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Abstract

Entity resolution (ER) is an important problem in data cleaning. It is about iden-

tifying and merging records in a database that represent the same external entity.

Relatively recently, declarative rules called matching dependencies (MDs) have been

proposed for specifying similarity conditions under which attribute values in database

records are merged. An ER process supported by MDs over a dirty instance may lead

to multiple clean instances.

In this thesis, we first present disjunctive answer set programs that capture through

their models the class of alternative clean instances obtained after an ER process

based on MDs. With these programs, we can obtain clean answers to queries by

skeptically reasoning from the program. As an important practical case of ER, we

provide a declarative reconstruction of the so-called union-case ER methodology, as

presented through a generic approach to ER, the so-called Swoosh approach. We

extend our ASP-based account of the union-case of Swoosh with negative rules.

In this work, we extend MDs to relational MDs, which capture more application

semantics, and identify classes of relational MDs for which the proposed declarative

specifications for ER via MDs can be automatically rewritten into stratified Datalog

programs.

We also show the process and the benefits of integrating four components of ER:

(a) Building a classifier for duplicate/non-duplicate record pairs using machine learn-

ing (ML) techniques; (b) Use of relational MDs for supporting the blocking phase

of ML; (c) Record merging on the basis of the classifier results; and (d) The use

of the declarative language LogiQL -an extended form of Datalog supported by the

LogicBlox platform- for all activities related to data processing, and the specification

and enforcement of MDs.
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Chapter 1

Introduction

Entity resolution (ER) is a common and difficult problem in data cleaning that has

to do with handling unintended multiple representations in a database of the same

external objects. This problem is also known as deduplication, reference reconcilia-

tion, merge-purge, etc.. Multiple representations lead to uncertainty in data and the

problem of managing it. Cleaning the database reduces uncertainty. In more precise

terms, ER is about the identification and fusion of database records (think of rows or

tuples in relational tables) that represent the same real-world entity. For some surveys

see [Bleiholder and Naumann, 2008,Elmagarmid et al., 2007,Koudas et al., 2006,Win-

kler, 1999]. As a consequence, ER usually goes through two main consecutive phases:

(a) detecting duplicates, and (b) merging them into single representations.

Efficient methods of data cleaning are essential to modern database applications.

Data warehouses can contain large amounts of data, which, because they come from

different sources, tend to suffer from high degrees of dirtiness as a result of different

keys, formats, etc. To clean such data manually would be very time consuming

and error-prone. It is important, therefore, to find ways of automating the process of

duplicate resolution, and of applying generic methods that can be adapted to different

situations.

As in most of the research and literature on data cleaning, the ER problem is

confronted with data that reside in a single repository, e.g. a relational database.

Also much in common with other data cleaning problems, ER is attacked on the

basis of mechanisms and algorithms that lack a declarative specification or a clear

semantics. However, quality requirements and mechanisms for enforcing them should

be expressed in declarative terms, e.g. by means of classic integrity constraints, logical

quality constraints or declarative cleaning rules.

A prominent example of declarative cleaning rules is provided by the proposal

1
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of matching dependencies (MDs) [Fan, 2008, Fan et al., 2009]. MDs are specifically

for ER. In intuitive terms, they express that under certain similarity conditions on

attribute values for two tuples, some other attribute values in those tuples should be

identified or matched, i.e. made equal. As we will see in this thesis in more general

terms, MDs help identify duplicate data and enforce their merging by exploiting

semantic or domain knowledge.

Example 1.0.1 Consider the relational schemaR = {R(A,B)}, with a predicate R

with attributes A and B. The symbolic expression in (1.1) is an MD requiring that,

R[A] ≈ R[A] −→ R[B]
.
= R[B], (1.1)

if for any two database tuples R(a1, b1), R(a2, b2) in an instance D for the schema,

when the values for attributes A are similar, i.e. a1 ≈ a2, then their values for

attribute B have to be made equal (matched), i.e. b1 or b2 (or both) have to be

changed to a value in common.

Let us assume that a1 ≈ a2, and b2 ≈ b3, and ≈ is reflexive and symmetric. The

table on the left-hand side (LHS) below is the extension for predicate R in D. In

it, a duplicate is not resolved, since the tuples (with tuple identifiers) t1 and t2 have

similar values for attribute A, but the values for B are different.

