y_{1} \ldots u_{n}, x\right)\right\}\right)
$$

Por el principio de transferencia,

$$
\begin{gathered}
V(* \operatorname{IR}) \mid=\left(\forall y_{1}, \ldots, u_{n} \in *\left[V_{m}(I R)\right]\right)\left(\exists u * \in\left\{V_{m+1}(\operatorname{IR})\right]\right) \\
\left(u=\left\{x \in u_{1}: \phi\left(y_{1}, \ldots y_{n}, x\right)\right\}\right)
\end{gathered}
$$

Tomar $\left.y_{i}=a_{i} \in * \mid V_{m}(I R)\right]$, entonces el u de arriba es preci samente el conjunto en la tesis y, además, es interno ($\in{ }^{*}\left(V_{m+1}\right.$ (IR.)]).

Observación: Tal como anunciamos, damos ahora algunas formula ciones equivalentes del principio de saturación:

1) Para toda sucesión de objetos en V(*IR), digamos $\left(\left.a_{n}\right|_{n \in \mathbb{N}}\right.$, existe una sucesión interna $\left(b_{n}\right)_{n \in *} \mathbb{N}$ de objetos en $U(* I R)$ tal que $b_{n}=a_{n}$ para $n \in \mathbb{N}$.
2) Previamente damos una definición:

Una relación binaria R en $V(* T R)$ es concurrente en un conjunto A si siempre que $x_{1}, \ldots, x_{n} \in A \cap \operatorname{dom}(R)(n \in \mathbb{N})$, hay un $y \in r g(R)$ tal que $\left(x_{i}, y\right) \in R ; i=1, \ldots n$; esto para cada n.
Tenemos, entonces:
V(*TR) es saturada ssi siempre que una relación interna binaria R es concurrente en un conjunto A a 10 sumo enumerable, en-
tonces R es satisfecha en $A(i . e$. hay un $y \in r g(R)$ tal que $(x, y) \in R$ para todo $x \in A)$.

Ejemplo: R definida mediante

$$
(x, y) \in R: \Leftrightarrow 0<y<x \quad \text { y } x, y \in{ }^{*} I R
$$

R es relación binaria interna, además, R es concurrente en $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} . R$ es satisfecha en A, por ejemplo, $\left(\frac{1}{n}, c\right) \in R$ para todo $n \in I N$ si c es infinitesimal positi vo.

Observación: Indicamos ahora algunas consecuencias del prin cipio de saturación:

1) Todo conjunto interno es finito o no enumerable.
2) Todo conjunto enumerable de hiperenteros infinitos (i.e. de elementos de *IN $\backslash I N$) tiene una cota inferior in finita en *IN.
3) Todo conjunto enumerable de infinitesimales positivos tie ne una cota superior infinitesimal en *IR.

Proposición: Sea $H \in{ }^{*} I N \backslash I N$ un hiperentero positivo, enton ces $\left\{K \in{ }^{*} I N: K<H\right\}$ es interno.

Dem. Basta usar el criterio de definición interna con $\phi(u, v, w)=w<v$, entonces:

$$
\left\{K \in{ }^{*} \mathbb{I N}: V(* \mathbb{R}) \vDash \phi\left[{ }^{*} \mathbb{I N}, H, K\right]\right\}
$$

es interno (por ser *IN interno, H interno (es elemento de un objeto interno) y < relación interna).

Definición: Un conjunto X interno se llama hiperfinito si hay $H \in{ }^{*} I N$ y una biyección interna
$\mathrm{f}:\{K \in \mathrm{Im}: K<H\} \rightarrow X$. H se llama la cardinalidad interna de $X: H=|X|$. Si $H \in{ }^{*} \mathbb{N} \backslash \mathbb{N} \mid$ decimos que X es $*$ fi nito.

Observaciones: 1) Se puede demostrar que todo conjunto *finito de objetos internos es inter no. Como consecuencia: Si A y B son internos, (A, B) tam bién.
2) Si X es *finito, entonces su cardina lidad (externa) es infinita no enumerable (esto es consecuencia de la saturación).

§ 3 EL ESPACIO DE PROBABILIDAD DE LOEB

Proposición: Sea A conjunto interno. La familia \mathbb{A} de subconjuntos internos de A es interna y es un álgebra de subconjuntos, es decir, $A \in A ; B_{1} y B_{2} \in \mathcal{A} \Rightarrow$ $\Rightarrow B_{1} \cup B_{2} \in A ; A-B \in A$ si $B \in A$. Más aún, una unión *finita de eltos. de A pertenece a A.

Dm. Ya sabemos que A es interna. Como A es interno, $A \in \notin A$. Sean ahora $B_{1}, B_{2} \in A$, tenemos $B_{1} \cup B_{2}=\left\{x \in A: x \in B_{1} v x \in B_{2}\right\}$, por el criterio de definición interna, $B_{1} \cup B_{2}$ es interno, luego, $B, \cup B_{2} \in \mathcal{A}$. Ahora $A \backslash B=\{x \in A: x \notin B\}$ por el mis mo motivo $A \mid B \in A$.

Sea $\left\{B_{1}, \ldots B_{n_{w}}\right\} \subset A, w \in{ }^{*} I N,{ }_{w}$ familia ${ }^{\text {* finita de }}$ subconjuntos internos de A, entonces $\bigcup_{n=1}^{\omega} B_{n} \in \mathscr{A}$:

$$
\bigcup_{n=1}^{w} B_{n}=\left\{x \in A: \exists n \in \mathbb{N} \quad\left(1 \leqslant n \leqslant w<x \in B_{n}\right)\right\},
$$

por el criterio de definición interna, $\bigcup_{n=1}^{w} B_{n}$ es interno, luego pertenene a A.

Observación: 1) Notar que no podemos concluir que $\cup_{n \in \mathbb{N}}^{\cup} B_{n} \in \mathcal{A}$ para $\left(B_{n}\right)_{n \in I N}$ sucesión de eltos. de A (se podría pensar en tomar $B_{n}=\phi$ para $n \in$ IN $\backslash I N, n \leqslant \omega$, pero no se puede demostrar que $\left(B_{n}\right)_{n=1}^{w}$ es *finita)。
2) Los conjuntos hiperfinitos son herramientas poderosas por dos razones: (a) por el principio de transferencia, cualquier proposición elemental que es vá lida para todos los conjuntos finitos, es válida también para todos los conjuntos hiperfinitos, y asípodemos aplite car argumentos de conteo en conjuntos hiperfinitos. (b) es tructuras standard infinitas pueden ser aproximadas mediante estructuras *finitas.

Observación: Dado un conjunto hiperfinito $x \subseteq$ "IR podemos formar la suma $\sum_{a \in X}$ a y máx $\{a: a \in X\}$, etc., ya que la sumatoria como operación sobre subconjuntos finitos de IR está definida (y está) en $V(I R)$, por el principio de transferencia su existencia y propiedades se transfieren a V("IR) cuando trabajamos con conjuntos hiperfinitos.

Definición: Sea y conjunto interno,

$$
* P(y):=\{B: B \subseteq y, B \text { interno }\} \text {. }
$$

Observación: 1) Ya sabemos que $\neq P(y)$ es interno.
2) La de arriba es efectivamente una definición, ya que $P(Y) \in V(\| R) y$, por lo tanto, no tiene imagen bajo *.

Definición: Un espacio de probabilidades hiperfinito
es un par $|A, \mu|$ donde A es un conjunto
hiperfinito no vacio $y \mu$ es una función interna
$\mu: A \rightarrow[0,1]$ tal que $\sum_{a \in A} \mu(a)=1$.
Si $B \in P(A)$, definimos $\mu(B):=\sum_{a \in B} \mu(a)$.

Observación: 1) Si tenemos, entonces, un espacio de probabilidades hiperfinito (A, μ) y μ definida
para eltos. de *P(A) como arriba, decimos que μ es una medida de probabilidad interna sobre A.
2) En forma similar a aquella en que estudiamos el älgebra de subconjuntos internos de un conjunto inter no, podemos probar que μ es una medida de probabilidad finita mente aditiva, más aún, que es finitamente aditiva. Este tí po de demostraciones también puede ser abordado mediante el principio de inducción interna que dice:

Si $S \subseteq \mathbb{I N}, S$ interno, $0 \in S$ y $n \in S$
$\Rightarrow n+1 \in S$, entonces $S=I N$.

Definiciōn: Sea A hiperfinito. $B(A):=\sigma$-álgebra sobre A generada por los subconjuntos internos de A (en el sentido usual), es decir, $B(A)=\sigma \mid * P(A)$, Los eltos. de $B(A)$ se 11 aman subconjuntos de Borel de A.

Observación: *P(A) contiene, por definición, sólo subconjun tos internos de A, sin embargo, si A es infini to, entonces $B(A)$ contiene también subconjuntos externos de A (pensar en que un conjunto interno A es finito o infinito no enumerable y en que todos sus elementos son internos). Por este motivo u no necesariamente está definida para todo conjunto de Borel.

Proposición: Sea X conjunto interno en $V\left({ }^{*} I R\right)$, y sea $\left(A_{n}\right)_{n \in I N}$ sucesión de elementos de ${ }^{*} P(X)$, es decir, de subconjuntos internos de x, tal que $A_{0} \subseteq \bigcup_{n=1}^{\infty} A_{n}$. Entonces para algún $m \in \mathbb{I N}, A_{0} \subseteq \bigcup_{n=1}^{m} A_{n}$.

Dem. Por el principio de saturación, hay una extensión interna $\left(A_{n}\right)_{n \in \mathbb{N}}$ de la sucesión $\left(A_{n}\right)_{n \in I N}$ (ver pág.16).
E1 conjunto $\left\{m \in \mathbb{I N}: A_{0} \subseteq \bigcup_{n=1}^{m} A_{n}\right\}$ es interno, ya que está definido en términos de parabmetros internos ${ }^{*} 1 \mathrm{~N}, \mathrm{~m}$, la suc. $\left.\left(A_{n}\right)_{n \in \mathbb{Z}}\right)$ y usamos el criterio de definición interna. Es te conjunto es no vacio, entonces tiene un primer elemento. Además, este primer elemento debe ser finito porque este conjun to contiene todos los enteros infinitos, pero no puede ser igual $a * \mathbb{N} \backslash I N$ porque este último es externo.

Corolario: Si $\left(B_{n}\right)$ es una sucesión de elementos de $1 \leqslant n \in \mathbb{N}$

* $P(X)$ no vacios, disjuntos, entonces $\underset{\mathbb{N}}{\cup} B_{n} \notin * P(x)$

Dem. Sea $B_{0}:=\bigcup_{I N} B_{n}$. Supongamos que B_{o} es interno (i.e. E * $P(X)$), entonces la sucesión $\left(B_{n}\right)$ es una sucesión de eltos. en *P(X)y, además, $B_{0} \subseteq \bigcup_{n=1}^{\infty} B_{n}^{0 \leqslant n \in \mathbb{N}}$. Entonces, por la proposición anterior, $B_{0} \subseteq \bigcup_{n=1}^{m} B_{n}$ para algún m finito. Con tradicción!

Observaciones: 1) El corolario anterior dice que una unión numerable B de subconjuntos internos, no va cíos, de un conjunto interno A no es subconjunto interno de A, es decir, no está en * $P(A) y$, en consecuencia no está defini da $\mu(B)$ si estamos trabajando en un espacio de probabilidades hiperfinito (A, μ). Sin embargo, $B \in B(A)$, el σ-álgebra genera da por *P(A). Uniones numerables (sobre IN) de eltos. de $B(A)$ están en $B(A)$.
2) Sea A conjunto interno y sea u una probabi lidad interna sobre el álgebra * $P(A)$ que es finitamente aditiva (este es el caso de un espacio de probabilidades hiperfinito $(A, \mu))$, es decir, $\mu(\phi)=0 \quad y \mu\left(B_{1} \dot{\cup} B_{2}\right)=\mu\left(B_{1}\right)+\mu\left(B_{2}\right)$ para $B_{1}, B_{2} \in{ }^{*} P(A) y \quad \mu: * P(A) \rightarrow *(0,1]$. Sea v definida en * $F(A)$ mediante: $v(B):={ }^{\circ}(\mu(B))$ para $B \in{ }^{*} P(A)$ (también escribi mos $\left.v={ }^{\circ} \mu\right)$, entonces v es finitamente aditiva $y \quad v:{ }^{*} P(A) \rightarrow[0,1]$.

Teorema: La medida de probabilidad finitamente aditiva v sobre * $P(A)$ tiene una única extensión σ-aditiva, también denotada por v, definida sobre $B(A)$.

Dem. Por la proposición anterior, una unión infinita enumerable de conjuntos no vacíos, disjuntos en $P(A)$ no es elemento de *P(A). Entonces v es o-aditiva en el álgebra*P(A), tenemos entonces una medida de probabilidad en el álgebra*P(A).,

Por el teorema de extensión de Caratheodory hay una única medida de probabilidad \bar{v} que extiende v a $B(A)$.

Observaciones: 1) Siguiendo la demostración de teorema de Caratheodory, vemos que la extensión $\bar{v} a$ $B(A)$ es la restricción de la medida exterior v^{*} generada por v a $B(A)$, entonces para $B \in B(A): \bar{v}(B)=v^{*}(B)=\inf \left\{\sum_{i \in I N} v\left(A_{i}\right):\right.$ $\left(A_{i}\right)_{i \in \mathbb{N}}$ sucesiốn de eltos. de $P(A)$ tal que $\left.B \subseteq \underset{i \in \mathbb{N}}{\cup} A_{i}\right\}$.
2) Basándose en (1), Loeb demuestra que para cada $B \in B(A):$ $\nu(B)=\inf _{C \in * P(A)} \nu(C)=\sup _{C \in * P(A)} V(C)$ y que hay un $D \in * P(A)$ tal que $B \subset C \quad C \subseteq B$ $v(B \backslash B) \cup(D \backslash B))=0$
3) Un conjunto $D \subseteq A$ es v-medible si hay con juntos de Borel $B, C \in B(A)$ tales que $B \triangle D \subseteq C y v(C)=0$.

Definicion: El espacio de probabilidad de Loeb asociado al es pacio (A, μ) es $(A, L(A), V)$ donde $L(A):=$ completación de $B(A)$ con resp. a $v(=f a m i l i a$ de conjuntos v-medibles), $y \quad u$ es la medida de probabilidad generada por la parte standard de μ según el teorema anterior. También se escribe $(A, L(A), L(\mu))$, el espacio de Loeb asociado.

