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Abstract

Causality is an important notion that appears at the foundations of many scientific disci-

plines, in the practice of technology, and also in our everyday life. Causality is crucial to

understanding and managing uncertainty in data, information, knowledge, and theories. In

data management in particular, there is a need to represent, characterize and compute the

causes that explain why certain query results are obtained or not, or why natural semantic

conditions, such as integrity constraints, are not satisfied.

The notion of query-answer causality in databases was introduced in [Meliou et al.,

2010c]. This notion is shown to be general enough to be applied to a broad class of

database-related applications, such as explaining unexpected answers to a query result,

diagnosing network malfunctions, data cleaning, hypothetical reasoning [Meliou et al.,

2010c, Meliou et al., 2010b, Meliou et al., 2011b, Meliou, et al., 2011c].

In this thesis, we establish and investigate connections between query-answer causal-

ity and other important forms of reasoning that appear in data management and knowl-

edge representation, e.g. consistency-based diagnoses [Reiter, 1987], database repairs

and consistent query answering [Arenas et al., 1999], abductive diagnosis [Console et al.,

1991b, Eiter et al., 1995], and the view-update problem [Buneman et al., 2002, Kimelfeld,

2012a, Kimelfeld, 2012b]. These problems are classified in [Meliou et al., 2011a] as re-

verse data management problems.

The unveiled relationships allow us to obtain new results for query-answer causality and

also for the above mentioned related areas. Furthermore, we argue that causality in data

management can be seen as a very fundamental concept, to which many other data man-

agement problems and notions are connected. In fact, we suggest causality as a unifying

framework for reverse data management problems.
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Chapter 1

Introduction

The central aim of many disciplines of knowledge, ranging from philosophy through law,

psychology, economics, statistics, etc. to computer science, is the elucidation of cause-

effect relationships among variables or events. There have been many attempts to define

causality that can be traced back at least to Hume (1739), but as yet no consensus has been

reached and the debate continues to the present [Halpern, 2015a].

The advent of the structural model framework (see [Pearl, 2009] for a discussion and

references) has sharpened many of the debate points and placed the study of causality

within a much broader context. It has led to several closely-related accounts of actual

causation,1 among which the one by [Halpern & Pearl, 2005] (HP from now on) has been

most influential.

A distinctive feature of the HP-model is its reliance on structural equations to model

causal relationships. The use of structural equations as a model for causal relationships

was well known before [Pearl, 2009, Pearl, 2010]. However, the details of the framework

that have proved so influential are due to Pearl. The structural equations express the effects

of interventions: “What happens to the outcome if we change the state of the input?”. This

is a “what-if question”. The mirror question: “How can we change the input to achieve a

particular outcome?”, is a “how-to question”, and can be addressed by assessing the results

of a collection of what-if questions. These two forms of analysis are at the essence of causal

reasoning.

According to the HP approach, a domain is described in terms of random variables

and their values. Causal relationships between those variables, say A,B, ..., are modeled

by a set of structural equations. The set of random variables (with their values) and the

associated structural equations is called a causal model [Halpern & Pearl, 2005]. In this

context, the statement “A is an actual cause for B” claims that there is a set of possible

1As opposed to general causal claims such as “smoking causes cancer” which refer to a class of events,
actual causation specifies a particular instantiation of a causal relation e.g., Joe’s smoking caused his cancer.

1

Owner
Cross-Out

Owner
Cross-Out
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interventions (contingencies) on the causal model that makes B counterfactually depend

on A. That is, had A not happened, B wouldn’t have happened.

Example 1.0.1 Suppose that a committee consists of two members, Alice and Bob; and a

particular proposal is approved by the committee if Alice or Bob vote for it.

According to the structural model approach, such a scenario can be modeled by means

of two boolean random variables A and B, which may take values 0 or 1. They represent

Alice and Bob’s vote, respectively. Value 1 is a vote for approval. There is an additional

boolean random variable, P , representing the decision by the committee. P takes value 1

iff the proposal is approved.

The causal dependencies between these variables are expressed through a function rep-

resenting that the value of P is determined by the value of A ∨ B. We may consider the

following possible worlds:

(a) A world where Alice votes for the proposal, but Bob votes against, i.e. A = 1 and

B = 0. In this case, P = 1. Moreover, P counterfactually depends on the value of A, i.e.

had A not been 1, the proposal wouldn’t have been approved. So, A is the single actual

cause for P .

(b) In another world, both Alice and Bob vote for the proposal, in which P is “over-

determined” by A and B, and there is no counterfactual dependence of P upon any of A

or B, separately. However, according to the HP-model, both A and B are actual causes for

P . For instance, B counterfactually depends on A, in the contingency that A is 0. In other

words, the proposal approval counterfactually depends on Bob’s positive vote, under the

contingency that Alice had not been voted for the proposal. Notice that, this contingency

is in correspondence with the “intervention” of setting A to 0 in the model. �

When multiple causes over-determine an outcome (cf. Example 1.0.1(b)) it is natural

to consider a graded notion of causation on the basis of their responsibility. Building on

the HP-model, [Chockler & Halpern, 2004] proposed a formal account for causal respon-

sibility. Intuitively, causal responsibility is a numerical function of the minimum number

of changes (the interventions) in the model that make a factor a counterfactual cause. The

more changes needed, the less responsibility of the factor.

In computer science, most of the work on causality has been developed in the context

Owner
Cross-Out

Owner
Cross-Out
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of knowledge representation, but not much has been done about causality in data manage-

ment, where there is the need to represent, characterize and compute causes that explain

why certain query results are obtained or not, or why natural semantic conditions, such as

integrity constraints, are not satisfied. Causality can also be used to explain the contents of

a view, i.e. of a predicate with virtual contents that is defined in terms of other physical,

materialized relations (tables).

Furthermore, in a world of big, uncertain data, the need to understand data beyond

simple query answering, introducing explanations in different forms, to extract high-level

information from datasets, has become particularly relevant. Thus, a major research chal-

lenge in data management is the development of tools that assist users in explaining ob-

served data-related phenomena.

The study of causality in data management was explicitly started in [Meliou et al.,

2010c, Meliou et al., 2010b], and for query results in relational databases. There, the

HP-model is adopted and investigated. The definition of query-answer causality is shown

to be general enough to be applied to a broad class of database-related applications, e.g.

explaining unexpected query-answers, diagnosing network malfunctions, data cleaning,

hypothetical reasoning, and data provenance [Meliou et al., 2010c, Meliou et al., 2010b,

Meliou et al., 2011b, Meliou, et al., 2011c]. (Provenance of a query on a database is an

expression that describes how the answer was derived from the tuples in the database.) In

this work we start from this approach, concentrating on causality as defined for relational

databases.

1.1 Query-Answer Causality

When querying a database, a user may not always obtain the expected results, and the

system could provide some explanations. They could be useful to further understand the

data or check if the query is the intended one. The notion of causality-based explanation

for a query result was introduced in [Meliou et al., 2010c]. We will refer to this notion as

query-answer causality (or simply, QA-causality).

In this work we will consider only monotone queries. For them, the set of answers

(monotonically) grows with the database instance.

Intuitively, a database atom (or simply, a tuple) τ is an actual cause for an answer ā
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to a monotone query Q from a relational database instance D if there is a “contingent”

subset of tuples Γ, accompanying τ , such that, after removing Γ from D, removing τ from

D r Γ causes ā to switch from being an answer to being a non-answer (i.e., not being

an answer). In other words, τ is an actual cause for ā if there is an intervention (in the

form of tuple deletions) that makes τ pivotal for ā. Here “pivotal” means the query answer

counterfactually depends on τ .

Actual causes and contingent tuples are usually restricted to be among a pre-specified

set of endogenous tuples, which are admissible, possible candidates for causes, as opposed

to exogenous tuples. Actually, exogenous tuples provide the context or the background

theory for the problem, and are considered as external factors that are not of interest to the

current problem statement or beyond our control. Since no intervention is conceivable on

exogenous tuples, they can not be included in any contingency set or be an actual cause. In

other words, it is assumed that they are included in all conceivable hypothetical states of a

database.

The endogenous/exogenous partition is application-dependent and captures predeter-

mined factors, such as users’ preferences that may affect QA-causal analysis. For example,

certain tuples or full tables might be identified as irrelevant (or exogenous) in relation to

a particular query at hand (cf. Example 1.1.4) or decided to be exogenous or endogenous

a priori, independently from the query. In most of this work, we assume the latter case,

unless otherwise stated. Accordingly, the partition is always assumed to be one of the fixed

parameters of the QA-causality related problem under consideration.

A cause τ may have different associated contingency sets Γ. Intuitively, the smaller they

are the strongest is τ as a cause (it needs less company to undermine the query answer).

So, some causes may be stronger than others. This idea is formally captured through the

notion of causal responsibility, and introduced in [Meliou et al., 2010c]. It reflects the

relative degree of actual causation. According to this proposal, the responsibility of a

tuple τ for a query answer, ρ(τ), is defined as the numerical value 1
1+|Γ| , where Γ is a

minimum-cardinality contingency set associated to τ . In applications involving large data

sets, it is crucial to rank potential causes according to their responsibilities [Meliou et al.,

2010c, Meliou et al., 2010b].

Example 1.1.1 Consider an instance D with relations Author(AuName, JName) and
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Journal(JName,Topic,#Paper), and contents as below:

Author AuName JName

Joe TKDE

John TKDE

Tom TKDE

John TODS

Journal JName Topic #Paper

TKDE XML 30

TKDE CUBE 31

TODS XML 32

The conjunctive query:

Q(AuName,Topic) : ∃JName ∃#Paper(Author(AuName, JName) ∧ (1.1)

Journal(JName,Topic,#Paper))

has the following answers:

Q(D) AuName Topic

Joe XML

Joe CUBE

Tom XML

Tom CUBE

John XML

John CUBE

Assume 〈John,XML〉 is an unexpected an-

swer to Q. That is, it is not likely that John

has a paper on XML. Now, we want to com-

pute causes for this unexpected observation.

For the moment assume all tuples in D are

endogenous.

It holds that Author(John, TODS) is an actual cause for 〈John,XML〉. Actually, it has

two contingency sets, namely: Γ1 = {Author(John,TKDE )} and Γ2 = {Journal(TKDE ,

XML, 30 )}. That is, Author(John, TODS) is a counterfactual cause for 〈John,XML〉 in

both D r Γ1 and D r Γ2. Moreover, the responsibility of Author(John, TODS) is 1
2
, be-

cause its minimum-cardinality contingency sets have size 1.

Tuples Journal(TKDE, XML, 30), Author(John, TKDE) and Journal(TODS,

XML, 32) are also actual causes for 〈John,XML〉, with responsibility 1
2
.

For a more subtle situation, assume only Author tuples are endogenous, possibly re-

flecting the fact that the data in Journal table are more reliable than those in the Author

table. Under this assumption, the only actual causes for 〈John,XML〉 are Author(John,

TKDE) and Author(John, TODS). �

View-conditioned causality (vc-causality) was proposed in [Meliou et al., 2010b, Me-

liou, et al., 2011c] as a restricted form of QA-causality, to determine causes for unexpected
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query results, but conditioned to the correctness of prior knowledge about view extensions,

that do not have to be altered by interventions.

Example 1.1.2 (ex. 1.1.1 cont.) Consider again the answer 〈John,XML〉 to Q in

(1.1). Suppose this answer is unexpected and likely to be wrong, while all other answers

are known to be correct. In this case, it makes sense that, to determine the causes for

〈John,XML〉, only those contingency sets whose removal does not affect the correct an-

swers are admissible. In other words, the hypothetical states of the database D that do not

provide the correct answers (while eliminating 〈John,XML〉) are not considered. �

Apart from the explicit use of causality, most of the related research on explanations

for query results has concentrated on the notion of data provenance, which is also known

as lineage, or pedigree. Roughly speaking, the provenance of a query on a database is an

expression that describes how the answer was derived from the tuples in the database. See

[Buneman et al., 2001, Buneman & Tan, 2007, Cheney et al., 2009a, Cui et al., 2000, Kar-

vounarakis, 2010, Tannen, 2013] for more on provenance, and more recently, [Chapman &

Jagadish, 2009, Huang et al., 2008, Riddle et al., 2014, Glavic et al., 2015], for provenance

for “non-answers”, which is about tracing back, sometimes through the interplay of tuple

annotations, the reasons for not obtaining a possibly expected answer.

In the literature, different types of data provenance have been identified and investigated

(see [Glavic et al., 2007, Simmhan et al., 2005] for surveys, and also [Glavic & Miller,

2011]). In this work, we are interested in the minimal-witness-basis approach, or why-

provenance [Buneman et al., 2001].2 We will refer to this form of provenance as lineage.

Informally, the lineage of an answer ā to a monotone query Q from a relational database

instance D is defined as the set of all minimal-witnesses for ā; where a minimal-witness for

ā is a subset-minimal subinstance W ⊆ D, such that W |= Q(ā).

Example 1.1.3 (ex. 1.1.1 cont.) Consider again the answer 〈John,XML〉 to Q in

(1.1). This answer has the following minimal-witnesses: W1 = {Author(John,TKDE ),

Journal(TKDE ,XML, 30 )} and W2 = {Author(John,TODS ), Journal(TODS ,XML,

32 )}. Therefore, the lineage of this answer is {W1,W2}. �

2 This definition of why-provenance is closely related to PosBool semi-ring [Tannen, 2010] (see also
[Green, 2009]), which define provenance in terms of tuple annotations and a set of propagation rules for
them.
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A close connection between causality and lineage has been established in [Meliou

et al., 2010c]. Roughly speaking, both definitions refer to the same tuples if all tuples

in a database are endogenous. For illustration, in Example 1.1.1, the actual causes of

〈John,XML〉 coincide with the tuples in the union of W1 and W2, the minimal-witnesses

for this answer obtained in Example 1.1.3. However, causality is a more refined notion that

identifies causes for query results on the basis of user-defined criteria, and ranks causes

according to their responsibility [Meliou et al., 2010c]. That is, QA-causality can be seen

as an additional analytical step beyond the lineage of a query answer. This is particularly

relevant when the size of the lineage of a query answer (i.e. the cardinality of the minimal-

witness set) is large, and it becomes tedious and impractical to manually examine it [Meliou

et al., 2011b].

The following example is borrowed from [Meliou et al., 2010c], and shows the con-

tribution of QA-causality to lineage. (We reuse this example, because we will retake it in

Chapter 9, where its results will be compared with those provided by a new form of numer-

ical quantification of causal contribution of a tuple to a query answer that we introduce in

that chapter.)

Example 1.1.4 Timothy Walter (“Tim”) Burton is an American film director, film pro-

ducer, writer and animator. He is famous for fantasy, dark, quirky-themed movies. A

user wishes to learn more about Burton’s movies and queries IMDB to find out gen-

res of movies that he has directed. The IMDB (database) schema includes the follow-

ing predicates: Director(Did ,Firstname,Lastname), Movie(Mid ,Name,Year ,Rank),

Genre(Mid ,Genre), Movie Director(Did ,Mid).

The following conjunctive query asks for the genres of all movies directed by “Burton”

from the IMDB dataset:

Q(Genre) :: ∃ Did ∃Mid ∃Firstname ∃Name ∃Year ∃Rank

(Director(Did ,Firstname,Burton) ∧Movie Director(Did ,Mid ,Year ,Rank)

∧Movie(Mid ,Name) ∧Genre(Mid ,Genre)). (1.2)

The followings are some of the answers:
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Figure 1.1: Lineage of the answer Musical from the Director and Movie tables

Genre

...

Fantasy

History

Horror

Music

Musical

Mystery

Romance

...

Answers Fantasy and Horror are quite ex-

pected, but Music and Musical are surpris-

ing. So, the user wants to know the rea-

son for these latter answers. Examining the

lineage of a surprising answer would be the

first step towards finding reasons. How-

ever, in this case, the union of the lineages

of the answers Music and Musical contains 137 database tuples, which is rather large to

make sense of by the user.

QA-causality provides more informative explanations for surprising answers than raw

lineage information. This is done by imposing an exogenous/endogenus partition (to filter

out uninteresting elements of the lineage), and rank causes based on their causal responsi-

bility (to avoid less important tuples). We show this only for the answer Musical, which

has a smaller lineage than Music.

A reasonable partition in this setting is to consider tuples in the Directors and Movies

tables as endogenous, and the others as exogenous. This partition reflects the fact that the

user is only interested in movies and directors that contribute to the genre Musical.

The lineage of the answer Musical from Directors and Movies tables is depicted in

Figure 1.1. In this case, the lineage is represented as a collection of pairs of tuples from

the Director and Movie tables that, together with some exogenous tuples whose presence is

implicitly represented by the edges between the Movies and Director tuples in Figure 1.1),

provide minimal-witnesses for the answer.

The actual causes for the answer Musical ranked by their responsibility scores are as
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follows:

ρ Actual Causes for Musical

0.33 Movie(526338, “Sweeney Todd”, 2007)

0.33 Director(23456, David, Burton)

0.33 Director(23468, Humphrey, Burton)

0.25 Director(23488, Tim, Burton)

0.25 Movie(359516, “Lets Fall in Love”, 1933)

0.25 Movie(565577, “The Melody Lingers On”, 1935)

0.20 Movie(6539, “Candide”, 1989)

0.20 Movie(173629, “Flight”, 1999)

0.20 Movie(389987, “Manon Lescaut”, 1997)

In [Meliou et al., 2010c], the responsibility

scores are interpreted as follows:

(a) “Sweeney Todd” at the top of the list is

the only musical by Tim Burton. They ar-

gued that being this tuple at the top of the

list shows the power of causal responsibility

to explain the unexpected observation.

(b) The next three tuples in the list are for directors with last name “Burton”. Those tuples

are also interesting, because they indicate that the query may have been ambiguous.

(c) The tuples at the bottom of the list are for movies. They argued that since directors are

more interesting than movies to explain the query answer, causal responsibility correctly

ranked movies at the bottom. �

1.2 Causality, Model-Based Diagnosis and Database Repairs

Model-based diagnosis [Struss, 2008, sec. 10.3], an area of knowledge representation,

addresses the problem of, given the specification of a system in some logical formalism

and a usually unexpected observation about the system, obtaining explanations for the

observation, in the form of a diagnosis for the unintended behavior. Model-based diagnosis

comes in two forms: consistency-based [Reiter, 1987] and abductive diagnosis [Console

et al., 1991b, Eiter et al., 1995]. A comparison between these two approaches has been

provided in [Poole, 1989, Console et al., 1991b].

Under consistency-based diagnosis, a diagnosis is a set of abnormality assumptions

about the system components, such that the system specification and the observation are

consistent under these assumptions. On the other hand, an abductive diagnosis is a set of

assumptions that must be discovered so that together with the system specification entail

the observation.

In a different direction, a database instance, D, that is expected to satisfy certain in-

tegrity constraints may fail to do so.3 In this case, a repair of D is a database D′ that
3Integrity constraints are conditions that capture the semantics of data and are expected to be satisfied by
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does satisfy the integrity constraints and minimally departs from D. Different forms of

minimality can be applied and investigated. A consistent answer to a query from D and

with respect to the integrity constraints is a query answer that is obtained from all possible

repairs, i.e. is invariant or certain under the class of repairs. These notions were introduced

in [Arenas et al., 1999].

The three forms of reasoning we have seen so far, namely inferring causes from databases,

model-based diagnosis, and consistent query answering (and repairs) are all non-monotonic

[Salimi & Bertossi, 2014]. For example, a (most responsible) cause for a query result may

not be such anymore after the database is updated. Furthermore, they all reflect some sort

of uncertainty about the information at hand. In this work, we establish natural, precise,

useful, and deeper connections between these three reasoning tasks.

More precisely, we unveil a strong connection between computing causes and their

responsibilities for conjunctive query answers, on one hand, and computing repairs in

databases with respect to denial constraints, on the other. (Denial constraints are integrity

constraints that prohibit a particular kind of combination of database tuples (cf. Section

2.1).) These computational problems can be reduced to each other. In order to obtain

repairs with respect to a set of denial constraints from causes, we investigate causes for

queries that are unions of conjunctive queries, and develop algorithms to compute causes

and responsibilities.

We show that inferring and computing actual causes and their responsibilities in a

database setting become consistency-based diagnosis reasoning problems and tasks. Ac-

tually, a causality-based explanation for a conjunctive query answer can be viewed as a

consistency-based diagnosis, where in essence the first-order logical reconstruction of the

relational database provides the system description [Reiter, 1984], and the observation is

the query answer. We also establish a bidirectional connection between consistency-based

diagnosis and repairs. The connection with the latter is used to extend the complexity anal-

ysis of QA-causality started in [Meliou et al., 2010c], from conjunctive queries without

self-joins to unions of conjunctive queries.

As opposed to consistency-based diagnoses, which is usually practiced with specifica-

tions in first-order predicate logic, abductive diagnosis is commonly done with some sort of

a database in order to keep its correspondence with the outside reality it is being modeled (cf. Section 2.1).
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logic programming-based specifications [Denecker et al., 2002, Eiter et al., 1997, Gottlob

et al., 2010]. In particular, Datalog can be used as specification language, giving rise to

Datalog-abduction [Gottlob et al., 2010].

The definition of QA-causality applies to monotone queries [Meliou et al., 2010c, Me-

liou et al., 2010b]. However, all complexity and algorithmic results in [Meliou et al., 2010c]

have been restricted to conjunctive queries. Datalog queries [Ceri et al., 1989, Abiteboul

et al., 1995], which are also monotone, but may contain recursion, require investigation in

the context of QA-causality. In this work, we establish a relationship between Datalog-

abduction and QA-causality, which allows us to obtain complexity results for QA-causality

for Datalog queries.

1.3 Causality and Delete-Propagation

We also explore fruitful connections between QA-causality and the classical and impor-

tant view-update problem in databases [Abiteboul et al., 1995], which is about updating

a database through views. An important aspect of the problem is that one wants the base

relations (also called “the source database” in this context) to change in a minimal way

while still producing the intended view-updates. This is a problem of update propagation

of tuples, from views to base relations.

The delete-propagation problem [Buneman et al., 2002, Cong et al., 2006, Kimelfeld,

2012a, Kimelfeld, 2012b] is a particular case of the view-update problem where only tuple

deletions are allowed from the views. If the views are defined by monotone queries, only

source deletions can give an account of view deletions. When only a minimal set of dele-

tions (under set inclusion) from the base relations is expected to be performed, we are in the

“minimal-source-side-effect” case. The “minimum-source-side-effect” case appears when

that set is required to have a minimum-cardinality. In a different case, we may want to min-

imize the side-effects on the view, requiring that other tuples in the (virtual) view contents

are not deleted [Buneman et al., 2002] (the minimal-viw-side-effect deletion-problem).

In this research, we provide a precise connection between different variants of the

delete-propagation problem and QA-causality. In particular, we show that the minimal-

source-side-effect deletion-problem is related to the QA-causality problem. The minimum-

source-side-effect deletion-problem is related to the most-responsible cause problem (see
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[Salimi & Bertossi, 2015a]). The view-side-effect-free deletion-problem turns out to be

related to view-conditioned causality.

The connection between QA-causality, abductive diagnosis and the delete-propagation

problems allows us to adopt and adapt established results for the last two in the context of

QA-causality, obtaining some new complexity results for QA-causality.

1.4 QA-Causality and Reverse Data Management

A data transformation is a function from an input data source to an output data source

[Meliou et al., 2011a]. The natural evolution of data follows the directionality of the trans-

formations, i.e. from source to target. Most data management tasks fall under this forward

paradigm from a variety of perspectives: query processing, data integration, data mining,

clustering and indexing.

However, the focus of many reasoning tasks in database management, such as causality,

abduction, view-updates, mapping inversion in data exchange [Arenas et al., 2010, Fagin,

2007, Arenas et al., 2003b] , data provenance and database repairs, is to invert a data trans-

formation process, in order to reason diagnostically back about an observation. Problems

of this kind are classified in [Meliou et al., 2011a] as reverse data management problems.

The results obtained in this research, and reported in [Bertossi & Salimi, 2014, Salimi

& Bertossi, 2014, Salimi & Bertossi, 2015a, Salimi & Bertossi, 2015b, Salimi & Bertossi,

2015c], show that causal reasoning is a central activity in reverse data management prob-

lems. In fact, causality can provide a unifying foundation for reverse data engineering

process. Having a unifying foundation for these problems opens the playground to adopt

(and possibly adapt) the established results from one area to the others. It also opens up

the possibility of lifting the established concepts and results from causality to reverse data

management.

We should mention that many of these mutually related problems have been treated

differently in the literature, and similar results have been reproduced. For instance, as we

show in this work, causal responsibility as in [Meliou et al., 2010b], minimal-source-side-

effect deletion-problem [Buneman et al., 2002], cardinality-based repairs [Lopatenko &

Bertossi, 2007], consistency-based diagnoses from theories expressed in terms of disjunc-

tive positive rules (cf. Section 5.5.3) are very similar problems. Intuitively, in all of them
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the aim is to make the minimal/minimum changes on the input so that the output enjoys a

particular property. In other words, they are sorts of how-to analysis in the causal reasoning

terms.

1.5 Degree of Causal Contribution

The notion of causal responsibility in [Meliou et al., 2010c] intends to provide a metric to

quantify the causal contribution of a tuple to a query answer. This is a numerical degree of

causality, and responsibility-based ranking of causes that is considered as one of the most

important contributions of HP-causality to data management [Meliou et al., 2010c, Meliou

et al., 2011b].

The basic idea behind causal responsibility is that the smaller the number of tuples are

deleted from the database to make a tuple τ a counterfactual cause, the more responsible τ

is for the query answer.

A close connection between causal responsibility and other notions in databases, e.g.

minimal-source-side-effect deletion-problem and cardinality-based repairs, is unveiled in

this work (see [Salimi & Bertossi, 2015a, Salimi & Bertossi, 2015b, Cibele et al., 2016]).

The underlying reason for these connections is that these notions are all motivated by the

need to perform a minimum number of changes in the database so that the new state of

the database has a desired property. Therefore, causal responsibility is indeed an important

notion that can capture and unify several problems in data management.

However, in Chapter 9, we argue in technical terms that causal responsibility as intro-

duced in [Meliou et al., 2010c] may only partially fulfil the original intention of plausibly

ranking tuples in terms of causal contribution to an answer. We illustrate the point with an

informal example.

Example 1.5.1 (ex. 1.1.4 cont.) It turns out that query Q in (1.2) is ambiguous with

respect to the user intention. This is because it is a query about “Burton” rather than “Tim

Burton”. Looking at the lineage of the answer Musical (cf. Figure 1.1), we observe that

“Humphrey Burton” (as represented in the corresponding tuple in the Director relation)

contributes more to the genre “Musical” (the query answer) than “David Burton” and “Tim

Burton”. This is because he has more movies in that category than the others. In other



14

words, among them, “Humphrey Burton” is contained in more minimal-witnesses for the

answer Musical. Accordingly, we expect a plausible ranking of tuples in terms of their

degree of causal contribution to place “Humphrey Burton” at the top.

However, we already obtained that the three directors (or their tuples) have the same

causal responsibility for the query answer; and they all require the same minimum number

of changes on the database to become a counterfactual cause for the answer. �

The issue is that, in addition to the “minimum number of changes” required to make

a tuple τ a counterfactual cause, there are other factors that have to be taken into account.

In this work, specifically in Chapter 9, we define and investigate an intuitive metric, called

“degree of causal contribution”, that also takes into account factors such as number of

minimal-witnesses (of an answer) that τ is contained in. We also show that this new notion

enjoys interesting properties. In particular, it does rank “Humphrey Burton” higher than

the other two directors.



Chapter 2

Background

2.1 Preliminaries

We consider relational database schemas of the form S = (U,P), where U is the possibly

infinite database domain of constants and P is a finite set of database predicates1 of fixed

arities. A database instance D compatible with S can be seen as a finite set of ground

atomic formulas (in databases aka. atoms or tuples), of the form P (c1, ..., cn), where P ∈ P
has arity n, and c1, . . . , cn ∈ U . The active domain of an instance D, Adom(D), is the set

of constants from U that appear in D.

A conjunctive query (CQ) is a formula Q(x̄) of the first-order (FO) logic language,

L(S), associated to S of the form ∃ȳ(P1(s̄1)∧ · · · ∧Pm(s̄m)), where the Pi(s̄i) are atomic

formulas, i.e. Pi ∈ P , and the s̄i are sequences of terms, i.e. variables or constants. The

x̄ in Q(x̄) shows all the free variables in the formula, i.e. those not appearing in ȳ. If x̄ is

non-empty, the query is open. If x̄ is empty, the query is boolean (a BCQ), i.e. the query is

a sentence, in which case, it is true or false in a database, denoted by D |= Q and D 6|= Q,

respectively. A sequence c̄ of constants is an answer to an open query Q(x̄) if D |= Q[c̄],

i.e. the query becomes true in D when the variables are replaced by the corresponding

constants in c̄. We denote the set of all answers to an open conjunctive query Q(x̄) with

Q(D).

A query Q is monotone if for every two instances D1 ⊆ D2, Q(D1) ⊆ Q(D2), i.e. the

set of answers grows monotonically with the instance. For example, CQs and unions of CQ

( UCQs) are monotone queries. Datalog queries [Ceri et al., 1989, Abiteboul et al., 1995],

although not FO, are also monotone (cf. Section 2.2.1 for more details). In this work we

consider only monotone queries.

An integrity constraint is a sentence of language L(S), and then, may be true or false

1As opposed to built-in predicates (e.g. 6=) that we assume do not appear, unless explicitly stated other-
wise.

15
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in an instance for schema S. Given a set IC of integrity constraints, a database instance D

is consistent if D |= IC ; otherwise it is said to be inconsistent. In this work we assume that

sets of integrity constraints are always finite and logically consistent.