R(D) A B
t1 a1 b1

t2 a2 b2

t3 a3 b3

R(D′) A B
t1 a1 b5

t2 a2 b5

t3 a3 b3

D does not satisfy the MD, and is a dirty instance. After applying the MD, we

could get the instance D′ on the right-hand side (RHS), where values for B have

been identified. In principle, nothing prevents us from choosing a new value b5 from

the data domain to do the matching. The MD holds in the traditional sense of an

implication on D′. We call D′ a clean instance. 2

The introduction of MDs and their declarative formulation have become important

additions to data cleaning research. A dynamic semantics for MDs was introduced
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in [Fan et al., 2009], that requires a pair of instances: a first one where the similarities

hold and a second one where the matchings are enforced, like D and D′ in Example

1.0.1.

The MDs, as introduced in [Fan et al., 2009], do not specify how to match values.

As we did in the example, we could even pick up a new value, e.g. b5 above, for

the value in common. This semantics was refined and extended in [Bertossi et al.,

2013], using matching functions (MFs) to guide the matchings, one for each of the

participating attribute domains. The MFs induce a lattice-theoretic structure on

the latter [Bertossi et al., 2013]. An alternative dynamic semantics was introduced

in [Gardezi et al., 2012]. It is not using MFs, but matchings have to be justified

(so as in [Bertossi et al., 2013]) and minimal, i.e. a minimum number of changes to

attribute values is applied to satisfy the MDs.

In this work we revisit the approach to ER via MDs and MFs introduced in

[Bertossi et al., 2013]. In that scenario, a “dirty” instance D w.r.t. a set Σ of MDs may

lead to several different clean and stable solutions D′, each of which can be obtained by

means of a provably terminating, but non-deterministic, chase-like procedure [Bertossi

et al., 2013]. The latter involves enforcing MDs iteratively by means of applying MFs.

The set of all such clean instances is denoted by C(D,Σ).

Example 1.0.2 (ex. 1.0.1 cont.) Assume that we add the MD ϕ2 :R[B] ≈ R[B] →
R[B]

.
= R[B], creating a set of MDs Σ = {ϕ1, ϕ2}. Moreover, suppose that matching

function mB is as follows: mB(b1, b2) = b12, mB(b2, b3) = b23, mB(b1, b23) = b123.

Enforcing Σ on D results in two chase sequences, and two final stable clean instances

D1 and D′′2 .

R(D) A B

t1 a1 b1

t2 a2 b2

t3 a3 b3

⇒ϕ1

R(D1) A B

t1 a1 b12

t2 a2 b12

t3 a3 b3
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R(D) A B

t1 a1 b1

t2 a2 b2

t3 a3 b3

⇒ϕ2

R(D′′
1 ) A B

t1 a1 b1

t2 a2 b23

t3 a3 b23

⇒ϕ1

R(D′′
2 ) A B

t1 a1 b123

t2 a2 b123

t3 a3 b23

Observe that, for instance D and the set of MDs Σ, two clean instances exist, namely

D1, D
′′
2 , where the former results from the application of ϕ1 on the pair of violating

tuples tD1 , t
D
2 , and the latter results from first application of ϕ2 on the pair of tuples

tD2 , t
D
3 , and then ϕ1 on the pair of tuples t

D′′1
1 , t

D′′1
2 . 2

In [Bertossi et al., 2013], the clean answers to a query were introduced as those

that are certain, i.e. true of all the clean instances (cf. Section 2 for details). They are

invariant across the class C(D,Σ), and then are intrinsically “clean” answers. The

problem of deciding, computing and approximating clean answers was also investi-

gated. Clearly, computing clean answers via an explicit and materialized computation

of all clean instances is prohibitively expensive and should be avoided whenever pos-

sible. Indeed, for a given initial instance D, we could have exponentially many clean

instances (in the size of D) [Bertossi et al., 2013].

1.1 Declarative MD-based ER

ER becomes particularly crucial in data integration [Motro and Anokhin, 2006], and

even more difficult in virtual data integration systems (VDIS). Logic-based specifi-

cations of the intended solutions of a generic VDIS have been proposed, used and

investigated [Bertossi and Bravo, 2004]. As a consequence, logic-based specifications

of ER or generic approaches to ER, that could be combined with the specifications

of the integration process, become particularly relevant. Declarative, logic-based ap-

proaches to ER are particularly appropriate for their amalgamation with queries and

query answering processes via some sort of query rewriting.

Answer set programming is a relatively new declarative programming paradigm

[Brewka et al., 2011]. It has been successfully used to implicitly specify in general

logical terms all the solutions of general combinatorial problems. In this thesis, we
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introduce answer set programs (ASPs), in the form of disjunctive Datalog with stable

model semantics [Gelfond and Lifschitz, 1991,Eiter et al., 1997], to specify the class

C(D,Σ) of clean instances for D w.r.t. Σ. For each instance D and set Σ of MDs,

we show how to build an answer set program Π(D,Σ) whose stable models are in

one-to-one correspondence with the instances in C(D,Σ).