Observaciones: 1) El espacio de probabilidad de Loeb asociado a un espacio de probabilidad interno (A, μ) es un espacio de probabilidad standard (en el sentido de ordinario o clásico).
2) Por 10 expuesto anteriormente podría pensarse que la construcción del espacio de Loeb sólo es posible cuando se considera como punto de partida en espacio de probabilidades hiperfinito. En realidad, el teo rema de Loeb puede ser enunciado en términos generales en 1a siguiente forma:
Si x es un conjunto interno, A es un álgebra interna sobre x, v es una palicación interna de A en $*[0,1]$, finitamente aditiva; $y \nu_{0}: \rightarrow[0,1]$ está definida mediante $v_{0}(A)=0(v(A))$ y finalmente $\sigma(A)$ es el σ-álgebra (ordi nario) generado por A, entonces la medida finitamente adi tiva v_{0} sobre A tiene una única extensión, también denota da por ν_{0}, a todo $\sigma(A)$.

Las observaciones de la päg. 23 tambiên son vâlidas, mutatis mutandis, en esta formulación.

Ejemplo: (1anzamiento de una moneda)
Elijamos $\omega \in{ }^{*} \mathbb{N} \backslash \mathbb{N} . X=\{0,1\}^{(1)}$, el conjunto de las w-tuplas internas. La cardinalidad interna de X es $|X|=2 \omega \in{ }^{*} I N \backslash I N$.
$A=$ fam. de subconjuntos internos de X.

$$
\text { Para } A \in A, \operatorname{sea} \mu(A)=\frac{|A|}{2^{w}} \text {. Entonces }(X, A, \mu)
$$

es el espacio de probabilidades interno del experimento hiperfinito de lanzar una moneda homogénea w veces. Sea $(x, L(x), v)$ el espacio standard de probabilidades de Loeb asociado a (x, \mathbb{A}, μ) que puede ser usado como esnacio básico para infinitos lanzamientos de una moneda.

Consideremos, por ejemplo, el evento interno A_{n} :"los $(n-1)$ primeros lanzamientos $s_{\omega / 2} n$ sello y el n-ésimo es cara". Si w es par, entonces $A=\bigcup_{n=1}^{w / 2} A_{2 n} \in A$ es el evento inter. no "obtener cara por primera $\begin{aligned} & \eta=z \text { en un lanzamiento de orden }\end{aligned}$ par en ω tiradas.

$$
\text { Se tiene } \mu(A)=\sum_{n=1}^{\omega / 2} \frac{2^{w-2 n}}{2^{w}} .
$$

¿Qué pasa cuando queremos trabajar con eventos "standard"?, ¿Hay coincidencia?. El evento standard $B=\underset{n \in \mathbb{I}, ~}{\cup} A_{2 n} \in L(x)$, ya que $L(X)$ es el menor σ-algebra sobre x que contiene a A (todos los eventos "standard" asociados con infinitos lanzamientos de una moneda están entonces en $L(X)$.

$$
\begin{aligned}
& \text { Obviamente } v(B)=\frac{1}{3}: \\
& \mu\left(\cup_{n=1}^{k} A_{2 n}\right)=\sum_{1}^{k} \frac{1}{2^{2 n}} \\
& \begin{aligned}
& \therefore v\left(\cup_{n=1}^{k} A_{2 n}\right)={ }^{\circ} \mu\left(\cup_{n=1}^{k} A_{2 n}\right) \\
&=\sum_{1}^{k} \frac{1}{2^{2 n}} \rightarrow \frac{1}{3} \\
& \therefore v(B)=v\left(\cup_{1}^{\infty} A_{2 n}\right)=1_{k \rightarrow \infty} v\left(\cup_{1}^{k} A_{2 n}\right)=\frac{1}{3} .
\end{aligned}
\end{aligned}
$$

Al trabajar con eventos del tipo B se puede usar $(x, L(X), v)$ como un modelo "standard" para el lanzamiento de 1 a moneda infinitas veces.

Proposición: Ω conjunto interno, si $X: \Omega \rightarrow{ }^{*} \mathbb{R}$ es ${ }^{*} P(\Omega)-m e d i-$ ble, entonces ${ }^{\circ} \mathrm{x}: \Omega \rightarrow \overline{I R}:=\operatorname{IR} \cup\{-\infty, \infty\}$ es $B(\Omega)$ medible.

Dem. Para cada $\alpha \in \mathbb{R}$,
$\left.\left\{\omega \in \Omega:{ }^{\circ} X(\omega)<\alpha\right\}=\bigcup_{n=1,}^{\infty} \underset{\substack{ \\n \in T N}}{ } \in \Omega: X(\omega)<\alpha-\frac{1}{n}\right\} \in B(\Omega)$,
ya que cada $\left\{\omega<\alpha-\frac{1}{n}\right\} \in{ }^{*} P(\Omega)$ por ser $x^{*} P(\Omega)$-medib.le.

Nos interesa el caso (Ω, μ) espacio de probabilidades hiperfinito. En adelante denotaremos con P la medida de Loeb sobre Ω.

Definición: $\sigma: \Omega \rightarrow I R, F: \Omega \rightarrow *$ TR, F es un levantamiento de σ si F es interna $y^{\circ} F(\omega)=f(w)$ P.c.s.

Proposición: $6: \Omega \rightarrow I R$ es Loeb-medible (i.e. para cada $\alpha \in I R$, $\{\omega \in \Omega:(\omega)<\alpha\} \in L(\Omega))$ ssi tiene un levantamiento.

Dem. " $<=$ " Sea $F: \Omega \rightarrow$ *IR un levantamiento de 6. Finterna.
Sea $\alpha \in I R$ fijo, entonces $\{\omega \in \Omega: F(\omega)<\alpha\} \in{ }^{*} P(\Omega)$, ya que F es interna, entonces F es * $P(\Omega)$-medible. Luego, ${ }^{\circ} F=6$ es $B(\Omega)$-medible.
" => " : será demostrada en una proposición más general que presentaremos después.

Observaciones: 1) Más que el caso (Ω, μ), espacio de probabilidades hiperfinito, nos interesa el caso particular en que μ es la medida de conteo $\mu(B)=\frac{|B|}{|\Omega|}, B \in{ }^{*} P(\Omega)$. Como siempre, P será la medida de Loeb asociada.
2) Dado Ω hiperfinito y una función inter: $\underline{\text { na }} F: \Omega \rightarrow * I R$, podemos formar siempre la suma $\sum_{\omega \in \Omega} F(\omega)$. Defí nimos

$$
\bar{E}(F):=\sum_{\omega \in \Omega} F(\omega) \cdot \frac{1}{\Pi \Omega} \text { valor esperado de } F \cdot \text { Tam- }
$$

bién escribimos $\int_{\Omega} F d \mu$. Para cada $\ddot{u} \in * P(\Omega), B \neq \phi$:
$\bar{E}(F \mid B):=\sum_{\omega \in B} F(\omega) \cdot \frac{1}{|B|}$, esperanza coridicional.
Definición: 1) $F: \Omega \rightarrow * I n$ no negativa se dice S-integrable si:
i) F es interna
ii) $\bar{E}(F)$ es finito, i.e. existe $: \in I$, tal que $|\bar{E}(F)|<=$, iii) ${ }^{\circ} \bar{E}(F)=\lim _{n \rightarrow \infty}{ }^{\circ} \bar{E}(F \wedge n)$.
2) $F: ? \rightarrow * I R$ se dice S-integrable si a la vez $F^{+}:=\max \{F, 0\}$ y $F^{-}:=\min \{F, 0\}$ son S-integrables.

Definición: $F: \Omega \rightarrow * I R$ se dice S-acotada si hay un $n \in \mathbb{N}$ que es una cota superior para $|F(\omega)|$.

Observación: Toda función interna S-acotada es S-integrable: En efecto, hasta considerar F no negativa.
Sup. $F(0)<n$,

$$
\begin{aligned}
E(F) & =\sum_{u \in \Omega} F(: u) \frac{1}{|\Omega|} \leqslant \sum_{u \in \Omega} \frac{n}{|\Omega|} \\
& =n \quad \sum_{u \in \Omega} \frac{1}{|\Omega|}=n,
\end{aligned}
$$

ahora, $\lim _{m \rightarrow \infty} \circ \bar{E}(F \wedge m)=\lim _{m \rightarrow \infty} 0\left(\sum_{(\cup \in \Omega}(F \mid(\omega) \wedge m) \frac{1}{|f|}\right)$; para $m>n$ se tiene

$$
\begin{aligned}
\left.\circ\left(\sum_{w \in \Omega} \mid F(w) \sim m\right) \frac{1}{|\Omega|}\right) & =\circ\left(\sum_{w \in \Omega} F(w) \frac{1}{|\Omega|}\right) \\
& =\circ \bar{E}(F)
\end{aligned}
$$

luego, $\lim _{m \rightarrow \infty}{ }^{\circ} \bar{E}(F, m)={ }^{\circ} \bar{E}(F)$.

Pronosición: $\{: \Omega \rightarrow I R ;\{$ integrable con respecto a la medi da de Loeb ssi $\{$ tiene un levantamiento S-inte-
grable F.
Además, si F es levantamiento S-integrable de $\{$:
${ }^{\circ} \bar{E}(F)=E(\{)$, i.e.

- $\sum_{\omega \in \Omega} F(w) \frac{1}{\Gamma \cap}=\int_{\Omega} f(w) d \omega$.

Dem. Ver Loeb p. 117.
Observación: En los términos más generales de la observación en la pág. 24 se tiene de hecho el siguiente resultado:

Si f es una función interna, A-medible que toma valores finitos en X; entonces, para cada $A \in A, \int_{A}\left\{d v \approx \int_{A}^{0}\right\} d v_{0}$.
Proposición: Una función $F: \Omega \rightarrow * \mathbb{R}$ es S-integrable si y sólo si F es interna y para cada conjunto interno $B \subseteq ?$
de Locb-medida 0 (en esta caso ${ }^{\circ} \mu(B)=0$), $\sum_{\omega \in B} F(\omega) \frac{1}{|\Omega|} \approx 0$.
Dem. Ver Anderson p. 18.

Proposición: $\left(\Omega_{1}, \mu_{1}\right),\left(\Omega_{2}, \mu_{2}\right)$ espacios hiperfinitos.
$U \subseteq \Omega_{9} \times \Omega_{2}$. Si U es sedible con respecto al producto $L\left(\mu_{1}\right) \times L\left(\mu_{2}\right)$ de las medidas de Loeb $L\left(\mu_{1}\right), L\left(\mu_{2}\right)$ sobre $?_{1}, ?_{2}$, resp., entonces $l l$ es medible con respecto a la medida de loeh $L\left(\mu_{1} \times \mu_{2}\right)$ sobre $\Omega q \times \Omega_{2} y$ ambas medidas coin ciden. (i.c. U medible respecto a $\left(\Omega_{1} \times \Omega_{2}, L\left(\Omega_{1}\right) \times L\left(\Omega_{2}\right)\right.$, $\left.L\left(\mu_{1}\right) \times L\left(u_{2}\right)\right)($ completado $) \Rightarrow U$ medible respecto a $\left(\Omega_{1} \times \Omega_{2}\right.$, $\left.\left.L\left(\Omega_{1} \times \Omega_{2}\right), L\left(\mu_{1} \times \mu_{2}\right)\right)\right)$.

Dem. Ver Anderson p. 28 .
1.3 2n

Observación: El recíproco no es cierto. Ver/Hoover 'Ann. of "ath. Logic" 14 (78) pp. 287-313.
proposición: (tipo Fubini). Sean Ω_{1}, Ω_{2} espacios hiperfinitos y sea $f: \Omega, \times \Omega_{2} \rightarrow I R$, función Loeb-medible acotada sobre $\Omega_{1} \times \Omega_{2}$ (i.e. para cada $\alpha \in \mathbb{R},\left\{\underline{\mathbb{U}} \in \Omega_{1} \times \Omega_{2}\right.$: $\{(\underline{0})<\alpha\} \in L\left(\Omega_{1} \times \Omega_{2}\right)$ y $|f|<r$ para algún $\left.r \in \operatorname{IP}\right)$. Entonces
i) para casi todo $w_{1} \in \Omega_{1},\left\{\left(w_{1}, \cdot\right)\right.$ es Loeb-medible en Ω_{2}.
ii) la función $g\left(w_{1}\right)=\int\left\{\left(w_{1}, w_{2}\right)\right.$ d w_{2} es Loeb-medible en Ω_{1}.
iii) $\int\left\{\left(w_{1}, w_{2}\right) d\left(w_{1}, w_{2}\right)=\int 1 \int\left\{\left(w_{1}, w_{2}\right) d w_{2}\right) d w_{1}\right.$

Dem. Sean $\left(\Omega_{1}, \mu_{1}\right),\left(\Omega_{2}, \mu_{2}\right)$ los espacios hiperfinitos y

$$
P:=L\left(u, \times u_{2}\right)
$$

!: el teo dásics de Fubini hasta sobtre une finción $f: \Omega_{1} \times \Omega_{1} \rightarrow \mathbb{R}$ gue e medible con respecte a $L\left(\Omega_{1}\right) \times L\left(\Omega_{2}\right)$. Aquí $f e$ $L\left(\Omega_{1} \times \Omega_{2}\right)$-medisle. Como $L\left(\Omega_{1} \times \Omega_{2}\right) \not \ni$ $L\left(\Omega_{1}\right) \times L\left(\Omega_{2}\right)$, la sithación es más geneal. Se necerita ion nuevo teo. de Fubini.

> Sea $A \subseteq \Omega_{1} \times \Omega_{2} \vee$ para cada $w_{1} \in \Omega_{1}$, $A_{w_{1}}:=\left\{w_{2} \in \Omega:\left(w_{1}, w_{2}\right) \in A\right\}$.

Las proposiciones (1)-(4) son equivalentes:
(1) $P(A)=0$
(2) Para cada $n \in \mathbb{N}$ hay $\Lambda^{n} \supseteq A$, A^{n} interno (i.e. $A^{n} \in * P\left(\Omega, \times \Omega_{2}\right) \mid$, tal que $P\left(A^{n}\right)<1 / n$.
(3) Para cada $n \in \mathbb{I N}$ hay $A^{n} \supseteq A$, interno, tal que $L\left(\mu_{1}\right)\left(L\left(\mu_{2}\right)\left(A_{w_{1}}^{n}<\frac{1}{n}\right)\right) \geqslant \overline{1}-1 / n$.
(4) Para casi todo $w_{1} \in \Omega_{1}, L\left(\mu_{2}\right)\left|A_{0_{1}}\right|=0$.