A particular class of integrity constraints is formed by denial constraints (DCs), which

are sentences κ of the form: ∀x̄¬(A1(x̄1) ∧ · · · ∧ An(x̄n), where x̄ =
⋃
x̄i and each

Ai(x̄i) is a database atom, i.e. predicate A ∈ P. (The atoms may contain constants.)

Denial constraints are exactly the negations of BCQs. Sometimes we use the common

representation of DCs as “negative rules” of the form: ← A1(x̄1), · · · , An(x̄n).

Another class of ICs is formed by inclusion dependencies ( INDs), which are sentences

of the form ∀x̄(Pi(x̄) → ∃ȳPj(x̄′, ȳ)), with x̄′ ∩ ȳ = ∅, x̄′ ⊆ x̄. Another special class

of ICs is formed by functional dependencies (FDs). For example, ψ : ∀x∀y∀z(P (x, y) ∧
P (x, z) → y = z) specifies that the second attribute of P functionally depends upon

the first. (If A,B are the first and second attributes for P , usual notation for this FD is

ψ : A → B.) Actually, this FD is also a key dependency (KD), in the sense that the

combination of the attributes on the LHS of the arrow functionally determines all the other

attributes of the predicate.

2.2 QA-Causality and its Decision Problems

In this section we review the notion of QA-causality as introduced in [Meliou et al., 2010c].

We also summarize the main decision and computational problems that emerge in this

context and the established results for them.

2.2.1 Causality and responsibility

In the rest of this work, unless otherwise stated, we assume that a relational database in-

stance D is split in two disjoint sets, D = Dn ∪ Dx, where Dn and Dx are the sets of

endogenous and exogenous tuples, respectively.

A tuple τ ∈ Dn is a counterfactual cause for an answer ā to Q(x̄) in D if D |= Q(ā),

butDr{τ} 6|= Q(ā). A tuple τ ∈ Dn is an actual cause for ā if there exists Γ ⊆ Dn, called

a contingency set, such that τ is a counterfactual cause for ā in D r Γ. Causes(D,Q(ā))

denotes the set of actual causes for ā. If Q is boolean, Causes(D,Q) contains the causes

for answer yes .
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Notice that Causes(D,Q(ā)) is non-empty when D |= Q(ā), but Dx 6|= Q(ā), reflect-

ing the fact that endogenous tuples are required for the answer.

Given a τ ∈ Causes(D,Q(ā)), we collect all subset-minimal contingency sets associ-

ated with τ :

Cont(D,Q(ā), τ) := {Γ ⊆ Dn | D r Γ |= Q(ā), D r (Γ ∪ {τ}) 6|= Q(ā), and

∀Γ′ $ Γ, D r (Γ′ ∪ {τ}) |= Q(ā)}.

The causal responsibility of a tuple τ for answer ā, denoted ρQ(ā)
(τ), is 1

(|Γ|+1)
, where |Γ|

is the size of the smallest contingency set for τ . When τ is not an actual cause for ā, no

contingency set is associated to τ . In this case, ρQ(ā)
(τ) is defined as 0.

Example 2.2.1 ConsiderD = Dn = {R(a4, a3), R(a2, a1), R(a3, a3), S(a4), S(a2), S(a3)},
and the query Q : ∃x∃y(S(x) ∧R(x, y) ∧ S(y)). It holds: D |= Q.

Tuple S(a3) is a counterfactual cause for Q. If S(a3) is removed from D, Q is not true

anymore. Therefore, the responsibility of S(a3) is 1. Besides, R(a4, a3) is an actual cause

forQ with contingency set {R(a3, a3)}. If R(a3, a3) is removed from D,Q is still true, but

further removing R(a4, a3) makesQ false. The responsibility of R(a4, a3) is 1
2
, because its

smallest contingency sets have size 1. Likewise, R(a3, a3) and S(a4) are actual causes for

Q with responsibility 1
2
.

For the same Q, but with D = {S(a3), S(a4), R(a4, a3)}, and the partition Dn =

{S(a4), S(a3)} and Dx = {R(a4, a3)}, it turns out that both S(a3) and S(a4) are counter-

factual causes for Q. �

In [Meliou et al., 2010c], causality for non-query answers is defined on the basis of

sets of potentially missing tuples that account for the missing answer. Causality for non-

answers becomes a variation of causality for answers. In this work we do not consider

non-query answers.

We will concentrate mostly on CQs without built-ins. However, the definitions of actual

cause and contingency set can be applied without a change to monotone queries in general

[Meliou et al., 2010c], in particular to unions of BCQs (UBCQs), with or without built-ins,

and Datalog queries, possibly with recursion.

A Datalog query Q(x̄) is a whole program Π consisting of Horn rules that accesses an

underlying extensional database D. We may assume that Π defines an answer-collecting
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Figure 2.1: Graph G associated to the instance D in Example 2.2.2

predicate Ans(x̄) by means of a top rule of the form Ans(x̄) ← P1(s̄1), . . . , Pm(s̄m) (i.e.,

all the predicates in the RHS are defined by other rules in Π or are database predicates for

D). Here, the s̄i are lists of variables or constants, and x̄ ⊆
⋃
i s̄1.

Now, ā is an answer to query Π on D when Π ∪ D |= Ans(ā). Here, entailment

(|=) means that the RHS belongs to the minimal model of the LHS. So, the extension,

Ans(Π ∪D), of predicate Ans in the minimal model of the program contains the answers

to the query. The Datalog query is boolean if the top answer-predicate is propositional,

with a definition of the form ans ← P1(s̄1), . . . , Pm(s̄m). In this case, the query is true if

Π ∪ D |= ans , equivalently, if ans belongs to the minimal model of Π ∪ D [Ceri et al.,

1989, Abiteboul et al., 1995].

CQs can be expressed as Datalog queries. For example, (1.1) can be expressed in

Datalog as:

AnsQ(AuName,Topic)←Author(AuName, Jname), Journal(JName,Topic,#Paper).

The definition of QA-causality can be applied without any conceptual changes to Dat-

alog queries. In the case of Datalog, we sometimes use the notation Causes(D,Π(ā)) or

Causes(D,Π), depending on whether Π is boolean.

Example 2.2.2 Consider the instance D with a single binary relation E as below (t1-t7 are

tuple identifiers). Assume all tuples are endogenous.

Instance D can be represented as the directed graph G(V , E) in Figure 2.1, where V
coincides with the active domain of D (i.e., the set of constants in E), and E contains an

edge (v1, v2) iff E(v1, v2) ∈ D. The tuple identifiers are used as labels for the correspond-

ing edges in the graph. For simplicity, we will refer to the database tuples through their

Owner
Sticky Note
query (1.1)

Owner
Highlight
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identifiers.

E A B

t1 a b

t2 b e

t3 e d

t4 d b

t5 c a

t6 c b

t7 c d

Consider the Datalog query Π:

Ans(x, y) ← P (x, y)

P (x, y) ← E(x, y)

P (x, y) ← P (x, z), E(z, y),

which collects pairs of vertices of G that are

connected through a path.

It is easy to see that, 〈c, e〉 is an answer to query Π on D. That is, Π ∪D |= Ans(c, e).

This is because there are three distinct paths between c and e in G. All tuples except

for t3 are actual causes for this answer i.e., Causes(E,Π(c, e)) = {t1, t2, t4, t5, t6, t7}.
Intuitively, this is because all of these tuples contribute to at least one path between c and

e. Among them, t2 has the highest responsibility. Because, t2 is a counterfactual cause for

this answer. �

There are three main computational problems in database causality. For a boolean

monotone query Q and database D:

(a) The causality problem (CP) is about computing the actual causes for Q.

(b) The responsibility problem (RP) is about computing the responsibility, ρ
D
(τ), of a

given actual cause τ .

Since a tuple that is not an actual cause has responsibility 0, this problem subsumes

(a).

(c) Computing the most responsible actual causes (MRC).

These problems have corresponding decision versions. The complexity of these decision

problems have been investigated in [Meliou et al., 2010c, Cibele et al., 2016]. Here we

recall those results that we will use throughout this work. The first is the causality problem,

about deciding whether a tuple is an actual cause for a query answer.
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Definition 2.2.1 For a boolean monotone query Q, the causality decision problem (CDP)

is (deciding about membership of):

CDP(Q) := {(D, τ) | τ ∈ Dn, and τ ∈ Causes(D,Q)}. �

This problem is tractable for CQs [Meliou et al., 2010c]. In this work we extend the

complexity analysis to UCQs and Datalog queries.

The next is the responsibility problem, about deciding responsibility of a tuple for a

query answer being above a given threshold.

Definition 2.2.2 For a boolean monotone query Q, the responsibility decision problem

(RDP) is (deciding about membership of):

RDP(Q) = {(D, τ, v) | τ ∈ Dn, v ∈ {0} ∪
{ 1
k
| k ∈ N+}, D |= Q and ρQ(τ) > v}. �

This problem is NP-hard for CQs without self-joins [Meliou et al., 2010c], but tractable

for linear CQs [Meliou et al., 2010c]. Roughly speaking, a CQ is linear if its atoms can be

ordered in a way that every variable appears in a continuous sequence of atoms that does

not contain a self-join (i.e., a join involving the same predicate), e.g. ∃x∃v∃y∃u (A(x) ∧
S1(x, v)∧ S2(v, y)∧R(y, u)∧ S3(y, z)) is linear, but not ∃x∃y∃z (A(x)∧B(y)∧C(z)∧
W (x, y, z)), for which RDP is NP-complete.2

In [Meliou et al., 2010c], the class of CQs for which RDP is tractable is extended to

weakly linear queries. However, a glitch in proving the tractability result for weakly linear

queries has been identified in [Cibele et al., 2016]. In particular, they found that [Meliou

et al., 2010c] classifies certain hard queries into tractable cases due to errors in some of

the proofs. In addition, they provide a refined characterization of the classes of queries for

which, deciding responsibility is tractable, on the basis of a structural property of a query

which goes beyond that of linearity.

In this work, we extend the complexity analysis for RDP to CQs (possibly with self-

joins), UCQs, Datalog queries. In addition, we study the complexity of the functional,

non-decision version of RDP, which is an optimization problem about computing respon-

sibilities.
2Computing sizes of minimum contingency sets is reduced to the max-flow/min-cut problem in a network

[Meliou et al., 2010c].
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We will also define and investigate the decision version of MRC, MRCDP, the most

responsible cause decision problem. This is a natural problem, because actual causes with

the highest responsibility tend to provide most interesting explanations for query answers

[Meliou et al., 2010c, Meliou et al., 2010b].

Definition 2.2.3 For a BCQ Q, the most responsible cause decision problem is (member-

ship of):

MRCDP(Q) = {(D, τ) | τ ∈ Dn and 0 < ρ
D
(τ) is a maximum forD}. �

2.2.2 View-conditioned causality

QA-causality is defined for a fixed queryQ and a fixed answer ā. However, in practice one

often has multiple queries and/or multiple answers. For a query with several answers one

might interested in causes for a a fixed answer, conditioning to the assumed correctness

of the other answers to the query. This form of conditional causality was suggested in

[Meliou et al., 2010b]. The notion was made precise in [Meliou, et al., 2011c], in a more

general, non-relational setting, to give an account of the effect of a tuple on multiple outputs

(views). Here we adapt this notion of view-conditioned causality to the case of a single

query, with possibly several answers. We illustrate the usefulness of this notion with a

couple of examples.

Example 2.2.3 Consider relations GroupUser(User ,Group) and GroupFile(File,

Group), representing users’ memberships of groups and access permissions for groups to

files, respectively. A user u can access the file f if u belongs to a group that can access f ,

i.e. there is some Group such that GroupUser(User ,Group) and GroupFile(File,Group).

The following Datalog query collects users and the files they can access:

Access(User ,File) ← GroupUser(User ,Group),GroupFile(File,Group). (2.1)

Suppose we observe that a particular file is accessible by an unauthorized user (an unex-

pected answer to the query), while all other users’ accesses are authorized (i.e., the rest of

the answers to the query are deemed to be correct). We want to find out the causes for this

unexpected observation. For this task, contingency sets whose removal do not return the

correct answers anymore should not be considered.
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This example, originally presented in [Cui et al., 2001] and later used in [Buneman et

al., 2002, Kimelfeld, 2012b, Kimelfeld, 2012a], is borrowed from the area of view-updates.

We use it here to point to the similarities between the seemingly different problems of view-

updates and causality. We elaborate on this in Chapter 8. �

Consider an instanceD = Dn∪Dx, and a monotone queryQwithQ(D) = {ā1, . . . , ān}.
Fix an answer, say ā1 ∈ Q(D), while the other answers will be used as a condition on ā1’s

causality. Intuitively, ā1 is somehow unexpected, we look for causes, but considering the

other answers as “correct”. The latter assumption has, in technical terms, the effect of re-

ducing the spectrum of contingency sets, by keeping Q(D)’s extension fixed, as a view,

modulo the answer ā1 at hand.

Definition 2.2.4 Assume Q(x̄) is a monotone query, and Q(D) = {ā1, . . . , ān}.

(a) A tuple τ ∈ Dn is called a view-conditioned counterfactual cause (vcc-cause) for

answer ā1 to Q if D r {τ} 6|= Q(ā1), but D r {τ} |= Q(āi), for i ∈ {2, . . . , n}.

(b) A tuple τ ∈ Dn is a view-conditioned actual cause (vc-cause) for ā1 if there exists a

contingency set, Γ ⊆ Dn, such τ is a vcc-cause for ā1 in D r Γ.

(c) vc-Causes(D,Q(ā1)) denotes the set of all vc-causes for ā1.

(d) The vc-causal responsibility of a tuple τ for answer ā1, denoted vc-ρQ(ā1)
(τ), is 1

(|Γ|+1)
,

where |Γ| is the size of the smallest contingency set that makes τ a vc-cause for ā1. �

Notice that Definition 2.2.4 could be generalized by considering that several answers are

unexpected and the others are correct. This kind of partition can only affect the admissible

contingency sets.

Clearly, vc-causes for an answer ā to a query are also actual causes for the same query,

but not necessarily the other way around: vc-Causes(D,Q(ā)) ⊆ Causes(D,Q(ā)). No-

tice that the causal responsibility and the vc-causal responsibility of a tuple as a cause,

resp. vc-cause, for a query answer may take different values.

Example 2.2.4 (ex. 2.2.3 cont.) The answer 〈John,XML〉 does not have any vc-cause.

In fact, consider for example the tuple Author(John, TODS) that is an actual cause for

〈John,XML〉, with two contingency sets, Γ1 and Γ2. It is easy to verify that none of
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these contingency sets satisfies the condition in Definition 2.2.4, e.g. the original answer

〈John,CUBE 〉 is not preserved in DrΓ1. The same argument can be applied to all actual

causes for 〈John,XML〉. �

Example 2.2.5 (ex. 2.2.3 cont.) Consider the instance D with relations GroupUser and

GroupFiles , and contents as below:

GroupUser User Group

Joe g1

Joe g2

John g1

Tom g2

Tom g3

John g3

GroupFiles File Group

f1 g1

f1 g3

f2 g2

f3 g3

The query Access in (2.1) has the following answers:

Access(D) User File

Joe f1

Joe f2

Tom f1

Tom f2

Tom f3

John f1

John f3

Suppose the access of Joe to the file, f1 (cor-

responding to the query answer 〈Joe, f1〉) is

deemed to be unauthorized, while all other

users accesses are authorized i.e., the rest an-

swers to the query are correct. So that we are

interested in causes for this observation.

It can be verified that GroupUser(Joe, g1) is the only vcc-cause for this answer. �

The notions of vc-causality and vc-responsibility have corresponding decisions prob-

lems, which can be defined in terms similar to those for plain causality and responsibility.

Definition 2.2.5 (a) The vc-causality decision problem (VCDP) is about membership of

VCDP(Q) = {(D, ā, τ) | ā ∈ Q(D) and τ ∈ vc-Causes(D,Q(ā)) }.

(b) The vc-causal responsibility decision problem (VRDP) is about membership of
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VRDP(Q) = {(D, ā, τ, v) | τ ∈ Dn, v ∈ {0} ∪ { 1
k
| k ∈ N+}, D |= Q(ā) and

vc-ρQ(τ) > v}. �

As Example 2.2.4 shows, sometimes there are no vc-causes. For this reason it makes

sense to study the complexity of deciding whether a query answer has a vc-cause or not.

This is a relevant problem. For illustration, consider the query Access in Example 2.2.3.

The existence of a vc-cause for an unexpected answer (unauthenticated access) to this

query, tells us that it is possible to revoke the unauthenticated access without restricting

other users’ access permissions.

Definition 2.2.6 For a monotone query Q, the vc-cause existence problem (VCEP) is (de-

ciding about membership of):

VCEP(Q) = {(D, ā) | ā ∈ Q(D) and vc-Causes(D,Q(ā)) 6= ∅ }. �

2.3 Complexity Classes

We recall some complexity classes [Papadimitriou, 1994] used in this work. FP is the

class of functional problems associated to decision problem in the class PTIME, i.e. that

are solvable in polynomial time. PNP (or ∆P
2 ) is the class of decision problems solvable

in polynomial time by a machine that makes calls to an NP oracle. For PNP(log(n)) the

number of calls is logarithmic. It is not known if PNP(log(n)) is strictly contained in PNP.

FPNP(log(n)) is similarly defined.



Chapter 3

State of the Art

This research is mainly related to, and unifies ideas from work on causality, degree of

causal responsibility, query result explanations, data provenance.

3.1 Causality

Causality is an active research area mainly in philosophy, law and logic with its own dedi-

cated workshops.1 The idea of analyzing causation in terms of counterfactual dependencies

can be traced back to Hume (1739),2. An event B counterfactually depends on event A,

if A and B both hold, and had A not happened then B would not have happened. The

best-known counterfactual theory of causation in modern times is due to [Lewis, 1972].

[Halpern & Pearl, 2005] presents an structural model approach to actual causality, which

relies upon a graph structure called a causal model.

The study of causality in data management was explicitly started in [Meliou et al.,

2010a, Meliou et al., 2010c, Meliou et al., 2010b], and for query results in relational

databases. There, the HP-model is adopted and investigated. This definition is built upon

the HP-model, but simplifies it and does not require a causal model. A general overview

of causality in a database context is given in [Meliou et al., 2010b]. The definition of

query-answer causality is shown to be general enough to be applied to a broad class of

database-related applications, e.g. explaining unexpected query-answers, diagnosing net-

work malfunctions, data cleaning, hypothetical reasoning and data provenance [Meliou et

al., 2010c, Meliou et al., 2010b, Meliou et al., 2011b, Meliou, et al., 2011c]. In this work

we start from this approach, concentrating on causality as defined for relational databases.

1E.g. UAI Workshop in Advances in Causal Inference. Amsterdam, Netherlands, 2015.
http://www.homepages.ucl.ac.uk/ ucgtrbd//uai2015 causal/

2David Hume (1711-1776) was a Scottish philosopher known for applying empirical standards to notions
of causation and necessity.http://www.iep.utm.edu/hume-cau/
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A comprehensive complexity analysis for computing and deciding causality and re-

sponsibility for CQs is given in [Meliou et al., 2010c, Lopatenko & Bertossi, 2007, Cibele

et al., 2016]. They show that for this class of queries, causality can be computed in poly-

nomial time in the size of a database.

For the problem of deciding whether the responsibility of a tuple is greater than a thresh-

old, a dichotomy within CQs queries without self-joins was provided in [Meliou et al.,

2010c], where the authors showed that this problem is NP-hard for CQs without self-joins,

but tractable for weakly linear CQs (see Section 2.2.1). However, an error in the proof of

this dichotomy theorem has been identified in [Cibele et al., 2016]. The authors provide a

refined version of the dichotomy, on the basis of a structural property of a query that goes

beyond that of linearity.

View-conditioned causality, introduced in [Meliou, et al., 2011c], extends the notion of

causality to give an account of the effect of a tuple on multiple outputs (views). The authors

also describe a reduction from the computation of vc-causes and their responsibilities to

SAT, which enables the use of SAT-solvers to compute causal contributions.

3.2 Causal Responsibility

The notion of causal responsibility in [Meliou et al., 2010c] intends to provide a metric

to quantify the causal contribution, as a numerical degree, of a tuple to a query answer.

This responsibility-based ranking is considered as one of the most important contributions

of HP-causality to data management [Meliou, et al., 2011c]. Causal responsibility can be

traced back to [Chockler & Halpern, 2004], where it is suggested that, for variables A and

B, the degree of responsibility of A for B should be 1
(N+1)

, and N is the minimum number

of changes that have to be made to obtain a situation where B counterfactually depends

directly on A.

In [Gerstenberg et al., 2010], it has been argued that people use something similar to the

intuition behind the notion of degree of responsibility (in the sense of [Chockler & Halpern,

2004]) to ascribe responsibility. However, more recently it has been discussed that people

take into account not only the number of changes required to makeA a counterfactual cause

for B, but also the number of ways to reach a situation where B counterfactually depends

on A [Zultan et al., 2013].

Owner
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In [Halpern, 2015b], it has been argued that, while causal responsibility (in the sense of

[Chockler & Halpern, 2004]) could capture some reasonable intuitions, alternative defini-

tions might be more appropriate in some applications.

Perhaps not surprisingly, causal responsibility has been subject to a great deal of re-

search in the law literature [Wright, 1988, Wright, 2001, Hart & Honore, 1959, Moore,

1999, Feinberg, 1968, Braham & Van Hee, 2009]. However, in none of these works the

concept given any numerical qualification, except for that of [Braham & Van Hee, 2009].

They introduced the notion of “degree of causality”, on the basis of the concept of Nec-

essary Element of a Sufficient Set (NESS) test. Roughly speaking, A is a cause for B

according to the NESS test if there exists a set S of events, each of which actually oc-

curred, S is sufficient for B, and A is necessary for the sufficiency of S [Wright, 1985]. In

[Halpern, 2008] it has been shown that in many applications, both the NESS test and the

HP-model are equivalent (in the sense that they yield same causes). In fact, the authors ar-

gue that in order to define a degree of causation, one should focus on the relative frequency

with which an action satisfies the NESS test.

In [Braham & Van Hee, 2009], it has been argued that the notion of responsibility as

defined in [Chockler & Halpern, 2004] does not determine the share of an action in bringing

about an outcome, but only “the extent to which there are other causes”. However, no clear

distinction between the two approaches has been established.

3.3 Data Provenance

Data provenance aims to explain how a particular result (in an experiment, simulation,

query, workflow, etc.) was derived. The provenance of a query on a database is an expres-

sion that describes how the answer was derived from the tuples in the database.

Apart from the explicit use of causality, most of the related research on explanations

for query results has concentrated on data provenance [Buneman et al., 2001, Buneman

& Tan, 2007, Cheney et al., 2009a, Cui et al., 2000, Karvounarakis, 2010, Tannen, 2013].

Causality has been discussed in relation to data provenance [Meliou et al., 2010c, Meliou et

al., 2011b] and even workflow provenance [Cheney, 2010]. Specifically, a close connection
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between QA-causality and why-provenance (in the sense of [Buneman et al., 2001]) has

been established in [Meliou et al., 2010c]. Roughly speaking, both definitions concern the

same tuples if all tuples in a database are endogenous. However, causality is a more refined

notion that can provide reasons and explanations for wrong or surprising results, by ranking

provenance based on the notion of responsibility [Meliou et al., 2011b].

More specifically, causal responsibly provides a natural way to extract interesting parts

from the provenance. This will be done by discovering causes within the endogenous

tuples, and ranking those causes based on the their responsibility.

In [Meliou et al., 2010c], causal responsibility has been applied to lineage of a query

answer to provide explanation in terms of highest responsible causes. In [Meliou et al.,

2011b], and more recently in [Bergman et al., 2015], responsibility has been evaluated in

the context of error tracing and post-factum cleaning. Causal responsibility also has been

suggested in the context of data mining provenance in [Glavic et al., 2013]. In particular,

they suggest responsibility in clustering algorithms, as a metric to quantify the influence of

an input tuple to a particular cluster in the output. The authors argue that ranking the input

tuples in terms of their responsibility aid to asses the quality of the clusters.

3.4 Explanation in Databases

3.4.1 Query-answers

In QA-causality, the goal is to compute actual causes for a query result and rank them

according to their causal responsibility. However, in the world of big data, the contribution

of an individual tuple to a query result might be very little. Therefore, broader explanations

might be more appealing, e.g. explanations given in terms of predicates [Roy & Suciu,

2014] (see [Meliou et al., 2014] for a recent survey).

The current trend in explanations in databases aims to provide answers to complex

questions on query outputs, typically for aggregate queries. Here, the explanations are

formulated as predicates on the input attributes. Roughly speaking, a predicate X is an

explanation of one or more outputs Y , if removal of tuples satisfying predicate X also

changes Y . That is, similar to QA-causality, explanations are established through innerva-

tions. These explanations are further ranked according to a score that measures how much
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they affect the outputs [Wu & Madden, 2013, Roy & Suciu, 2014].

Following this approach, in [Wu & Madden, 2013], the Scorpion system is proposed

which, finds predicates on the input data as explanations for a labeled set of outlier points

in an aggregate query over a single relation. In [Roy & Suciu, 2014], a formal framework is

proposed for finding explanations to complex SQL queries over database schemas involving

multiple relations and foreign key constraints.

Several research projects in databases have aimed at explaining query answers focus-

ing on interesting applications. For instance, [Khoussainova, 2012] proposed the system

PerfXplain, which intends to enable users to ask comparative performance-related ques-

tions about either pairs of MapReduce jobs or pairs of MapReduce tasks. The problem of

“meaningful rating interpretation (MRI)”, in the context of collaborative rating sites, has

been introduced and investigated in [Das et al., 2011]. In this direction, they develop meth-

ods for aggregating user ratings and tags and extracting meaningful demographics patterns

such as “Teenage girls consistently like Woody Allen Movies”. Finally, the problem of

computing top-k influential variables and top-k explanations in probabilistic databases was

studied in [Kanagal et al., 2011]. This study intends to answer questions such as “why is

the probability of an output tuple greater than another one?”.

We should mention that explanations also has been investigated in the context of de-

scription logic (in particular, DL-lite) in [Calvanese et al., 2013, Borgida et al., 2008].

3.4.2 Missing query-answers

The problem of explaining missing query answers (also known as why-not provenance)

intends to address the following question: why is a certain tuple not in the result set? This

problem has been received substantial attention lately e.g., [Huang et al., 2008, Herschel et

al., 2009, Chapman & Jagadish, 2009, Tran & Chan, 2010, Kohler et al., 2013, Riddle et

al., 2014, Glavic et al., 2015, ten Cate et al., 2015].

In [Huang et al., 2008, Herschel et al., 2009], a form of provenance for potential an-

swers has been presented, on the basis of tuple insertions or modifications that would yield

the missing tuples. Alternatively, [Chapman & Jagadish, 2009] focus on the operator in the

query plan that eliminated a specific tuple, and [Tran & Chan, 2010] suggests an approach

to automatically generate a modified query whose result includes both the original query’s
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results as well as the missing tuple.

In [Meliou et al., 2010c], causality for non-query answers is defined on the basis of sets

of potentially missing tuples that account for the missing answer. This study was the first

to highlight the symmetry between why and why-not provenance. More recently, [Kohler

et al., 2013] proposed a provenance games as a novel approach to unify why and why-not

provenance. The underlying idea is to view a query evaluation as a game between two

players who argue, whether for a given database D and a query Q, a tuple τ is in Q(D)

or not. Actually, the provenance game as developed in [Kohler et al., 2013] is domain

dependant. Constraint provenance games introduced in [Riddle et al., 2014] as a domain

independent extension of the provenance game.

In another direction, ontologies have been used to provide high-level explanations for

query results in [ten Cate et al., 2015, Glavic et al., 2015]. The idea is to summarize the

successful or failed derivation of a query result by using ontology languages.



Chapter 4

Thesis Contributions

4.1 Contributions

This thesis make the following specific contributions:

1. For a boolean conjunctive query and its associated denial constraint (the former being

the violation view of the latter), we establish a precise connections (in term of mutual

characterizations and computational reductions) between actual causes for the query (be-

ing true) and the subset- and cardinality-repairs of the instance with respect to the denial

constraint. We obtain causes from repairs.

2. As in the setting in 1., we obtain database repairs from causes. For this, we extend

the treatment of causality to unions of conjunctive queries, to represent multiple denial

constraints. We characterize an actual cause’s responsibility in terms of cardinality-repairs.

We provide algorithms to compute causes and their (minimal) contingency sets for unions

of conjunctive queries. The causes can be computed in PTIME.

3. We establish a precise connection between consistency-based diagnosis for a boolean

conjunctive query being unexpectedly true according to a system description, and causes

for the query being true. In particular, we show how to compute actual causes, their

contingency sets, and responsibilities using the diagnosis characterization. Hitting-set-

based algorithmic approaches to diagnosis inspire our algorithmic/complexity approaches

to causality. We also establish a bidirectional connection between consistency-based diag-

nosis and database repairs.

4. We reformulate the causality problems as hitting set problems and vertex cover problems

on hypergraphs, which allows us to apply results and techniques for the latter to causality.

Profiting from these connections, we obtain new algorithmic and complexity results for

causality, which can be summarized as follows:

31
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(a) Checking minimal contingency sets for conjunctive queries can be done in PTIME.

(b) The responsibility (decision) problem for conjunctive queries becomes NP-complete.

(c) However, the responsibility problem is fixed-parameter tractable when the parameter is

the inverse of the responsibility bound.