Ahora, sabemos que 6 tiene un levantamiento finitamen te acotado F : de $F\left(w_{1}, \cdot\right)^{\prime \prime}$; en aquellos puntos ω_{1} donde $F\left(w_{1}, \cdot\right)$ levanta a $\left\{\left(: w_{1}, \cdot\right)\right.$,
tenemos que $F\left(\omega_{1}, \cdot\right)$ es S-integrable c.r.a. μ_{2} (ya que $F\left(w_{1}, \cdot\right)$ es interna y S-acotada (!)), además,

$$
\begin{aligned}
{ }^{\circ} G\left(w_{1}\right) & ={ }_{w_{2} \in \Omega_{2}} F\left(w_{1}, w_{2}\right) \frac{1}{\left|\Omega_{2}\right|} \\
& =\int f\left(w_{1}, w_{2}\right) d w_{2} \\
& =g\left(w_{1}\right) \text { (esto para casi todo }\left(w_{1}\right),
\end{aligned}
$$

luego, G es un levantamiento de g en Ω_{ρ} (notar que G es inter na). Como g tiene un levantamiento, g es $L\left(\mu_{\rho}\right)$-medible. Así tenemos (ii). Finalmente,
$\int h\left(w_{1}, w_{2}\right) d\left(w_{1}, w_{2}\right)={ }^{\circ} \Sigma F\left(w_{1}, w_{2}\right) \frac{1}{\left|\Omega_{1}\right| \Omega_{2} \mid}$ (F es levantamiento S-integrable de 6)
$={ }^{0} \sum_{w_{1}}\left(\sum_{w_{2}} F\left(w_{1}, w_{2}\right) \frac{1}{\left|\Omega_{2}\right|}\right) \cdot \frac{1}{\Omega_{1} \mid}$
$={ }^{\circ} \Sigma G\left(w_{1}\right) \frac{1}{\Omega_{1} T}=\int g\left(w_{1}\right) d w_{1}$.

Observación: La noción de parte standard y la noción de levan tamiento también pueden ser definidas para espacios de Hausdorffr separalle

Consideremos un espacio de Hausdorff $\int_{S} \in V(I R)$ Separale Para cada punto $b \in{ }^{*} S$ hay a lo más un punto $p \in S$ tal que $b \in \mathcal{A}^{*}$
(!) En realidad tenemos $|F|<r \in \mathbb{R} y \underbrace{P\{\underbrace{w}_{1} \in \Omega_{2}:|F| \geqslant r\}=0 \text {, }}_{=: B, \text { interno }}$
pero podemos modificar F, romando $F_{\mathcal{1}}$ def. mediante

$$
F_{f}(\underline{\omega}):=\left\{\begin{array}{lll}
F & \text { si } & \underline{\omega} \in B^{C} \\
r & \text { si } & \underline{\omega} \in B
\end{array}\right.
$$

$F_{\text {p }}$ es interna y S-acotada.
para cada vecindad A de $p:$ si existe tal p, entonces $b \in \cap\left\{{ }^{*} A: p \in A \quad y\right.$ A abierto de $\left.S\right\} \quad y$
decimos que p es la parte standard de $b\left(p=:{ }^{\circ} b\right)$. Si exis te ${ }^{\circ} b$, decimos que b es casi standard. Para el espacio euclí deo $I R^{m}, m \in I N$, un punto $b \in{ }^{*} I R^{m}$ es casi standard ssi es finito (i.e. cada componente es finita).

Proposición: S, T espacios de Hausdorff y cada punto tiene una base de vecindades numerable. Una función $f: S \rightarrow T$ es continua si y sólo si para cada punto casi standard $b \in{ }^{*} S:{ }^{\circ}(f(b))=f\left({ }^{\circ} b\right)$ (usamos la convención $\left.f(b) \equiv\left({ }^{*} f\right)(b)\right)$.

Observación: La proposición en el caso $f: I R \rightarrow \mathbb{R}$ toma la for ma: f continua en $x \in I R$ siempre y cuando para todo $y \in * I P: y \approx x \Rightarrow f(y) \approx f(x)$.

Damos la demostración en este caso particular:
" $=>$ " Supongamos 6 continua. Entonces dado $\varepsilon \in \mathbb{R}+$, existe $\delta \in I R_{+}$tal que:
$V(\mathbb{I})|=\sharp y \in I R||x-y|<\delta \rightarrow|f(x)-b(y)|<\varepsilon)$. Luego,
$V(* I R)|=\forall y \in * I R||x-y|<\delta \rightarrow|f(x)-* f(y)|<\varepsilon \mid$

Sea ahora $y \approx x$, entonces $|x-y|<\delta$, Iuego,
$|* f(y)-f(x)|<\varepsilon$, i.e.:
para todo $y \in \mathbb{F} \mid(y \approx x \Rightarrow|*(y)-f(x)|<\varepsilon \mid$
$\operatorname{con} \varepsilon \in I R_{+}$cualquiera; entonces $y \approx x \rightarrow f(y) \approx f(x)$.
$"<="$ Sup. $y \approx x \Rightarrow f(y) \approx f(x), y$ que f no es continua
en x. Entonces existe $\varepsilon \in I R_{+}$tal que
$U(I R)|=\forall \delta \in I R+\exists y \in \operatorname{IR} \quad||x-y|<\delta \wedge|f(x)-\delta| y| | \Rightarrow \varepsilon \mid$

Luego,
$V(* \operatorname{IR}) \mid=\forall \delta \in{ }^{*} \operatorname{IR}+\exists y \in{ }^{*} \operatorname{IR}(|x-y|<\delta \wedge|f(x)-*(y)| \geqslant \varepsilon)$

Tonemos $\delta=c(i n f i n i t e s i m a l ~ p o s i t i v o), ~ e n t o n c e s ~ e x i s t e ~$ $y \in$ "IR con $|x-y|<c$, i.e. $x=y$, tal que
$|f(x)-*(y)| \geqslant \varepsilon \in I R_{+}$, pero $|g(x)-* g| y \mid \geqslant \varepsilon \in I R_{+} \Rightarrow$ $f(x) \neq * f(y)$.
Contradicción!

Definición: Sea S espacio de Hausdorff y sea
$6: \Omega \rightarrow S, F: \Omega \rightarrow$ " F es levantamiento de
\} si F es interna $y{ }^{\circ} F(w)=f(w)$ para casi todo $w \in \Omega$.

Proposición: Sea if un espacio métrico separable (espacio mêtrico con base numerable). Una función
f: $\Omega \rightarrow\{$ es Loeb-medible si y sólo si f tiene un levantamiento $F: \Omega \rightarrow *!$.
(Esta proposición generaliza una anterior con $M=I R$).

Dem. " $<=" F$ levantamiento de 6. pmétrica para il. Para $p \in \|, n \in I N$, sea $S_{n}(p):=\{q \in M: p(p, q)<1 / n\}$.
Como $I f$ es separable, basta con demostrar que para cada $p \in\left\{y \quad n \in \mathbb{N}, \quad f^{-1}\left|S_{n}(p)\right|\right.$ es Loeb-medible.

Para $p, q \in{ }^{*} H$, escribimos $\rho(p, q)$ en lugar de (*p) (p,q).

$$
\text { Sea } u=\left\{w \in \Omega:{ }^{\circ} F(w)=\{(w)\}, u\right. \text { tiene Loeb-medida }
$$

1. Para $w \in U$, son equivalentes:

$$
\begin{aligned}
& j(: a) \in S_{n}(p) \\
& \rho\left(p,{ }^{\circ} F(a)\right)<1 / n \\
& { }^{\circ} \rho(p, F(w))<1 / n \\
& w \in \underset{m \in I N}{\cup}\left\{\alpha: \rho(p, F(\alpha))<\frac{1}{n}-\frac{1}{n}\right\} \\
& \in B(\Omega)
\end{aligned}
$$

luego, if $\cap j^{-1}\left(S_{n}(p)\right) \in L(\Omega)$, y entonces $j^{-1}\left(S_{i n}(n)\right)$ es Loeb...ecible.
$"=>"$: Supongamos $\delta: S \rightarrow$, Loeb-nedible. Sea S_{1}, S_{2}, \ldots una base de abiertos para la topología de A y sean
$u_{n}=j^{-1}\left(s_{n}\right)$. Cada u_{n} es Loeb-medible, entonces hay conjuntos internos A_{n} tales que $p\left(A_{n}^{\prime} \Delta U_{n}\right)=0$ (Obs. 2, pág. 23).

Podemos escoger una nueva sucesión A_{n} de conjuntos internos tal que $p\left(A_{n} \Delta u_{n}\right)=0 \quad y$, siempre quc $u_{n} \cap \ldots \cap u_{n k}=\phi$, se tenga $A_{n} \cap \ldots \cap A_{n_{k}}=\phi$. ísto puede ser hecho en forma inductiva:
$A_{n}:=A_{n}^{\prime}-\cup\left\{A_{m} \cap \ldots \cap A_{m_{k}}: m_{1}<n, u_{n} \cap u_{m} \cap \ldots \ldots \lim _{k}=\phi\right\}$.

Para cada $n \in I N$, sca G_{n} el conjunto de todas las fun ciones internas $F: \Omega \rightarrow *: \|$ tales que para todo $m \leqslant n, F$ aplica A_{n} en ${ }^{*} S_{n}$, entonces U_{n} es un conjunto interno (está definido en términos de entidades internas) y, por la elección de los A_{n}, G_{n} es no vacio. Además, $G_{1} \geq G_{2} \geq \ldots$ por el principio de saturación, hay un $F \in \cap G_{n}$, entonces F es una función irterna de Ω en *il. $\because i l$ conjunto $u=\Omega \quad \underset{n \in I!!}{\cup}\left(A_{n} \Delta u_{n} \mid\right.$ tiene Loeb-
medida 1. Para $w \in U, F(w) \in \cap\left\{S_{n}: f(w) \in S_{n}\right\}$. Como los S_{n} son abiertos y además, forman una base para la topología de M, tenemos, por definición de parte standard, que ${ }^{\circ} F(w)=f(w)$ cuando $w \in U$. Asi F es un levantamiento de f.

Observación: 1) Dados dos espacios métricos L y $\boldsymbol{\text { M, de- }}$ notaremos mediante $C(L, M)$ al conjunto de las funciones continuas de L en M. Nos preocuparemos especialmente de los espacios I^{m} con la norma $\|y\|=\max \left|y_{k}\right|$, de los espacios $C\left([0,1], I R^{m}\right)$ con la norma $\|f\|=\sup _{0 \leqslant t \leqslant 1}\|f(t)\|$, y de los espacios $C\left(I R^{\ell}, I R^{m}\right)$ con la métrica $\rho(f, g)=\sum_{n=1}^{\infty} 2^{-n}$ $\min \left(1, \sup _{\|y\| \leqslant n} \| f(y)-g(y \mid \|)\right.$.

Todos éstos son espacios métricos separables. Las dos últimas métricas proporcionan la topologfa compacto-abier to con la base numerable $C(K, U), K$ compacto, U abierto.
2) En general, si L y M son espacios métricos separables y L es localmente compacto, entonces $C(L, M)$ con la topología compacto-abierto es un espacio métrico separable.
3) Por el principio de transferencia, cada $F \in{ }^{*} C(L, M)$ es una función de * L en *M.
4) La siguiente proposición caracteriza ${ }^{\circ} \mathrm{F}$ en términos de los valores de F : Sean L y M espacios métricos separables, L localmente compacto, $C(L, M)$ con 1 a
pología compacto-abierto. Si $\sigma \in C(L, M)$ y $F \in \mathbb{C}(L, M)$, en tonces ${ }^{\circ} F=6$ ssi para cada punto casi-standard $b \in{ }^{*} L,{ }^{\circ}(F(b))=\sigma\left({ }^{\circ} b\right)$.

$$
\begin{array}{r}
\text { en el sutilo le la trpulop'̌ de C OL,M) }{ }^{\text {M }} \\
\text { (de le topologia coupacto abierto) }
\end{array}
$$

§ 4 PROCESOS ESTOCASTICOS HIPERFINITOS

Para analizar procesos estocásticos, aproximaremos el in tervalo de tiempo $[0,1]$ mediante un conjunto hiperfinito T. Sea Δt un infinitesimal positivo tal que $1 / \Delta t$ es hiperentero: $1 / \Delta \mathrm{t} \in \mathcal{E}^{\mathbb{N}}, \mathbb{N}$.

$$
\text { Sea } \begin{aligned}
T \text { el } & \text { conjunto hiperfinito } \\
T & =\{0, \Delta t, 2 \Delta t, \ldots, 1\} \\
& =\{K \Delta t: K \in \mathbb{N}, 0 \leq K \Delta t \leq 1\} ; \text { 11amaremos }
\end{aligned}
$$

a T la recta temporal hiperfinita.
Usaremos $\underline{r}, \underline{s}, \underline{t}, \underline{u}$ para denotar elementos de T. Por comodidad, elegimos Δt de modo que $1 / \Delta t=L$! con $L \in \mathbb{N} \backslash \mathbb{N}$; de este modo cada número racional $m / n \in \mathbb{Q} \cap[0,1]$ también está en T :

 que $0 \leq \frac{m}{n} \leq 1$.

Ningún número irracional $r \in[0,1]$, está en T, pero hay un único $t \in T$ tal que $t<r<t+\Delta t$. En consecuencia, la
aplicación parte standard ${ }^{\circ}: T \rightarrow[0,1]$ aplica T sobre $[0,1]$.

Proposición: Un conjunto $A \subseteq[0,1]$ es Lebesgue-medible si y sólo si $B:=\left\{\underset{\tau}{t} \in T:{ }^{\circ} \underline{t} \in A\right\}$ es Loeb-medible. Más aún, si A es Lebesgue medible, entonces la medida de Lebesgue de A coincide con la medida de Loeb de B.

Dem. Anderson p. 24-25, Henson.
La proposición anterior conduce a una caracterización de las funciones Lebesgue-medibles.

Definición: Sea M un espacio de Hansdorff, sea $6:[0,1] \rightarrow M$, y sea $F: T \rightarrow{ }^{*} M$, interna. F es un levantamiento de 6 si ${ }^{\circ} F(\underline{t})=6\left({ }^{\circ} \underline{t}\right)$ para casi todo $t \in T$. (i.e., c.r.a. (T,L(T), P)).

Observación: Si definimos $\sigma_{1}: T \rightarrow M$ mediante $\sigma_{1}(\underline{t})=6\left({ }^{\circ} \underline{t}\right)$, entonces F es un levantamiento de f ssi F es levantamiento de bo $_{p}$ en el sentido anterior (pág. 33). Recordemos que la definición anterior hablaba de funciones $6: \Omega \rightarrow \mathbb{R}$, $F: \Omega \rightarrow \mathbb{R}^{\mathbb{R}}$, ahora tenemos 6 definida en $[0,1]$.

Después se combina ambos tipos de levantamiento al con siderar funciones $6: \Omega \times[0,1] \rightarrow M$.

Corolario: Sea M espacio métrico separable y \quad : $[0,1] \rightarrow M$. Entonces 6 es Lebesgue-medible si y sólo si tiene un levantamiento F.

Dem. Hagamos $f_{1}(\underline{t})=6(0 \underline{t}), \underline{t} \in T$. Por la proposición anterior, para cada abierto $u \subseteq M, \sigma^{-1}(u)$ es Lebesgue-mediblessif $1_{1}^{-1}(u)$ es Loeb-medible, ya que $f_{1}^{-1}(u)=\left\{\underline{t} \in T: f_{1}(\underline{t}) \in u\right\}$
$=\left\{\underline{t} \in T: f\left({ }^{\circ} \underline{t}\right) \in U\right\}=\left\{\underline{t} \in T:{ }^{0} \underline{t} \in f^{-1}(u)\right\}$. Luego, f es Lebesgue-medi ble ssi b_{y} es Loeb-medible. Pero σ_{1} es Loeb-medible ssi tiene un levantamiento F. Por la observación previa F debe ser también levantamiento de 6 .

Observaciones: 1) Sean A, B conjuntos hiperfinitos, sea A^{B} el conjunto de todas las funciones internas $F: B \rightarrow A . A^{B}$ es también hiperfinito y $\left|A^{B}\right|=|A|^{|B|}$.
2) Estudiaremos procesos estocáticos sobre un espa cio muestral Ω con valores en un espacio métrico separable M. En lo que sigue supondremos siempre que:

> 2.1 $\quad T=\{0, \Delta t, 2 \Delta t, \ldots, 1\} \operatorname{con} \Delta t=1 / L$! para algún $L \in{ }^{*} I N-\mathbb{N}$. $2.2 \quad \Omega$ es un espacio hiperfinito con medida de Loeb P uniforme, i.e. $\frac{P}{}$ es generada por la parte standard de $\mu, \operatorname{con} \mu(B)=\frac{|B|}{|\Omega|}, B \in E^{*} P(\Omega)$. $2.3 \quad M$ es espacio métrico separable con métrica ρ. \quad Para $a, b \in{ }^{*} M$, escribiremos $\rho(a, b)$ en lugar de $\left.\left.\right|^{*} p\right)(a, b)$.

Definición: Un proceso estocástico es uná función $x: \Omega \times[0,1] \rightarrow M$ tal que cada $x(\cdot, t)$ es medible. (i.e. para cada abierto $U \subseteq M,\{\omega \in \Omega: x(w, t) \in U\}$ es Loeb-medible $(\in L(\Omega)))$.

Un proceso estocástico hiperfinito es una función interna $X: \Omega \times T \rightarrow{ }^{*} M$ 。

Definición: Sean x un proceso estocástico y x un proceso esto cástico hiperfinito.
\underline{X} es un levantamiento de de x si ${ }^{0} x(\omega, \underline{t})=x\left(\omega,{ }^{\circ} \underline{t}\right)$ casi seguramente con respecto a la medida de loeb en $\Omega \times T$.
x es un levantamiento uniforme de x si, para casi
todo $\omega \in \Omega,(\forall \underline{t} \in T){ }^{\circ} x(\omega, \underline{t})=x\left(\omega,{ }^{\circ} \underline{t}\right)$.

Definición: Un conjunto o función se dice $\Omega \times[0,1]$-medible si es medible con respecto al producto de la me dida de Loeb en Ω y la medida de Lebesgue en $[0,1]$, y $\overline{\Omega \times[0,1]}$. medible si es medible con respecto a la completación del producto.

Teorema: Una función $x: \Omega \times[0,1] \rightarrow M$ es $\Omega \times[0,1]$-medible si y sólo si tiene un levantamiento (i.e. $\exists x: \Omega \times T \rightarrow{ }^{*} M, t . q .{ }^{0} X(w, t)=x\left(w,{ }^{\circ} t\right), P_{\left.\Omega \times T^{-c} . s .\right)}$

Dem. No se da, usa herramientas más poderosas del ánalisis no standard. Notar que x no necesita ser un proceso es tocástico. (ver Keisler §7)

Definición: Un proceso estocástico $x: \Omega \times[0,1] \rightarrow N$ es continuo si $x(w, \cdot)$ es continuo en $[0,1]$ para casi todo $\omega \in \Omega$.

Obs.: Todo proceso continuo x sobre Ω es $\Omega \times[0,1]$-medible. Más aún, si $x(w, t)$ es continuo, entonces hay un proceso $\Omega \times[0,1]$-medible $y(\omega, t)$ tal que $y(\omega, \cdot)$ es continuo para to do $w \in \Omega \quad y \times(w, \cdot)=y(w, \cdot)$ c.s.

Teorema: Un proceso estocástico x es continuo si y sólo si
tiene un levantamiento uniforme (i.e. $\exists x: \Omega \times T \rightarrow{ }^{*} M, t . q$. para casi todo $\left.w \in \Omega:(\forall \underline{t} \in T)^{\circ} x(\omega, \underline{t})=x\left(\omega,{ }^{0} \underline{t}\right)\right)$.

Dem. Supongamos que x es continuo. Sin pérdida de generalidad suponganos que $x(w, \cdot)$ es continua para todo w. El espacio $C([0,1], M)$ con la métrica del supremo es separable. Definamos $y: \Omega \rightarrow C([0,1], M)$ mediante $y(w):=x(w, \cdot)$. Como x es proceso continuo, y es medi-
ble en Ω. Luego, (pág. 33) y tiene un levantamiento $y: \Omega \rightarrow{ }^{*} C([0,1], M)$.

Sea u el conjunto de todos los $w \in \Omega$ tales que ${ }^{\circ} y(w)=y(w)$. Entonces u tiene (Loeb-) medida 1. Sea $w \in U y \underset{t}{t} \in T$. Se tie ne ${ }^{\circ}(y(w)(\underline{t}))=y(w){ }^{\circ}$ t $)$ (pág. 35 (4)).

Definamos $X: \Omega \times T \rightarrow{ }^{*} M$ por $X(\omega, \underline{t})=Y(\omega)(\underline{t})$.

$$
\text { Entonces } \begin{aligned}
{ }^{0} X(w, \underline{t}) & ={ }^{0}(y(w)(\underline{t})) \\
& =y(w)\left({ }^{\circ} \underline{t}\right)=x\left(w,{ }^{\circ} \underline{t}\right)
\end{aligned}
$$

Así X es un levantamiento uniforme de x.

Ahora supongamos que X es un levantamiento uniforme de x. Para todo ω en un conjunto U de medida 1 , se tiene ${ }^{\circ} x(\omega, \underline{t})=x\left(\omega,{ }^{\circ} t\right)$ para todo $t \in T$. Sea $w \in U y \varepsilon>0$ real. Cuando $t_{1} \approx t_{2}$ se tiene:

$$
{ }^{\circ} x\left(w, \underline{t}_{1}\right)=x\left(w, \underline{t}_{1}\right)=x\left(w,{ }^{0} \underline{t}_{2}\right)={ }^{0} x\left(w, \underline{t}_{2}\right)
$$

entonces
$\left(^{*}\right) \quad \rho\left(X\left(w, \underline{t}_{1}\right), \quad X\left(w, \underline{t}_{2}\right)\right)<\varepsilon$.
Sea $A:=\left\{r \in * \mathbb{R}:\left(\forall \underline{t}_{1}, \underline{t}_{2} \in T\right)\left(\left|\underline{t}_{1}-\underline{t}_{2}\right|<\left.r \Rightarrow\right|^{*}\right) \mid \sim r<1\right\}$
A es no vacío $(2 \Delta t \in A)$, interno y acotado sup., luego, tiene un supremo δ. Ahora, δ no puede ser infinitesimal, ya que A contiene a todo infinitesimal positivo y es interno lo que implí ca que A contiene algún real $\left(\in \mathbb{R}_{+}\right)$. Así existe $\delta=\sup \bar{A}$ con $0<\delta \in \mathbb{R}_{+}$.

Sea $\left|\underline{t}_{1}-\underline{t}_{2}\right|<\delta$, entonces $\rho\left(x\left(\omega, t_{1}\right), x\left(\omega, \underline{t}_{2}\right)\right)<\varepsilon$. Co mo p es continua en $N x M_{1}$, tenemos que siempre que s_{1}, s_{2} son rea les $\left|s_{1}-s_{2}\right|<\delta, \rho\left|x\left(w, s_{1}\right), x\left(w, s_{2}\right)\right| \leq \varepsilon$. En efecto, existen
$\underline{t}_{1}, \underline{t}_{2} \in T \operatorname{con}{ }^{\circ} \underline{t}_{1}=s_{1},{ }^{\circ} \underline{t}_{2}=s_{2} y$ entonces $\left|\underline{t}_{1}-\underline{t}_{2}\right|<\delta$ y se tiene $\rho\left(X\left(\omega, \underline{t}_{1}\right), X\left(\omega, \underline{t}_{2}\right)\right)<\varepsilon$; ocupando ahora la obser vación (4) en pág. 35, tenemos

$$
\begin{aligned}
& 0\left(\rho\left(x\left(w, t_{1}\right), x\left(w, t_{2}\right)\right)\right)=\rho\left({ }^{\circ} x\left(w, t_{1}\right),{ }^{\circ} x\left(w, t_{2}\right)\right) \\
= & \rho\left(x\left(w, s_{1}\right), x\left(w, s_{2}\right)\right) \\
\therefore & \rho\left(x\left(w, s_{1}\right), x\left(w, s_{2}\right)\right) \leq \varepsilon .
\end{aligned}
$$

$$
\text { Así } x(w, \cdot) \text { es continua (para casi todo } w \in \Omega \text {) en }[0,1] \text {. }
$$

Observación: En 10 que sigue nos concentraremos en espacios adap tados y procesos estocásticos.

Definición: Una filtración en un espacio de probabilidad (Δ, μ) es una familia de σ-álgebras $\mathcal{F}_{t}, t \in[0,1]$, sobre Δ tales que $s<t$ implica $F_{s} \subseteq \mathcal{F}_{t}$ y \mathcal{F}_{1} es el dominio de μ.

Un espacio adaptado es un espacio de probabilidad con una filtración:

$$
\Delta=\left(\Delta, \mu, \xi_{t}\right) t \quad[0,1]
$$

Intuitivamente, \mathcal{F}_{t} es el conjunto de sucesos que dependen sólo del estado del mundo hasta el tiempo t.

Definición: Un proceso estocástico $x(\lambda, t)$ sobre Δ se llama adaptado si $x(\cdot, t)$ es $\mathcal{F}_{t}-m e d i b l e$ para cada $t \in[0,1]$ χ se llama progresivamente medible si para cada $t \in[0,1]$, la res tricción de x a $\Delta \times[0, t]$ es $\mathcal{F}_{t} \times[0, t]$-medible.

Observaciones: 1) Todo proceso progresivamente medible es adap tado.
2) Si x es adaptado $y \overline{\Delta x[0,1]}$-medible, entonces, para ca da t, la restricción de x a $\Delta x[0, t]$ es $\overline{F_{t} \times[0, t]}$-medible.
3) Sin embargo, adaptado y $\Delta \times[0,1]$-medible no implica progresivamente medible.

Sea Ω un conjunto hiperfinito de la forma $\Omega=\left(\Omega_{0}\right)^{T}$, donde $\Omega 0$ es un conjunto hiperfinito con al menos dos elementos. Construiremos una filtración particular sobre Ω que conduce a un espacio adaptado especialmente bien dotado.

Definición: Un espacio adaptado hiperfinito es un espacio adaptado $\underline{\Omega}=\left(\Omega, P, A_{t}\right)_{t}[0,1]$ donde:
i) Ω es un conjunto hiperfinito de la forma $\Omega=\Omega_{0}^{T}$ donde Ω_{0} tie ne al menos dos elementos.
ii) P es la medida de Loeb uniforme sobre Ω.
iii) Para cada $t \in T, \approx_{t}$ es la relación interna de equivalencia sobre $\Omega: \omega \approx_{t} w^{\prime}: \ll \omega(\underline{s})=\omega^{\prime}(\underline{s})$ para todo $\underline{s}<\underline{t}$.
iv) Para cada $t \in[0,1], \sim_{t}$ es la relación externa de equivalen cia sobre $\Omega: \omega \tau_{t} \omega^{\prime}: \Leftrightarrow \omega \approx{ }_{t} w^{\prime}$ para todo $t \approx t$ (es decir, $\omega(\underline{s})=\omega^{\prime}(\underline{s})$ cuando $\left.\underline{s}<t 0^{\underline{t}} \underline{\Delta} \approx t\right)$.
v) A_{t} es el o-álgebra de todos $10 s$ conjuntos Loeb-medibles que son cerrados bajo la relación $\omega \tau_{t} w^{\prime}$. (i.e. Si $B \in A_{t}$, entonces B es Loeb $|P|$-medible, $B \subseteq \Omega, y w \in B$ con $w^{\imath} t^{w^{\prime}}$ impli ca $\left.\omega^{\prime} \in B\right)$. Claramente $A_{s} \subseteq A_{t}$ sis $<t$.
Supondremos en adelante que $\underline{\Omega}$ es un espacio hiperfinito adap tado con la filtración (A_{t}).