(d) For conjunctive queries, the functional problem of computing the causes’ respon-

sibilities is FPNP(log(n))-complete, and deciding most responsible causes is PNP(log(n))-

complete. These results also hold for unions of conjunctive queries.

5. The structure of the resulting hitting-set problem (as in item 3.) allows us to obtain effi-

cient parameterized algorithms and good approximation algorithms for computing causes

and minimal contingency sets.

6. Consistency-based diagnosis decision problems can be unsolvable [Reiter, 1987]. How-

ever, there are decidable classes of FO diagnosis specifications, but there is little research on

their complexity. In this work, we take advantage of the connection between causality and

consistency-based diagnosis and report on some new complexity results for model-based

diagnosis (cf. Contribution 6).

7. We define notions of preferred causes; in particular one based on prioritized repairs

[Staworko et al., 2012]. We also propose a finer-granularity approach to causality, at the

attribute level rather than at the tuple level, that is based on interventions that are repair

actions that replace attribute values by null values.

8. We establish precise connections between Datalog QA-causality and abductive diag-

nosis. More precisely, we establish mutual characterizations of each in terms of the other;

and computational reductions between actual causes for Datalog queries and abductive di-

agnosis from Datalog specifications.

9. We characterize and obtain causes in terms of- and from abductive diagnoses. We profit

from these connections to obtain new algorithmic and complexity results for causality,

which can be summarized as follows:

(a) Deciding tuple-causality for Datalog queries, possibly recursive, is NP-complete in

data.
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(b) A class of Datalog queries is identified for which deciding causality is tractable in

combined complexity.

(c) Deciding whether the causal responsibility of a tuple for a Datalog query-answer is

greater than a given threshold is NP-complete.

10. We establish a precise connections between delete-propagation for conjunctive queries

and QA-causality. More precisely, we show that actual causes, most-responsible causes

and vc-causes can be obtained from solutions to different variants of the delete-propagation

problem, and vice-versa.

11. We profit from the connection between causality and delete-propagation to obtain new

complexity results for them; more precisely:

(a) Computing the size of the solution to a minimum-source-side-effect deletion-problem

is hard for FPNP(log(n)) in data.

(b) Deciding whether an answer has a vc-cause is NP-complete.

(c) Deciding if a tuple is a vc-cause is NP-complete in data.

(d) Deciding whether the vc-causal responsibility of a tuple for a query answer is greater

than a given threshold is NP-complete in data.

These results also hold for unions of conjunctive queries.

12. We show, in technical terms, that causal responsibility as introduced in [Meliou et al.,

2010c] may only partially fulfil the original intention of plausibly ranking tuples in terms

of causal contribution.

We define and investigate an alternative metric, called “degree of causal contribution”,

which, as we show, gives more intuitive and plausible results than causal responsibility.

4.2 Comparison with Related Work

This section makes comparisons between this thesis’ contributions and related work. In

this regard, we have to start by saying that the area of causality in data management is quite

recent. We can safely say that in started with [Meliou et al., 2010a, Meliou et al., 2010c].

For this reason there is not much research directly related to our own work.
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1. The complexity analysis for deciding causality and computing causal responsibility in

[Meliou et al., 2010c] is restricted to conjunctive queries and conjunctive queries without

self-joins, respectively. Our work extends this complexity analysis in the following ways:

(a) We establish the complexity of deciding causality and responsibility for unions of

conjunctive queries, and Datalog queries (cf. Contributions 4 and 9 in Section 4.1).

(b) We provide FPT results for deciding causality and responsibility (cf. Contribution 5);

(c) We study the complexity of the optimization problems of computing responsibility

(that involves minimality) and most responsible causes, and classify them in the polynomial

hierarchy (cf. Contribution 4).

2. In a very recent work, a connection between causality and attribute-based repairs (aka.

cell-based repairs) is investigated in [Debosschere et al., 2015].

In contrast to repairs that insert or delete full tuples, attribute-based repairs are obtained by

changing attribute values in database tuples. Actually, the authors define and investigate

cell-based causes in terms of attribute-based repairs. As a matter of fact, their approach is

inspired by the characterization of causes in terms of repairs in our work (cf. Contributions

1 and 2; also [Salimi & Bertossi, 2014, Salimi & Bertossi, 2015a]).

3. Although not in the framework of database repairs, consistency-based diagnosis tech-

niques have been applied to consistency restoration of a database with respect to a set of

violated integrity constraints [Gertz, 1996].

4. In this work, we adapt the notion vc-causality as introduced in [Meliou et al., 2010b] to

the case of a single query, possibly with several answers. We establish the close connection

between this form of vc-causality and the view side-effect deletion-problem. The possibil-

ity of the connection between the two was first pointed out, but not established, in [Meliou

et al., 2010b, Kimelfeld, 2012a, Kimelfeld, 2012b]. Furthermore, we settle the complexity

of deciding vc-causality and responsibility for conjunctive queries (cf. Contribution 11) for

which no complexity result was known.

5. The problem of resilience, as defined and investigated in [Cibele et al., 2016], is basi-

cally the decision version of the problem of computing most responsible causes as defined

and investigated in our work (cf. Contribution 4). For the resilience problem, those authors
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provide a dichotomy result for the complexity in the case of conjunctive queries without

self-joins.

In our work we establish the complexity of the most responsible causes problem for con-

junctive queries in general (see [Salimi & Bertossi, 2015a, Salimi & Bertossi, 2015c]).

Therefore, the results reported in [Cibele et al., 2016] are complementary to ours. Fur-

thermore, [Cibele et al., 2016] connects the resilience problem to delete-propagation. This

connection is subsumed by our results (cf. Contribution 10, see also [Bertossi & Salimi,

2014, Salimi & Bertossi, 2015b]).

6. Causal responsibility, as introduced in [Meliou et al., 2010c], has its origin in [Chockler

& Halpern, 2004], where the notion of degree of responsibility has been introduced upon

the HP-model for causation.

In [Halpern, 2015b], in has been argued that, while their proposal captures some reason-

able intuitions, it is somehow naive; and claims that some other variants might be more

appropriate for certain applications.

Our proposed metric for quantification of causal contribution, the degree of causal contri-

bution, is restricted to the context of QA-causality (cf. Contribution 12), as opposed to

the general HP-model. Nevertheless, we think our proposal can be extended to the latter,

leading to a more refined and general notion of degree of causal contribution.

In our work we make a clear distinction and comparison between our proposal and that of

[Meliou et al., 2010c], which has its origin in [Chockler & Halpern, 2004].

7. We observe a close connection between our “degree of causal contribution” and the

indices used as measures of degree of causation in [Braham & Van Hee, 2009]. They

introduced the notion of “degree of causality”, on the basis of the concept of Necessary

Element of a Sufficient Set (NESS) test (Cf. Section 3). The NESS test is a widely accepted

account for causation in the law literature. However, our justification and motivation for

the degree of causal contribution comes from a different perspective, and builds upon (and

is applicable to) HP-causality. For a discussion, see Section 9.3.

In [Braham & Van Hee, 2009], it is argued that the notion of responsibility as defined in

[Chockler & Halpern, 2004] does not determine the share of an action in bringing about
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an outcome, but only “the extent to which there are other causes”. However, no clear

distinction between the two approaches has been established. In this work, we make a clear

distinction between our proposed metric and that of causal responsibility in [Meliou et al.,

2010c].

8. The results obtained in this work and previously reported in [Bertossi & Salimi, 2014,

Salimi & Bertossi, 2014, Salimi & Bertossi, 2015a, Salimi & Bertossi, 2015b, Salimi &

Bertossi, 2015c] suggest that causal reasoning is a central activity in the reverse data man-

agement problems identified in [Meliou et al., 2011a]. This category has been defined

based on the authors’ observation that these problems invert a data transformation process,

in order to reason diagnostically back about an observation. Our work is the first to study

these problems from the perspective of causality. In fact, we believe that causal reasoning

is the most fundamental problem in reverse data management.

More related work is mentioned and described in the coming chapters, mainly in Chap-

ter 10, after presenting the corresponding technical results.



Chapter 5

Causality, Database Repairs and Consistency-Based Diagnosis

In this chapter, we explore the connection between computing causes and their responsibil-

ities for conjunctive query answers, on one hand, and computing repairs in databases with

respect to DCs, on the other. We show that these computational problems can be reduced

to each other.

Furthermore, we show that inferring and computing actual causes and their responsi-

bilities in a database setting become diagnosis reasoning problems and tasks. Actually, a

causality-based explanation for a conjunctive query answer can be viewed as a diagnosis,

where in essence the first-order logical reconstruction of the relational database provides

the system description [Reiter, 1984], and the observation is the query answer. We also

establish a bidirectional connection between diagnosis and repairs.

We provide proofs for all the results, except for those that are rather straightforward.

5.1 Database Repairs

Integrity constraints (ICs) capture the semantics of data and are expected to be satisfied by

a database in order to keep its correspondence with the outside reality it is modelling. For

several reasons, databases may become inconsistent with respect to a given set of integrity

constraints (ICs).

Consistent query answering (CQA) is the problem of computing from a database those

answers to a query that are consistent with respect to certain ICs, that the database as a

whole may fail to satisfy. Consistent answers have been characterized as those that are

invariant under minimal forms of restoration of the database consistency [Arenas et al.,

2003a]. The notion of minimal restoration of consistency was captured in [Arenas et al.,

2003a] in terms of database repairs, i.e. new consistent database instances that share the

schema.

Given a set IC of integrity constraints, a subset repair (simply, S-repair) of a possibly

37
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inconsistent instance D for schema S is an instance D′ for S that satisfies IC and makes

∆(D,D′) = (D rD′) ∪ (D′ rD) minimal under set inclusion. Srep(D, IC ) denotes the

set of S-repairs of D with respect to IC [Arenas et al., 1999]. Similarly, D′ is a cardinality

repair (simply C-repair) of D if D′ satisfies IC and minimizes |∆(D,D′)|. Crep(D, IC )

denotes the class of C-repairs of D with respect to IC . C-repairs are always S-repairs.

For DCs, S-repairs and C-repairs are obtained from the original instance by deleting an

S-minimal, resp. C-minimal , set of tuples.1

More generally, different repair semantics may be considered to restore consistency

with respect to general integrity constraints. They depend on the kind of allowed updates

on the database (i.e., tuple insertions/deletions, changes of attribute values), and the mini-

mality conditions on repairs, e.g. subset-minimality, cardinality-minimality, etc.

Given D and IC , a repair semantics, rSem, defines a class ReprSem(D, IC ) of rSem-

repairs, which are the intended repairs [Bertossi, 2011, sec. 2.5]. All the elements of

ReprSem(D, IC ) are instances over the same schema of D, and consistent with respect to Σ.

If D is already consistent, we expect ReprSem(D, IC ) to contain D as its only member.

Given a repair semantics, rSem, c̄ is a rSem-consistent answer to an open queryQ(x̄)

if D′ |= Q[c̄] for every D′ ∈ ReprSem(D, IC ). A BCQ is rSem-consistently true if it

is true in every D′ ∈ ReprSem(D, IC ). In particular, if c̄ is a consistent answer to Q(x̄)

with respect to S-repairs, we say it is an S-consistent answer. Similarly for C-consistent

answers. Consistent query answering for DCs under S-repairs was investigated in detail

[Chomicki & Marcinkowski, 2005]. C-repairs and consistent query answering under them

were investigated in detail in [Lopatenko & Bertossi, 2007]. (Cf. [Bertossi, 2011] for more

references.)

Example 5.1.1 Consider a database schema P (X, Y, Z) with the functional dependency

X → Y . The inconsistent instance D = {P (a, b, c), P (a, c, d), P (a, c, e)}, seen as a set of

ground atoms, has two S-repairs, D1 = P (a, b, c) and D2 = P (a, c, d), P (a, c, e), because

the symmetric set differences with D, ∆(D,D1) and ∆(D,D2), are minimal under set

inclusion. However, only for D2 the cardinality |(D,D2)| of the symmetric set difference

is minimum; and D2 is the only C-repair.

1We will usually say that a set is S-minimal in a class of sets C if it minimal under set inclusion in C.
Similarly, a set is C-minimal if it is minimal in cardinality within C.
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The query P (x, y, z) has consistent answers 〈a, c, d〉 and 〈a, c, e〉 under the C-repair

semantics (they are classic answers in the only C-repair), but none under the S-repair se-

mantics (the two S-repairs share no classic answers). �

5.2 Consistency-Based Diagnosis

Diagnosis is the problem of trying to find what is wrong with some system based on knowl-

edge about the design/structure of the system, possible malfunctions that can occur in the

system and observations made of the behaviour of an artifact [Poole, 1988].

A fundamental approach to diagnostic reasoning is called consistency-based diagnosis

(a form of model-based diagnosis [Struss, 2008, sec. 10.4]) introduced by Reiter [Reiter,

1987]. Starting point of this approach is a description (a model) of a real-world system.

Such a model represents the structure of the system; that is, its components and their in-

terrelations. If now the actual behavior of the system conflicts with the expected behavior

of the system a diagnostic task has to be performed. This task comprises identifying those

components of the system which, when assumed to work abnormally, will account for the

difference between expected and the observed behavior.

Formally, consistency-based diagnosis considers problemsM = (SD ,COMPS ,OBS ),

where SD is the description in logic of the intended properties of a system under the ex-

plicit assumption that all the components in COMPS , are working normally. OBS is a

FO sentence that represents the observations. If the system does not behave as expected

(as shown by the observations), then the logical theory obtained from SD ∪ OBS plus

the explicit assumption, say
∧
c∈COMPS ¬Ab(c), that the components are indeed behaving

normally, becomes inconsistent. Ab is an abnormality predicate.2

The inconsistency is captured via the minimal conflict sets , i.e. those minimal subsets

COMPS ′ of COMPS , such that SD ∪ OBS ∪ {
∧
c∈COMPS ′ ¬Ab(c)} is inconsistent. As

expected, different notions of minimality can be used at this point.

A minimal diagnosis for M is a S-minimal ∆ of COMPS , such that SD ∪ OBS ∪
{¬Ab(c) | c ∈ COMPS r ∆} ∪ {Ab(c) | c ∈ ∆} is consistent. That is, consistency is

restored by flipping the normality assumption to abnormality for a minimal set of compo-

nents, and those are the ones considered to be (jointly) faulty. The notion of minimality

2Here, and as usual, the atom Ab(c) expresses that component c is (behaving) abnormal(ly).



40

Figure 5.1: A simple circuite with two gates

commonly used is Subset-minimality, i.e. a diagnosis that does not have a proper subset

that is a diagnosis. We will use this kind of minimality in relation to diagnosis. Diagnosis

can be obtained from conflict sets [Reiter, 1987].

Example 5.2.1 Consider the digital circuit in Figure 5.1. The inputs are a = 1, b = 0, c =

1, but the output is d = 0. So, the circuit is not working properly. The diagnosis problem is

formulated below as a consistency-based diagnosis problemM = (SD ,COMPS , OBS ),

where COMPS = {and , or}, SD contains the following FO sentences: ¬Ab(and) →
(e↔ (a∧b)) and ¬Ab(or)→ (d↔ (e∨c)); and OBS is the FO sentence a∧¬b∧c∧¬d.

It is easy to verify that SD ∪ OBS ∪ ∪{¬Ab(and),¬Ab(or)} is inconsistent. M has

two conflict sets: c1 = {¬Ab(and),¬Ab(or)} and c2 = {¬Ab(or)} from which, only c2

is S-minimal and forms the single diagnosis of the circuite. �

5.3 Causality and Database Repairs

5.3.1 Actual causes from database repairs

Let D = Dn ∪ Dx be an instance for schema S, and Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)) a

BCQ. Q may be unexpectedly true, i.e. D |= Q. Now, ¬Q is logically equivalent to the

DC κ(Q) : ∀x̄¬(P1(x̄1) ∧ · · · ∧ Pm(x̄m)). The requirement that ¬Q holds can be captured

by imposing κ(Q) on D. Due to D |= Q, it holds D 6|= κ(Q). So, D is inconsistent with

respect to κ(Q), and could be repaired.

Repairs for (violations of) DCs are obtained by tuple deletions. Intuitively, a tuple that

participates in a violation of κ(Q) in D is an actual cause for Q. S-minimal sets of tuples

like this are expected to correspond to S-repairs for D with respect to κ(Q).
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More precisely, given an instance D = Dn ∪ Dx, a BCQ Q, and a tuple τ ∈ Dn, we

consider:

– The class containing the sets of differences between D and those S-repairs that do

not contain τ , and are obtained by removing a subset of Dn:

Diff s(D, κ(Q), τ) = {D rD′ | D′ ∈ Srep(D, κ(Q)),

τ ∈ (D rD′) ⊆ Dn}. (5.1)

– The class containing the sets of differences between D and those C-repairs that do

not contain τ , and are obtained by removing a subset of Dn:

Diff c(D, κ(Q), τ) = {D rD′ | D′ ∈ Crep(D, κ(Q)),

τ ∈ (D rD′) ⊆ Dn}. (5.2)

It holds Diff c(D, κ(Q), τ) ⊆ Diff s(D, κ(Q), τ).

Now, any Λ ∈ Diff s(D, κ(Q), τ) can be written as Λ = Λ′ ∪ {τ}. From the Subset-

minimality of S-repairs, it follows that D r (Λ′ ∪ {τ}) |= κ(Q), but D r Λ′ |= ¬κ(Q).

That is, Dr (Λ′ ∪ {τ}) 6|= Q, but DrΛ′ |= Q. As a consequence, τ is an actual cause for

Q with contingency set Λ′. We have obtained the following result.3

Proposition 5.3.1 Given D = Dn ∪ Dx, and a BCQ Q, τ ∈ Dn is an actual cause for Q
iff Diff s(D, κ(Q), τ) 6= ∅. �

Proposition 5.3.2 Given D = Dn ∪Dx, a BCQ Q, and τ ∈ Dn:

(a) If Diff s(D, κ(Q), τ) = ∅, then ρ
D

(τ) = 0.

(b) Otherwise, ρ
D

(τ) = 1
|Λ| , where Λ ∈ Diff s(D, κ(Q), τ) and there is no Λ′ ∈ Diff s(D,

κ(Q), τ) such that |Λ′| < |Λ|. �

Corollary 5.3.1 Given D = Dn ∪Dx and a BCQQ: τ ∈ Dn is a most responsible actual

cause for Q iff Diff c(D, κ(Q), τ) 6= ∅. �

3For database instance D, we will usually denote its subsets with D′, Λ, Λ′, ∆, Γ, etc.
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Example 5.3.1 (ex. 2.2.1 cont.) Consider the same instance D and queryQ. In this case,

the DC κ(Q) is, in Datalog notation, a negative rule: ← S(x), R(x, y), S(y).

Here, Srep(D, κ(Q)) = {D1, D2, D3} and Crep(D, κ(Q)) = {D1}, with D1 =

{R(a4, a3), R(a2, a1), R(a3, a3), S(a4), S(a2)}, D2 = {R(a2, a1), S(a4), S(a2), S(a3)},
D3 = {R(a4, a3), R(a2, a1), S(a2), S(a3)}.

For tuple R(a4, a3), Diff s(D, κ(Q), R(a4, a3)) = {D r D2} = {{R(a4, a3), R(a3

, a3)}}, which, by Propositions 5.3.1 and 5.3.2, confirms that R(a4, a3) is an actual cause,

with responsibility 1
2
.

For tuple S(a3), Diff s(D, κ(Q), S(a3)) = {D r D1} = {S(a3)}. So, S(a3) is an

actual cause with responsibility 1.

Similarly, R(a3, a3) is an actual cause with responsibility 1
2
, because Diff s(D, κ(Q),

R(a3, a3)) = {D rD2, D rD3} = {{R(a4, a3), R(a3, a3)}, {R(a3, a3), S(a4)}}.
It holds Diff s(D, κ(Q), S(a2)) = Diff s(D, κ(Q), R(a2, a1)) = ∅, because all repairs

contain S(a2), R(a2, a1). This means they do not participate in the violation of κ(Q) or

contribute to make Q true. So, they are not actual causes for Q, confirming the result in

Example 1.1.1.

Diff c(D, κ(Q), S(a3)) = {S(a3)}. From Corollary 5.3.1, S(a3) is the most responsible

cause. �

Remark 5.3.1 The results in this section can be easily extended to unions of BCQs. This

can be done by associating a DC to each disjunct of the query, and considering the corre-

sponding problems for database repairs with respect to several DCs (Cf. Section 5.3.2.1).

�

5.3.2 Database repairs from actual causes

Let us assume in the rest of this section that the database instance is D = Dn ∪ Dx. We

now characterize repairs for inconsistent databases with respect to a set of DCs in terms of

actual causes, and reduce their computation to computation of causes.4

Consider an instance D for schema S, and a set of DCs Σ on S. For each κ ∈ Σ,

say κ :← A1(x̄1), . . . , An(x̄n), consider its associated violation view defined by a BCQ,

4The characterization results for repairs obtained in this section extend those in [Salimi & Bertossi, 2014]
for single DCs.
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namely Vκ: ∃x̄(A1(x̄1) ∧ · · · ∧ An(x̄n)). The answer yes to Vκ shows that κ is violated

(i.e., not satisfied) by D.

Next, consider the query that is the union of the individual violation views: VΣ :=∨
κ∈Σ V

κ, a union of BCQs (UBCQs). Clearly, D violates (is inconsistent with respect to)

Σ iff D |= VΣ.

It is easy to verify that D, with Dx = ∅, is consistent with respect to Σ iff Causes(D,

VΣ) = ∅, i.e. there are no actual causes for VΣ to be true when all tuples are endogenous.

Now, let us collect all S-minimal contingency sets associated with an actual cause τ for

VΣ:

Definition 5.3.1 For D = Dn ∪Dx, and Σ a set of DCs:

Cont(D, VΣ, τ) := {Γ ⊆ Dn | D r Γ |= VΣ, D r (Γ ∪ {τ}) 6|= VΣ, (5.3)

and ∀Γ′′ $ Γ, D r (Γ′′ ∪ {τ}) |= VΣ}. �

Notice that for Γ ∈ Cont(D, VΣ, τ), it holds τ /∈ Γ. WhenDx = ∅, if τ ∈ Causes(D, VΣ)

and Γ ∈ Cont(D,Dn, VΣ, τ), from the definition of actual cause and the S-minimality of

Γ, it holds that Γ′′ = Γ∪ {τ} is an S-minimal subset of D with Dr Γ′′ 6|= VΣ. So, Dr Γ′′

is an S-repair for D. Then, the following holds.

Proposition 5.3.3 For an instance D, with Dx = ∅, and a set DCs Σ: D′ ⊆ D is an

S-repair for D with respect to Σ iff, for every τ ∈ D r D′: τ ∈ Causes(D, VΣ) and

D r (D′ ∪ {τ}) ∈ Cont(D, VΣ, τ). �

To establish a connection between most responsible actual causes and C-repairs, assume

that Dx = ∅, and collect the most responsible actual causes for VΣ:

Definition 5.3.2 For an instance D with Dx = ∅:

MRC (D, VΣ) := {τ ∈ D | τ ∈ Causes(D, VΣ), 6 ∃τ ′ ∈ Causes(D, VΣ) (5.4)

with ρ
D

(τ ′) > ρ
D

(τ)}. �

Proposition 5.3.4 For instance D, with Dx = ∅, and set of DCs Σ: D′ ⊆ D is a C-repair

forD with respect to Σ iff, for every τ ∈ DrD′: τ ∈ MRC (D, VΣ) andDr(D′∪{τ}) ∈
Cont(D, VΣ, τ). �
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Actual causes for VΣ, with their contingency sets, account for the violation of some

κ ∈ Σ. Removing those tuples fromD should remove the inconsistency. From Propositions

5.3.3 and 5.3.4 we obtain:

Corollary 5.3.2 Given an instance D and a set DCs Σ, the instance obtained from D by

removing an actual cause, resp. a most responsible actual cause, for VΣ together with any

of its S-minimal, resp. C-minimal, contingency sets forms an S-repair, resp. a C-repair, for

D with respect to Σ. �

Example 5.3.2 Consider D = {P (a), P (e), Q(a, b), R(a, c)} and Σ = {κ1, κ2}, with κ1 :

← P (x), Q(x, y) and κ2 :← P (x), R(x, y).

The violation views are V κ1 : ∃xy(P (x)∧Q(x, y)) and V κ2 : ∃xy(P (x)∧R(x, y)). For

VΣ := V κ1 ∨ V κ2 , D |= VΣ and D is inconsistent with respect to Σ.

Now assume all tuples are endogenous. Its holds Causes(D, VΣ) = {P (a), Q(a, b),

R(a, c)}, and its elements are associated with sets of S-minimal contingency sets, as fol-

lows: Cont(D, VΣ, Q(a, b)) = {{R(a, c)}}, Cont(D, VΣ, R(a, c)) = {{Q(a, b)}}, and

Cont(D, VΣ, P (a)) = {∅}.
From Corollary 5.3.2, and Cont(D, VΣ, R(a, c)) = {{Q(a, b)}},D1 = Dr({R(a, c)}∪

{Q(a, b)}) = {P (a), P (e)} is an S-repair. So isD2 = Dr({P (a)}∪∅) = {P (e), Q(a, b),

R(a, c)}. These are the only S-repairs.

Furthermore, MRC (D, VΣ) = {P (a)}. From Corollary 5.3.2, we obtain thatD2 is also

a C-repair for D. �

An actual cause τ with any of its S-minimal contingency sets determines a unique S-

repair. The last example shows that, with different combinations of a cause and one of its

contingency sets, we may obtain the same repair (e.g. for the first two Cont sets). So,

we may have more minimal contingency sets than minimal repairs. However, we may still

have exponentially many minimal contingency sets, so as we may have exponentially many

minimal repairs of an instance with respect to DCs, as the following example shows.5

Example 5.3.3 ConsiderD = {R(1, 0), R(1, 1), . . . , R(n, 0), R(n, 1), S(1), S(0)} and the

DC κ : ← R(x, y), R(x, z), S(y), S(z). D is inconsistent with respect to κ. There are

5Cf. [Arenas et al., 2003b] for an example of the latter that uses key constraints, which are DCs with
inequalities (with violation views that contain inequality).
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exponentially many S-repairs of D: D′ = D r {S(0)}, D′′ = D r {S(1)}, D1 =

Dr{R(1, 0), . . . , R(n, 0)}, ..., D2n = Dr{R(1, 1), . . . , R(n, 1)}. The C-repairs are only

D′ and D′′.

For the BCQ V κ associated to κ, D |= V κ, and S(1) and S(0) are actual causes for V κ

(counterfactual causes with responsibility 1). All tuples in R are actual causes, each with

exponentially many S-minimal contingency sets. For example, R(1, 0) has the S-minimal

contingency set {R(2, 0), . . . , R(n, 0)}, among exponentially many others (any set built

with just one element from each of the pairs {R(2, 0), R(2, 1)}, ..., {R(n, 0), R(n, 1)} is

one). �

5.3.2.1 Causes for unions of conjunctive queries

If we want to compute repairs with respect to sets of DCs from causes for UBCQs using,

say Corollary 5.3.2, we first need an algorithm for computing the actual causes and their

(minimal) contingency sets for UBCQs. These algorithms could be used as a first stage

of the computation of S-repairs and C-repairs with respect to sets of DCs. However, these

algorithms, which we develop in Section 5.3.2.2), are also interesting and useful per se.

The PTIME algorithm for computing actual causes in [Meliou et al., 2010c] is for single

conjunctive queries, but does not compute the actual causes’ contingency sets. Actually,

doing the latter increases the complexity, because deciding responsibility6 of actual causes

is NP -hard [Meliou et al., 2010c] (which would be tractable if we could efficiently compute

all (minimal) contingency sets).7 In principle, an algorithm for responsibilities can be used

to compute C-minimal contingency sets, by iterating over all candidates, but Example 5.3.3

shows that there can be exponentially many of them.

We first concentrate on the problem of computing actual causes for UBCQs, without

their contingency sets, which requires some notation.

Definition 5.3.3 Given Q = C1 ∨ · · · ∨ Ck, each Ci a BCQ, and an instance D:

(a) S(D) is the collection of all S-minimal subsets of D that satisfy a disjunct Ci of Q.

6For a precise formulation, see Definition 2.2.2.
7Actually, [Meliou et al., 2010c] presents a PTIME algorithm for computing responsibilities for a re-

stricted class of CQs.
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(b) Sn(D) consists of the S-minimal subsets Λ of Dn for which there exists a Λ′∈ S(D)

with Λ ⊆ Λ′ and Λ r Λ′ ⊆ Dx. �

Sn(D) contains all S-minimal sets of endogenous tuples that simultaneously (and pos-

sibly accompanied by exogenous tuples) make the query true. It is easy to see that S(D)

and Sn(D) can be computed in polynomial time in the size of D.

Now, generalizing a result for CQs in [Meliou et al., 2010c], actual causes for a UBCQs

can be computed in PTIME in the size of D without computing contingency sets. We

formulate this results in terms of the corresponding causality decision problem (CDP).

Proposition 5.3.5 Given D = Dx ∪Dn, τ ∈ D, and a UBCQ Q:

(a) τ is an actual cause for Q iff there is Λ ∈ Sn(D) with τ ∈ Λ.

(b) The causality decision problem (about membership of)

CDP := {(D, τ) | τ ∈ Dn, and τ ∈ Causes(D,Q)}

belongs to PTIME .

Proof: (a) Assume S(D) = {Λ1, . . . ,Λm}, and there exists a Λ ∈ Sn(D) with τ ∈ Λ.