Proposición:

i) La filtración $\left(A_{t}\right)$ es continua por la derecha, es decir, para cada $t[0,1], A_{t}=\bigcap_{s>t} A . s$.
ii) Para cada $K \in A_{t}$ hay un conjunto interno $B \in A_{t}$ tal que $P(K \triangle B)=0$.
iii) Un conjunto interno $B \subseteq \Omega$ pertenece a A_{t} si y sólo si hay un $\underline{\delta} \approx t$ tal que B es cerrado bajo la relación $w \approx w^{\prime}$.

Dem. (i) Supongamos $\omega \sim_{t} w^{\prime}$, es decir, $\omega \approx_{t} w^{\prime}$ para todo $t \approx t$. Como T es hiperfinito, hay un mayor $r \in T$ tal que $\omega \approx_{\underline{r}} w^{\prime}$ (aquí se usa el hecho que ${\underset{\underline{t}}{ }}^{\text {es inter- }}$ na). Entonces ${ }^{\circ} \underline{r}>t$ (si no,sería, p.e., también $\left.\omega=z_{r}+\Delta t^{w^{\prime}}\right), y$ en consecuencia, $\omega \sim_{s} w^{\prime}$ para algún $s>t$ (podemos tomar $s={ }^{\circ}$ r) .

Ahora, sean $u \in$ $A_{S}, \omega \in U \quad y \quad \omega \sim_{t} w^{\prime}$. Enton ces $\omega \sim_{s} w^{\prime}$ para algún $s>t . u \in A_{s}$, de modo que $w^{\prime} \in u$. Así u es cerrado bajo $w \sim_{t} w^{\prime}$. Así $u \in A_{t} y$ hemos proba do que $\bigcap_{s>t} A_{s} \subseteq A_{t} ;$ la otra inclusión es inmediata.
(ii) Para cada conjunto $C \subseteq \Omega$ y $\mathcal{S} \in T$, sea $C-1 a$ clausura de C con respecto a la relación $\approx \underset{\perp}{-}$, y sea $C_{\underline{s}}:=\Omega,(\Omega, C) \stackrel{s}{\underline{s}}$ Cuando ${ }^{\circ} \underline{\Delta}>t$, se tiene $\bar{K}=K_{\underline{s}}=K_{\underline{s}}$
$K \in A_{t}$, entonces K es cerrado bajo \sim_{t} o equivalentemente bajo " $\approx_{\underline{t}}$ para todo $t \approx t "$. Cuando $\omega \in K y w \approx \approx_{\underline{s}} w^{\prime}$, entonces $w \approx_{\underline{u}} w^{\prime}$ para todo $\underline{u} \leq \underline{s}$, en particular, $\bar{\omega} \approx_{\underline{t}} w^{\prime}$ para todo $t \approx \underline{t}$, luego, $w^{\prime} \in K$. Así, $K \underline{\delta}=K$. Análogamente se ve que $\underline{K}_{\underline{s}}=K$, ya que $\Omega \sim K \in A_{t}$).

Para cada $n \in \mathbb{N}$ elijamos conjuntos internos $u_{n} \subseteq K \subseteq v_{n}$ tales que:

$$
u_{1} \subseteq u_{2} \subseteq \cdots \subseteq K \subseteq \cdots \subseteq v_{2} \subseteq v_{1}
$$

y $\quad P\left(v_{n} \backslash u_{n}\right)<1 / n$. (ver pág. 23 , obs. (2)).

Entonces, cuando ${ }^{\circ} \underline{s}>t$,

$$
u_{n} \subseteq u_{n} \underline{s} \subseteq K \subseteq=K=K_{s} \subseteq u_{n s} \subseteq u_{n} .
$$

Luego, cualquier intersección finita de los conjun tos internos $\left\{\underline{s}: t \leq \underline{\Delta}<t+1 / 2, u \frac{s}{m} \subseteq v_{n}\right\}$ es no vacía. Por el principio de saturacion, hay $\stackrel{t}{\approx}$, , tal que. para todo $m, n \in \mathbb{N}, u_{m}^{s} \subseteq v_{n s}$ Nuevamente por saturación, hay un conjunto interno $B t^{\frac{d}{1}}$ que para todo n, $u_{n} \subseteq u_{n}^{s} \subseteq B \subseteq v_{n \underline{s}} \subseteq u_{n}$. Como B es interno, $B \underline{s}$ es también interno (está definido en términos internos), y tenemos $u_{n} \subseteq u_{n}^{\delta} \subseteq B-\stackrel{s}{\subseteq} v_{n_{\underline{s}}} \subseteq v_{n}\left(v_{n_{\underline{s}}}\right.$ es cerrado con respecto $a \approx{\underset{\underline{s}}{ }) .}^{\infty}$ Se obtiene que $P \overline{(K \Delta B} B)=\overline{0}$. Como $B \underline{s}$ es cerrado con respecto $a \approx_{\frac{s}{S}}$, B^{b} es cerrado con respecto $a \sim_{t}$ (sea $\omega \sim_{t} w^{\prime}$ con $w \in B^{\frac{S}{S}}$, hay que probar que $w^{\prime} \in B-$. Como $w \sim_{t} w^{\prime}$, te nemos que $\omega \approx_{t} \omega^{\prime}$ para todo $t \approx t$; en particular $\omega \approx_{s} \omega^{\prime}$, luego, $\left.w^{\prime} \in B^{\underline{s}}\right)$. Así $B^{s-} \in A_{t}$.
(iii) Sea B interno. Si B es cerrado bajo \approx para algún $\underline{s} \approx t$, entonces B es cerrado con respecto $a \sim_{t}$, luego, $B \in A_{t}$. Supongamos que $B \in A_{t}$, entonces para todo r con ${ }^{\circ}$ r $>t, B$ es cerrado con respecto $a \approx_{r}$ (ver (ii)). Como B es interno, hay un menor $\underline{\&} \in T$ tal que ${ }^{-} \underline{s}>t y B$ es cerra do c.r.a. $\omega \approx \underline{s}^{\prime}$ (usamos la internalidad de $\approx \underset{\underline{s}}{ }$). Se tie ne que $\underline{\Delta} \approx t$.

TEOREMA: Sea $x(\omega, t)$ un proceso estocástico en un espacio adaptado hiperfinito $\underline{\Omega}$. Si x es adaptado y $\Omega \times[0,1]$-medi ble, entonces x es progresivamente medible.

Observación: Este teorema hace que los espacios adaptados hiperfinitos sean útiles para trabajar con ellos.

Dem. Sea $t \in(0,1]$ y sea B un subconjunto de Borel de M. Sea:

$$
C=\{(w, u): u<t \quad y \quad x(w, u) \in B\}
$$

Demostraremos que C es $A_{t} \times[0, t)$-medible.

Elijamos $t \in T$ tal que ${ }^{0} \underline{t}=t$ y sea β el σ-álgebra de todos los conjuntos Loeb-medibles $U \subseteq \Omega$ tales que U es cerrado con resp. a 1 a relación de equivalencia \approx_{t}. Entonces $B G A_{t} y$, luego, basta demostrar que C es $B x^{-1}[0, t)$-medible.

Para cada $w \in \Omega$, sea P_{w} la medida de Loeb uniforme sobre el conjunto interno $(\omega \wedge \underline{t})=\left\{\omega^{\prime} \Leftrightarrow \Omega: \omega \approx_{t} \omega^{\prime}\right\}$ (notar que $(\omega \vdash \underline{t})$ está definido en términos internos y que $(\omega \vdash \underline{t})$ es hiperfinito por ser Ω hiperfinito, luego, tiene sentido definir ahí una medida de Loeb uniforme) y para cada conjunto $S \subseteq \preceq$ definamos $P_{\omega}(S)=P_{\omega}(S \cap(\omega f \underline{t}))$.

Sea F el o-álgebra de todos los conjuntos $U \subseteq \Omega$ ta les que u es Loeb-medible y para cada $\omega \in \Omega, U \cap(\omega \uparrow \underline{t})$ es $\quad P_{\omega}$-medible.

Afirmación 1- $: ~ S i \quad S$ es $\Omega \times[0, t]$-medible y para cada $u<t$ la sección $S_{u}:=\{w:(w, u) \in S\}$ es cerrada c.r.a $\approx_{\underline{t}}$, enton ces S es $F \times[0, t)$-medible.
(Dem. ver Keisler p. 35)

Notemos que si S es $F \times[0, t)$-medible, entonces toda sección S_{u} pertenece a F, luego, $S_{u} \cap(w \uparrow \underline{t})$ es P_{w}-medible para cada $\omega \in \Omega$ (simplemente por definición de F). Dado un conjunto $S F \times[0, t)$-medible y un real $p>0$, definamos:

$$
S(p):=\left\{(w, u): P_{w}\left(S_{u}\right) \geq p\right\}
$$

Afirmación 2 $\frac{a}{\text { a }}$: Si S es $F \times[0, t)$-medible, entonces $S(p)$ es $\beta \times[0, t)$-medible para cada $p>0$.
(Dem. ver Keisler p. 37).

Para cada $u<t$, la sección $C_{u}=\{w: x(w, u) \in B\}$ es cerrada con respecto a la relación \sim_{u} (ya que $C_{u} \in A_{u}$ por ser
 ción más fina que \sim_{u}.

Como x es $\Omega \times[0,1)$-medible, C es $\Omega \times[0, t)$-medible. Luego, por la afirmación $1 \frac{a}{a}, C$ es $F \times[0, t)$-medible. Por afir mación $2-$, con $p=1, C^{(1)}$ es $B \times[0, t)$-medible. Sin embar go, para cada $\omega \in \Omega$ y $u<t,\left(\omega \hat{t} \mid \subseteq C_{u}\right.$ obien $(\omega \wedge \underline{t} \mid \cap$ $C_{u}=\phi$ (En efecto, supongamos $(\omega \uparrow \underline{t}) \cap \mathcal{C}_{u} \neq \phi$ y sea $\omega^{\prime} \in(\omega(\underline{t})$, es decir, $\omega^{\prime} \approx_{t} w$. Hay que probar que $w^{\prime} \in C_{u}$: existe $w^{\prime \prime}$ con $w^{\prime \prime} \approx{ }_{t} \omega$ y $w^{\prime \prime} \in C_{u}$. Como C_{n} es cerrado bajo \approx_{t}, tenemos que $\omega \in C_{u}^{\frac{t}{x}}$, con el mismo argumento obtenemos que ${ }^{\prime} w^{\prime} \in C_{u}$ l. Lue-

```
go, (w,u) C < < P 
(P
=> w\leqslantC
=> w& C
=> C}\mp@subsup{C}{u}{}\cap(wคt)\not=\phi=>(wคt)\subseteq\mp@subsup{C}{u}{
P
```



```
siguiente C = C(1)
:= {(w,u): P
```

Definición: $\quad x$ es casi seguramente progresivamente medible si hay un y progresivamente medible tal que $x(\omega, t)=y(\omega, t)$ c.s. en $\Omega \times[0,1]$.

Observación: 1) Si x es $\Omega \times[0,1]$-medible $y \times(\cdot, t)$ es A_{t}-medible para todo t en $u n$ conjunto U de medida 1 , entonces x es c.s. progresivamente medible. Esto ocurre porque la función $y(w, t):=\left\{\begin{array}{cl}x(w, t) & \text { si } t \in U \\ m_{0} & \text { si } t \notin U\end{array}\right.$ con m_{0} fijo en M, es progresivamente medible.
2) En el resto de esta sección entregamos algunos resultados generales de la teoría de procesos estocásticos hiperfinitos. No damos todas las demostraciones porque algunas de ellas requieren de algunas técnicas no-standard más poderosas cuya presentación, en este lugar, haría perder visión
general sobre el problema que aquí nos preocupa. Demostra ciones pueden ser encontradas en Keisler §7, §8.

Lemma. Si x es $\Omega \times[0,1]$-medible y para casi todo $t, \omega \sim_{t} \omega^{\prime}$ implica $x(w, t)=x\left(w^{\prime}, t\right)$, entonces x es c.s. progresivamente medible.

Presentamos ahora un teorema sobre levantamientos que envuelve a la filtración (A_{t}):

TEOREMA: Sea $0 \leq t<1$. Una variable aleatoria $x(w)$ es medi ble con respecto a la completación \bar{A}_{t} de A_{t} si y sblo si x tiene un levantamiento $x(w)$ tal que para $\underline{\Delta} \approx t, \omega \approx \underline{s} w^{\prime}$ implica $x(w)=x\left(w^{\prime}\right)$.
Dem. Primero supongamos que x tiene un tal levantamiento X. Entonces, para cada abierto $U \subseteq M,\left\{\omega:{ }^{\circ} \times(\omega) \in u\right\} \in A_{t}\left\{\left\{\omega:^{\circ} X(\omega) \in U\right\}\right.$ es Loeb-medible por ser ${ }^{\circ} X=x$ c.s., x medible y la familia de conjuntos Loeb-medibles, completa. Además, $\left\{\omega:{ }^{\circ} \times(\omega) \in U\right\}$ es cerrado bajo \sim_{t} 1 .

Como $x(\omega)={ }^{0} \times(\omega)$ c.s., tenemos
$\{\omega: x(\omega) \in \underline{u}\} \in \bar{A}_{t}$ (por razones similares a las recién dadas), luego, x es \bar{A}_{t}-medible.

Ahora, supongamos que x es \bar{A}_{t}-medible.
Sea $y(w)$ una variable aleatoria A_{t}-medible tal que $x(w)=y(w)$ c.s. $y(w)$ es variable aleatoria Loeb-medible, luego tiene un levantamiento y (ver pág. 33). Para cada racional $q>t$, sean $\omega \mid q:=\left\{\alpha \in \Omega: \alpha \approx_{q} \omega\right\}$
$\Omega \vdash q:=\{w \upharpoonright q: w \in \Omega\}$
(recordar que los racionales de $[0,1]$ están en T) y

$$
y_{q}(w \mid q)=y(w) .
$$

Como y es A_{t}-medible $y \quad q>t, w \approx{ }_{q} w^{\prime}$ implica $y(w)=\left(w^{\prime}\right)$, luego ${ }^{\prime} q$ está bien definida en $\Omega \upharpoonright q$. Además, $\Omega \vdash q$ es interno (está definido en términos internos) e y_{q} es Loeb-medible (porque y 10 es). Nuevamente por la prop. en pág. 33, y tiene un levantamiento y_{q} sobre $\Omega \upharpoonright q$. Definamos x_{q} sobre Ω mediante $\left.X_{q}(w)=y_{q}(w) q\right)$. Entonces X_{q} e y son ambos levantamientos de y, entonces para cada $n \simeq \mathbb{N}$,
(1) $\mu\left(o\left(x_{q}(w), y(w)\right)<\frac{1}{n}\right) \geq 1-\frac{1}{n} \quad(\mu$ la medida de conteo sobre Ω que genera a P notar que $\left[0\left(x_{q}(\cdot), y(\cdot)\right)<\frac{1}{n}\right]$ es interno) y
(2) $w \approx_{q} w^{\prime}$ implica $x_{q}(w)=x_{q}\left(w^{\prime}\right)$

Por saturación hay $x: \Omega \rightarrow \|^{*}$, interna, tal que para cada $n \in \mathbb{N}$ y $q>t$,
(1') $\quad P \quad \rho_{0}\left(X(w), Y(w)<\frac{1}{n}\right) \geq 1-\frac{1}{n}$
(2') $\quad \omega:_{q} w^{\prime}$ implica $\quad x(w)=x\left(w^{\prime}\right)$
(el argumento de saturación se aplica en forma análoga a aquel de la dem. de la proposición en pág. 33). Por (1^{\prime}), x es un le vantamiento de x. También, dado que (2^{\prime}) vale para todo $q>t$, $\left(2^{\prime}\right)$ vale para algún $\underline{s} \approx t$.

Introducimos ahora una propiedad de los procesos estocás ticos hiperfinitos llamada de "no anticipación" que está en correspondencia con la de medibilidad progresiva:
50.

Definición:
Un proceso estocástico hiperfinito X se llama no anticipante después de ε si, cuando $\varepsilon \leq t \in T$ y $\omega, \omega^{\prime} \in \Omega$, se tiene que $\omega \approx{ }_{t} w^{\prime}$ implica $x(\omega, t)=x\left(\omega^{\prime}, t\right)$.

Es decir, para $\underline{t} \geq \varepsilon, X(\omega, \underline{t})$ depende sólo de
$\omega(\underline{s}), \underline{s} \leq \underline{t}$.
X es no anticipante si hay un $\varepsilon \approx 0$ tal que X es no anticipante después de ε.

E1 siguiente teorema sobre levantamiento es importan te. El principal motivo para trabajar con la filtración (A_{t}) en lugar de $\left(\bar{A}_{t}\right)$ es el hacer disponible este resultado:

TEOREMA:
Un proceso estocástico x es c.s. progresivamente medible si y solo si tiene un levantamiento X que es no anticipante (de hecho, no anticipante después de 0).

Lemma. Si un proceso estocástico x es continuo yc.s. progre sivamente medible, entonces hay un y continuo, progresivamente medible, tal que $x(w, \cdot)=y(w, \cdot)$ casi seguramente en Ω.
(La demostración usa el teorema que aparece en la pág. 45).
TEOREMA:
Un proceso estocástico x es continuo y c.s. progresivamente medible si y sólo si x tiene un levantamiento uniforme no anticipante X.

```
Observación: En general, x tendrá un levantamiento que es
no anticipante después de 0, pero solo tendrá un levantamien
to uniforme que es no anticipante después de algún \varepsilon \approx0.
Por este motivo, la noción de proceso no anticipante nos es
más útil que la ligeramente más simple de no anticipante des
pués de 0.
```


Referencias:

Anderson, R. : "A non-standard representation of Brownian Motion and Ito-Integration'. Israel J. Math. 25 (1976).

Keisler, J. : "An Infinitesimal approach to stochastic analysis". Preprint, University of Wisconsin, 1980.

Loeb, P. : 'Conversion from non-standard to standard measure spaces and applications to probability theory". Trans. Amer. Math. Soc. 211 (1975).

Henson, C,W. : "Analytic sets, Baire sets and the standard part map' ${ }^{\prime}$ Canadian J. of Math. Vol. XXXI, No 3, 1979. pp. 663-672.
52.

§ 5. CONSTRUCCION NO STANDARD DEL MOVIMIENTO

 BROWNIANORecordemos que un Movimiento Browniano en un espacio de probabilidad $(\Omega, 0,2)$ es una función $\beta:[0,1] \times \Omega \rightarrow \mathbb{R}$ tal que:
i) β es un proceso estocástico, i.e., para cada $t \in[0,1]$, $\beta(t, \cdot)$ es una función medible de w.
ii) para $s<t \in[0,1], \beta(t, \dot{\psi})-\beta(s, \psi)$ tiene distribucion normal con media 0 y esperanza $t-s$.
iii) para $s_{1}<t_{1} \leq s_{2}<t_{2} \leq \cdots \leq s_{n} \in[0,1]$,
$\beta\left(t_{1}, \cdot\right)-\beta\left(s_{1}, \cdot\right), \ldots, \beta\left(t_{n}, \cdot\right)-\beta\left(s_{n}, \cdot\right)$
son variables aleatorias independientes.
iv) para casi todo $w, \beta(\cdot, w)$ es una función continua de t.

Construiremos a continuación un modelo de los axio mas anteriores, es decir, un Movimiento Browniano:

Sea $\eta \in \mathbb{N}^{*} \mathbb{N}$, (convendremos aquí en que $0 \in \mathbb{N}$); $\Omega:=\{-1,1\}^{n}$, el conjunto de todas 1 as n-tuplas internas con componentes 1 ó -1 . Entonces $|\Omega|=2^{n}$ (ver pág. 38, Obs. (1)). Sea $A:={ }^{*} P(\Omega), 1 a{ }^{*}$-álgebra de los subconjuntos internos de $\Omega ; y \cup: A \rightarrow *[0,1]$ definida por $v(A)=\frac{|A|}{2^{\eta}}, A \in \mathbb{A}$.

La definición de u refleja equiprobabilidad de resultados y (Ω, \notin, ν) es un espacio de probabilidad hiperfinito
(ver pág. 20) para el experimento *-finito de, por ejemplo, lanzar ŋ̂ veces una moneda homogénea.

Para cada $w \in \Omega \quad y k \leq n, w_{k}$ es la k-ésima compo nente de w. Sea, para $t \in *[0,1], x(t, \cdot): \Omega \rightarrow * \mathbb{R}$, defini da mediante
$x(t, w)=\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{[n t]} w_{i}+(n t-[n t]) w_{[n t]+1}\right)$.
Entonces $x(\cdot, \omega)$ es una caminata aleatoria unidi mensional en el intervalo de tiempo * 0,1$]$ con pasos en los instantes en $T=\{1 / n, 2 / n, \ldots, 1\}$ (en $t=0$ parte del origen) de longitud $1 / \sqrt{n}$ hacia la derecha o izquierda segúnen el instante k / η la componente ω_{k} de ω sea 1 ó -1 , resp.. $x(t, \omega)$ da la posición en la caminata (continua mediante la poligonal) correspondiente a la n-tupla w en el instante t :

Lemma. 1) Para cada $t \in[0,1], x(t, \cdot)$ es función interna de Ω en $* \mathbb{R}$.
2) Para cada $t \in[0,1], x(t, \cdot)$ es A-medible.

Dem. 1) $x(t, \cdot)=\left\{(\omega, r) \in \Omega \times * \mathbb{R}: r=\frac{1}{\sqrt{n}}\right.$

$$
[n t]
$$

$\left(\sum_{i=1}^{n t]} \omega_{i}+(n t-[n t]) w_{[n t]+1)\}}\right.$ es conjunto interno, ya que
$\Omega \times{ }^{*} \mathbb{R}$ lo es y la formula de la derecha también porque
$w \upharpoonleft\{1, \ldots,[n t]\}$ es interno al ser $w y\{1, \ldots,[n t]\}$ internos. Se usa el criterio de definicion interna. Notar que también vale con $t \in *[0,1]$.

Otra manera de establecer este resultado es observando que $x(t, \cdot)$ es una suma *-finita $\{\{1,2, \ldots,[n t]\}$ es *-fini-

2) Sea $\alpha \in{ }^{*} \mathbb{R}$, por la parte anterior, el conjunto $\{\omega \in \Omega: x(t, \omega) \leq \alpha\}$ es conjunto interno, luego, pertenece a A.

Corolario: Si (Ω, D, P) es el espacio de Loeb asociado a $(\Omega, A, v) \quad(D:=L(\Omega), P:=L(\nu))$, entonces $B(t, \cdot): \Omega \rightarrow \overline{\mathbb{R}}$ definí da por $\beta(t, \omega)={ }^{0} x(t, \omega)$ es Loeb-medible para cada $t \in[0,1]$.

Dem. Basta aplicar la prop. en la pág. 26.
Teorema: Si $\Pi G^{*} \mathbb{N} \backslash \mathbb{N}$, entonces $B:[0,1] \times \Omega \rightarrow \overline{\mathbb{R}}$ es un movimiento Browniano en (Ω, D, P). De hecho, $B(\cdot, \omega)$ es finita para casi todo w.

Antes de entregar la demostración damos algunos lemmas y definiciones:

Definición: Una coleccion $\left\{x_{i}\right\} \quad i \in I$ de variables aleatorias definidas en (Ω, A, ν) (i.e. funciones A-medibles de Ω en $\left.{ }^{*} I R\right)$ es *-independiente si para cada subcoleccion *-finita $\left\{X_{1}, \ldots, X_{m}\right\}, m \in \mathbb{}^{*} \mathbb{N}, y$ toda m-tupla interna $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in{ }^{*} \mathbb{R}^{m}$,
$v\left(x_{1}<\alpha_{1}, \ldots, x_{m}<\alpha_{1 n}\right)=\prod_{k-1}^{m} v\left(x_{k}<\alpha_{k}\right)$.
La colección $\left\{X_{i}\right\} \quad i \in I$ es S-independiente si para cada subcolección finita $\left\{X_{1}, \ldots, X_{m}\right\}, m \in \mathbb{N}, y$ toda m-tupla $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{R}^{m}$,

$$
v\left(x_{1}<\alpha_{1}, \ldots, x_{m}<\alpha_{m}\right) \approx \prod_{k=1}^{m} v\left(x_{k}<\alpha_{k}\right)
$$

Observación: $\left\{x_{i}\right\}_{i \in I}{ }^{*}$-independiente $\Rightarrow\left\{x_{i}\right\}_{i \in I} S$-independiente.

Lemma. Si $\left\{X_{i}\right\}_{i \in I}$ es una coleccion S-independiente de v.a. en (Ω, A, v), entonces $\left\{{ }^{0} X_{i}\right\} \in I$ es una coleccion de v.a. independientes en $(\Omega, 0, P)$.

Dem. Por la prop. en pág. 26 sólo es necesario probar la independencia.

$$
\begin{aligned}
& \text { Sean } m \in \mathbb{N},\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{R}^{m} \\
& P\left({ }^{0} x_{i_{1}}<\alpha_{1}, \ldots,{ }^{o} x_{i_{m}}<\alpha_{m}\right)= \\
& P\left(\bigcup_{n=1, n \in \mathbb{N}}^{\infty}\left[x_{i_{1}}<\alpha_{1}-\frac{1}{n}, \ldots, x_{i_{m}}<\alpha_{m}-\frac{1}{n}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}{ }^{\circ} v\left(x_{i_{1}}<\alpha_{1}-\frac{1}{n}, \ldots x_{i_{m}}<\alpha_{m}-\frac{1}{n}\right) \\
& =\lim _{n \rightarrow \infty} 0_{j=1}^{m} v\left(x_{i_{j}}<\alpha_{j}-\frac{1}{n}\right) \\
& =\lim _{n \rightarrow \infty} \prod_{j=1}^{m} \circ \vee\left|x_{i_{j}}<\alpha_{j}-\frac{1}{n}\right| \\
& =\prod_{j=1}^{m} \lim _{n \rightarrow \infty}{ }^{\circ} v\left(x_{i_{j}}<\alpha_{j}-\frac{1}{n}\right) \\
& =\prod_{j=1}^{m} \lim _{n \rightarrow \infty} P\left(x_{i_{j}}<\alpha_{j}-\frac{l}{n}\right) \\
& \left.=\left.\prod_{j=1}^{m} P\right|^{0} x_{i_{j}}<\alpha_{j}\right) .
\end{aligned}
$$

Lemma. (Teorema del límite central en forma no standard)
Sea $\left\{x_{n}\right\}_{n} \in^{*} \mathbb{N}$ una sucesion interna de v.a. *-independientes en (Ω, A, v). Supongamos que hay un funcion de distribución standard F tal que ${ }^{*} F$ es la distribución común de las X_{n}, que $E\left(X_{n}\right)=0$ y $E\left(X_{n}^{2}\right)=1$ para cada $n \in{ }^{*} \mathbb{N}$. Sea ϕ la función de distribución standard de la ley normal $N(0,1)$. Entonces, pa ra cadam $\epsilon^{*} \mathbb{N} \backslash \mathbb{N}$ y cualquier $\alpha \in{ }^{*} \mathbb{R}$,

$$
v\left(\frac{1}{\sqrt{m}} \sum_{n=1}^{m} x_{n} \leq \alpha\right) \approx \phi(\alpha)
$$

Dem. Ver Anderson op. cit. pág. 27. La demostración usa el teo rema del límite central usual.