Consider a set Γ ⊆ Dn such that, for all Λi ∈ Sn(D) where Λi 6= Λ, Γ ∩ Λi 6= ∅ and

Γ ∩ Λ = ∅. With such a Γ, τ is an actual cause for Q with contingency set Γ. So, it is

good enough to prove that such Γ always exists. In fact, since all subsets of Sn(D) are

S-minimal , then, for each Λi ∈ Sn(D) with Λi 6= Λ, Λi ∩ Λ = ∅. Therefore, Γ can be

obtained from the set of difference between each Λi and Λ.

Now, if τ is an actual cause for Q, then there exist an S-minimal Γ ∈ Dn, such that

Dr (Γ ∪ {τ}) 6|= Q, but Dr Γ |= Q. This implies that there exists an S-minimal Λ of D,

such that τ ∈ Λ and Λ |= Q. Due to the Subset-minimality of Γ, it is easy to see that τ is

included in a subset of Sn(D).

(b) This is a simple generalization of the proof of the same result for single conjunctive

queries found in [Meliou et al., 2010c]. �

Example 5.3.4 (ex. 5.3.2 cont.) Consider the queryQ : ∃xy(P (x)∧Q(x, y))∨∃xy(P (x)∧
R(x, y)), and assume that for D, Dn = {P (a), R(a, c)} and Dx = {P (e), Q(a, b)}. It
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holds S(D) = {{P (a), Q(a, b)}, {P (a), R(a, c)}}. Since {P (a)} ⊆ {P (a), R(a, c)},
Sn(D) = {{P (a)}}. So, P (a) is the only actual cause for Q. �

5.3.2.2 Contingency sets for unions of conjunctive queries

It is possible to develop a (naive) algorithm that accepts as input an instanceD = Dn∪Dx,

and a UBCQQ, and returns Causes(D,Q); and also, for each τ ∈ Causes(D,Q), its (set

of) S-minimal contingency sets Cont(D,Q, τ).

The basis for the algorithm is a correspondence between the actual causes for Q with

their contingency sets and a hitting-set problem.8 More precisely, for a fixed UBCQ Q,

consider the hitting-set framework

Hn(D) = 〈Dn,Sn(D)〉, (5.5)

with Sn(D) as in Definition 5.3.3. Different computational and decision problems are

based on Hn(D), and we will confront some below. Notice that hitting sets (HSs) are all

subsets of Dn.

The S-minimal HSs for Hn(D) correspond to actual causes with their S-minimal con-

tingency set for Q. Most responsible causes for Q are in correspondence with HSs for

Hn(D). This is formalized as follows:

Proposition 5.3.6 For D = Dx ∪Dn, τ ∈ D, and a UBCQ Q:

(a) τ is an actual cause forQwith S-minimal contingency set Γ iff Γ∪{τ} is an S-minimal

HS for Hn(D).

(b) τ is a most responsible actual cause forQwith C-minimal contingency set Γ iff Γ∪{τ}
is a minimum HS for Hn(D).

Proof: The proof is similar to that of part (a) of Proposition 5.3.5. �

Example 5.3.5 (ex. 5.3.2 and 5.3.4 cont.) D and Q are as before, but now all tuples are

endogenous. Here, S(D) = Sn(D) = {{P (a), Q(a, b)}, {P (a), R(a, c)}}. Hn(D) has
8If C is a collection of non-empty subsets of a set S, a subset S′ ⊆ S is a hitting set for C if, for every

C ∈ C, C ∩ S′ 6= ∅. S′ is an S-minimal HS if no proper subset of it is also an HS. S is a minimum HS is it
has minimum-cardinality.
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two S-minimal HSs: H1 = {P (a)} and H2 = {Q(a, b), R(a, c)}. Each of them implicitly

contains an actual cause (any of its elements) with an S-minimal contingency set (what’s

left after removing the actual cause). H1 is also the C-minimal hitting set, and contains the

most responsible actual cause, P (a). �

Remark 5.3.2 For Hn(D) = 〈Dn,Sn(D)〉, Sn(D) can be computed in PTIME, and its

elements are bounded in size by |Q|, which is the maximum number of atoms in one ofQ’s

disjuncts. This is a special kind of hitting-set problems. For example, deciding if there is

a hitting set of size at most k as been called the d-hitting-set problem [Niedermeier, 2003],

and d is the bound on the size of the sets in the set class. In our case, d would be |Q|. �

5.3.2.3 Causality, repairs, and consistent answers

Corollary 5.3.2 and Proposition 5.3.6 can be used to compute repairs. If the classes of S-

and C-minimal HSs for Hn(D) (with Dn = D) are available, computing S- and C-repairs

will be in PTIME in the sizes of those classes. However, it is well known that computing

minimal HSs is a complex problem. Actually, as Example 5.3.3 implicitly shows, we can

have exponentially many of them in |D|; so as exponentially many minimal repairs for D

with respect to a denial constraint. We can see that the complexity of contingency sets

computation is in line with the complexities of computing hitting sets and repairs.

As Corollary 5.3.2 and Proposition 5.3.6 show, the computation of causes, contingency

sets, and most responsible causes via minimal/minimum HS computation can be used to

compute repairs and decide about repair questions. Since the HS problems in our case are

of the d-hitting set kind, good algorithms and approximations for the latter (cf. Section

5.5.2) could be used in the context of repairs.

In the rest of this section we consider an instance D whose tuples are all endogenous,

and a set Σ of DCs. For the disjunctive violation view VΣ, the following result is obtained

from Propositions 5.3.3 and 5.3.4, and Corollary 5.3.2.

Corollary 5.3.3 For an instance D, with Dx = ∅, and set DCs Σ, it holds:

(a) For every τ ∈ Causes(D, VΣ), there is an S-repair that does not contain τ .

(b) For every τ ∈ MRC (D, VΣ), there is a C-repair that does not contain τ .
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(c) For every D′ ∈ Srep(D,Σ) and D′′ ∈ Crep(D,Σ), it holds DrD′ ⊆ Causes(D, VΣ)

and D rD′′ ⊆ MRC (D, VΣ). �

For a projection-free, and a possibly non-boolean CQ Q, we are interested in its con-

sistent answers from D with respect to Σ. For example, for Q(x, y, z) : R(x, y) ∧ S(y, z),

the S-consistent (C-consistent) answers would be of the form 〈a, b, c〉, where R(a, b) and

S(b, c) belong to all S-repairs (C-repairs) of D.

From Corollary 5.3.3, 〈a, b, c〉 is an S-consistent (resp. C-consistent) answer iff R(a, b)

and S(b, c) belong to D, but they are not actual causes (resp. most responsible actual

causes) for VΣ.

The following simple result and its corollary will be useful in Section 5.5.

Proposition 5.3.7 For an instance D, with Dx = ∅, a set of DCs Σ, and a projection-free

CQ Q(x̄) : P1(x̄1) ∧ · · · ∧ Pk(x̄k):

(a) c̄ is an S-consistent answer iff, for each i, Pi(c̄i) ∈ (D r Causes(D, VΣ)).

(b) c̄ is a C-consistent answer iff, for each i, Pi(c̄i) ∈ (D r MRC (D, VΣ)). �

Example 5.3.6 (ex. 5.3.2 cont.) Consider Q(x) : P (x). We had Causes(D, VΣ) =

{P (a), Q(a, b), R(a, c)}, MRC (D, VΣ) = {P (a)}. Then, 〈a〉 is both an S- and a C-

consistent answer. �

Notice that Proposition 5.3.7 can easily be extended to conjunctions of ground atomic

queries.

Corollary 5.3.4 GivenD, a set of DCs Σ, the ground atomic queryQ: P (c) is C-consistently

true iff P (c) ∈ D and it is not a most responsible cause for VΣ. �

Example 5.3.7 For D = {P (a, b), R(b, c), R(a, d)} and the DC κ : ← P (x, y), R(y, z),

we obtain: Causes(D, V κ) = MRC (D, V κ) = {P (a, b), R(b, c)}.
From Proposition 5.3.7, the ground atomic queryQ: R(a, d) is both S- and C-consistently

true in D with respect to κ, because, D r Causes(D, V κ) = D r MRC (D, V κ) =

{R(a, d)}. �

The CQs considered in Proposition 5.3.7 and its Corollary 5.3.4 are not particularly in-

teresting per se, but we will use those results to obtain new complexity results for causality

later on, e.g. Theorem 5.5.3.
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5.4 Consistency-Based Diagnosis: Causes and Repairs

Let D = Dn ∪ Dx be an instance for schema S, and Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), a

BCQ. Assume Q is, possibly unexpectedly, true in D. So, for the associated DC κ(Q) :

∀x̄¬(P1(x̄1)∧ · · · ∧Pm(x̄m)), D 6|= κ(Q). Q is our observation, for which we want to find

explanations, using a consistency-based diagnosis approach.

For each predicate P ∈ P , we introduce predicate AbP , with the same arity as P .

Intuitively, a tuple in its extension is abnormal for P . The “system description”, SD ,

includes, among other elements, the original database, expressed in logical terms, and the

DC as true “under normal conditions”.

More precisely, we consider the following diagnosis problem, M = (SD , Dn, Q),

associated to Q. The FO system description, SD , contains the following elements:

(a) Th(D), which is Reiter’s logical reconstruction of D as a FO theory [Reiter, 1984] (cf.

Example 5.4.1).

(b) Sentence κ(Q)Ab , which is κ(Q) rewritten as follows:

κ(Q)Ab : ∀x̄¬(P1(x̄1) ∧ ¬AbP1(x̄1) ∧ · · · ∧ Pm(x̄m) ∧ ¬AbPm(x̄m)). (5.6)

This formula can be refined by applying the abnormality predicate, Ab, to endogenous

tuples only. For this we need to use additional auxiliary predicates EndP , with the same

arity of P ∈ S, which contain the endogenous tuples in P ’s extension (see Example

5.4.1).

(c) The inclusion dependencies: ∀x̄(AbP (x̄) → P (x̄)), ∀x̄(EndP (x̄) → P (x̄)), and

∀x̄(AbP (x̄)→ EndP (x̄)), for each P ∈ P .

The last entry, Q, in M is the “observation”, which together with SD will produce

and inconsistent theory, because we make the initial and explicit assumption that all the

abnormality predicates are empty (equivalently, that all tuples are normal), i.e. we consider,

for each predicate P , the sentence9

∀x̄(AbP (x̄)→ false), (5.7)

9Notice that these can also be seen as DCs, since they can be written as ∀x̄¬AbP (x̄).
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where, false is a propositional atom that is always false.

The second entry inM is Dn. This is the set of “components” that we can use to try

to restore consistency, in this case, by (minimally) changing the abnormality condition on

tuples in Dn. In other words, the rules (5.7) are subject to qualifications: some endogenous

tuples may be abnormal. Each diagnosis shows an S-minimal set of endogenous tuples that

are abnormal.

Example 5.4.1 (ex. 2.2.1 cont.) For the instance D = {S(a3), S(a4), R(a4, a3)}, with

Dn = {S(a4), S(a3)}, consider the diagnostic problem M = (SD , {S(a4), S(a3)}, Q),

with SD containing:

(a) Predicate completion axioms plus unique names assumption:

∀xy(R(x, y)↔ x = a4 ∧ y = a3), ∀x(S(x)↔ x = a3 ∨ x = a4), (5.8)

∀xy(EndR(x, y)↔ false), ∀x(EndS(x)↔ x = a3 ∨ x = a4), (5.9)

a4 6= a3. (5.10)

(b) The denial constraint qualified by non-abnormality, κ(Q)Ab:

∀xy¬ (S(x) ∧ EndS(x) ∧ ¬AbS(x) ∧R(x, y) ∧ EndR(x, y) ∧ ¬AbR(x, y)

∧ S(y) ∧ EndS(y) ∧ ¬AbS(y)). (5.11)

In diagnosis formalizations this formula would be usually presented as:

∀xy( ¬AbS(x) ∧ ¬AbR(x, y) ∧ ¬AbS(y) −→

¬(S(x) ∧ EndS(x) ∧R(x, y) ∧ EndR(x, y) ∧ S(y) ∧ EndS(y)).

That is, under the normality assumption, the “system” behaves as intended; in this case,

there are no (endogenous) violations of the denial constraint. This main formula in the

diagnosis specification can also be written as a disjunctive positive rule:

∀xy(S(x) ∧ EndS(x) ∧R(x, y) ∧ EndR(x, y) ∧ S(y) ∧ EndS(y) −→

AbS(x) ∨ AbR(x, y) ∨ AbS(y)). (5.12)
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(c) Abnormality/endogenousity predicates are in correspondence to the database schema,

and only endogenous tuples can be abnormal:

∀xy(AbR(x, y)→ R(x, y)), ∀x(AbS(x)→ S(x)), (5.13)

∀xy(EndR(x, y)→ R(x, y)), ∀x(EndS(x)→ S(x)), (5.14)

∀xy(AbR(x, y)→ EndR(x, y)), ∀x(AbS(x)→ EndS(x)). (5.15)

The assumption is that there are not abnormal tuples:

∀xy(AbR(x, y)→ false), ∀x(AbS(x)→ false). (5.16)

The FO theory formed by (5.8) - (5.16) is inconsistent. �

Now, in more general terms, the observation is Q (being true), obtained by evaluating

query Q on (theory of) D. In this case, D 6|= κ(Q). Since all the abnormality predicates

are assumed to be empty, κ(Q) is equivalent to κ(Q)Ab , which also becomes false wrt D.

As a consequence, SD ∪ {(5.7)} ∪ {Q} is an inconsistent FO theory. A diagnosis is a set

of endogenous tuples that, by becoming abnormal, restore consistency.

Definition 5.4.1 (a) A diagnosis forM is a ∆ ⊆ Dn, such that

SD ∪ {AbP (c̄) | P (c̄) ∈ ∆} ∪ {¬AbP (c̄) | P (c̄) ∈ D r ∆} ∪ {Q}

is consistent.

(b) Diags(M, τ) denotes the set of S-minimal diagnoses forM that contain tuple τ ∈ Dn.

(c) Diagc(M, τ) denotes the set of C-minimal diagnoses in Diags(M, τ). �

Example 5.4.2 (ex. 5.4.1 cont.) The theory can be made consistent by giving up (5.16),

and making S-minimal sets of endogenous tuples abnormal.

M has two S-minimal diagnosis: ∆1 = {S(a3)} and ∆4 = {S(a4)}. The first one

corresponds to replacing the second formula in (5.16) by ∀x(AbS(x) ∧ x 6= a3 → false),

obtaining now a consistent theory.

Here, Diags(M, S(a3)) = Diagc(M, S(a3)) = {{S(a3)}}, and Diags(M, S(a4)) =

Diagc(M, S(a4)) = {{ S(a4)}}. �
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By definition, Diagc(M, τ) ⊆ Diags(M, τ). Diagnoses forM and actual causes for

Q are related.

Proposition 5.4.1 Consider D = Dn ∪ Dx, a BCQ Q, and the diagnosis problem M
associated to Q. Tuple τ ∈ Dn is an actual cause for Q iff Diags(M, τ) 6= ∅. �

The responsibility of an actual cause τ is determined by the cardinality of the diagnoses

in Diagc(M, τ).

Proposition 5.4.2 For D = Dn∪Dx, a BCQQ, the associated diagnosis problemM, and

a tuple τ ∈ Dn, it holds:

(a) ρ
D
(τ) = 0 iff Diagc(M, τ) = ∅.

(b) Otherwise, ρ
D
(τ) = 1

|∆| , where ∆ ∈ Diagc(M, τ). �

For the proofs of Propositions 5.4.1 and 5.4.2, it is easy to verify that the conflict sets of

M coincide with the sets in S(Dn) (cf. Definition 5.3.3). The results are obtained from

the characterization of minimal diagnosis as minimal hitting sets of sets of conflict sets (cf.

Section 2.1 and [Reiter, 1987]) and Proposition 5.3.6.

Example 5.4.3 (ex. 5.4.2 cont.) From Propositions 5.4.1 and 5.4.2, S(a3) and S(a4) are

actual cases, with responsibility 1. �

In consistency-based diagnosis, minimal diagnoses can be obtained as S-minimal HSs

of the collection of S-minimal conflict sets (cf. Section 2.1) [Reiter, 1987]. In our case,

conflict sets are S-minimal sets of endogenous tuples that, if not abnormal (only endoge-

nous ones can be abnormal), and together, and possibly in combination with exogenous

tuples, make (5.6) false.

It is easy to verify that the conflict sets of M coincide with the sets in S(Dn) (cf.

Definition 5.3.3 and Remark 5.3.2). As a consequence, conflict sets forM can be computed

in PTIME, the HSs forM contain actual causes forQ, and the HS problem for the diagnosis

problems is of the d-hitting-set kind.

The connection between consistency-based diagnosis and causality allows us, in prin-

ciple, to apply techniques for the former, e.g. [Feldman et al., 2010, Mozetic & Holzbaur,

1994], to the latter.
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Example 5.4.4 (ex. 5.4.1 cont.) The diagnosis problem M = (SD , {S(a4), S(a3)},
Q) gives rise to the HS framework Hn(D) = 〈{S(a4), S(a3)}, {{(S(a3), S(a4)}}〉, with

{S(a3), S(a4)} corresponding to the conflict set c = {S(a4), S(a3)}.

Hn(D) has two minimum HSs: {S(a3)} and {S(a4)}, which are the S-minimal diag-

nosis forM. Then, the two tuples are actual causes for Q (cf. Proposition 5.4.1). From

Proposition 5.4.2, ρ
D
(S(a3)) = ρ

D
(S(a4)) = 1. �

The solutions to the diagnosis problem can be used for computing repairs.

Proposition 5.4.3 Consider a database instance D with only endogenous tuples, a set of

DCs of the form κ : ∀x̄¬(P1(x̄1)∧· · ·∧Pm(x̄m), and their associated “abnormality-aware”

integrity constraints10 in (5.6) (in this case we do not need EndP atoms).

Each S-minimal diagnosis ∆ gives rise to an S-repair ofD, namelyD∆ = Dr{P (c̄) ∈
D | AbP (c̄) ∈ ∆}; and every S-repair can be obtained in this way. Similarly, for C-repairs

using C-minimal diagnoses. �

Example 5.4.5 (ex. 5.4.3 cont.) The instance D = {S(a3), S(a4), R(a4, a3)} has

three (both S- and C-) repairs with respect to the DC κ : ∀xy¬(S(x) ∧ R(x, y) ∧ S(y)),

namely D1 = {S(a3)}, D2 = {S(a4)}, and D3 = {R(a4, a3)}. They can be obtained

as D∆1 , D∆2 , D∆3 from the only (S- and C-) diagnoses, ∆1 = {S(a3)}, ∆4 = {S(a4)},
∆3 = {R(a4, a3)}, resp. �

The kind of diagnosis problem we introduced above can be formulated as a preferred-

repair problem [Bertossi, 2011, sec. 2.5]. For this, it is good enough to materialize tables

for the auxiliary predicates AbP and EndP , and consider the DCs of the form (5.6) (with

the EndP atoms if not all tuples are endogenous), plus the DCs (5.7). The initial extensions

for the AbP predicates are empty.

If D is inconsistent with respect to this set of DCs, the S-repairs that are obtained by

only inserting endogenous tuples into the extensions of the AbP predicates correspond to

subset-minimal diagnosis, and each subset-minimal diagnosis can be obtained in this way.

10Notice that these are not denial constraints.
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5.5 Complexity Results

5.5.1 Complexity of causality and responsibility

In this section we assume D = Dn ∪ Dx, without any assumption on Dn, Dx (other

than disjointness). We start by analysing a more basic decision problem.

Definition 5.5.1 For a BCQQ, the minimal contingency set decision problem (MCSDP) is

about of checking if a set of tuples Γ is an S-minimal contingency set associated to a cause

τ (cf. (2.1)):

MCSDP(Q) := {(D, τ,Γ) | Γ ∈ Cont(D,Q, τ)}. �

Due to the results in Sections 5.3.1 and 5.3.2, it clear that there is a close connection be-

tween MCSDP and the S-repair checking problem [Bertossi, 2011, chap. 5], about deciding

if instance D′ is an S-repair of instance D with respect to a set of integrity constraints. Ac-

tually, the following result is obtained from the PTIME solvability of the S-repair checking

problem for DCs [Chomicki & Marcinkowski, 2005] (see also [Afrati & Kolaitis, 2009]).

Proposition 5.5.1 For a BCQ Q,MCSDP(Q) ∈ PTIME .

Proof: To decide if (D, τ,Γ) ∈MCSDP(Q), it is good enough to observe, from Proposi-

tion 5.3.1, that (D, τ,Γ) ∈MCSDP(Q) iffDr(Γ∪{τ}) is an S-repair forD with respect

to κ(Q). S-repair checking can be done in PTIME in data [Chomicki & Marcinkowski,

2005]. �

We could also consider the decision problem defined as in Definition 5.5.1, but with

C-minimal Γ. We will not use results about this problem in the following. Furthermore, its

connection with the C-repair checking problem is less direct. As one can see from Section

5.3.1, C-minimal contingency sets correspond to a repair semantics somewhere between

the S-minimal and C-minimal repair semantics (a subclass of Srep, but a superclass of

Crep): It is about an S-minimal repair with minimum-cardinality that does not contain a

particular tuple.

Now we establish that RDP is NP-complete for CQs in general. The NP-hardness is

shown in [Meliou et al., 2010c]. Membership of NP is obtained using Proposition 5.5.1.
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Theorem 5.5.1 (a) For every BCQ Q,RDP(Q) ∈ NP .

(b) [Meliou et al., 2010c] There are CQs Q for whichRDP(Q) is NP-hard.

Proof: (a) We give a non-deterministic PTIME algorithm to solve RDP. Non-deterministically

guess a subset Γ ⊆ Dn, return yes if |Γ| < 1
v

and (D, τ, Γ) ∈ MCSDP; otherwise return

no. According to Proposition 5.5.1 this can be done in PTIME in data complexity. �

In order to better understand the complexity of RP, the responsibility computation prob-

lem, we will investigate the functional, non-decision version of RDP.

The main source of complexity when computing responsibilities is related to the hitting-

set problem associated to Hn(D) = 〈Dn,Sn(D)〉 in Remark 5.3.2 (cf. (5.5)). In this case,

it is about computing the cardinality of a minimum hitting set that contains a given vertex

(tuple) τ . That this is a kind of d-hitting-set problem [Niedermeier, 2003] will be useful in

Section 5.5.2.

Our responsibility problem can also be seen as a vertex cover problem on the hyper-

graph

Gn(D) = 〈Dn,Sn(D)〉 (5.17)

associated to Hn(D) = 〈Dn,Sn(D)〉. (That is, the HS framework can be seen as a hyper-

graph.) In it, the hyperedges are the members of Sn(D). Determining the responsibility

of a tuple τ becomes the problem on hypergraphs of determining the size of a minimum

vertex cover (VC)11 that contains vertex τ (among all VCs that contain the vertex). Again,

in this problem the hyperedges are bounded in size by |Q|.12

Example 5.5.1 ForQ : ∃xy(P (x)∧R(x, y)∧P (y)), andD = Dn = {P (a), P (c), R(a, c),

R(a, a)}, S(D) = Sn(D) = {{P (a), R(a, a)}, {P (a), P (c), R(a, c)}}.

D is the set of vertices of hypergraph Gn(D), whose hyperedges are {P (a), R(a, a)}
and {P (a), P (c), R(a, c)}. Its minimal VCs are: vc1 = {P (a)}, vc2 = {P (c), R(a, a)},

11A set of vertices is a VC for a hypergraph if it intersects every hyperedge. Obviously, when we talk of
minimum VC, we are referring to minimal in cardinality.

12We recall that repairs of databases with respect to DCs can be characterized as maximal independent
sets of conflict hypergraphs (conflict graphs in the case of FDs) whose vertices are the database tuples, and
hyperedges connect tuples that together violate a DC [Arenas et al., 2003b, Chomicki & Marcinkowski,
2005].
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vc3 = {R(a, a), R(a, c)}. Then, P (a) is an actual cause with responsibility 1. The other

tuples are actual causes with responsibility 1
2
. �

Remark 5.5.1 To simplify the presentation, we will formulate and address our computa-

tional problems as problems for graphs (instead of hypergraphs). However, our results still

hold for hypergraphs [Lopatenko & Bertossi, 2007]. Actually, the following representation

lemma holds. �

Lemma 5.5.1 There is a fixed database schema S and a BCQQ ∈ L(S), without built-ins,

such that, for every graph G = (V,E) and v ∈ V , there is an instance D for S and a tuple

τ ∈ D, such that the size of a minimum VC of G containing v equals the responsibility of

τ as an actual cause for Q.

Proof: Consider a graph G = (V,E), and assume the vertices of G are uniquely labeled.

Consider the database schema with relations Ver(v0) and Edges(v1, v2, e), and the con-

junctive query Q : ∃v1v2e(Ver(v1) ∧ Ver(v2) ∧ Edges(v1, v2, e)). Ver stores the vertices

of G, and Edges , the labeled edges. For each edge (v1, v2) ∈ G, Edges contains n tuples

of the form (v1, v2, i), where n is the number of vertices in G. All the values in the third

attribute of Edges are different, say from 1 to n × |E|. The size of the database instance

obtained through this padding of G is still polynomial in size. It is clear that D |= Q.

Assume VC is the minimum vertex cover of G that contains the vertex v. Consider

the set of tuples Λ = {Ver(x) | x ∈ VC}. Since v ∈ VC , Λ = Λ′ ∪ {Ver(v)}. Then,

D r (Λ′ ∪ Ver(v)) 6|= Q. This is because for every tuple Edge(vi, vj, k) in the instance,

either vi or vj belongs to VC . Due to the minimality of VC , D r Λ′ |= Q.

Therefore, tuple Ver(v) is an actual cause for Q. Suppose Γ is a C-minimal contin-

gency set associated to Ver(v). Due to the C-minimality of Γ, it entirely consists of tuples

in Ver . It holds that D r (Γ ∪ {Ver(v′)}) 6|= Q and D r Γ |= Q. Consider the set

VC ′ = {x | Ver(x) ∈ Γ} ∪ {v′}. Since D r (Γ ∪ {Ver(v′)}) 6|= Q, for every tuple

Edge(vi, vj, k) in D, either vi ∈ V C ′ or vj ∈ V C ′. Therefore, VC ′ is a minimum vertex

cover of G that contains v. It holds that ρ
D
(Ver(v)) = 1

1+|Γ| . So, the size of a minimum

vertex cover of G that contains v can be obtained from ρ
D
(Ver(v)). �
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Having represented our responsibility problem as a graph-theoretic problem, we first

consider a functional computational problems in graphs.

Definition 5.5.2 The minimal VC membership problem (MVCMP) consists in, given a

graph G = (V,E), an a vertex v ∈ V as inputs, compute the size of a minimum vertex

cover of G that contains v. �

Lemma 5.5.2 Given a graph G and a vertex v in it, there is a graph G′ extending G that

can be constructed in polynomial time in |G|, such that the size of a minimum VC for G

that contains v and the size of a minimum VC for G′ coincide.

Proof: The size of VCG(v), the minimum vertex cover of G that contains the vertex v, can

be computed from the size of IG, the maximum independent set of G, that does not contain

v. In fact,

|VCG(v)| = |G| − |IG|. (5.18)

Since I is a maximum independent set that does not contain v, it must contain one of the

adjacent vertices of v (otherwise, I is not maximum, and v can be added to I). Therefore,

|VCG(v)| can be computed from the size of a maximum independent set I that contains v′,

one of the adjacent vertices of v.

Given a graph G and a vertex v′ in it, a graph G′ that extends G can be constructed

in polynomial time in the size of G, such that there is a maximum independent set I of

G containing v′ iff v′ belongs to every maximum independent set of G′ iff the sizes of

maximum independent sets forG andG′ differ by one [Lopatenko & Bertossi, 2007, lemma

1]. Actually, the graph G′ in this lemma can be obtained by adding a new vertex v′′ that is

connected only to the neighbors of v′. Its holds:

|IG| = |I ′G| − 1, (5.19)

|I ′G| = |G′| − |VCG′ |, (5.20)

where VCG′ is a minimum vertex cover of G′. From (5.18), (5.19) and (5.20), we obtain:

|VCG(v)| = |VCG′|. �

From Lemma 5.5.2 and the FPNP(log(n))-completeness of determining the size of a

maximum clique in a graph [Krentel, 1988], we obtain:
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Proposition 5.5.2 The MVCMP problem for graphs is FPNP(log(n))-complete.

Proof: We prove membership by describing an algorithm in FPNP(log(n)) for computing

the size of the minimum vertex cover of a graph G = (V,E) that contains a vertex v ∈ V.

We use Lemma 5.5.2, and build the extended graph G′.

The size of a minimum VC for G′ gives the size of the minimum VC of G that contains

v. Since computing the maximum cardinality of a clique can be done in time FPNP(log(n))

[Krentel, 1988], computing a minimum vertex cover can be done in the same time (just

consider the complement graph). Therefore, MVCMP belong to FPNP (log(n)).

Hardness can be obtained by a reduction from computing minimum vertex covers in

graphs to MVCMP. Given a graph G construct the graph G′ as follows: Add a vertex v to

G and connect it to all vertices of G. It is easy to see that v belongs to all minimum vertex

covers of G′. Furthermore, the sizes of minimum vertex covers for G and G′ differ by one.

Consequently, the size of a minimum vertex cover of G can be obtained from the size of

a minimum vertex cover of G′ that contains v. Computing the minimum vertex cover is

FPNP(log(n))-complete. This follows from the FPNP(log(n))-completeness of computing the

maximum cardinality of a clique in a graph [Krentel, 1988]. �

From Lemma 5.5.1 and Proposition 5.5.2 we obtain the complexity result for RP. Mem-

bership can also be obtained from Theorem 5.5.1.