Dem. (de1 teorema)
i) Para cada $t \in[0,1], \beta(t, w)$ es D-medible Corolario, pág. 54) como función de w. Luego demostraremos que $B(t, w)$ es finita $p-c . s$.
ii) Dados $s<t$ en $[0,1]$, sea $\lambda:=[\eta t]-[\eta s]\left(\epsilon^{*} \mathbb{N} \backslash \mathbb{N}\right)$ $\frac{s}{\left[\frac{n s]}{n}\right.} \frac{t}{\left[\frac{n s]}{n}\right.}, \quad, y \alpha \in \mathbb{R}:$

$$
P(\{w \in \Omega: B(t, w)-B(s, w) \leq \alpha\})=
$$

$$
P\left(\left\{w \in \Omega:{ }^{0} \times(t, w)-{ }^{0} x(s, w) \leq \alpha\right\}\right)=
$$

$$
P\left|\left\{\omega \in \Omega:{ }^{\circ}\left|\underset{k}{[n=[n s]} \frac{w_{k}}{\sqrt{n}}\right| \leq \alpha\right\}\right|=
$$

$$
P\left\{\left\{w \in \Omega: w \in \bigcap_{m \in \mathbb{N}}\left[\sum_{k=[\eta s]}^{[n t]} \frac{w_{k}}{\sqrt{n}} \leq \alpha+\frac{1}{m}\right]\right\}\right)=
$$

$$
\lim _{m \rightarrow \infty} P\left(\left\{\omega \in \Omega: \sum_{k=[n s]}^{[n t]} \frac{w_{k}}{\sqrt{n}} \leq a+\frac{1}{m}\right\}\right)=
$$

$$
\lim _{m \rightarrow \infty} P\left(\left\{\omega \in \Omega: \frac{1}{\sqrt{\lambda}}\left[\begin{array}{c}
{[n t]} \\
{[n s]}
\end{array} \omega_{k} \leq \sqrt{\frac{\pi}{\lambda}}\left(\alpha+\frac{1}{m}\right)\right\}\right)=\right.
$$

$$
\lim _{m \rightarrow \infty} 0\left\{v\left(\left\{\omega \in \Omega: \frac{1}{\sqrt{\lambda}}\left[\begin{array}{c}
{[n t]} \\
{[n s]}
\end{array} \omega_{k} \leq \sqrt{\frac{n}{\lambda}}\left(\alpha+\frac{1}{m}\right)\right\}\right)\right\}\right.
$$

$$
=\lim _{m \rightarrow \infty} 0 *_{\Phi}\left(\sqrt{\frac{n}{\lambda}}\left(\alpha+\frac{1}{m}\right)\right)
$$

$$
=\lim _{m \rightarrow \infty} \Phi 1^{\circ} \sqrt{\frac{n}{\lambda}}\left(\left.\alpha+\frac{1}{m} \right\rvert\,\right) \quad \text { (ver prop., pag. 32) }
$$

$=\lim _{m \rightarrow \infty} \Phi\left(\frac{\alpha+1 / m}{\sqrt{t-s}}\right)=\Phi\left(\frac{a}{\sqrt{t-s}}\right)$

Así, queda establecido que
$\beta(t, \cdot)-\beta(s, \cdot) \sim N(0, t-s)$.
iii) $S_{i} s_{1}<t_{1} \leq s_{2}<t_{2} \leq \cdots \leq s_{n}<t_{n} \in[0,1]$, entonces $x\left(t_{1}, \cdot\right)-x\left(s_{1}+\frac{1}{n}, \cdot\right), \ldots, x\left(t_{n}, \cdot\right)-x\left(s_{n}+\frac{1}{n}, \cdot\right)$ son *-independientes.

Entonces son S-independientes. Luego, por el lemma en pá. $55, B\left(t_{1}, \cdot\right)-B\left(s_{1}, \cdot\right), \ldots, B\left(t_{n}, \cdot\right)-B\left(s_{n}, \cdot\right)$ son inde pendientes.
iv) $B(\cdot, w)$ es continua en $[0,1]$ y finita $P-C . s .:$ Para cada $m, n \in \mathbb{N}$, sea $\Omega_{m n}=\left\{\omega \in \Omega: \exists i<n, \sup _{i+1} x(t, \omega)-\right.$ $\frac{i}{n} \leq t \leq \frac{i+1}{n}$
$\left.-\inf x(t, w)>\frac{1}{m}\right\}$ $\frac{i}{n} \leq t \leq \frac{i+1}{n}$

Notar que $\Omega_{m n}$ es interno por estar definido en términos de entidades internas, i.e. $\Omega_{m n} \in \notin$.

Se tiene
$v\left(\Omega_{m n}\right)=v\left(\bigcup_{i=0}^{n-1}\left\{\omega \quad \Omega: \quad \begin{array}{l}\left(\sup ^{i}-\inf \right) \\ \frac{i}{n} \leq t \leq \frac{i+1}{n}\end{array}\right.\right.$

$$
\begin{aligned}
& \leq \sum_{i=0}^{n-1} \quad \cup\left\{\omega \in \Omega: \begin{array}{l}
(\sup -\inf) \\
\frac{i}{n} \leq t \leq \frac{i+1}{n}
\end{array} \quad x(t, \omega)>\frac{1}{m}\right\} \\
& =\sum_{i=0}^{n-1} v\left\{w \in \Omega:\left(\sup ^{n}-\inf \right) x(t, w)>\frac{1}{m}\right\} \\
& =n v\left\{\omega \in \Omega:(\sup -\underset{1}{\inf }) \quad x(t, w)>\frac{1}{m}\right\} \\
& 0 \leq t \leq \frac{1}{n} \\
& \leq n \quad \cup\left\{\omega \in \Omega: \max _{1 \leq k \leq \lambda} \frac{1}{\sqrt{n}}\left|\sum_{1}^{k} w_{i}\right|>\frac{1}{2 m}\right\} \\
& \int_{i / n} \quad \lambda:=[n / n]+1 \quad\left(\epsilon^{*} \mathbb{N}-\mathbb{N}\right) \\
& 0 \quad \frac{\left[n \frac{1}{n}\right]}{n} \frac{\left[n \frac{1}{n}\right]+1}{n} \quad(\lambda=n / n+1 \text { si } n=L!\operatorname{con} L \in \mathbb{N} \backslash \mathbb{N}) \\
& =n v\left\{\omega \in \Omega: \max _{1 \leq k \leq \lambda}\left|\sum_{1}^{k} w_{i}\right|>\frac{\sqrt{n}}{2 m}\right\} \\
& \leq n v\left\{\omega \in \Omega: \max _{1 \leq k \leq \lambda} \sum_{1}^{k} \omega_{i}>\frac{\sqrt{n}}{2 m}\right\}+n v\{\omega \in \Omega \text { : } \\
& \left.\min _{1 \leq k \leq \lambda} \sum_{1}^{k} w_{i}<-\frac{\sqrt{n}}{2 m}\right\} \\
& \leq 2 n v\left\{\omega \in \Omega: \sum_{1}^{\lambda} \omega_{i}>\frac{\sqrt{n}}{2 m}\right\}+2 n v\left\{\omega \in \Omega: \sum_{1}^{\lambda} \omega_{i}\left\{-\frac{\sqrt{n}}{2 m}\right\}\right. \\
& =4 n v\left\{\omega \in \Omega: \frac{1}{\sqrt{\lambda}} \sum_{1}^{\lambda} \omega_{i}>\frac{\sqrt{n / \lambda}}{2 m}\right\} \\
& \approx 4 n\left(1-*_{\Phi}\left(\frac{\sqrt{n / \lambda}}{2 m}\right)\right)=4 n\left(1-\quad *_{\phi}\left(\sqrt{\frac{n}{[n / n]+1}} \frac{1}{2 m}\right)\right)
\end{aligned}
$$

$$
\approx 4 n\left(1-\Phi\left(\frac{\sqrt{n}}{2 m}\right)\right)=\frac{4 n}{\sqrt{2 \pi}} \int_{\frac{\sqrt{n}}{2 m}}^{\infty} e^{-t^{2} / 2} d t
$$

$$
<2 n \int_{\frac{\sqrt{n}}{2 m}}^{\infty} e^{-t^{2} / 2} d t<2 n \int_{\frac{\sqrt{n}}{2 m}} e^{-t / 2} d t
$$

$$
\text { si } \frac{\sqrt{n}}{2 m}>1 \quad\left(e^{-t^{2} / 2}<e^{-t / 2} \text { si } t>1\right)
$$

$$
=4 n e^{-\frac{\sqrt{n}}{4 m}}
$$

Así, $v\left(\Omega_{m m}\right)<4 n e^{-\frac{\sqrt{n}}{2 m}}$ si $\frac{\sqrt{n}}{2 m}>1$.
Sea ahora $\Omega^{\prime}:=\Omega, \bigcup_{m=1}^{\infty} \bigcap_{n=1}^{\infty} \Omega_{m n} E \sigma(A)$.

$$
\epsilon \quad \sigma(A)
$$

$P\left(\Omega^{\prime}\right)=1-\sup _{m} \inf _{n} v\left(\Omega_{m n}\right) \geq 1-\sup _{m} \inf _{n} 4 n e^{-\frac{\sqrt{n}}{4 m}}$ $=1$.

Se tiene:
a) Si $w \in \Omega^{\prime}$, entonces $\beta(t, w)$ es finita:

En efecto, sea $w \in \Omega$. Si para algún $t \in{ }^{*}[0,1]$ tenemos ${ }^{\circ} x(t, \omega)=+\infty$ $6-\infty$, entonces $\omega \in \Omega_{m m}$ para todo $m, n \in \mathbb{N}, y$, luego, $w \notin \Omega^{\prime}$. Así, $\omega \in \Omega^{\prime} \rightarrow B(t, w)$ es finita.
b) Si $\omega \in \Omega^{\prime}$, entonces $\beta(\cdot, \omega)$ es continua:

En efecto, sea $w \in \Omega$. Supongamos $s, t \in *[0,1]$, con $s \approx t, y$ que $x(s, w) \not \approx x(t, w)$.

Si $x(s, \omega) \neq x(t, w)$, entonces ${ }^{\circ}|x(s, w)-x(t, \omega)|>0$. Sea $a:=0|x(s, w)-x(t, w)|$. Entonces para $m>\frac{2}{a}, w \in \Omega_{m m}$ para todo $n \in \mathbb{N}$, luego, $\omega \notin \Omega^{\prime}$. Así hemos probado que:
(!) $w \in \Omega^{\prime} y \quad s \approx t, s, t \in{ }^{*}[0,1] \Rightarrow x(s, w) \approx x(t, w)$
(de paso obtuvimos un tipo de continuidad de la caminata aleatoria *-finita $x(\cdot, w)$, la llamada microcontinuidad). Hay que probar nuestra aserción inicial:
fijemos $t \in[0,1]$ y sea $\varepsilon \in \mathbb{R}_{+}, \omega \in \Omega^{\prime}$.
Sea $A:=\left\{n \in{ }^{*} \mathbb{N}: \left.\forall s \in \in^{*}[0,1]| | t-s\left|<\frac{1}{n} \rightarrow\right| x(t, w)-x(s, w) \right\rvert\,<\varepsilon / 2\right\}$.
Entonces A es interno y contiene todos los enteros en * $\mathbb{N} \backslash \mathbb{N}$ (por $(!))$, entonces A contiene un entero finito k (si no, sería, $A={ }^{*} \mathbb{N} \backslash \mathbb{N}$ que es externo).

Así $|t-s|<1 / k \rightarrow|x(t, w)-x(s, \omega)|<\varepsilon / 2 \operatorname{con} k \in \mathbb{N}$ y para todo $s \in \in^{*}[0,1]$. Luego, $|t-s|<1 / k$, $s \in[0,1] \Rightarrow 0|x(t, \omega)-x(s, \omega)|$ $\leq \varepsilon / 2$, pero ${ }^{\circ} X(t, \omega) y^{\circ} X(s, w)$ son finitos (por (a)), luego, para todo $s \in[0,1],|t-s|<1 / k \rightarrow{ }^{0}|x(t, w)-x(s, w)|=\left|{ }^{0} x(t, w)-{ }^{0} x(s, w)\right|$ $=|\beta(t, \omega)-\beta(s, \omega)|<\varepsilon$.

Así, $\omega \in \Omega^{\prime} \rightarrow \beta(\cdot, \omega)$ es continua en $[0,1]$.
Corolario: $x(\cdot, \omega)$ es casi standard en ${ }^{*} C[0,1]$ para casi todo ω.
Dem. Recordemos primero (págs. 31, 35) que una función $g \in{ }^{*} C[0,1]$ se 11ama casi standard si para algún $6 \in C[0,1]$ se tiene que ${ }^{\circ} g=6$ con respecto a la topología de la norma del supremo, es decir,
$\left.\sup _{t \in[0,1]}\right|^{*} f(t)-g(t) \mid \approx 0$. Además, si g es casi standard, entonces la
1a función h definida por $h(s):={ }^{\circ} g(s), s \in[0,1]$, es continua en $[0,1]$ $y \quad{ }^{\circ} g=h$ (en el sentido anterior).

$$
\begin{aligned}
& \text { (x) It la ínica fuciin de C[0, } 1] \text { talpu } \\
& g \in \operatorname{mon}(y)=? * \theta \text {, stontiene } \\
& f \in \text { "O, abict. } \\
& \text { m. } f \text { ela innice furcioin de C Co, in tal que } \\
& \cap^{*}\left\{h \in\left(C_{0,1]}: \sup |h(t)-f(t)|<\varepsilon\right\}\right. \\
& \mathbb{R} \Rightarrow \varepsilon>0
\end{aligned}
$$

Veamos ahora la dem. del Corolario.
Sea $w \in \Omega^{\prime}$. Probaremos que ${ }^{\circ} \times(\cdot, w)=\beta(\cdot, w)$ (, pero no en el sentido trivial de la definición de β mediante $\left.\beta(t, w):={ }^{0}(x(t, w)), 0 \leq t \leq 1\right\}$, en el sentido de la def. en pág. 31, es decir, que $x(\cdot, w) \in \cap\{* A: A$ es vecindad de $B(\cdot, w)\}$.

Antes notemos que, efectivamente, $x(\cdot, w) \in^{*} c[0,1]$, ya que, por el principio de transferencia, una función $g \in{ }^{*} C[0,1]$ ssi g es interna de $*[0,1]$ en $* \mathbb{R} \quad y$ es continua en el sentido que $\forall x \in \epsilon^{*}[0,1] \forall \varepsilon \in^{*} \mathbb{R}_{+} \exists \delta \in \in^{*} \mathbb{R}_{+} \forall y G^{*}[0,1]| | x-y \mid<\delta \rightarrow$ $|g(x)-g(y)|<\varepsilon \mid$ (*-continuidad).

Es claro entonces que, siendo $x(\cdot, w)$ una poligonal, se tie ne la *-continuidad de $x(\cdot, w)$.

Ahora, $x(\cdot, w) \in \bigcap * A \Leftrightarrow$

$$
x(w, \cdot) \in \bigcap_{\varepsilon \in \mathbb{R}_{+}} *\left\{b \in C[0,1]: \sup _{t \in[0,1]}|\beta(t, w)-b(t)|<\varepsilon\right\}
$$

$$
\Leftrightarrow \sup _{t \in^{*}[0,1]} 1^{*} B(t, w)-x(t, w) \mid \approx 0 .
$$

Probamos ahora esta úlima aserción: Para $t \in *[0,1]$

$$
\begin{aligned}
& \left|{ }^{*} \beta(t, \omega)-x(t, \omega)\right| \leq\left|* B(t, \omega)-\beta\left({ }^{\circ} t, \omega\right)\right|+ \\
& \left.\left|\beta\left(^{\circ} t, \omega\right)-x\left(^{\circ} t, \omega\right)\right|+|x|^{\circ} t, \omega\right)-x(t, \omega) \mid \approx 0, \\
& \text { ya que }\left|{ }^{\circ} \beta(t, \omega)-\beta\left({ }^{\circ} t, \omega\right)\right| \approx 0(B(\cdot, \omega) \in s \text { continua) }
\end{aligned}
$$

$$
\left.\left|\beta\left({ }^{\circ} t, \omega\right)-x\right|^{\circ} t, \omega\right) \mid \approx 0 \text { (por def. de } B(\cdot, \omega \mid) \text {, }
$$

$y\left|x\left({ }^{0} t, \omega\right)-x(t, \omega)\right| \approx 0$ (micro continuidad de $x(\cdot, \omega)$)
Luego, $\sup _{t \in *[0,1]}|* B(t, \omega)-x(t, \omega)| \approx 0$ (el supremo existe por ser $\left\{|* B(t, w)-x(t, \omega)|: t \in^{*}[0,1]\right\}$ acotado superiormente e interno.

Es fácil ver que el supremo debe ser infinitesimal).

Corolario: El espacio (Ω, D, P) induce una medida en $C[0,1]$ que es una extensión de la medida de Wiener si $n \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$.

En efecto, consideremos el espacio ($\left(C[0,1), \mathcal{E}, w^{\prime}\right)$ con:

$$
E \in E: \Leftrightarrow \in\{(\omega \in \Omega: B(\cdot, \omega) \in \in\} \in D, 1]
$$

$$
w^{\prime}(E):=P(\{\omega \in \Omega: \beta(\cdot, \omega) \in E\}) \text { si } E \in E \cdot\left(C[0,1], \text { है, } \omega^{p}\right) \text { es }
$$ una extensión del espacio de medida de Wiener ($C[0,1], \mathcal{B}, w)$: en efe eto,

La medida de Wiener w se define como la única medida de Borel en 03 , el σ-algebra de los Borelianos de $C[0,1]$, tal que:
i) $w(\{\sigma \in C[0,1]: \quad \sigma(t)<\alpha\})=\Phi\left(\frac{\alpha}{\sqrt{x}}\right)$, $\forall t \in[0,1], \forall \alpha \in \mathbb{R}$.
ii) $S_{i} s_{1}<t_{1} \leqslant \cdots \leq s_{n}<t_{n} \in[0,1]$, entonces las funciones medibles $\pi_{t_{1}}-\pi_{s_{1}}, \ldots, \pi_{t_{n}}-\pi_{s_{n}}$ son independientes (aquí $\left.\pi_{t}(\gamma):=\gamma(t)\right)$.

Además, β es el σ-álgebra generado por la familia de conjuntos cilindricos de la forma $\left\{f\left(t_{p}\right)<\alpha_{p}, \ldots, f\left(t_{n}\right)<\alpha_{n}\right\}$.
$f \in C[0,1] /$
 basta probar que ε contiene a los conjuntos cilíndricos, esto es inmediato, ya que $\left\{f \in C[0,1]: f\left(t_{1}\right)<\alpha_{1}\right\} \in \xi \Leftrightarrow\{\omega \in \Omega: B(\cdot, \omega) \in\{6 \in C[0,1]:$ $\left.\left\{\left(t_{1}\right)<\alpha_{1}\right\}\right\} \in D \Leftrightarrow\left\{\omega \in \Omega^{\prime}: B\left(t_{1}, w\right)<\alpha_{1}\right\} \in D$,
pero $\left\{\omega \in \Omega^{\prime}: \beta\left(t_{1}, \omega\right)<\alpha_{1}\right\}=$
$\Omega^{\prime} \cap\left\{\omega \in \Omega: B\left(t_{1}, \omega\right)<\alpha_{1}\right\}=$
$\Omega^{\prime} \cap\left\{\omega \in \Omega:{ }^{0} x\left(t_{1}, \omega\right)<\alpha_{1}\right\}=$
$\left.\begin{array}{r}\Omega^{\prime} \cap \\ \cdots \\ \cup\end{array}\right\}$
$\sigma(A)$ EAr
$\in \sigma(A)$

Finalmente observamos que, por el teorema de la pág. 54, w^{\prime} satisface las condiciones (i) y (ii). Luego, $w^{\prime} \mathbb{M} B=w$.

Observación: 1) La medida que extiende a la medida de Wiener en el Coro lario anterior es la inducida por la transformación medible de Ω^{\prime} enc $[0,1]$ definida por $w \rightarrow B(\cdot, \omega)$.
2) Se puede obtener ahora fácilmente un caso particular del teorema de Donsker. Escribimos $\Omega_{\eta}, \beta_{n}, P_{n}$, para destacar la dependencia de n.

Teorema: (Donsker) $\left\{\omega^{\prime}{ }_{\eta}\right\}_{\eta \in \mathbb{N}}$ converge débilmente hacia w^{\prime}, es decir, $\int F d w_{n}^{\prime} \rightarrow \int F d w^{\prime}$ para toda función F acotada y continua de $C[0,1]$ en \mathbb{R}.

Dem. Sean $\eta_{1}, n_{2} \in^{*} N, \mathbb{N}$ y $\beta 3$ el σ-álgebra de Borel en $C[0,1]$. Por el corolario anterior, $w^{\prime}{ }_{n_{1}} \cap B_{3}=\omega^{\prime}{ }_{n_{2}}+B=\omega^{\prime}$ (que aquí es w^{\prime}, la medi da de Wiener). Luego, si $F: C[0,1] \rightarrow \mathbb{R}$ es acotada y continua, se tiene:

$$
\int_{C[0,1]} F d \omega_{n_{1}^{\prime}}=\int_{C[0,1]} F d{ }^{\prime \prime \prime}{ }_{n_{2}}=\int_{C[0,1]} F d^{\omega^{\prime}} \text {, entonces }
$$

$$
\begin{aligned}
\int_{\Omega_{n_{1}}} F\left(\beta_{\eta_{1}}(\cdot, \omega) d P_{n_{1}}(\omega)\right. & =\int_{\Omega_{n_{2}}} F\left(\beta_{n_{2}}(\cdot, \omega)\right) d P_{n_{2}}(\omega) \\
& =\int_{C[0,1]} F d u^{\nu} .
\end{aligned}
$$

Como F es continua $y{ }^{0}\left(x_{\eta_{i}}(\cdot, w)\right)=\beta_{\eta_{i}}(\cdot, w), p_{\eta_{i}}$-casi seguramente (en el sentido del corolario anterior), tenemos ${ }^{*} F\left(x_{\eta_{i}}(\cdot, \omega)\right) \approx F\left(\beta_{\eta_{i}}(\cdot, \omega)\right) \quad, P_{\eta_{i}}-c . s .(\alpha)$

$$
\text { Como } F \text { es acotada, }{ }^{*} F\left(\chi_{\eta_{i}}(\cdot, w)\right) \text { es } S \text {-acotada (como función }
$$ de w) (pág. 27), entonces ${ }^{*} F\left(x_{n_{i}}(\cdot, w)\right)$ es S-integrable (c.r.a $\left.\mid \Omega_{\eta_{i}}, A_{\eta_{i}}, \nu_{\eta_{i}}\right)\left(\right.$ pág. 27). Además, ${ }^{*} F\left(x_{\eta_{i}}(\cdot, w)\right)$ es levantamiento de $F\left(\beta_{\eta_{i}}(\cdot, \omega)\right)$ (de $\left.(\alpha)\right)$, luego (pág. 28), $F\left(\beta_{\eta_{i}}(\cdot, \omega)\right)$ es Loeb $\left(\Omega_{\eta_{i}}\right.$)-integrable $y \int_{\Omega_{\eta_{1}}} F\left(x_{\eta_{1}}(\cdot, w)\right) d \nu_{\eta_{1}}(\omega) \approx \int_{\Omega_{\eta_{1}}} F\left(\beta_{\eta_{1}}(\cdot, \omega) d P_{\eta_{1}}(\omega)\right.$

$=\int_{\Omega_{\eta_{2}}} F\left(\beta_{n_{2}}(\cdot, w)\right) d P_{\eta_{2}}(w) \approx \int_{\Omega_{n_{2}}} F\left(\sum_{n_{2}}(\cdot, w)\right) d v_{n_{2}}(w)$,
Luego, $\int_{\Omega_{\eta_{1}}} * F\left(x_{\eta_{i}}(\cdot, w) d \nu_{\eta_{i}}(w) \approx \int_{\Omega_{n_{2}}}{ }^{*} F\left(x_{\eta_{2}}(\cdot, w)\right) d \nu_{\eta_{2}}(w)\right.$ para $\quad \eta_{1}, \eta_{2} \in \mathbb{N}, \mathbb{N}$.

$$
\begin{aligned}
& \text { Sea } \varepsilon \in \mathbb{R}_{+}: \\
A:= & \left\{m \in{ }^{*} \mathbb{N}: * n_{1}, n_{2} \in{ }^{*} \mathbb{N}\left(n_{1}, n_{2} \geq m \rightarrow\right.\right. \\
\mid & \left.\int_{\Omega_{n_{1}}}{ }^{*} F\left(x_{n_{1}}(\cdot, \omega)\right) d v_{n_{1}}(w)-\int_{\Omega_{n_{2}}}{ }^{*} F\left(x_{n_{2}}(\cdot, \omega)\right) d v_{n_{2}}(\omega) \left\lvert\,<\frac{\varepsilon}{2}\right.\right\}
\end{aligned}
$$

Claramente ${ }^{*} \mathbb{N} \backslash N \subseteq A$ y A es intermo. Luego, existe $k \in \mathbb{N} \cap A$. Para este k se tiene

$$
\forall n_{1}, n_{2} \in \mathbb{N}: n_{1}, n_{2} \geq k \rightarrow|\%-\%|<\varepsilon / 2(\gamma)
$$

y esto inplica que

$$
\forall n_{1}, n_{2} \in \mathbb{N}: n_{1}, n_{2} \geq k \Rightarrow{ }^{0}|\%-\%| \leq \varepsilon / 2
$$

Luego, $t n_{1}, n_{2} \in \mathbb{N}: n_{1}, n_{2} \geq k \Rightarrow$

$$
\begin{aligned}
& 1 \int_{\Omega_{n_{1}}} F\left(\beta_{n_{1}}(\cdot, \omega) d P_{n_{1}}-\int_{\Omega_{n_{2}}} F\left(\beta_{n_{2}}(\cdot, w) d P_{n_{2}} \mid<\varepsilon\right.\right. \\
& \text { Asi, } \lim _{\substack{n \rightarrow \infty \\
(n \in \mathbb{N})}}^{\int_{n}} \underset{\Omega_{n}}{ } F\left(B_{n}(\cdot, w) d P_{n} \text { existe } y\right. \text { es igual a } \\
& \left.0 \quad * F\left(x_{n_{1}}(0, w)\right) d v_{n_{1}}(w) \quad \text { (fijando } n_{1} \text { en }(\gamma)\right) \\
& =\int_{\Omega_{\eta_{1}}} F\left(B_{\eta_{1}}(\cdot, w)\right) d P_{n_{1}}(w)=\int_{C[0,1]} F d w_{n_{1}} .
\end{aligned}
$$

67.

Así, $\lim _{\substack{n \rightarrow \infty \\(n \in \mathbb{N})}} \int_{\Omega_{n}} F\left(\beta_{n}(\cdot, w)\right) d P_{n}=\int_{C[0,1]} F d{ }^{\prime \prime}{ }_{n_{1}}$

- bien, $\lim _{\substack{n \rightarrow \infty \\(n \in \mathbb{N})}} F d[0,1] \quad F d w_{n}^{\prime}=\int_{C[0,1]} F d w^{\prime}{ }_{n_{1}}=\int_{C[0,1]} F d w^{\prime}$.

Muy buenas presentaciones generales del analisis no standard aparecen en:

Keisler, H.J. "Foundations of Infinitesimal Calculus" Prindle, Weber \& Schmidr, Inc. 1976.
Davis, M. "Applied Non Standard Analysis". Wiley, 1977.
Luxemburg, W.A.J. "What is Non Standard Analysis?" Amer.
Math. Monthly Vol. 80, 6, 1973.
Stroyan, K.D. \& Luxemburg, W.A.J. "Introduction to the Theory of Infinitesimals". Ac. Press, 1976.

Presentaciones, también generales, que ofrecen un mayor grado de complejidad a aquellos que no están familiarizados con conceptos y lenguaje de la Lógica Matemática, aunque tam bién excelentes, son:

Robinson, A. 'Non standard Analysis" North-Holland, 1966.
Luxemburg, W.A.J. "A General Theory of Monads" en Applications of Model Theory to Algebra, Analysis and Probability . W.A.J. Luxemburg (ed.), Holt, Rinehart and Wiston, 1969.

En relacion con 10 presentado en nuestro trabajo, debe mos citar, como fuentes principales, los siguientes artículos: Loeb, P.A. "Conversion from Non standard to Standard Measure Spaces and Applications in Probability Theory". Trans. Amer. Math. Soc., Vol. 211, 1975.

Anderson, R.M. "A Non standard Representation for Brownian Motion and Itô Integration', Israel J. Math, Vol. 25, 1976.
Keisler, H.J. "An Infinitesimal Approach to Stochastic Analysis" Preprint, U. of Wisconsin, 1980.

La lectura de estos trabajos debería ser la continuación natural de la de estas notas. El artículo de Loeb es un trabajo clave, sin embargo, muchos de sus resultados ya los hemos presentado. El artículo de Anderson presenta, además, una construccion no standard de la integral de Itô. Keisler orienta su trabajo hacia el estudio de ecuaciones diferencia les estocásticas.

Otras publicaciones que complementan nuestras notas y pueden ser leídas sin dificultad son:

Anderson, R.M. \& Rashid, S. "A Non standard Characterization of Weak Convergence'". Proc. Amer. Math. Scc., Vol. 69, 2, 1978.
Henson, C.W. "Analytic Sets, Baire Sets, and the Standard Part Map" Canadian J. of Math., Vol. 31, 3, 1979.