Theorem 5.5.2 (a) For every BCQ without built-ins,Q, computing the responsibility of a

tuple as a cause for Q is in FPNP(log(n)).

(b) There is a database schema and a BCQ Q, without built-ins, such that computing the

responsibility of a tuple as a cause for Q is FPNP(log(n))-complete. �

Now we address the most responsible causes problem, MRCDP (cf. Definition 2.2.3).

We use the connection with consistent query answering of Section 5.3.2.3, namely Corol-

lary 5.3.4, and the PNP (log(n))-completeness of consistent query answering under the C-

repair semantics for queries that are conjunctions of ground atoms and a particular DC

[Lopatenko & Bertossi, 2007, theo. 4].

Theorem 5.5.3 (a) For every BCQ without built-ins,MRCDP(Q) ∈ PNP(log(n)).
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(b) There is a database schema and a BCQ Q, without built-ins, for whichMRCDP(Q)

is PNP(log(n))-complete.

Proof: (a) To show that MRCDP(Q) belongs to PNP(log(n)), consider first the hitting

set framework Hn(D) = 〈Dn,Sn(D)〉 (cf. Definition 5.3.3 and 5.5) and its associated

hypergraph Gn(D) (cf. (5.17)).

It holds that τ is a most responsible cause for Q iff Hn(D) has a C-minimal hitting set

that contains τ (cf. Proposition 5.3.6). Therefore, τ is a most responsible cause for Q iff τ

belongs to some minimum vertex cover of Gn(D).

It is easy to see that Gn(D) has a minimum vertex cover that contains τ iff Gn(D) has a

maximum independent set that does not contains τ . Checking if τ belongs to all maximum

independent set of Gn(D) can be done in PNP(log(n)) [Lopatenko & Bertossi, 2007, lemma

2].

If τ belongs to all independent sets of Gn(D), then (D, τ) 6∈ MRCDP(Q); otherwise

(D, τ) ∈MRCDP(Q). As a consequence, the decision can be made in time PNP(log(n)).

(b) The proof is by a reduction, via Corollary 5.3.4, from consistent query answering un-

der the C-repair semantics for queries that are conjunctions of ground atoms, which was

proved to be PNP(log(n))-complete in [Lopatenko & Bertossi, 2007, theo. 4]. Actually,

that proof (of hardness) uses a particular database schema S and a DC κ. In our case, we

can use the same schema S and the violation query V κ associated to κ (cf. Section 5.3.2).�

From Proposition 5.3.6 and the FPNP(log(n))-completeness of determining the size of

C-repairs for DCs [Lopatenko & Bertossi, 2007, theo. 3], we obtain the following for the

computation of the highest responsibility value.

Proposition 5.5.3 (a) For every BCQ without built-ins, computing the responsibility of

the most responsible causes is in FPNP(log(n)).

(b) There is a database schema and a BCQ Q, without built-ins, for which computing the

responsibility of the most responsible causes is FPNP(log(n))-complete.

Proof: (a) To show the membership of FPNP(log(n)), consider the hypergraph Gn(D) as

obtained in Theorem 5.5.3. The responsibility of most responsible causes for Q can be
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obtained from the size of the minimum vertex cover of Gn(D) (cf. Proposition 5.3.6). The

size of the minimum vertex cover in a graph can be computed in FPNP(log(n)), which is

obtained from the membership of FPNP(log(n)) of computing the maximum cardinality of a

clique in graph [Krentel, 1988].

It is easy to verify that minimum vertex covers in hyprgraphs can be computed in the

same time.

(b) This is by a reduction from the problem of determining the size of C-repairs for DCs

shown to be FPNP(log(n))-complete in [Lopatenko & Bertossi, 2007, theo. 3]. Actually,

that proof (of hardness) uses a particular database schema S and a DC κ. In our case, we

may consider the same schema S and the violation query V κ associated to κ (cf. Section

5.3.2).

The size of C-repairs for an inconsistent instance D of the schema S with respect to κ

can be obtained from the responsibility of most responsible causes for V κ (cf. Corollary

5.3.2). �

5.5.2 FPT of responsibility

We need to cope with the intractability of computing most responsible causes. The area of

fixed parameter tractability (FPT) [Flum, 2006] provides tools to attack this problem. In

this regard, we recall that a decision problem with inputs of the form (I, p), where p is a

distinguished parameter of the input, is fixed parameter tractable (or belongs to the class

FPT), if it can be solved in time O(f(|p|) · |I|c), where c and the hidden constant do not

depend on |p| or |I|, and f does not depend on |I|.
In our case, the parameterized version of the decision problemRDP(Q) (cf. Definition

2.2.2) is denoted withRDPp(Q), and the distinguished parameter is k, such that v = 1
k
.

ThatRDPp(Q) belongs to FPT can be obtained from its formulation as a d-hitting-set

problem (d being the fixed upper bound on the size of the sets in the set class); in this case

about deciding if there is a HS that contains the given tuple τ that has cardinality smaller

that k. This problem belongs to FPT.

Theorem 5.5.4 For every BCQ Q, RDPp(Q) belongs to FPT, where the parameter is the

inverse of the responsibility bound.

Owner
Highlight

Owner
Sticky Note
hypergraphs
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Proof: First, there is a PTIME parameterized algorithm for the d-hitting-set problem about

deciding if there is a HS of size at most k that runs in time O(ek + n), with n the size of

the underlying set and e = d− 1 + o(d−1) [Niedermeier, 2003]. In our case, n = |D|, and

d = |Q| (cf. also [Fernau et al., 2010]).

Now, to decide if the responsibility of a given tuple τ is greater than v = 1
k
, we consider

the associated hypergraph Gn(D), and we decide if it has a VC that contains τ and whose

size is less than k. In order to answer this, we use Lemma 5.5.2, and build the extended

hypergraph G′.

The size of a minimum VC for G′ gives the size of the minimum VC of Gn(D) that

contains τ . If Gn(D) has a VC that contains τ of size less than k, then G′ has a VC of size

less than k. If G′ has a VC of size less than k, its minimum size for a VC is less than k.

Since this minimum is the same as the size of a minimum VC for Gn(D) that contains τ ,

Gn(D) has a VC of size less than k that contains τ . As a consequence, it is good enough

to decide if G′ has a VC of size less than k. For this, we use the HS formulation of this

hypergraph problem, and the already mentioned FPT algorithm. �

This result and the corresponding algorithm sketched in its proof show that the higher

the required responsibility degree, the lower the computational effort needed to compute

the actual causes with at least that level of responsibility. In other terms, parameterized al-

gorithms are effective for computing actual causes with high responsibility or most respon-

sible causes. In general, parameterized algorithms are very effective when the parameter is

relatively small [Flum, 2006].

Now, in order to compute most responsible causes, we could apply, for each actual

cause τ , the just presented FPT algorithm on the hypergraph Gn(D), starting with k = 1,

i.e. asking if there is VC of size less than 1 that contains τ . If the algorithm returns a

positive result, then τ is a counterfactual cause, and has responsibility 1. Otherwise, the

algorithm will be launched with k = 2, 3, . . . , |Dn|, until a positive result is returned. (The

procedure can be improved through binary search on k = 1, 2, 3, . . . ,m, with m possibly

much smaller than |D|.)

The complexity results and algorithms provided in this section can be extend to UBCQs.

This is due to Remark 5.3.1 and the construction of Sn(D), which the results in this section
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build upon.

For the d-hitting-set problem there are also efficient parameterized approximation algo-

rithms [Brankovic & Fernau, 2012]. They could be used to approximate the responsibility

problem. Furthermore, approximation algorithms developed for the minimum VC problem

on bounded hypergraphs [Halperin, 2002, Okun, 2005] should be applicable to approxi-

mate most responsible causes for query answers. Via the causality/repair connection (cf.

Section 5.3.2.3), it should be possible to develop approximation algorithms to compute

S-repairs of particular sizes, C-repairs, and consistent query answers with respect to DCs.

5.5.3 Some complexity results for model-based diagnosis

It is known that consistency-based diagnosis decision problems can be unsolvable [Re-

iter, 1987]. However, there are decidable classes of FO diagnosis specifications, and those

classes are amenable to complexity analysis. However, there is little research on the com-

plexity analysis of solvable classes of consistency-based diagnosis problems. The connec-

tion we established in the previous sections between causality, repairs and consistency-

based diagnosis can be used to obtain new algorithmic and complexity results for the latter.

Without trying to be exhaustive about this, which is beyond the scope of this work, we give

an example of the kind of results that can be obtained.

Considering the diagnosis problem we obtained in Section 5.4, we can define a class of

diagnosis problems. Cf. Example 5.4.1, in particular (5.12), for motivation.

Definition 5.5.3 A disjunctive positive (DP) diagnosis specification Σ is a consistent FO

logical theory, such that:

(a) Σ has a signature (schema) consisting of a finite set of constants, a set of predicates S,

a set Sab of predicates of the form AbR,13 with R ∈ S, and AbR with the same arity of

R. S and Sab are mutually disjoint.

(b) Σ is inconsistent with ABS := {∀x̄(AbR(x̄)→ false) | R ∈ S}.

(c) Consists of:

13Or any other “abducible” predicates that are different from those in S.
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(c1) Sentences of the form ∀x̄(C(x̄) −→
∨
iAbRi

(x̄i)), with x̄i ⊆ x̄, and C(x̄) a

conjunction of atoms that does not include Ab-atoms of any kind.

(c2) Sentences of the forms ∀x̄(AbR(x̄) −→ (R(x̄) ∧ S(x̄))), with S ∈ S.

(c3) A finite background universal theory T expressed in terms of predicates in S (and

constants) that has a unique Herbrand model.14 �

As above, a diagnosis is a set of AbR-atoms that, when assumed to be true, restores the

consistency of the correspondingly modified Σ ∪ ABS .

There are at least two important computational tasks that emerge, namely, given a dis-

junctive positive (DP) diagnosis specification Σ together with ABS :

1. The minimum-cardinality diagnosis (MCD) problem, about computing

minimum-cardinality diagnoses.

2. The minimal membership diagnosis, (MMD) about computing minimum-cardinality

diagnoses that contain a given Ab-atom.

It is not difficult to see that these problems are computable (or solvable in their decision

versions). Now we can obtain complexity lower bounds for them. Actually, in Section 5.4,

the responsibility and most responsible causes problem were reduced to diagnosis problems

for specifications that turned out to be disjunctive positive (see (5.12)).

More specifically, Proposition 5.4.2 reduces computing responsibility of a tuple to com-

puting the size of a minimum-cardinality diagnosis that contains the tuple. Furthermore, as

a simple corollary of Proposition 5.4.2, we obtain the computation of minimum-cardinality

diagnoses allows us to compute most responsible causes. Now, combining all this with

Proposition 5.5.3 and Theorem 5.5.2, we obtain the following lower bounds for our diag-

nosis problems.

Theorem 5.5.5 For disjunctive positive diagnosis specifications, the MCD and MMD prob-

lems are FPNP(log(n))-hard in the size of their underlying Herbrand structure. �

14This condition is clearly satisfied by the logical reconstruction of a relational database, but can be relaxed
in several ways.
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Preferred Causes from Preferred Repair

In QA-causality, the exogenous/endogenous partition could capture simple forms of pref-

erences that can be expressed in terms of restricting causes to be among certain tuples or

tables. In this direction, a tuple is either exogenous or endogenous. However, some prob-

lems would benefit from more complex forms of preferences. We can think of a priority

relation among tuples, in such a way that, for example, we prioritize -as causes- tuples in a

given relation R, and we are not interested in tuples in another relation S. So, the user can

specify a priority relation between the two relations, or different scores for these relations

[Meliou et al., 2011b].

In Section 5.3.1 we characterized causes and most responsible causes in terms of S-

repairs and C-repairs, resp. We could generalize the notion of a cause and/or its respon-

sibility by using, in principle, any repair semantics rSem. The latter is represented by a

class of repairs ReprSem(D,Σ), of D with respect to a set of denial constraints. This class

contains consistent instances over the same schema as D, and satisfy additional conditions.

Actually, a repair semantics is based on two elements that determine ReprSem(D,Σ): (a) the

class of admissible “repair actions” (updates to restore consistency), and (b) a form of min-

imality condition that forces (minimal) repairs to stay as close as possible to the original

instance D [Bertossi, 2011, sec. 2.5].

When dealing with (sets of) denial constraints, the repair actions can only be of certain

kinds. Usually tuple deletions have been considered. This is the case of the S- and C-

repairs we have considered in this work so far. We could go beyond and consider the

notion of prioritized repair [Staworko et al., 2012]. Also changes of attribute values can be

the chosen repair actions, including the use of null values, to “destroy” joins (again, with

different semantics, e.g. with nulls à la SQL [Bravo et al., 2006, Bertossi & Li, 2013]).

In this chapter we explore the possibility of introducing a notion of preferred cause

that is based on a given repair semantics. This idea is inspired by (and generalizes) the

65
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characterization of causes in terms of repairs that we obtained before, namely (5.1), (5.2),

Proposition 5.3.1, and Corollary 5.3.1.

If we define causes and their (minimal) contingency sets on the basis of a given repair

semantics, the minimality condition involved in the latter will have an impact on the notion

of minimal (or preferred) contingency set, and indirectly, on the notions of responsibility

and most responsible cause. We could say that the efforts in [Halpern, 2014, Halpern,

2015a] to modify the original definition of HP-causality are about considering more appro-

priate restrictions on contingencies. Since in some cases the original HP-model does not

provide intuitive results regarding causality, the modifications avoid this by recognizing

some contingencies as “unreasonable” or “farfetched”.

6.1 Prioritized Repairs

The prioritized repairs in [Staworko et al., 2012] are based on a priority relation, �, on

the set of database tuples. In the case of a pair of (mutually) conflicting tuples, i.e. that

simultaneously violate a constraint in a given set set of DCs (possibly in company of other

tuples), the repair process reflects the user preference -as captured by the priority relation-

on the tuples that are privileged to be kept in the database, i.e. in the intended repairs.

Given such a priority relation, in [Staworko et al., 2012] different classes of prioritized

repairs are introduced, namely the class of globally optimal repairs, that of Pareto-optimal

repairs, and that of completion-optimal repairs. Intuitively, each class relies on a different

optimality criterion that is used to extend the priority relation � on pairs of conflicting

facts to a priority relation on the set of S-repairs. As a consequence, each of these three

classes is contained in that of the S-repairs. In particular, all these repairs are based on

tuple deletions.

Let us denote with Rep�,X (D,Σ) the class of all prioritized repairs based on � and the

optimality criterion X . Its elements are called (�,X)-prioritized repairs of D with respect

to a the set Σ of denial constraints. It holds Rep�,X (D,Σ) ⊆ Srep(D,Σ), and then, all the

elements of Rep�,X (D,Σ) are subsets of D.

In order to show a concrete class Rep�,X (D,Σ), we first recall the definitions of priority

relation and global-optimal repair from [Staworko et al., 2012].



67

Definition 6.1.1 Given an instanceD and a set of denial constraints Σ , a binary relation�
on D is a priority relation with respect to Σ if: (a)� is acyclic, and (b) for every τ, τ ′ ∈ D,

if τ � τ ′, then τ and τ ′ are mutually conflicting.1 �

Definition 6.1.2 Let D be an instance, Σ a set of DCs, and � a corresponding priority

relation. Let D′ and D′′ be two consistent sub-instances of D. D′ is a global improvement

of D′′ if D′ 6= D′′, and for every tuple τ ′ ∈ D′′ r D′, there exists a tuple τ ∈ D′ r D′′

such that τ � τ ′. D′ is a global-optimal repair of D, if D′ is an S-repair and does not have

a global improvement. �

In this definition, the optimality criterion, a possible X above, is that of global-optimal

repair, or (�, go)-repair, which leads to a class Rep�,go(D,Σ). We consider this repair

semantics just for illustration purposes.

Example 6.1.1 (ex. 1.1.1 cont.) Assume the instance is subject to the following denial

constraint:

κ : ∀ JName, ∀ #Paper ¬(Author(AuName, JName) ∧ (6.1)

Journal(JName, Topic,#Paper) ∧ AuName = John ∧ Topic = XML),

capturing the condition that “John does not have a journal paper on XML”.

D is inconsistent with respect to κ, and contains the following sets of conflicting tuples:

C1 = {Author(John,TKDE ), Journal(TKDE ,XML, 30 )},

C2 = {Author(John,TODS ), Journal(TODS ,XML, 32 )}.

D has the following S-repairs, each obtained by deleting one tuple from each of C1 and C2,

1We should say {τ, τ ′} is a conflict, i.e. the two tuples jointly participate in the violation of one of the
DCs in Σ.
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to resolve the conflicts:

D1 = {Author(TOM ,XML), Journal(TKDE ,CUBE , 31 ),Author(JOHN ,TODS ),

Journal(TKDE ,XML, 30 )}

D2 = {Author(TOM ,XML), Journal(TKDE ,CUBE , 31 ), Journal(TKDE ,XML, 30 ),

Journal(TODS ,XML, 32 )}

D3 = {Author(TOM ,XML), Journal(TKDE ,CUBE , 31 ),Author(JOHN ,TKDE ),

Journal(TODS ,XML, 32 )}

D4 = {Author(TOM ,XML), Journal(TKDE ,CUBE , 31 ),Author(JOHN ,TKDE ),

Author(JOHN ,TODS )}

(a) Now, assume a user prefers to resolve a conflict by removing tuples from the Author

table rather than the Journal table, maybe because he considers the latter more reliable than

the former. This can be expressed with the following priority relationships on conflicting

tuples: Journal(TKDE, XML, 30)� Author(John, TKDE) and Journal(TODS, XML, 32)�
Author(John, TODS).

In this case only D2 is a global-optimal repair. Actually, D2 is a global improvement

over each of D1, D3 and D4. For example, if we consider D1, then D2 r D1 = { Au-

thor(JOHN, TODS), Journal(TKDE, XML, 30)} and D1 rD2 = { Author(JOHN, TODS),

Journal(TKDE, XML, 30)}. We can see that, for each tuple in D2 rD1, there is a tuple in

D1 r D2 that has a higher priority. Therefore, D2 is a global improvement on D1. So, in

this case Rep�,go(D, κ) = {D2}

In this case, the uniqueness of the global-optimal repair is quite natural as the preference

relation among conflicting tuples is a total relation. So, we know how to resolve every

conflict according to the user preferences.

(b) For a more subtle situation, assume the user has the priorities as before, but in

addition he tends to believe that John has a paper in TODS. In this case we have only

the relationship Journal(TKDE, XML, 30) �′ Author(John, TKDE), and no preference for

resolving the second conflict. Now both D1 and D2 are global-optimal repairs. That is,

now Rep�
′,go(D, κ) = {D1, D2}. �
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6.2 Preferred Causes from Prioritized Repairs

According to the motivation provided at the beginning of this chapter, we now define pre-

ferred causes on the basis of a class of prioritized repairs. (Compare (6.2) below with (5.1)

and (5.2).) To keep things simple, we concentrate on single BCQs, Q, whose associated

denial constraints are denoted by κ(Q).

In Section 5.3.2.2 actual causes and their minimal contingency sets for a UBCQ were

characterized as the minimal hitting sets of the collection C of minimal subsets of a database

that entail the query. Those minimal hitting sets are obtained by removing at least one tuple

from each of the elements of C (cf. Proposition 5.3.6). At this point, user preferences, or

priorities, could be applied to tuples that belong to a same set C.

Definition 6.2.1 Given an instanceD and a BCQQ, tuples τ and τ ′ are jointly-contributing

if τ 6= τ ′, and there exists an S-minimal Λ ⊆ D such that Λ |= Q and τ, τ ′ ∈ Λ. �

Now we define priority relations on jointly-contributing tuples.

Definition 6.2.2 Given an instance D and a BCQ Q, a binary relation �c on D is a causal

priority relation with respect to Q if: (a) �c is acyclic, and (b) for every τ, τ ′ ∈ D, if

τ �c τ ′, then τ and τ ′ are jointly-contributing tuples. �

This definition introduces a natural notion of preference on causality. Actually, this

way of approaching priorities on causes is in (inverse) correspondence with preference on

repairs as based on priority relations on conflicting tuples. To see this, first observe that for

a given instance D and BCQ Q: τ and τ ′ are jointly-contributing tuples for Q iff τ and τ ′

are mutually conflicting tuples for κ(Q).

Next, in the context of prioritized repairs, a priority relation reflects a user preference

on tuples that are preferred to be kept in the database. This is the inverse of causality,

where a causal priority relation, as we defined it, reflects the tuples that are preferred to

be (hypothetically or counterfactually) removed from database, to make them preferred

causes.

In the following assume �rc is the inverse of a causal priority relation �c. That is,

τ �rc τ ′ iff τ ′ �c τ . Clearly, �rc is acyclic, and can be imposed, with the expected result,

on pairs of conflicting tuples. As a consequence, �rc can be used to define prioritized

repairs.
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Definition 6.2.3 Let D be an instance, Q a BCQ, τ a tuple in D, �c a causal priority

relation on D’s tuples.

(a) Diff �
r
c ,X(D, κ(Q), τ) := {D rD′ | D′ ∈ Rep�

r
c ,X(D, κ(Q)), and τ ∈ D rD′}. (6.2)

(b) τ ∈ D is a (�c,X)-preferred cause for Q iff Diff �
r
c ,X(D, κ(Q), τ) 6= ∅. �

Notice that every (�c,X)-preferred cause is also an actual cause. This follows from

Proposition 5.3.1 and the fact that prioritized repairs are also S-repairs.

Similarly to Proposition 5.3.2, for each Λ ∈ Diff �
r
c ,X(D, κ(Q), τ), it holds that τ ∈ Λ,

τ is a (�c,X)-preferred cause, and also an actual cause for Q with S-minimal contin-

gency set Λ r {τ}. In particular, τ ’s responsibility can be defined and computed as be-

fore, but now restricting its contingency sets to those of the form Λ r {τ}, with Λ ∈
Diff �

r
c ,X(D, κ(Q), τ). In this way, a causal priority relation may affect the responsibility

of a cause (with respect to the non-prioritized case).

Notation: Cont�c,X(D,Q, τ) := {Λ r {τ} | Λ ∈ Diff �
r
c ,X(D, κ(Q), τ)} is the

class of all S-minimal contingency sets for a (�c,X)-preferred cause τ .

Example 6.2.1 (ex. 6.1.1 cont.) The following BCQ query Q is true in D:

∃ Jname,∃ #Paper (Author(John,Jname) ∧ Journal(Jname,XML,#Paper));

and its associated DC κ(Q) is κ in (6.1).

We want to obtain the preferred causes for Q being, possibly unexpectedly, true in D,

with the following preferences: (a) We prefer those among the Author tuples. (b) It is

likely that John does have a paper in TODS. So, we prefer Author(John, TODS) not to be

the cause.

These causal priorities are in inverse correspondence with those in the second case

of Example 6.1.1(b) about priorities for repairs. That is, for our causal priority relation

�c here, its inverse �rc is �′ in Example 6.1.1(b). There we had Rep�
′,go(D, κ(Q)) =

{D1, D2}, which we can use to apply Definition 6.2.3.

We obtain as the globally-optimal causes, i.e. as (�c, go)-causes: Author(John, TKDE),

Author(TODS, XML, 32) and Author(John, TODS), all with the same responsibility, 1
2
. �

Notice that Definition 6.2.3 can be easily extended to UBCQs. This is done, as earlier

In this work, by considering the set Σ of denial constraints associated to a UBCQ. In the



71

other direction, we recall that if we start with a set of DCs Σ, the corresponding UBCQ is

denoted with VΣ.

As we did in the previous sections of this work, we could take advantage of algorithmic

and complexity results about prioritized repairs [Staworko et al., 2012, Fagin et al., 2015],

to obtain complexity results for preferred causes problems. As an example, we establish the

complexity of the minimal contingency set decision problem for (�c, go)-preferred causes.

More precisely, for an instance D and a UBCQ Q, the minimal preference-contingency set

(decision) problem is about deciding if a set of tuples Γ is an S-minimal contingency set

associated to a (�c, go)-preferred cause τ .

Definition 6.2.4 For a UBCQQ, the minimal preference-contingency set decision problem

is about membership of:

MPCDP(Q) := {(D,�c, τ,Γ) | τ ∈ D,Γ ⊆ D, and Γ ∈ Cont�c,go(D,Q, τ)}. �

From Definition 6.2.3, there is a close connection betweenMPCDP and the global-

optimal repair checking problem, i.e. about deciding if an instance D′ is a (�, go)-repair

of D with respect to a set of denial constraints. If we accept functional dependencies (FDs)

among our denial constraints (and then, UBCQs that involve inequalities), the following

result can be obtained from the NP-completeness of globally-optimal repair checking [Sta-

worko et al., 2012] for FDs.

Proposition 6.2.1 For a UBCQ Q with inequalities,MPCDP(Q) is NP-hard.

Proof: It is good enough to reduce globally-optimal repair checking to our contingency

checking problem. So, consider an inconsistent instance D with respect to a set of denial

constraint Σ, a priority relation for repairs�, andD′ ⊆ D. To check ifD′ ∈ Rep�,go(D,Σ)

we can check, for an arbitrary element τ ∈ D r D′, if (D,�r, τ,D r (D′ ∪ {τ}) ∈
MPCDP(VΣ). �

It is worth contrasting this result with the tractability result in Proposition 5.5.1 for

the minimal contingency set decision problem (MCSDP) for actual causes. Notice that

Proposition 5.5.1 still holds for UBCQs with inequality.

Notice that we could generalize the notion of preferred cause by appealing to any notion

of repair. More precisely, if we have a repair semantics rSem (based on tuple deletions
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for DCs), we could replace Rep�,X(D, κ(Q)) in (6.2) by ReprSem(D, κ(Q)). However, to

obtain the intended results for causes, we have to be careful, as above, about a possible

inverse relationship between preference on repairs and preference on causes.

6.3 Endogenous Repairs

The partition of a database into endogenous and exogenous tuples that is used in the causal-

ity setting may also be of interest in the context of repairs. Considering that we should have

more control on endogenous tuples than on exogenous ones, which may come from exter-

nal sources, it makes sense to consider endogenous repairs, which would be obtained by

updates (of any kind) on endogenous tuples only. (Of course, a symmetric treatment of

“exogenous” repairs is also possible; what is relevant here is the partition.)

For example, in the case of DCs, endogenous repairs would be obtained by deleting

endogenous tuples only. More formally, given D = Dn ∪ Dx, possibly inconsistent with

a set of DCs Σ, an endogenous repair D′ of D is a maximally consistent sub-instance of

D with D rD′ ⊆ Dn, i.e. D′ keeps all the exogenous tuples of D. If endogenous repairs

form the class Srepn(D,Σ), it holds Srepn(D,Σ) ⊆ Srep(D,Σ).

Example 6.3.1 Consider D = Dn ∪Dx, with Dn = {R(a2, a1), R(a4, a3), S(a3), S(a4)}
and Dx = {R(a3, a3), S(a2)}, and the DC κ : ¬∃xy(S(x) ∧R(x, y) ∧ S(y)).

Here, Srep(D, κ(Q)) = {D1, D2, D3}, with D1 = {R(a2, a1), R(a4, a3), R(a3, a3),

S(a4), S(a2)}, D2 = {R(a2, a1), S(a3), S(a4), S(a2)}, and D3 = {R(a2, a1), R(a4, a3),

S(a3), S(a2)}. The only endogenous S-repair is D1. �

In this section, without trying to be exhaustive or detailed, we consider the possibility of

defining endogenous repairs on the basis of a suitable priority relation � on tuples,2 while

at the same time taking advantage of the op optimality condition considered in Section 6.1.3

First, if we assume that relation �′, the extension of �, is such, that τ �′ τ ′ when

τ ∈ Dx and τ ′ ∈ Dn (�′ is� if the latter already has this property), then it is easy to verify

that every endogenous S-repair globally improves any non-endogenous S-repair. As a con-

sequence, if there is an endogenous S-repair, then all the (�′, go)-repairs are endogenous.
2Pairs of conflicting tuples would inherit the priority relationships from the general priority relation.
3Of course, we could use other optimality criteria at this points, but considering all possibilities is beyond

the scope of this work.
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Notice that the extension �′ may destroy the acyclicity assumption on the priority relation,

because we are starting from a given (acyclic) relation �, which we are now extending.

It might be the case that there is no endogenous S-repair, in which case non-endogenous

S-repairs would not be improved by an endogenous one. So, if we want only endogenous

repairs, we can add an extra, dummy predicate D(·) to the schema, and the endogenous

tuple D(d) to D. We modify every DC, say κ : ← C(x̄), by adding an extra, dummy

condition: κd :← D(d), C(x̄). In this case, the S-repairs will be: Dd := D r {D(d)},
which is endogenous, and also all those S-repairs of D with respect to Σ (now each includ-

ing D(d)). If we assume that D(d) �′ τ , for every τ ∈ Dn, then every non-endogenous

S-repair will be improved by Dd, and will be discarded.

If we get rid of the original priority relationships τ � τ ′, with τ ∈ Dn, τ ′ ∈ Dx, if any,

then the (�′, go)-repairs of D ∪ {D(d)} with respect to Σd will be all endogenous, namely

Dd plus the D′ ∪ {D(d)}, where D′ is an endogenous (�, go)- repair of D with respect

to Σ. In particular, if the only priority relationships are D(d) � τ , with τ ∈ Dn, then we

obtain as repairs: Dd plus all the endogenous S-repairs of D with respect to Σ (each of

them now including also the tuple D(d)).

6.4 Null-Based Causes

Consider an instance D = {R(c1, . . . , cn), . . .} that may be inconsistent with respect to a

set of DCs. The allowed repair updates are changes of attribute values by the constant null.

We assume that null does not join with any other value, including null itself.

In order to keep track of changes, we may introduce numbers as first arguments in tu-

ples, as global tuple identifiers (ids). So, D becomes D = {R(1; c1, . . . , cn), . . .}. Assume

that id(τ) returns the id of the tuple τ ∈ D. For example, id(R(1; c1, . . . , cn)) = 1.

If, by updating D into D′ in this way, the value of the ith attribute in R is changed to

null, then the change is captured as the stringR[1; i]. These strings are collected forming the

set Diff null(D,D′). For example, if D = {R(1; a, b), S(2; c, d), S(3; e, f)} is changed into

D′ = {R(1; a, null), S(2; null , d), S(3; null , null)}, we have Diff null(D,D′) = {R[1; 2],

S[2; 1], S[3; 1], S[3; 2]}.

A null-repair of D with respect to a set of DCs Σ is a consistent instance D′, such
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that Diff null(D,D′) is minimal under set inclusion.4 Repnull(D,Σ) denotes the class of

null-based repairs of D with respect to Σ.

Example 6.4.1 (ex. 6.3.1 cont.) Consider the following inconsistent instance with respect

to DC κ : ¬∃xy(S(x) ∧R(x, y) ∧ S(y)):

D = {R(1; a2, a1), R(2; a3, a3), R(3; a4, a3), S(4; a2), S(5; a3), S(6; a4)}.
For simplicity, we do not make any difference between endogenous and exogenous

tuples. Here, the class of null-based repairs, Repnull(D, κ), is formed by:

D1 = {R(1; a2, a1), R(2; a3, a3), R(3; a4, a3), S(4; a2), S(5; null), S(6; a4)},
D2 = {R(1; a2, a1), R(2; null , a3), R(3; a4, null), S(4; a2), S(5; a3), S(6; a4)},
D3 = {R(1; a2, a1), R(2; null , a3), R(3; a4, a3), S(4; a2), S(5; a3), S(6; null)},
D4 = {R(1; a2, a1), R(2; a3, null), R(3; a4, null), S(4; a2), S(5; a3), S(6; a4)},
D5 = {R(1; a2, a1), R(2; a3, null), R(3; null , a3), S(4; a2), S(5; a3), S(6; a4)},
D6 = {R(1; a2, a1), R(2; a3, null), R(3; a4, a3), S(4; a2), S(5; a3), S(6; null)}.

Here, Diff null(D,D1) = {S[5; 1]}, and Diff null(D,D6) = {R[2; 2], S[6; 1]}. �

According to the motivation provided at the beginning of this section, we can now

define causes appealing to the class of null-based repairs of D. Since repair actions in this

case, are attribute-value changes, causes can be defined at both the tuple and attribute levels.

The same applies to the definition of responsibility (in this case generalizing Proposition

5.3.2).

Definition 6.4.1 For D an instance and Q a BCQ, and τ ∈ D be a tuple of the form

R(i; c1, . . . , cn).

(a) R[i; cj] is a null-based attribute-value cause for Q if there is D′ ∈ Repnull(D,

κ(Q)) with R[i; j] ∈ Diff null(D,D′).

(That is, the value cj for attribute Aj in the tuple is a cause if it is changed into a null

in some repair.)

(b) τ is a null-based tuple cause for Q if some R[i; cj] is a null-based attribute-value

cause for Q.
4An alternative, but equivalent formulation can be found in [Bravo et al., 2006, Bertossi & Li, 2013].
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(That is, the whole tuple is a cause if at least one of its attribute values is changed

into a null in some repair.)

(c) The responsibility, ρt-null(τ), of τ , a null-based tuple cause for Q, is the inverse

of min{|Diff null(D,D′)| : R[i; j] ∈ Diff null(D,D′), for some j, and D′ ∈
Repnull(D, κ(Q))}.

(d) The responsibility, ρa-null(R[i; cj]), of R[i; cj], a null-based attribute-value cause

forQ, is the inverse of min{|Diff null(D,D′)| : R[i; j] ∈ Diff null(D,D′), and D′ ∈
Repnull(D, κ(Q))}. �

In cases (c) and (d) we minimize over the number of changes in a repair that are made

together with that of the candidate tuple/attribute-value to be a cause. In the case of a tuple

cause, any change made in one of its attributes is considered in the minimization. For this

reason, the minimum may be smaller than the one for a fixed attribute value change; and

so the responsibility at the tuple level may be greater than that at the tuple level. More

precisely, if τ = R(i; c1, . . . , cn) ∈ D, and R[i; cj]) is a null-based attribute-value cause,

then it holds ρa-null(R[i; cj]) ≤ ρt-null(τ).

Example 6.4.2 (ex. 6.4.1 cont.) Consider R(2; a3, a3) ∈ D. Its projection on its first

(non-id) attribute,R[2; a3], is an attribute-level cause sinceR[2; 1] ∈ Diff null(D,D2). Also

R[2; 1] ∈ Diff null(D,D3).

Since |Diff null(D,D2)| = |Diff null(D,D3)| = 2, it holds ρa-null(R[2; 1]) = 1
2
.

Clearly R(2; a3, a3) is a null-based tuple cause for Q, with ρt-null(τ) = 1
2
. �

Notice that the definition of tuple-level responsibility, i.e. case (c) in Definition 6.4.1,

does not take into account that a same id, i, may appear several times in a Diff null(D,D′).

In order to do so, we could redefine the size of the latter by taking into account those

multiplicities. For example, if we decrease the size of the Diff by one with every repetition

of the id, the responsibility for a cause may (only) increase, which makes sense.



Chapter 7

Causality and Abductive Diagnosis

In general logical terms, an abductive explanation for an observation is a formula that,

together with a background logical theory, entails the observation. Although one could see

an abductive explanation as a cause for the observation, it has been argued that causes and

abductive explanations are not necessarily the same [Psillos, 1996, Denecker et al., 2002].

Under the abductive approach to diagnosis [Console et al., 1991a, Eiter et al., 1995,

Poole, 1992, Poole, 1994], it is common that the system specification rather explicitly

describes causal information, specially in action theories where the effects of actions are

directly represented by positive definite rules. By restricting the explanation formulas to the

predicates describing primitive causes (action executions), an explanation formula which

entails an observation gives also a cause for the observation [Denecker et al., 2002]. In this

case, and is some sense, causality information is imposed by the system specifier [Poole,

1992].

In database causality we do not have, at least not initially, a system description, but

just a set of tuples. It is when we pose a query that we create something like a description,

and the causal relationships between tuples are captured by the combination of atoms in

the query. If the query is a Datalog query (in particular, a CQ), we have a specification in

terms of positive definite rules.

In this chapter we will first establish connections between abductive diagnosis and

database causality. We start by making precise the kind of abduction problems we will

consider.

7.1 Datalog Abductive Diagnosis

A Datalog abduction problem [Eiter et al., 1997] is of the form AP = 〈Π, E,Hyp,Obs〉,
where: (a) Π is a set of Datalog rules, (b) E is a set of ground atoms (the extensional

database), (c) Hyp, the hypothesis, is a finite set of ground atoms, the abducible atoms in
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this case,1 and (d) Obs , the observation, is a finite conjunction of ground atoms. As it is

common, we will start with the assumption that Π ∪ E ∪ Hyp |= Obs . Π ∪ E is called the

background theory (or specification).

The abduction problem is about computing a minimal ∆ ⊆ Hyp (under certain mini-

mality criterion), such that Π ∪ E ∪∆ |= Obs . More specifically:

Definition 7.1.1 Consider a Datalog abduction problem AP = 〈Π, E,Hyp,Obs〉.
(a) An abductive diagnosis (or simply, a solution) for AP is a subset-minimal ∆ ⊆ Hyp,

such that Π ∪ E ∪∆ |= Obs .

This requires that no proper subset of ∆ has this property. Sol(AP) denotes the set of

abductive diagnoses for problem AP .

(b) A hypothesis h ∈ Hyp is relevant for AP if h contained in at least one diagnosis of

AP , otherwise it is irrelevant. Rel(AP) collects all relevant hypothesis for AP .

(c) A hypothesis h ∈ Hyp is necessary for AP if h contained in all diagnosis of AP .

Ness(AP) collects all the necessary hypothesis for AP . �

Notice that for an ADP,AP , Sol(AP) is never empty due to the assumption Π∪D∪Hyp |=
Obs . In case, Π ∪D |= Obs , it holds Sol(AP) = {∅}.

Example 7.1.1 (ex. 5.2.1 cont.) Consider again the digital circuit in Figure 5.1 with the

same inputs. Now, we formulate this diagnosis problem as a Datalog abduction where, the

data domain is {a, b, c, d, e, and , or}. The underlying, extensional database is as follows:

E = {One(a),Zero(b), One(c),And(a, b, e, and),Or(e, c, d, or}.
The Datalog program Π contains rules that model the normal and the faulty behavior of

each gate. We show only the Datalog rules for the And gate. For its normal behavior, we

have the following rules:

One(O) ← And(I1, I2, O,G),One(I1),One(I2)

Zero(O) ← And(I1, I2, O,G),One(I1),Zero(I2)

Zero(O) ← And(I1, I2, O,G),Zero(I1),One(I2)

Zero(O) ← And(I1, I2, O,G),Zero(I1),One(I2).

1It is common to accept as hypothesis all the possible ground instantiations of abducible predicates. We
assume abducible predicates do not appear in rule heads.
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The faulty behavior is modeled by the following rules:

Zero(O) ← And(I1, I2, O,G),One(I1),One(I2),Faulty(G)

One(O) ← And(I1, I2, O,G),One(I1),Zero(I2),Faulty(G)

One(O) ← And(I1, I2, O,G),Zero(I1),One(I2),Faulty(G)

One(O) ← And(I1, I2, O,G),Zero(I1),One(I2),Faulty(G)

Finally, we consider Obs : Zero(d), and Hyp = {Faulty(and)),Faulty(or)}. The abduc-

tion problem consists in finding minimal ∆ ⊆ Hyp, such that Π∪E∪∆ |= Zero(d). There

is one abductive diagnosis: ∆ = {Faulty(or)}. �

In the context of Datalog abduction, we are interested in deciding, for a fixed Datalog

program, if a hypothesis is relevant/necessary or not, with all the data as input. More

precisely, we consider the following decision problems.

Definition 7.1.2 Given a Datalog program Π, the relevance decision problem

(RLDP) for Π is (deciding about the membership of):

RLDP(Π) = {(E ,Hyp,Obs , h) | h ∈ Rel(AP),with AP = 〈Π, E,Hyp,Obs〉}. �

Definition 7.1.3 Given a Datalog program Π, the necessity decision problem

(NDP) for Π is (deciding about the membership of):

NDP(Π) = {(E ,Hyp,Obs , h) | h ∈ Ness(AP),with AP = 〈Π, E,Hyp,Obs〉}. �

As it is common, we will assume that |Obs|, i.e. the number of atoms in the conjunc-

tion, is bounded above by a fixed parameter p. In many cases, p = 1 (a single atomic

observation).

The last two definitions suggest that we are interested in the data complexity of the rele-

vance and necessity decision problems for Datalog abduction. That is, the Datalog program

is fixed, but the data consisting of hypotheses and input structure E may change. In con-

trast, under combined complexity the program is also part of the input, and the complexity

is measured also in terms of the program size.

A comprehensive complexity analysis of several reasoning tasks on abduction from

propositional logic programs, in particular of the relevance and necessity problems, is pro-

vided in [Eiter et al., 1997]. Those results are all in combined complexity. In [Eiter et al.,



79

1997], it has been shown that for abduction from function-free first-order logic programs,

the data complexity of each type of reasoning problem on the first-order case coincides

with the combined complexity of the same type of reasoning problem in the propositional

case. In this way, the following results can be obtained for NDP and RLDP from [Eiter

et al., 1997, theo. 26] and the combined complexity of these problems for propositional

Horn abduction (PDA), established in [Friedrich et al., 1990]. We provide here direct,

ad hoc proofs by adapting the full machinery developed in [Eiter et al., 1997] for general

programs.

Proposition 7.1.1 For every Datalog program Π, NDP(Π) is in PTIME (in data).

Proof: Consider a DAP AP = 〈Π, E,Hyp,Obs〉 associated to Π, and h ∈ Hyp. From

the subset-minimality of abductive diagnosis and Definition 7.1.1 (part (c)), we obtain

h ∈ Ness(AP) iff Sol(AP ′) = ∅ where, AP ′ = 〈Π, E,Hyp r {h},Obs〉. To decide

whether Sol(AP ′) = ∅, it is good enough to check if Π ∪ E ∪ Hyp |= Obs . This can be

done in polynomial time since Datalog evaluation is in polynomial time in data complexity.

�

Proposition 7.1.2 For Datalog programs Π,RLDP(Π) is NP-complete (in data).2

Proof: Membership: Consider a Datalog abduction problem AP and a hypotheses h ∈
Hyp. To check whether h is relevant for AP , non-deterministically guess a subset ∆ ⊆
Hyp, check if: (a) h ∈ ∆, and (b) ∆ is an abductive diagnosis for AP . If h passes both

tests then it is relevant, otherwise, it is irrelevant.

Clearly, test (a) can be performed in polynomial time. We only need to show that

checking (b) is also polynomial time. More precisely, we need to show that Π ∪ E ∪∆ |=
Obs and ∆ is subset-minimal. Checking whether Π ∪ E ∪ ∆ |= Obs can be done in

polynomial time, because Datalog evaluation is polynomial time. It is easy to verify that

to check the minimality of ∆, it is good enough to show that for all elements δ ∈ ∆,

Π ∪ E ∪∆ r {δ} 6|= Obs . This is because positive Datalog is monotone.

2More precisely, this statement (and others of this kind) means: (a) For every Datalog program Π,
RLDP(Π) ∈ NP ; and (b) there are programs Π′ for whichRLDP(Π′) is NP-hard (all this in data).
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Hardness: We show that the combined complexity of deciding relevance for the Propo-

sitional Horn Clause Abduction (PHCA) problem, that is NP-complete [Friedrich et al.,

1990], is a lower bound for the data complexity of the relevance problem for Datalog ab-

duction.

A PHCA problem is of the form P = 〈Var ,H, SD ,O〉, where Var is a finite set of

propositional variables,H ⊆ Var contains hypotheses, SD is a set of definite propositional

Horn clauses, and O ⊆ Var is the observation, with H ∩ O = ∅. An abductive diagnosis

for P is a subset-minimal ∆ ⊆ H, such that ∆ ∪ SD |=
∧
o∈O o. Deciding whether h ∈ H

is relevant to P (i.e. it is an element of an abductive diagnosis of P) is NP-complete

[Friedrich et al., 1990].

Deciding relevance for PHCA remains NP-hard for the 3-bounded case where: SD

contains a rule “true ←”, and all the other rules are of the form “a← b1, b2, b3”.3

Now, we provide a polynomial-time reduction from the problem of deciding relevance

for 3-bounded PHCA to our problem RLDP. To obtain data complexity for the latter, we

need a fixed relational schema and a fixed Datalog program Π over it, so that inputs for

relevance in 3-bounded PHCA are mapped to the extensional components of Π, where

relevance is tested.

More precisely, given a 3-bounded PHCA P , build the DAP problem APP = 〈Π, EP ,
HypP ,ObsP〉 as follows, where Π is the following (non-propositional) Datalog program

(whose underlying domain consists of the propositional variables in SD plus true):

T (true) ←

T (x0) ← T (x1), T (x2), T (x3), R(x0, x1, x2, x3).

Furthermore, EP := {R(a, b1, b2, b3) | a← b1, b2, b3 appears in SD}. Furthermore, Hyp =

{T (a) | a ∈ H} and Obs = {T (a) | a ∈ O}. Notice that this reduction can be done in

polynomial-time in the size of P .

It is possible to prove that: For a P = 〈Var ,H, SD ,O〉 and a hypothesis h ∈ H, h is

relevant for P iff T (h) ∈ Rel(APP). �

3Every PHCA can be transformed to an equivalent 3-bounded PHCA, because each rule a ←
b1, b2, . . . , bn can be equivalently replaced by two rules a ← c, . . . , bn and c ← b1, b2. Furthermore, true
can be used to augment rule bodies with less than three propositional variables.
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The following example illustrates the last claim in the proof of Proposition 7.1.2.

Example 7.1.2 Consider the PHCA P = 〈{a, b, c}, {c, b}, {a ← b, c; b ← c}, {a}〉. It

is easy to verify that P has the single abductive diagnosis, {c}, and then a single relevant

hypotheses, c.

The 3-bounded PHCA P3b = 〈{a, b, c}, {c, b}, {true ←; a ← b, c, true; b ← c, true,

true}, {a}〉 is equivalent to P .

P3b is mapped to the DAP APP3b

= 〈Π, {R(a, b, c, true), R(c, b, true, true)},
{T (c), T (b)}, {T (a))}〉, which has a single abductive diagnosis, {T (c)}. �

It is clear from this result that deciding relevance for Datalog abduction is also in-

tractable in combined complexity. However, a tractable case of combined complexity is

identified in [Gottlob et al., 2010], on the basis of the notions of tree-decomposition and

bounded tree-width, which we now briefly present.

Let H = 〈V,H〉 be a hypergraph, where V is the set of vertices, and H is the set

of hyperedges, i.e. of subsets of V . A tree-decomposition of H is a pair (T , λ), where

T = 〈N,E〉 is a tree and λ is a labeling function that assigns to each node n ∈ N , a subset

λ(n) of V (λ(n) is aka. bag), i.e. λ(n) ⊆ V , such that, for every node n ∈ N , the following

hold: (a) For every v ∈ V , there exists n ∈ N with v ∈ λ(n). (b) For every h ∈ H , there

exists a node n ∈ N with h ⊆ λ(n). (c) For every v ∈ V , the set of nodes {n | v ∈ λ(n)}
induces a connected subtree of T .

The width of a tree decomposition (T , λ) of H = 〈V,H〉, with T = 〈N,E〉, is defined

as max{|λ(n)| − 1 : n ∈ N}. The tree-width tw(H) of H is the minimum width over all

its tree decompositions.

Intuitively, the tree-width of a hypergraph H is a measure of the “tree-likeness” of H.

A set of vertices that form a cycle inH are put into a same bag, which becomes (the bag of

a) node in the corresponding tree-decomposition. If the tree-width of the hypergraph under

consideration is bounded by a fixed constant, then many otherwise intractable problems

become tractable [Gottlob et al., 2010].

It is possible to associate an hypergraph to any finite structure D (think of a relational

database): If its universe (the active domain in the case of a relational database) is V ,

define the hypergraph H(D) = (V,H), with H = { {a1, . . . , an} | D contains a ground

atom P (a1 . . . an) for some predicate symbol P}.
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Figure 7.1: (a) H(D) (b) A tree decomposition ofH(D)

Example 7.1.3 Consider instance D in Example 1.1.1. The hypergraph H(D) associated

to D is shown in Figure 7.1(a). Its vertices are the elements of Adom(D) = {John, Joe,

Tom,TODS ,TKDE ,XML,Cube, 30 , 31 , 32}, the active domain of D. For example,

since Journal(TKDE ,XML, 30 ) ∈ D, {TKDE ,XML, 30} is one of the hyperedges.

The dashed ovals show four sets of vertices, i.e. hyperedges, that together form a cycle.

Their elements are put into the same bag of the tree-decomposition. Figure 7.1(b) shows a

possible tree-decomposition ofH(D). In it, the maximum |λ(n)|−1 is 6−1, corresponding

to the top box bag of the tree. So, tw(H(D)) ≤ 5. �

The following is a fixed-parameter tractability result for the relevance decision problem

for Datalog abduction for guarded programs Π, where in every rule body there is an atom

that contains (guards) all the variables appearing in that body.

Theorem 7.1.1 [Gottlob et al., 2010] Let k be an integer. For Datalog abduction problems

AP = 〈Π, E,
Hyp,Obs〉 where Π is guarded, and tw(H(E)) ≤ k, relevance can be decided in poly-

nomial time in |AP|.4 More precisely, the following decision problem is tractable:

RLDP = {(〈Π,E ,Hyp,Obs〉, h) | h ∈ Rel(〈Π,E ,Hyp,Obs〉), h ∈ Hyp,

Π is guarded, and tw(H(E)) ≤ k}. �

This is a case of tractable combined complexity with a fixed parameter that is the tree-

width of the extensional database.
4This is Theorem 7.9 in [Gottlob et al., 2010].
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7.2 Causality and Datalog Abductive Diagnosis

7.2.1 Actual causes from Datalog abductive diagnosis

Assume that Π is a boolean, possibly recursive Datalog query. Consider the relational

instance D = Dx ∪ Dn. Also assume that Π ∪ D |= ans . Then, the decision problem in

Definition 2.2.1 takes the form:

CDP(Π) := {(D, τ) | τ ∈ Dn, and τ ∈ Causes(D,Π)}. (7.1)

We now show that actual causes for ans can be obtained from abductive diagnoses of the

associated causal Datalog abduction problem (CDAP): APc := 〈Π, Dx, Dn, ans〉, where

Dx takes the role of the extensional database for Π. Accordingly, Π ∪ Dx becomes the

background theory, Dn becomes the set of hypothesis, and atom ans is the observation.

Proposition 7.2.1 For an instance D = Dx ∪ Dn and a boolean Datalog query Π, with

Π ∪D |= ans , and its associated CDAP APc, the following hold:

(a) τ ∈ Dn is an counterfactual cause for ans iff τ ∈ Ness(APc).

(b) τ ∈ Dn is an actual cause for ans iff τ ∈ Rel(APc).

Proof: Part (a) is straightforward. To proof part (b), first assume τ is an actual cause for

ans. According to the definition of an actual cause, there exists a contingency set Γ ⊆ Dn

such that Π ∪D r Γ |= ans but Π ∪D r (Γ ∪ {τ}) 6|= ans . This implies that there exists

a set ∆ ⊆ Dn with τ ∈ ∆ such that Π ∪∆ |= ans . It is easy to see that ∆ is an abductive

diagnosis for APc. Therefore, τ ∈ Rel(APc).

Second, assume τ ∈ Rel(APc). Then there exists a set Sk ∈ Sol(APc) = {s1 . . . sn}
such that Sk |= ans with τ ∈ Sk. Obviously, Sol(APc) is a collection of subsets of Dn.

Pick a set Γ ⊆ Dn such that for all Si ∈ Sol(APc) i 6= k, Γ ∩ Si 6= ∅ and Γ ∩ Sk = ∅. It

is clear that Π ∪ D r (Γ ∪ {t}) 6|= ans but Π ∪ D r Γ |= ans . Therefore, τ is an actual

cause for ans. To complete the proof we need to show that such Γ always exists. This can

be done by applying the digitalization technique to construct such Γ. Since all elements

of Sol(APc) are subset-minimal, then, for each Si ∈ Sol(APc) with i 6= k, there exists a

τ ′ ∈ Si such that τ ′ 6∈ Sk. So, Γ can be obtained from the union of differences between
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each Si (i 6= k) and Sk. �

Example 7.2.1 Consider the instance D with relations R and S as below, and the

query Π : ans ← R(x, y), S(y), which is

true in D. Assume all tuples are endoge-

nous.

R A B

a1 a4

a2 a1

a3 a3

S A

a1

a2

a3

In this case, APc = 〈Π, ∅, D, ans〉, which has two (subset-minimal) abductive di-

agnoses: ∆1 = {S(a1), R(a2, a1)} and ∆2 = {S(a3), R(a3, a3)}. Then, Rel(APc) =

{S(a3), R(a3, a3), S(a1), R(a2, a1)}. It is easy to see that the relevant hypothesis are ac-

tual causes for ans . �

7.2.2 Datalog abductive diagnosis and causal responsibility

In the previous section we showed that counterfactual and actual causes for Datalog query

answers appear as necessary and relevant hypotheses in the associated Datalog abduction

problem. The form causal responsibility takes in Datalog abduction is less direct. Ac-

tually, we first show that causal responsibility inspires an interesting concept for Datalog

abduction, that of degree of necessity of a hypothesis.

Example 7.2.2 (ex. 7.2.1 cont.) Consider now D′ = {R(a1, a3), R(a2, a3), S(a3)}, and

APc = 〈Π, ∅, D′, ans〉. APc has two abductive diagnosis: ∆1 = {S(a3), R(a1, a3)} and

∆2 = {S(a3), R(a2, a3)}.
Here, Ness(APc) = {S(a3)}, i.e. only S(a3) is necessary for abductively explaining

ans . However, this is not capturing the fact that R(a1, a3) or R(a3, a3) are also needed as a

part of the explanation. �

This example suggests that necessary hypotheses might be better captured as sets of

them rather than as individuals.

Definition 7.2.1 Given a DAP, AP = 〈Π, E,Hyp,Obs〉, N ⊆ Hyp is a necessary-

hypothesis set if: (a) for AP−N := 〈Π, E,Hyp r N,Obs〉, Sol(AP−N) = ∅, and (b) N is

subset-minimal, i.e. no proper subset of N has the previous property. �
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It is easy to verify that a hypothesis h is necessary according to Definition 7.1.1 iff {h}
is a necessary-hypothesis set.

If we apply Definition 7.2.1 toAPc in Example 7.2.2, we obtain two necessary-hypothesis

sets: N1 = {S(a3)} and N2 = {R(a1, a3), R(a2, a3)}. In this case, it makes sense to claim

that S(a3) is more necessary for explaining ans than the other two tuples, that need to

be combined. Actually, we can think of ranking hypothesis according to the minimum-

cardinality of necessary-hypothesis sets where they are included.

Definition 7.2.2 Given a DAP,AP = 〈Π, E,Hyp,Obs〉, the necessity-degree of a hypoth-

esis h ∈ Hyp is ηAP(h) := 1
|N | where, N is a minimum-cardinality necessary-hypothesis

set with h ∈ N . If h does not belong to any necessary hypothesis set, ηAP(h) := 0. �

In Example 7.2.2, ηAPc(S(a3)) = 1 and ηAPc(R(a2, a3)) = ηAPc(R(a1, a3)) = 1
2
. Now,

if we consider the original Datalog query in the causality setting, where Π ∪ D′ |= ans ,

then S(a3), R(a2, a3), R(a1, a3) are all actual causes, with responsibilities: ρ
Π
(S(a3)) =

1, ρ
Π
(R(a2, a3)) = ρ

Π
(R(a1, a3)) = 1

2
. This is not a coincidence. In fact the notion of

causal responsibility is in correspondence with the notion of necessity degree in the Datalog

abduction setting.

Proposition 7.2.2 Let D = Dx ∪ Dn be an instance and Π be a boolean Datalog query

with Π ∪D |= ans , and APc its associated CDAP. For τ ∈ Dn, it holds: ηAPc(τ) = ρ
Π
(τ).

Proof: It is easy to verify that each actual cause, together with a contingency set, forms a

necessary hypothesis set for the corresponding causal Datalog abduction setting (and the

other way around). Then, the two values are in correspondence. �

Notice that the notion of necessity-degree is interesting and applicable to general ab-

duction from logical theories, that may not necessarily represent causal knowledge about a

domain. In this case, the necessity-degree is not a causality-related notion, and merely re-

flects the extent by which a hypothesis is necessary for making an observation explainable

within an abductive theory.



86

7.2.3 Datalog abductive diagnosis from actual causes

Now we show, conversely, that QA-causality can capture Datalog abduction. In particu-

lar, we show that abductive diagnoses from Datalog programs are formed essentially by

actual causes for the observation. More precisely, consider a Datalog abduction problem

AP = 〈Π, E,Hyp,Obs〉, where E is the underlying extensional database, and Obs is a

conjunction of ground atoms. For this we need to construct a QA-causality setting.

Proposition 7.2.3 Let AP = 〈Π, E,Hyp,Obs〉 be a Datalog abduction problem, and h ∈
Hyp. It holds that h is a relevant hypothesis for AP , i.e. h ∈ Rel(AP), iff h is an actual

cause for the associated boolean Datalog query Πc := Π ∪ {ans ← Obs} being true in

D := Dx ∪Dn with Dx := E, and Dn := Hyp. Here, ans is a fresh propositional atom.

Proof: The proof is similar to that of Proposition 7.2.1. �

Example 7.2.3 Consider the DAP AP in Example 7.1.1. We construct a QA-causality

setting as follows. Consider the instance D with relations And, Or, Faulty , One and Zero,

as below, and the boolean Datalog query Πc : Π ∪ {ans ← Zero(d)}, where Π is the

Datalog program in Example 7.1.1.

And I1 I2 O G

a b e and

Zero I

b

Or I1 I2 O G

e c d or

One I

a

c

Faulty G

and

or

It clear that Πc ∪ D |= ans . D is par-

titioned into the set of endogenous tuples

Dn := {Faulty(and),Faulty(or)} and the

set of exogenous tuples Dx := D rDn.

It is easy to verify that this result has

only one actual cause, namely Faulty(or)

(with responsibility 1), confirming the cor-

respondence with Example 7.1.1 as stated in

Proposition 7.2.3. �

7.3 Complexity of Causality for Datalog Queries

Now we use the results obtained so far in this section to obtain new complexity results for

Datalog QA-causality. We first consider the problem of deciding if a tuple is a counterfac-

tual cause for a query answer.
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A counterfactual cause is a tuple that, when removed from the database, undermines

the query-answer, without having to remove other tuples, as is the case for actual causes.

Actually, for each of the latter there may be an exponential number of contingency sets, i.e.

of accompanying tuples (cf. Section 5.3.2). Notice that a counterfactual cause is an actual

cause with responsibility 1.

Definition 7.3.1 For a boolean monotone query Q, the counterfactual causality decision

problem (CFDP) is (deciding about membership of):

CFDP(Q) := {(D, τ) | τ ∈ Dn and ρQ(τ) = 1}. �

The complexity of this problem can be obtained from the connection between coun-

terfactual causation and the necessity of hypothesis in Datalog abduction via Propositions

7.1.1 and 7.2.1.

Proposition 7.3.1 For boolean Datalog queries Π, CFDP(Π) is in PTIME (in data).

Proof: Directly from Propositions 7.1.1 and 7.2.1. �

Now we address the complexity of the actual causality problem for Datalog queries.

The following result is obtained from Propositions 7.1.2 and 7.2.3.

Proposition 7.3.2 For boolean Datalog queries Π, CDP(Π) is NP-complete (in data).

Proof: To show the membership of NP, consider an instance D = Dn ∪ Dx and a tu-

ple τ ∈ Dn. To check if (D, τ) ∈ CDP(Π) (equivalently τ ∈ Causes(D,Π)), non-

deterministically guess a subset Γ ⊆ Dn, return yes if τ is a counterfactual cause for Q(ā)

in D r Γ, and no otherwise. By Proposition 7.3.1 this can be done in polynomial time.

The NP-hardness is obtained by a reduction from the relevance problem for Datalog

abduction to causality problem, as given in Proposition 7.2.3. �

This result should be contrasted with the tractability of the same problem for UCQs (cf.

Proposition 5.3.5).

We now introduce a fixed-parameter tractable case of the actual causality problem.

Actually, we consider the “combined” version, CDP , of the decision problem in Definition
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2.2.1, where both the Datalog query and the instance are part of the input. For this, we

take advantage of the tractable case of Datalog abduction presented in Section 7.1. The

following is an immediate consequence of Theorem 7.1.1 and Proposition 7.2.1.

Proposition 7.3.3 For a guarded boolean Datalog query Π, an instanceD = Dx∪Dn, with

Dx of bounded tree-width, and τ ∈ Dn, deciding if τ ∈ Causes(D,Π) is fixed-parameter

tractable (in combined complexity), and the parameter is the tree-width bound. �

Finally, we establish the complexity of the responsibility problem for Datalog queries.

Proposition 7.3.4 For boolean Datalog queries Π,RDP(Π) is NP-complete. �

Proof: To show membership of NP, consider an instance D = Dn ∪Dx, a tuple τ ∈ Dn,

and a responsibility bound v. To check if ρ
Π
(τ) > v, non-deterministically guess a set

Γ ⊆ Dn and check if Γ is a contingency set and Γ < 1
v
. The verification can be done in

polynomial time. Hardness is obtain from the NP-completeness of RDP for conjunctive

queries established in (cf. Proposition 5.5.1) . �



Chapter 8

Causality and View-Update problem

There is a close relationship between QA-causality and the view-update problem in the

form of delete-propagation. It was first suggested in [Meliou et al., 2010b, Kimelfeld,

2012b, Kimelfeld, 2012a], and here we investigate it more deeply.

8.1 View-Based Delete-Propagation

Given a monotone query Q, we can think of it as defining a view, V , with virtual contents

Q(D). If ā ∈ Q(D), which may not be intended, we may try to delete some tuples from

D, so that ā disappears from Q(D). This is a particular case of database updates through

views [Abiteboul et al., 1995], and may appear in different and natural formulations. The

next example shows one of them.

Example 8.1.1 (ex. 2.2.3 cont.) In a particular version of the delete-propagation problem,

the objective may be to delete a minimum number of tuples from the instance, so that an

authorized access (unexpected answer to the query) is deleted from the query answers,

while all other authorized accesses (other answers to the query) remain intact. �

In the following, we consider several variations of this problem, both in their functional

and decision versions.

Definition 8.1.1 Let D be a database instance, and Q a monotone query.

(a) For ā ∈ Q(D), the minimal-source-side-effect deletion-problem is about computing a

subset-minimal Λ ⊆ D, such that ā /∈ Q(D r Λ).

(b) The minimal-source-side-effect decision problem is (deciding about the membership

of):

89
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MSSEPs(Q) = {(D,D′, ā) | ā ∈ Q(D), D′ ⊆ D, ā 6∈ Q(D′), and

D′ is subset-maximal}.
(The superscript s stands for subset-minimal.)

(c) For ā ∈ Q(D), the minimum-source-side-effect deletion-problem is about computing a

minimum-cardinality Λ ⊆ D, such that ā /∈ Q(D r Λ).

(d) The minimum-source-side-effect decision problem is (deciding about the membership

of):

MSSEPc(Q) = {(D,D′, ā) | ā ∈ Q(D), D′ ⊆ D, ā /∈ Q(D′), and

D′ has maximum cardinality}.
(Here, c stands for cardinality.) �

Definition 8.1.2 [Buneman et al., 2002] Let D be a database instance D, and Q a mono-

tone query.

(a) For ā ∈ Q(D), the view-side-effect-free deletion-problem is about computing a Λ ⊆
D, such that Q(D) r {ā} = Q(D r Λ).

(b) The view-side-effect-free decision problem is (deciding about the membership of):

VSEFP(Q) = {(D, ā) | ā ∈ Q(D), and exists D′ ⊆ D with

Q(D) r {ā} = Q(D′)}. �

The decision problem in Definition 8.1.2(b) is NP-complete for conjunctive queries

[Buneman et al., 2002, theo. 2.1]. Notice that, in contrast to Definition 8.1.1, this decision

problem does not involve a candidate D′, and only asks about its existence. This is because

candidates always exist for Definition 8.1.1, whereas for the view-side-effect-free deletion-

problem there may be no sub-instance that produces exactly the intended deletion from the

view.

Example 8.1.2 Consider the instance D and the conjunctive query Q in Example 1.1.1.

Suppose that XML is not among John’s research interests, so that tuple 〈John,XML〉 in the

viewQ(D) is unintended. We want to find tuples in D whose removal leads to the deletion
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of this view tuple. There are multiple ways to remove tuples from D to achieve this goal,

and the decision problems described above impose different conditions on how to do this.

Notice that tuples inD related to 〈John,XML〉 are Author(John, TKDE), Journal(TODS,

XML, 32), Author(John, TODS) and Journal(TKDE, XML, 30).

(a) Source-side effect: The objective is to find minimal/minimum sets of tuples whose

removal leads to the deletion of 〈John,XML〉. One solution is removing S1={Author(John,

TODS), Author(John, TKDE)} from the Author table. The other solution is removing

S2={Journal(TODS, XML, 30), Journal(TKDE, XML, 30)} from the Journal table.

Furthermore, the removal of either S3={Author(John, TKDE), Journal(TODS, XML,

32)} or S4={Author(John, TODS), Journal(TKDE, XML, 30)} eliminate the intended view

tuple. Thus, S1, S2, S3 and S4 are solutions to both the minimum- and minimal-source

side-effect deletion-problems.

(b) View-side effect: Removing any of the sets S1, S2, S3 or S4, leads to the deletion of

〈John,XML〉. However, we now want those set whose elimination produce no side-effects

on the view. That is, their deletion triggers the deletion of 〈John,XML〉 from the view, but

not of any other tuple in it.

None of the sets S1, S2, S3 and S4 is side-effect free. For example, the deletion of S1

also results in the deletion of 〈John,CUBE 〉 from the view. �

Example 8.1.3 (ex. 2.2.5 cont.) It is easy to verify that there is no solution to the view-

side-effect-free deletion-problem for answer 〈Tom, f3〉. To eliminate this entry from the

view, either GroupUser(Tom,g3) or GroupFiles(f3, g3) must be deleted from D. Remov-

ing the former results in the additional deletion of 〈Tom, f1〉 from the view; and eliminating

the latter, results in the additional deletion of 〈John, f3〉.
However, there is a solution to the view-side-effect-free deletion-problem for answer

〈Joe, f1〉, by removing GroupUser(Joe, g1) from D. This deletion does not have any

unintended side-effects on the view contents. �

8.2 Causality and Delete-propagation

In this section we first establish mutual reductions between the different variants of the

delete-propagation problem and both QA-causality and view-conditioned causality.
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8.2.1 Delete-propagation from actual causes

In this section, unless otherwise is stated, all tuples in database instances are assumed to

be endogenous.

Consider a relational instance D, a view V defined by a monotone query Q. Then, the

virtual view extension, V(D), is Q(D).

For a tuple ā ∈ Q(D), the delete-propagation problem, in its most general form, is

about deleting a set of tuples from D, and so obtaining a subinstance D′ of D, such that

ā /∈ Q(D′). It is natural to expect that the deletion of ā from Q(D) can be achieved

through deletions from D of actual causes for ā (to be in the view extension). However, to

obtain solutions to the different variants of this problem introduced in Section 8.1, different

combinations of actual causes must be considered.

First, we show that an actual cause for ā forms, with any of its contingency sets, a

solution to the minimal-source-side-effect deletion-problem associated to ā (cf. Definition

8.1.1).

Proposition 8.2.1 For an instance D, a subinstance D′ ⊆ D, a view V defined by a mono-

tone queryQ, and ā ∈ Q(D), (D,D′, ā) ∈MSSEPs(Q) iff there is a τ ∈ DrD′, such

that τ ∈ Causes(D,Q(ā)) and D r (D′ ∪ {τ}) ∈ Cont(D,Q(ā), τ).

Proof: Suppose first that (D,D′, ā) ∈MSSEPs(Q). Then, according to Definition 8.1.1,

ā 6∈ Q(D′). Let Λ = D r D′. For an arbitrary element τ ∈ Λ (clearly, Λ 6= ∅), let

Γ := Λ r {τ}. Due to the subset-maximality of D′ (then, subset-minimality of Λ), we

obtain: D r (Γ ∪ {τ}) 6|= Q(ā), but D r Γ |= Q(ā). Therefore, τ is an actual cause for ā.

For the other direction, suppose τ ∈ Causes(D,Q(ā)) and D r (D′ ∪ {τ}) ∈
Cont(D,Q(ā), τ). Let Γ := D r (D′ ∪ {τ}). From the definition of an actual cause,

we obtain that ā /∈ Q(D r (Γ ∪ {τ}). So, ā /∈ Q(D′) (notice that D′ = D r (Γ ∪ {τ}).
Since Γ is a subset-minimal contingency set for τ , D′ is a subset-maximal subinstance that

enjoys the mentioned property. So, (D,D′, ā) ∈MSSEPs(Q). �

Next we show that, in order to minimize the number of side-effects on the source (cf.

Definition 8.1.1(c)), it is good enough to pick a most responsible cause for ā with any of

its minimum-cardinality contingency sets.
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Proposition 8.2.2 For an instance D, a subinstance D′ ⊆ D, a view V defined by a mono-

tone query Q, and ā ∈ Q(D), (D,D′, ā) ∈ MSSEPc(Q) iff there is a τ ∈ D r D′,

such that τ ∈MRC(D,Q(ā)), Γ := Dr (D′ ∪{τ}) ∈ Cont(D,Q(ā), τ), and there is no

Γ′ ∈ Cont(D,Q(ā), τ) with |Γ′| < |Γ|.

Proof: Similar to the proof of Proposition 8.2.1. �

Now, we show that, in order to check if there exists a solution to the view-side-effect-

free deletion-problem for ā ∈ V(D) (cf. Definition 8.1.2), it is good enough to check if ā

has a view-conditioned cause.1

Proposition 8.2.3 For an instance D, a view V defined by a monotone query Q with

Q(D) = {ā1, . . . , ān}, and āk ∈ Q(D), (D, āk) ∈ VSEFP(Q) iff vc-Causes(D,Q(āk)) 6=
∅.

Proof: Assume āk has a view-conditioned cause τ . According to Definition 2.2.4, there

exists a Γ ⊆ D, such that Dr (Γ∪{τ}) 6|= Q(āk), DrΓ |= Q(āk), and Dr (Γ∪{τ}) |=
Q(āi), for i ∈ {1, . . . , n} r {k}. So, Γ ∪ {τ} is a view-side-effect-free deletion-problem

solution for āk; and (D, āk) ∈ VSEFP(Q). A similar argument applies for the other di-

rection. �

Example 8.2.1 (ex. 8.1.2 cont.) We had obtained the followings solutions to the minimum-

(and also minimal-) source-side-effect deletion-problem for 〈John,XML〉:

S1={Author(John, TODS), Author(John, TKDE)},
S2={Journal(TODS, XML, 30), Journal(TKDE, XML, 30)},
S3={Author(John, TKDE), Journal(TODS, XML, 32)}, and

S4={Author(John, TODS), Journal(TKDE, XML, 30)}.

In Example 1.1.1, we showed that Author(John, TODS), Journal(TKDE, XML, 32), Au-

thor(John, TKDE), Journal(TODS, XML, 32) are actual causes for 〈John,XML〉. For

1Since this delete-propagation problem does not explicitly involve anything like contingency sets, the
existential problem in Definition 8.1.2(b) is the right one to consider.
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the cause Author(John, TODS), specifically, we obtained two contingency sets: Γ1 =

{Author(John,TKDE )} and Γ2={Journal(TKDE, XML, 32)}.

It is easy to verify that each actual cause for answer 〈John,XML〉, together with any

of its subset-minimal (and minimum-cardinality) contingency sets, forms a solution to the

minimal- (and minimum-) source-side-effect deletion-problem for 〈John,XML〉. For illus-

tration, {Author(John,TODS )} ∪ Γ1 coincides with S1, and {Author(John,TODS )} ∪
Γ1 coincides with S4. Thus, both of them are solutions to minimal- (and minimum-) source-

side-effect deletion-problem for 〈John,XML〉. This confirms Propositions 8.2.1 and 8.2.2.

Furthermore, we obtained in Example 8.1.2(b) that there is no view-side-effect-free

solution to this problem, which coincides with the result obtained in Example 2.2.4, and

confirms Proposition 8.2.3. �

The partition of a database into endogenous and exogenous tuples used in causality

may also be of interest in the context of delete-propagation. It makes sense to consider

solutions based on endogenous delete-propagation, which are obtained through deletions

of endogenous tuples only. Actually, given an instance D = Dn ∪Dx, a view V defined by

a monotone query Q, and ā ∈ V(D), endogenous delete-propagation solutions for ā (in all

of its flavors) can be obtained from actual causes for ā from the partitioned instance.

Example 8.2.2 (ex. 8.2.1 cont.) Assume again that 〈John,XML〉 has to be deleted from

the query answer (view extension). Assume now only the data in the Journal relation are

reliable. Then, only deletions from the Author relation make sense. This can be captured by

making Journal-tuples exogenous, and Author-tuples endogenous. With this partition, only

Author(John,TODS ) and Author(John,TKDE ) are actual causes for 〈John,XML〉,
with contingency sets Γ = {Author(John,TKDE )} and Γ′ = {Author(John,TODS )},
respectively (see Example 1.1.1).

Now, each actual cause for 〈John,XML〉, together with its one-tuple subset-minimal

(and also minimum-cardinality) contingency set, leads to the same set {Author(John,TODS),

Author(John,TKDE)}, which, according to Propositions 8.2.1 and 8.2.2, is an endogenous

minimal- (and minimum-) delete-propagation solution for 〈John,XML〉. �
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8.2.2 Actual causes from delete-propagation

Consider a relational instance D, and a monotone query Q with ā ∈ Q(D). We will

show that actual causes, most responsible causes, and vc-causes for ā can be obtained from

different variants of the delete-propagation problem associated with ā.

First, we show that actual causes for a query answer can be obtained from the solutions

to a corresponding minimal-source-side-effect deletion-problem.

Proposition 8.2.4 For an instance D = Dn ∪ Dx and a monotone query Q(x̄) with ā ∈
Q(x̄), τ ∈ Dn is an actual cause for ā iff there is a D′ ⊆ D with τ ∈ (DrD′) ⊆ Dn and

(D,D′, ā) ∈MSSEPs(Q).

Proof: Suppose τ ∈ Dn is an actual cause for ā with a subset-minimal contingency set

Γ ⊆ Dn. Let Λ = Γ ∪ {τ} and D′ = D r Λ . It is clear that ā 6∈ Q(D′). Then, due to the

subset-minimality of Λ, we obtain that (D,D′, ā) ∈ MSSEPs(Q). A similar argument

applies to the other direction. �

Similarly, most-responsible causes for a query answer can be obtained from solutions

to a corresponding minimum-source-side-effect deletion-problem.

Proposition 8.2.5 For an instance D = Dn ∪ Dx and a monotone query Q(x̄) with ā ∈
Q(x̄), τ ∈ Dn is a most responsible actual cause for ā iff there is a D′ ⊆ D with

t ∈ (D rD′) ⊆ Dn and (D,D′, ā) ∈MSSEPc(Q).

Proof: Similar to the proof of Proposition 8.2.4. �

Finally, vc-causes for an answer can be obtained from solutions to a corresponding

view-side-effect-free deletion-problem.

Proposition 8.2.6 For an instanceD = Dn∪Dx and a monotone queryQ(x̄) withQ(D) =

{ā1, . . . ān}, and āk ∈ Q(D), τ ∈ Dn is a vc-cause for āk iff there is D′ ⊆ D, with

τ ∈ (DrD′) ⊆ Dn, that is a solution to the view-side-effect-free deletion-problem for āk.

Proof: Similar to the proof of Proposition 8.2.4. �
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Example 8.2.3 (ex. 1.1.1 and 8.2.1 cont.) Let’s assume that D = Dn. We ob-

tained S1, S2, S3 and S4 as solutions to the minimal- (and minimum-) source-side-effect

deletion-problems for the view-element 〈John,XML〉. Let S be their union, i.e. S =

{Author(John,TODS ), Journal(TKDE ,XML, 32 ),Author(John,TKDE ),

Journal(TODS ,XML, 32 )}.
It is clear that S contains actual causes for 〈John,XML〉. In this case, actual causes are

also most responsible causes. This coincides with the results obtained in Example 1.1.1,

and confirms Propositions 8.2.4 and 8.2.5.

Furthermore, since 〈John,XML〉 has no view-side-effect-free solution (cf. Example

8.1.2), it has no vc-cause, which confirms the results obtained in Example 2.2.4 and Propo-

sition 8.2.6. �

8.3 Complexity of VC-Causality

We now investigate the complexity of the view-conditioned causality problem (cf. Def-

inition 2.2.5). For this, we take advantage of the connection between vc-causality and

view-side-effect-free deletion-problem.

First, the following result about the vc-cause existence problem (cf. Definition 2.2.6) is

obtained from the NP-completeness of the view-side-effect-free deletion-problem decision

problem for conjunctive views [Buneman et al., 2002, theo. 2.1] and Proposition 8.2.3.

Proposition 8.3.1 For CQs Q, VCEP(Q) is NP-complete (in data).

Proof: For membership of NP, the following is a non-deterministic PTIME algorithm for

VCEP: Given D and answer ā to Q, guess a subset Γ ⊆ Dn and a tuple τ ∈ Dn, return

yes if τ is a vc-cause for ā with contingency set Γ; otherwise return no. This test can be

performed in PTIME in the size of D.

Hardness is by the reduction from the (NP-hard) view-side-effect-free deletion-problem

that is explicitly stated in Proposition 8.2.3. �

The next result is about deciding vc-causality (cf. Definition 2.2.5).

Proposition 8.3.2 For CQs Q, VCDP(Q) is NP-complete (in data).
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Proof: Membership: For an input (D, ā), non-deterministically guess τ ∈ Dn and Γ ⊆
Dn, with τ /∈ Γ. If τ is a vc-cause for ā with contingency set Γ (which can be checked in

polynomial time), return yes; otherwise return no.

Hardness: Given an instance D and ā ∈ Q(D), it is easy to see that: (D, ā) ∈
VCEP(Q) iff there is τ ∈ Dn with (D, ā, τ) ∈ VCDP(Q). This immediately gives us

a one-to-many reduction from VCEP(Q): (D, ā) is mapped to the polynomially-many

inputs of the form (D, ā, τ) for VCDP(Q), with τ ∈ Dn. The answer for (D, ā) is yes iff

at least for one τ , (D, ā, τ) gets answer yes. This is a polynomial number of membership

tests for VCDP(Q). �

In this result, NP -hardness is defined in terms of “Cook (or Turing) reductions” as

opposed to many-one (or Karp) reductions [Garey et al., 2979, Goldreich et al., 2008].

NP -hardness under many-one reductions implies NP -hardness under Cook reductions, but

the converse, although conjectured not to hold, is an open problem. However, for Cook

reductions, it is still true that there is no efficient algorithm for an NP -hard problem, unless

P = NP .

Finally, we settle the complexity of the vc-causality responsibility problem for conjunc-

tive queries.

Proposition 8.3.3 For CQs Q, VRDP(Q) is NP-complete (in data).

Proof: Membership: For an input (D, ā, τ, v), non-deterministically guess Γ ⊆ Dn, and

return yes if τ is a vc-cause for ā with contingency set Γ, and |Γ| < 1
v
. Otherwise, return

no. The verification can be done in PTIME in data.

Hardness: By reduction from the VCDP problem, shown to be NP -complete in Propo-

sition 8.3.2.

Map (D, ā, τ), an input for VCDP(Q), to the input (D, ā, τ, k) for VRDP(Q), where

k = 1
|D|+1

. Clearly, (D, ā, τ) ∈ VCDP(Q) iff (D, τ, ā, k) ∈ VRDP(Q). This follows

from the fact that τ ∈ Dn is an actual cause for ā iff vc-ρQ(ā)
(τ) ≥ 1

|D| . �

Notice that the previous proof uses a Karp reduction, but from a problem identified as

NP -hard through the use of a Cook reduction.
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The next result is obtained from the FPNP(log(n))-completeness of computing the high-

est responsibility associated to a query answer (i.e. the responsibility of the most responsi-

ble causes for the answer) (cf. Proposition 5.5.3).

Proposition 8.3.4 Computing the size of a solution to a minimum-source-side-effect deletion-

problem is FPNP(log(n))-hard. �

Proof: By reduction from computing responsibility of a most responsible cause on the ba-

sis of Proposition 8.2.2. �

All results on vc-causality in this section also hold for UCQs.



Chapter 9

Degree of Causal Contribution

The notion of causal responsibility in [Meliou et al., 2010c] intends to provide a metric to

quantify the causal contribution, as a numerical degree, of a tuple to a query answer. This

responsibility-based ranking is considered as one of the most important contributions of

HP-causality to data management [Meliou, et al., 2011c].

Causal responsibility can be traced back to [Chockler & Halpern, 2004], where it is

suggested that, for variables A and B, the degree of responsibility of A for B should be
1

(N+1)
, and N is the minimum number of changes that have to be made to obtain a situation

where B counterfactually depends directly on A. If A is not a cause for B, then the degree

of responsibility of A for B is 0. It has been pointed out that, although the degree of

responsibility is a number between 0 and 1, it does not act like a probability [Halpern,

2015b].
In the previous chapters, a close connection between causal responsibility and other

notions in data management, such as the minimum-source-side-effect deletion-problem and

cardinality-based repairs, has been unveiled (see also [Salimi & Bertossi, 2015a, Salimi &

Bertossi, 2015b, Cibele et al., 2016]). The underlying reason for this is that these notions

are all motivated by the need to perform a minimum number of changes in a database so that

a new state of the database has a desired property. Therefore, causal responsibility is indeed

an important notion that can capture and unify several problems in data management.
However, in this chapter we argue in technical terms that causal responsibility as intro-

duced in [Meliou et al., 2010c] may only partially fulfil the original intention of providing a

plausible ranking for tuples in terms of their causal contributions to a query answer. More

specifically, we show that in addition to the “minimum number of changes” required to

make a tuple τ a counterfactual cause, there are other factors that affect our judgment for

the attribution of a degree of causal contribution to τ . Actually, we develop a metric that

does take into account all those other factors, matches our intuition, and enjoys interesting

properties.
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9.1 Necessity and Sufficiency for QA-Causality

Definition 9.1.1 For an instance D = Dx ∪ Dn and a Datalog query Π with D ∪ Π |=
Ans(ā):1

(a) S ⊆ Dn is a sufficient-set for ā if S ∪Dx ∪ Π |= Ans(ā).

(b) S ⊆ Dn is a minimal-sufficient-set for ā, if it is a sufficient-set for ā, but no proper

subset of S is a sufficient-set for ā.2

(c) N ⊆ Dn is a necessary-set for ā if (Dn rN) ∪Dx ∪ Π 6|= Ans(ā).

(d) N ⊆ Dn is a minimal-necessary-set for ā, if it is a necessary-set for ā, but no proper

subset of N is a necessary-set for ā. �

Next, we define two indices that measure the extent by which a tuple is necessary or

sufficient to support a query answer.

Definition 9.1.2 For an instanceD = Dx∪Dn, a Datalog query Π, withD∪Π |= Ans(ā),

and a tuple τ ∈ Dn:

(a) The sufficiency-degree of τ (for ā), denoted by σ
Π(ā)

(τ), is 1
|S| , where S is a minimum-

cardinality sufficient-set for ā with τ ∈ S. If τ is not contained in any of the

sufficient-sets of ā, then σ
Π(ā)

(τ) = 0.

(b) The necessity-degree of τ (for ā), denoted by η
Π(ā)

(τ), is 1
|N | , whereN is a minimum-

cardinality necessary-set for ā with τ ∈ N . If τ is not contained in any of the

necessary-sets of ā, then η
Π(ā)

(τ) = 0. �

Example 9.1.1 Consider the instance D with relations R and T as below, and the

query Π : Ans(x) ← R(x, y), T (y), which

is true in D. Assume all tuples are endoge-

nous.

R A B

a1 a4

a3 a1

a3 a3

T A

a1

a2

a3

1For a CQ Q, this statement takes the form D |= Q(ā).
2Notice that when D = Dn, sufficient-sets of a query answer coincide with its minimal-witnesses as in

[Buneman et al., 2001] (cf. Chapter 1).
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Here, 〈a3〉 is an answer to the query, and has the following minimal sufficient-sets:

S1 = {R(a3, a1), T (a3)} and S2 = {R(a3, a3), T (a3)}; and the following necessary-sets:

N1 = {T (a3)} and N2 = {R(a3, a1), R(a3, a3)}.
The tuples in the minimal-sufficient (necessary) sets of a3 are T (a3), R(a3, a1) and

R(a3, a3), which coincide with its actual causes for 〈a3〉.
The sufficiency-degree of each of the actual causes is 1

2
. However, the necessity-degree

of T (a3) is 1, whereas the necessity-degree of R(a3, a1) and R(a3, a3) is 1
2
. �

For Datalog queries, the collection of the subset-minimal contingency sets associated

with a cause τ , cf. Equation (5.3), takes the form:

Cont(D,Π(ā), τ) := {Γ ⊆ Dn | D r Γ ∪ Π |= Ans(ā), D r (Γ ∪ {τ}) ∪ Π 6|= Ans(ā),

and ∀Γ′′ $ Γ, D r (Γ′′ ∪ {τ}) ∪ Π |= Ans(ā)}.

Proposition 9.1.1 Let D = Dx ∪ Dn, Π be a Datalog query with D ∪ Π |= Ans(ā), and

τ ∈ Dn.

(a) τ ∈ Causes(D,Π(ā)), with Γ ∈ Cont(D,Π(ā), τ), iff N = Γ ∪ {τ} is a minimal-

necessary-set for ā.

(b) τ belongs to some minimal-sufficient-sets for ā iff it belongs to some minimal-

necessary-set for ā.

Proof: Part (a) is straightforward. We only prove part (b). Assume SF = {S1, . . . , Sm} is

the set of all minimal-sufficient-sets for ā, and there exists S ∈ SF with τ ∈ S. Consider

an arbitrary Γ ⊆ Dn such that, for every Si ∈ S where Si 6= S, it holds Γ ∩ Si 6= ∅ and

Γ ∩ S = ∅. Then, N = Γ ∪ {τ} is a necessary set for ā.

It is good enough to prove that such a Γ always exists. In fact, since all subsets of SF
are subset-minimal, for each Si ∈ SF with Si 6= SF , it holds Si ∩ S = ∅. Therefore, we

can choose Γ :=
⋃m

1 {t̄ | t̄ ∈ (S4Si)}. The proof in the other direction is straightforward.�

Proposition 9.1.1 basically states that the tuples in minimal-sufficient or minimal-necessary-

sets for a query answer are the actual causes for that answer.
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Figure 9.1: Graph G associated to instance D

Example 9.1.2 Consider the instance D with a single binary relation E as below (t1-t6 are

tuple identifiers). Assume all tuples are endogenous.

E A B

t1 a b

t2 a c

t3 c b

t4 a d

t5 d e

t6 e b

Instance D can be represented as the di-

rected graph G(V , E) in Figure 9.1, where V
coincides with the active domain of D (i.e.,

the set of constants in E), and E contains an

edge (v1, v2) iff E(v1, v2) ∈ D. The tuple

identifiers are used as labels for the corre-

sponding edges in the graph.

For simplicity, we will refer to the database tuples through their identifiers.

Consider the Datalog query Π:
Ans(x, y) ← P (x, y)

P (x, y) ← E(x, y)

P (x, y) ← P (x, z), E(z, y).

It collects pairs of vertices of G that are connected through a path.

It is easy to verify that 〈a, b〉 is an answer to this query, Causes(D,Π(〈s, t〉)) =

{t1, t2, t3, t4, t5, t6}, and the causal responsibility of each cause is 1
3
.

All the actual causes are equally responsible. However, it makes more sense to claim

that t1 contributes more to the answer 〈a, b〉 than the other tuples.

Answer 〈a, b〉 has the following minimal-necessary-sets: N1 = {t1, t2, t4}, N2 =

{t1, t2, t5}, N3 = {t1, t2, t6}, N4 = {t1, t3, t4}, N5 = {t1, t3, t5}, N6 = {t1, t3, t6}. So,
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Figure 9.2: Graph G′ associated to the instance D′

all the causal tuples have the same necessity-degree. The same answer has the following

minimal-sufficient-sets: S1 = {t1}, S2 = {t2, t3}, S3 = {t4, t5, t6}. So, in this case, the

sufficiency-degree of t1 is 1, higher than that of any of the other causes.

A combination of edges that forms a path between a and b forms a sufficient-set for

〈a, b〉. Moreover, a combination of edges whose removal disconnects a and b is a necessary-

set for the answer. It makes sense to claim that tuples that belong to shorter paths between a

and b contribute more to the answer than tuples that belong to longer paths. In other words,

tuples with higher sufficiency-degree seems to contribute more to the answer. �

It turns out that causal responsibility as introduced in [Meliou et al., 2010c] is a a

measure of the extent by which a tuple is necessary for a query answer. A simple corollary

of Proposition 9.1.1 states that causal responsibility of a tuple for a query answer coincides

with its necessity-degree.

For simplicity, in the rest of this section we will concentrate mostly on boolean Datalog

queries. We recall that in this case, the answer is the propositional atom ans or nothing (no

answer).
Corollary 9.1.1 Let D = Dx ∪Dn be an instance, and Π be a boolean Datalog query with

Π ∪D |= ans . It holds: η
Π
(τ) = ρ

Π
(τ). �

Recalling the observation made in Example 9.1.2, one could propose the sufficiency-

degree as the right metric to measure causal contribution. However, the next example

suggests that both the sufficiency and necessity-degrees have to be taken into account.

Example 9.1.3 Consider the instance D′ with a single binary relation E as below (t1-t5
are tuple identifiers). Assume t1 and t2 are exogenous.
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Figure 9.3: Graph G′′ associated to the instance D′′

E A B

t1 s a

t2 s b

t3 a c

t4 b c

t5 c t

Consider the boolean Datalog query Π:

ans ← P (s, t)

P (x, y) ← E(x, y)

P (x, y) ← P (x, z), E(z, y).

The query asks if there exist a path between s and t in graph G′, the graph associated to

instance D′, shown in Figure 9.2. The dashed edges correspond to the exogenous tuples.

Clearly, Π ∪ D′ |= ans , and this answer (ans) has the following minimal-sufficient-

sets: S1 = {t2, t5}, S2 = {t4, t5}, and the following minimal-necessary-sets: N1 = {t5},
N2 = {t2, t4}.

We obtain: η
Π
(t5) = 1, η

Π
(t2) = η

Π
(t4) = 1

2
; but σ

Π
(t2) = σ

Π
(t4) = σ

Π
(t5) = 1

2
.

Intuitively, it makes sense to claim that t5 contributes more to the result, because the

answer is counterfactually depends on t5 (no need for an accompanying contingency set).

We can see that in this case, in contrast with Example 9.1.2, ranking causal tuples on the

basis of their necessity-degrees is inline with our intuition that they contribute more to the

query result. �

The next example shows that considering both sufficiency and necessity-degrees may not

capture the intuition about which tuple contributes more as cause.

Example 9.1.4 (ex. 9.1.3 cont.) Consider the same query Π, but now the instance D′′ as

below. Assume t6 and t7 are exogenous tuples.
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E A B

t1 s a

t2 s b

t3 a c

t4 a d

t5 b τ

t6 c τ

t7 d τ

It is clear that Π ∪ D′′ |= ans . The answer

ans has the following minimal-necessary

and sufficient-sets: S1 = {t1, t3}, S2 =

{t1, t4}, S3 = {t2, t5}, N1 = {t1, t2},
N2 = {t1, t5}, N3 = {t2, t3, t4}; and N4 =

{t5, t3, t4}. Here, σ
Π
(t1) = σ

Π
(t2) = 1

2
, and

η
Π
(t1) = η

Π
(t2) = 1

2
.

If the degree of causal contribution of the tuple to the answer can be captured by con-

sidering only the sufficiency and necessary-degrees, we would conclude that, for example,

t1 and t2 equally contribute to the result. However, looking at the graph representation of

D′′ in Figure 9.3, it is reasonable to claim that t1 contributes more to the result than t2. This

is because, t1 contributes to two paths between s and t, whereas t2 contributes to only one

path. In other words, t1 is contained in more sufficient-sets than t2.

We observe that our intuition about the difference in causal contribution between t1 and

t2 to the answer is captured by the difference between the number of necessary-sets of the

answer that these tuples belong to. To see this, notice that t1 and t2 are contained in two

minimal-necessary sets. More specifically, t1 belongs to N1 and N2; and t2 to N1 and N3.

Now, since each superset of a minimal-necessary-set is a necessary-set, and in this case,

|N1| < |N3|, it turns out that N1 has more supersets than N3. That is, t1 is contained in

more necessary-sets for the answer than t2. Actually, t1 is contained in 18 necessary-sets

for the answer, whereas t2 is contained only in 10 necessary-sets. �

9.2 Degree of Causal Contribution

On the basis of the previous discussion and examples, our intention is to use the num-

ber of necessity-sets as the right candidate to measure causal contribution. Specifically,

we propose the following metric to measure the causal contribution of a tuple to a query

answer.
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Definition 9.2.1 For an instance D, a Datalog query Π with Π∪D |= Ans(ā), and a tuple

τ ∈ Dn, the degree of causal contribution of τ to answer ā is:

C
Π(ā)

(τ) =
#N(τ)

Στ ′∈D #N(τ ′)
, (9.1)

where, #N(τ) is the number of necessary-sets of ā to which τ belongs. �

Notice that exogenous and non-cause tuples contribute with 0 to the sum in the denom-

inator. Also notice that in this measure we are not restricting the necessary-sets involved

in the computation of #N(τ) to be minimal. We illustrate the usefulness of this metric by

applying it to several examples.

Example 9.2.1 (ex. 9.1.2 cont. ) The table below shows the degrees of causal contribution

for tuples in D to the answer 〈a, b〉. In this case, #N(t1) = 21, #N(t2) = #N(t3) = 7,

#N(t4) = #N(t5) = #N(t6) = 3.

C 〈a, b〉
0.48 t1

0.16 t2

0.16 t3

0.07 t4

0.07 t5

0.07 t6

As already discussed, a plausible ranking of

tuples in terms of their causal contribution to

the answer should put t1 at the top; t2 and t3
in the middle; and t4, t5 and t6 at the bottom.

This is perfectly captured by the ranking on

the left-hand-side. �

Example 9.2.2 (ex. 9.1.4 cont. ) The table below shows the degrees of causal contribution

of the tuples to the query answer. Here, #N(t1) = 9, #N(t2) = #N(t5) = 5, #N(t3) =

#N(t4) = #N(t6) = 3.

C 〈s, t〉
0.36 t1

0.20 t2

0.20 t5

0.12 t3

0.12 t4

Again, the degrees of causal contribution

match our intuition. �

Example 9.2.3 (ex. 1.1.4 and 1.5.1 cont.) Consider again the answer Musical to the query

Q in (1.2). The degrees of causal contribution of the actual causes of this answer are

presented below.
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C Musical

0.28 Director(23468, Humphrey, Burton)

0.22 Director(23456, David, Burton)

0.12 Director(23488, Tim, Burton)

0.12 Movie(526338, “Sweeney Todd”, 2007)

0.07 Movie(359516, “Let’s Fall in Love”, 1933)

0.07 Movie(565577, “The Melody Lingers On”, 1935)

0.04 Movie(6539, “Candide”, 1989)

0.04 Movie(173629, “Flight”, 1999)

0.04 Movie(389987, “Manon Lescaut”, 1997)

As we already argued in Example 1.5.1, the tuple for “Humphrey Burton” contributes

more to the genre “Musical” (the query answer) than those for “David Burton” and “Tim

Burton”. Our ranking shows a match with our intuition.

Furthermore, this ranking reflects the fact that these director tuples contribute more to

the category “Musical” than their movie tuples. The only exception is “Tim Burton”, who

equally contributes to this category, with his movie “Sweeney Todd”. This is because he

only has one musical movie. �

The next proposition shows that the degree of causality enjoys two interesting proper-

ties.

Proposition 9.2.1 Given a database D = Dn ∪ Dx, a Datalog query Π with Π ∪ D |=
Ans(ā), the degree of causal contribution has the following properties:

P1: For any tuple τ ∈ Dn, 0 ≤ C
Π(ā)

(τ) ≤ 1. Furthermore, C
Π(ā)

(τ) = 0 when τ is not an

actual cause for ā; and C
Π(ā)

(τ) = 1 when τ is a unique actual cause for ā. (Actually,

this happens when σ
Π(ā)

(τ) = η
Π(ā)

(τ) = 1).

P2:
∑

τ∈D CΠ(ā)
(τ) = 1, that is the degree of causality metric assigns to each tuple τ ∈ D

a value that describes its relative share as a cause to answer ā. (In particular, if a

tuple has a degree of causality of 1, it is the only actual cause.)

Proof: To prove the last part of P1 (the first in immediate, so as that of P2), suppose τ is a

unique actual cause for ā. Then, for all t̄ ∈ D with t̄ 6= τ , it holds #N(τ) = 0. Actually,

this is a simple corollary of Proposition 9.1.1. Therefore, C
Π(ā)

(τ) = 1. �
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The last three examples clearly illustrate these properties. Actually, properties P1 and

P2 in Proposition 9.2.1 could be used as postulates that any sensitive enough measure of

causal contribution should satisfy. As a matter of fact, causal responsibility (as defined in

[Meliou et al., 2010c]) does not satisfy them, as Example 9.2.4 below shows.

In fact, a basic fact of causal responsibility is that a tuple τ makes the maximum causal

contribution to an answer ā when it is a counterfactual cause for ā. Although counter-

factual dependency is considered to be the strongest form of causal dependency between

a tuple and an answer, the following example shows that a counterfactual cause may not

necessarily have 1 as degree of causal contribution.

Example 9.2.4 (ex. 9.1.3 cont.)

(a) Consider instance I = {E(s, t)}. It holds: Π ∪ I |= ans . This answer has the

counterfactual cause E(s, t), with responsibility 1. Moreover, η
Π
(E(s, t)) = 1 =

σ
Π
(E(s, t)) = 1; so that E(s, t) makes the maximum causal contribution to the an-

swer. Furthermore, C
Π(ā)

(E(s, a)) = 1.

(b) Consider instance I ′ = {E(s, a), E(a, t)}. The answer of the query Π from I ′ is

also ans . Now, both E(s, a) and E(a, t) are counterfactual causes for the result, i.e.

η
Π
(E(s, a)) = η

Π
(E(a, t)) = 1. However, in this case the combination of the tuples

forms the only sufficient-set for the answer, i.e. σ
Π
(E(s, a)) = σ

Π
(E(a, t)) = 1

2
.

We can see that the total contribution to the answer is shared between the both tu-

ples. Our metric perfectly captures the distinction between this case and (a). This is

because, we obtain C
Π
(E(s, a)) = C

Π
(E(a, t)) = 1

2
. However, causal responsibility

(in the sense of [Meliou et al., 2010c]) assigns 1 to both of these tuple, because they

are counterfactual causes for the answer. Also notice that the sum of these tuples’

responsibilities is 2. �

We should point out that the properties P1 and P2 do not also hold for the sufficiency-

and necessity-degrees. For the latter this is implied by the connection between necessity-

degree and causal responsibility (cf. Corollary 9.1.1). For the former, consider Example

9.1.3, where we obtained that t1 has sufficiency-degree 1. This collides with P2, because

t1 is not the single actual cause for the answer. The same example shows that the sum of

the sufficiency-degrees is not equal to 1.
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9.3 Discussion on the Degree of Causal Contribution

A key observation, which helps us justify the number necessary-sets as the basic com-

ponent in the definition of degree of causal contribution, ii that it is mathematically re-

lated to the other factors we have considered in this chapter, among them the sufficiency-

and necessity-degrees, and the number of sufficient-sets that contain a cause. In fact,

the necessary-sets for an answer ā are supersets of its minimal-necessary-sets. Now, the

minimal-necessary-sets for ā are essentially the subset-minimal hitting-sets of the class

of all minimal-sufficient-sets for ā. Actually, the following result can be obtained from

Proposition 9.1.1 and the results in Section 5.3.2.2.

Proposition 9.3.1 For an instanceD = Dx∪Dn, a Datalog query Π withD∪Π |= Ans(ā),

N ⊆ Dn is a minimal-necessary-set for ā iff N is a subset-minimal hitting-set for SF ,

the class of all the minimal-sufficient-sets for ā.

Proof: Suppose N is a subset-minimal hitting-set for the class SF . Then from the defini-

tion of a hitting-set, for all S ∈ SF it holds N ∩ S 6= ∅. Due to the subset-minimality of

the sufficient-sets, it holds (Dn r N) ∪ Dx ∪ Π 6|= Ans(ā). Therefore, N is a minimal-

necessary-set for ā. A similar argument applies in the other direction. �

From Proposition 9.3.1, we obtain that, for a cause τ for an answer ā, #N(τ) is related

to the number of minimal-hitting sets for the class of minimal-sufficient-sets for ā that

contain τ . Counting hitting-sets is a problem that has been investigated. For example, in

[Peter & Molokov, 2009, lemma 2] it is shown (in essence) that the number of different

minimal-hitting sets of size k for a collection of sets that contain a fixed element e is a

function of the size of the maximum-cardinality set in the collection and the size of the

minimum-cardinality hitting-sets that contain e.

Recall from Proposition 9.1.1 that a cause τ for a query answer, together with any

of its contingency sets, forms a necessary-set for the query answer. Therefore, #N(τ)

coincides with the number of contingency sets associated to τ . That is, the degree of causal

contribution (cf. Definition 9.2.1) can be seen as the (normalized or relative) frequency with

which a tuple τ is a counterfactual cause for ā across all possible contingency sets. This

interpretation reflects a close connection between the degree of causal contribution (DCC)
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introduced in this chapter and the degree of causation (DOC) introduced in [Braham & Van

Hee, 2009], which is based on the concept of Necessary Element of a Sufficient Set (NESS)

test (cf. Section 3.2). In fact, the authors argue that in order to define a degree of causation,

one should focus on the relative frequency with which an action satisfies the NESS test.

Intuitively, the DOC is the normalized frequency by which an event is a “critically

sufficient condition” for an observation. More specifically, the authors consider the full

range of sufficient conditions for an observation, in which an event is necessary. This

intuition can be adapted in the context of QA-causality as follows: the DOC of a tuple τ

to a query answer ā is the number of subinstances D′ of the database D where ā is still an

answer and τ is a counterfactual cause for ā inD′. It is not difficult to see that this numerical

value coincides with the number of contingency sets associated to τ , that is #N(τ).

In contrast to our DCC, the DOC proposed in [Braham & Van Hee, 2009] does not

emerge in relation to the notion of causal responsibility by [Chockler & Halpern, 2004]. In

fact, the authors developed their metric merely on the basis of the intuition that, in order

to define a degree of causation, one should focus on the relative frequency with which an

action satisfies the NESS test. Furthermore, no mathematical justification or motivating

examples are provided to support their intuition.

We have argued in precise terms, and illustrating with several examples, the factors

that affect our judgment of the degree of causal contribution of a tuple to a query an-

swer. Namely, the sufficiency- and necessity-degrees and the numbers of necessary- and

sufficient-sets that a tuple belongs to. Furthermore, we discussed that, among the men-

tioned factors, the number of necessary-sets a tuple is contained in depends on the rest of

the factors, and is the right metric to measure degree of causal contribution of a tuple. Al-

though this discussion and model is restricted to QA-causality, the underlying idea could

be extended to general setting of HP-causality.

Considering that each contingency set associated to a tuple is basically a way to make it

a counterfactual case, the intuition behind [Braham & Van Hee, 2009] coincides with that

of [Zultan et al., 2013], according to which, in order to ascribe a degree of causation, people

take into account not only the number of changes required to makeA a counterfactual cause

for B, but also the number of ways to reach a situation where B counterfactually depends

on A.
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In this chapter we have proposed the notion of degree of causal contribution, and pro-

vided a precise definition. However, there are many open problems about this new measure

that have to be mathematically investigated. Among many others, we see the following

as immediate challenges for future work: (a) A complexity analysis of the computational

problems related to the degree of causal contribution (we conjecture that it is intractable).

(b) The identification of classes of queries for which computing this metric is tractable

(c) The extension of our proposed metric to the general HP-model, as an alternative to

the notion of causal responsibility. (d) The investigation of the connection between this

metric and other related problems, e.g. the model-counting problem. (e) The identifi-

cation of a precise mathematical connection between necessary-sets and other factors we

have considered in this chapter, e.g. sufficiency-and necessity-degrees, and the number of

sufficient-sets that contain a cause.



Chapter 10

Discussion and Conclusions

10.1 Issues with Causality and Responsibility

10.1.1 QA-causality vs. learning causal information from data

It is important to make the distinction between learning causality from data (i.e., extracting

causal information from data) and the notion of QA-causality as defined and investigated

in [Meliou et al., 2010c], and used in this work.

It is well understood that to address causal questions (or to assess causal assumptions)

using data, some knowledge of the data-generating process is required [Pearl, 2010]. More

specifically, causality can only be established in a controlled physical experiment where

one changes one single variable, while keeping all others unchanged (performing an in-

tervention), and observes changes in the output (effects of the intervention). This requires

knowledge and control of the data-generating process, which goes beyond the data alone.

The key building blocks of relational databases are entities and relations (or predicates).

Entities represent objects that exist in the domain of a database and relations represent

properties of these objects or relationships among them. A query form a relational database

instance can be seen as a Datalog program (cf. Section 2.2), provided that the program has

a distinguished output predicate that collects the answers. From this perspective, a query

may be seen as a causal relation between the predicates in the body of the rules and the

output predicate. However, this causal relation may not represent causal information about

the domain objects that are represented by these predicates (see Example 10.1.1).

Having considered a query as a causal relation, it is possible to reason about causes

for the query answers. The query provides the required knowledge to perform interven-

tions, assess the effects of the interventions and establish actual causation for the query

answers. In this direction, QA-causes merely convey information about the formation of

query answers as mathematical objects rather than the domain objects they represent.

112
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Example 10.1.1 Consider the instance D with a single relation Sells as below. This rela-

tion contains some information on beer menus in Brussels’ bars (t1 and t6 are tuple identi-

fiers).

Sells Bar Beer Price

t1 Hard Rock Cafe Budweiser e4.45

t2 Hard Rock Cafe Delirium e3.58

t3 Hard Rock Cafe Duvel e2.58

t4 Play Boy Bar Corona e2.65

t5 Play Boy Bar Budweiser e4.75

t6 Play Boy Bar Duvel e2.18

Suppose a beer is known to be “cheap” in Brussels if there are at least two bars that sell

it for under e3. This is captured by the CQ query Cheap as below:1

Cheap(Beer) :: ∃Bar 1 ∃Bar 2 ∃Price1∃Price2(Sells(Bar 1,Beer ,Price1) ∧

Sells(Bar 2,Beer ,Price2) ∧ (Price1 < 3) ∧

(Price2 < 3) ∧ (Bar 1 6= Bar 2)), (10.1)

which has only one answer, Duvel. It is clear that t3 and t6 are counterfactual causes for

this answer. However, t3 and t6 should not be interpreted as causes for “Duvel” being a

cheap beer. The fact that the two bars offer this beer for less than e3, normally has noting

to do with the beer price. That is, the query in (10.1) represents associational information

in the domain. Nevertheless, t3 and t6 can be seen as causes for “Duvel” to be among the

query answers (i.e., they are causes for the observed associational fact in the domain). �

Consequently, extrapolating QA-causes as causal information about the domain objects

is only justified under the assumption that the query represents causal knowledge about

these objects. Scenarios that we dealt with in this work e.g., Examples 1.1.1 and 1.1.4 are

as such. This confusion arises frequently in QA-causality literature e.g., [Meliou et al.,

2010c, Meliou et al., 2010b, Roy & Suciu, 2014, Meliou et al., 2011b].
1The definition of causality in [Meliou et al., 2010c] is applicable to monotone queries in general. Since

CQs with built-ins preserve monotonicity, the definition of causality can be applied to them. However, built-
ins are used in this example for illustration purposes and are not the focus of this work.
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10.1.2 Objections to causality

Causality as introduced in [Halpern & Pearl, 2005], aka. HP-causality, is the basis for the

notion of causality in [Meliou et al., 2010c]. HP-causality has been the object of some crit-

icism [Halpern, 2014], which is justified in some (more complex, non-relational) settings,

specially due to the presence of different kinds of logical variables (or lack thereof) and

the lack of a generic and generally accepted definition for the notion of contingency.

We could say that the efforts in [Halpern, 2014, Halpern, 2015a] to modify the origi-

nal HP-definition of causality are about considering more appropriate restrictions on con-

tingencies. Since in some cases the original HP-model does not provide intuitive results

regarding causality, the modifications avoid this by recognizing some contingencies as “un-

reasonable” or “farfetched”.

In our context the objections do not apply: variables just say that a certain tuple belongs

to the instance (or not); and for relational databases the closed-world assumption applies.

In [Halpern, 2014, Halpern, 2015a], the definition of HP-causality is slightly modified. In

our setting, this modified definition does not change contingency sets and actual causes or

their properties.

10.1.3 Issues with degree of responsibility

Degree of responsibility as introduced in [Chockler & Halpern, 2004] is the basis for the

notion of responsibility in [Meliou et al., 2010c]. In [Gerstenberg et al., 2010] it has been

argued that people use something similar to the intuition behind the notion of degree of

responsibility to ascribe responsibility. However, more recently it has been discussed that

people take into account not only the number of changes required to make A a counterfac-

tual cause for B, but also the number of ways to reach a situation where B counterfactually

depends directly on A [Zultan et al., 2013].

In [Halpern, 2015b], it has been argued that while causal responsibility in [Chockler

& Halpern, 2004] could capture some reasonable intuitions, alternative definitions might

be more appropriate in some applications. In [Braham & Van Hee, 2009], it has been

argued that the notion of responsibility as defined in [Chockler & Halpern, 2004] does not

determine the share of an action in bringing about an outcome, but only “the extent to which

there are other causes”. They propose an alternative metric called “degree of causality”,
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on the basis of the notion of NESS test. However, no clear distinction between the two

approaches has been established.

The proposed metric of degree of causal contribution in this work is an attempt to

provide a more intuitive and informative alternative for causal responsibility in the context

of QA-causality in databases. In this work, we have made a clear distinction between our

proposal and that of [Meliou et al., 2010c].

10.2 Conclusions and Future Work

10.2.1 Causality, database repair and consistent-based diagnosis

In Chapters 5 and 6, we have unveiled and formalized some first interesting relationships

between causality in databases, database repairs, and consistency-based diagnosis. These

connections allow us to apply results and techniques developed for each of them to the

others. This is particularly beneficial for causality in databases, where still a limited number

of results and techniques have been obtained or developed.

The connections we established here inspired complexity results for causality, e.g. The-

orems 5.5.2 and 5.5.3, and were used to prove them. We appealed to several non-trivial re-

sults (and the proofs thereof) about repairs/CQA obtained in [Lopatenko & Bertossi, 2007].

It is also the case that the well-established hitting-set approach to diagnosis inspired a sim-

ilar approach to causal responsibility, which in its turn allowed us to obtain results about

its fixed-parameter tractability. It is also the case that diagnostic reasoning, as a form of

non-monotonic reasoning, can provide a solid foundation for causality in databases and

query answer explanation, in general [Cheney et al., 2009b, Cheney et al., 2011].

The characterization of causes in terms of repairs opens up the possibility of introduc-

ing various notions of causes based on different repair semantics. Following this idea, in

Chapter 6, we define notions of preferred causes; in particular one based on prioritized re-

pairs [Staworko et al., 2012]. We also propose a finer-granularity approach to causality, at

the attribute level rather than at the tuple level, that is based on interventions that are repair

actions that replace attribute values by null values.
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10.2.1.1 ASP specification of causes

S-repairs can be specified by means of answer set programs (ASPs) [Arenas et al., 2003a,

Barcelo et al., 2003], and C-repairs too, with the use of weak program constraints [Arenas

et al., 2003a]. This should allow for the introduction of ASPs in the context of causality, for

specification and reasoning. There are also ASP-based specifications of diagnosis [Eiter et

al., 1999] that could be brought into a more complete picture.

10.2.1.2 Endogenous repairs

As discussed in Chapter 6, the partition of a database into endogenous and exogenous tu-

ples may also be of interest in the context of repairs. We may prefer endogenous repairs

that change (delete in this case) only endogenous tuples. However, if there are no endoge-

nous tuples, a preference condition could be imposed on repairs, keeping those that change

exogenous tuples the least. This is something to explore.

As a further extension, it could be possible to assume that combinations of (only) ex-

ogenous tuples never violate the integrity constraints, which could be checked at upload

time. In this sense, there would be a part of the database that is considered to be consistent,

while the other is subject to possible repairs. For somehow related research, see [Greco et

al., 2014].

10.2.1.3 Causes and functional dependencies, and beyond

Functional dependencies are DCs with conjunctive violation views with inequality, and

are still monotonic. There is much research on repairs and consistent query answering

for functional dependencies, and more complex integrity constraints [Bertossi, 2011]. In

causality, mostly CQs without built-ins have been considered. The repair connection could

be exploited to obtain results for causality and CQs with inequality, and also other classes

of queries.

10.2.2 Causality, abductive diagnosis and the view-update problem

In Chapters 7 and 8, we have related QA-causality to abductive diagnosis and the view-

update problem, respectively. The established connections between QA-causality, Datalog
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abduction, and the delete-propagation problems allow us to adopt and adapt established

results for some of them for/to the others. In this way, we obtain some new complexity

results for QA-causality.

10.2.2.1 Causality and integrity constraints

As pointed out in [Meliou et al., 2010b], the notion of QA-causality must be revised in

the presence of integrity constraints (ICs). Consider the query Q(x) : ∃z∃u (R(x, y, z) ∧
S(x, y, u)), and the referential constraint ∀x∀y∀z(R(x, y, z) → ∃uS(x, y, u)). Under the

assumption that this constraint is satisfied, Q(x) is equivalent to Q′(x) : ∃y∃zR(x, y, z),

yet computing causality and responsibility for these queries may yield different results.

The view-update problem has been studied in relation to ICs in [Kimelfeld, 2012a,

Cong et al., 2006]. The specification of causality in terms the view-update problem in this

work should allow for the introduction of ICs in the context of causality.

10.2.3 Database repairs, abduction and view-update problem

We point out that database repairs are related to the view-update problem. Actually, an-

swer set programs (ASPs) [Brewka et al., 2011] for database repairs [Bertossi, 2011] im-

plicity repair the database by updating conjunctive combinations of intentional, annotated

predicates. Those logical combinations -views after all- capture violations of integrity con-

straints in the original database or along the (implicitly iterative) repair process (a reason

for the use of annotations). This should allow for the introduction of ASPs in the context

of causality, for specification and reasoning. There are also ASP-based specifications of

diagnosis [Eiter et al., 1999] that could be brought into a more complete picture.

Abductive reasoning/diagnosis has been applied to the view-update problem in databases

[Kakas & Mancarella, 1990, Console et al., 1995], which is about characterizing and com-

puting updates of physical database relations that give an account of (or have as result) the

intended updates on views. The idea is that abductive diagnosis provides (abduces) the

reasons for the desired view-updates, and they are given as changes on base tables.

Finally, we should note that abduction has also been explicitly applied to database re-

pairs [Arieli et al., 2004]. The idea, again, is to “abduce” possible repair updates that bring

the database to a consistent state.
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10.2.4 Causality and reverse data management

The results obtained in this work and previously reported in [Bertossi & Salimi, 2014, Sal-

imi & Bertossi, 2014, Salimi & Bertossi, 2015a, Salimi & Bertossi, 2015b, Salimi &

Bertossi, 2015c] suggest that causal reasoning is a central activity in the reverse data man-

agement problems identified in [Meliou et al., 2011a]. This category has been defined

based on the authors’ observation that these problems invert a data transformation process,

in order to reason diagnostically back about an observation. Our work is the first to study

these problems from the perspective of causality.

In fact, we believe that causality can provide a unifying foundation for reverse data

management problems. Having a unifying foundation for these problems opens the play-

ground to adopt (and possibly adapt) the established results from one area to the others. It

also opens up the possibility of lifting the established concepts and results from causality

to reverse data management.

10.2.5 Degree of causal contribution

In Chapter 9 we argued in technical terms that causal responsibility as introduced in [Me-

liou et al., 2010c] may only partially fulfil the original intention of providing a plausible

ranking for tuples in terms of their causal contributions to a query answer. More specifi-

cally, we show that in addition to the “minimum number of changes” required to make a

tuple τ a counterfactual cause, there are other factors that affect our judgment for the attri-

bution of a degree of causal contribution to τ . Actually, we develop a metric that does take

into account all those other factors, matches our intuition, and enjoys interesting properties.

However, there are many open problems about this new measure that have to be mathe-

matically investigated. Among many others, we see the following as immediate challenges

for future work: (a) A complexity analysis of the computational problems related to the

degree of causal contribution (we conjecture that it is intractable). (b) The identification

of classes of queries for which computing this metric is tractable (c) The extension of

our proposed metric to the general HP-model, as an alternative to the notion of causal re-

sponsibility. (d) The investigation of the connection between this metric and other related

problems, e.g. the model-counting problem. (e) The identification of a precise mathe-

matical connection between necessary-sets and other factors we have considered in this
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chapter, e.g. sufficiency-and necessity-degrees, and the number of sufficient-sets that con-

tain a cause.

We observe a close connection between the degree of causal contribution, as introduced

in this work, and the indices that have been used as measures of degree of causation in

[Braham & Van Hee, 2009]. However, our justification comes from a different perspective.
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