The cleaning program Π(D,Σ) axiomatizes the class C(D,Σ). Hence reasoning

from/with the program amounts to reasoning with the full class C(D,Σ). In partic-

ular, clean query answers can be obtained from the original instance D by skeptical

(aka. cautious) reasoning from the program.

Answer set programs have been used before in consistent query answering (CQA)

[Arenas et al., 1999 , Bertossi, 2006, Chomicki, 2007, Bertossi, 2011], in the form of

repair programs, that specify the repairs of a database instance w.r.t. a set of integrity

constraints (ICs) [Arenas et al., 2003,Greco et al., 2003,Barcelo et al., 2003,Eiter et

al., 2008,Caniupan and Bertossi, 2010,Franconi et al. 2001]. However, MDs cannot be

treated as classical ICs. In particular, the matching functions and the lattice-theoretic

structure of the domains, with the induced domination order, create a substantially

different scenario, where new challenges arise. Furthermore, the semantics of MDs is

quite different from that of classical ICs, and repair techniques for CQA cannot be

straightforwardly used for ER via MDs or for clean query answering (cf. [Gardezi et

al., 2012]).

We statically analyze the cleaning programs, in terms of syntactic structure and

complexity, and establish that they belong to the class Datalog∨,not ,s, the subclass of

programs in Datalog∨,not that have stratified negation [Eiter and Gottlob, 1995]. In

particular, we show that their expressive power is appropriate for our application in

ER, and is in line with the computational complexity of computing clean instances

and clean query answers as established in [Bertossi et al., 2013]. We also show how

to use cleaning programs with the skeptical semantics for the computation of clean

answers from the original database, with a data complexity that matches the intrinsic

data complexity of clean query answering.
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1.2 Declarative Swoosh ER: The Union Case

The Swoosh approach to ER was proposed in [Benjelloun et al., 2009], as a generic

and procedural specification of ER mechanisms. Special attention receives the com-

mon “union-case” of ER, that treats individual records as sets of triples of the form

(id , attr , value), i.e. as objects. An ER step basically matches values by producing

their union; and the resulting value dominates the original values w.r.t. information

contents.

The Swoosh’s ER methodology is generic, but not declarative, in the sense that

the semantics of the system is not captured in terms of a logical specification of the

instances resulting from the cleaning process.

In this work we provide a declarative version of the union-case of Swoosh. It uses

some extensions with sets and functional terms of the logic programming paradigm.

We experiment with this approach using the DLV-Complex system [Calimeri et al.,

2009] that supports such extensions.

Swoosh has been extended with negative rules [Whang et al., 2009a]. In this thesis,

we extend our ASP-based account of the union-case of Swoosh by considering negative

rules. This sometimes requires calls/access to external experts. In our approach they

will be simulated as a separate program or as calls to external predicates [Eiter et al.,

2005].

1.3 Relational MDs

In MDs, tuples for different relations may be related via attributes in common. The

way attribute values in tuples in certain relations are merged, as a result of enforcing

an MD, may influence the way attribute values for tuples in other relations are merged.

Furthermore, in an extended form of MDs we could consider additional relational

atoms in the LHS, as conditions for merging. For capturing all this, in this thesis

we extend the class of matching dependencies introduced in Section 1 to the larger

class of relational MDs, where semantic information is used to express relationships

between different relations and their corresponding similarity conditions.

The chase-based semantics developed in [Bertossi et al., 2013] for MDs can be
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applied to relational MDs without any relevant change: the new relational conditions

in the LHSs of them have to be made true to enforce the MDs.

Example 1.3.1 With predicates Author(AID ,Name, BTitle, ABlock), Book(BID ,

BTitle,Editor ,BBlock) (with ID and block attributes), this MD, ϕ, is relational:

Author(t1, x1, y1, bl1) ∧ Book(t3, y
′
1, z1, bl4) ∧ y1 ≈ y′1 ∧

Author(t2, x2, y2, bl2) ∧ Book(t4, y
′
2, z2, bl4) ∧ y2 ≈ y′2 ∧

x1 ≈ x2 ∧ y1 ≈ y2 −→ bl1
.
= bl2,

It contains similarity comparisons involving attribute values for both relations Author

and Book. It specifies that when the Author-tuple similarities on the LHS hold, and

their books are similar to those in corresponding Book-tuples that are in the same

block (an implicit similarity, actually equality, captured by the join variable bl4), then

blocks bl1, bl2 have to be made identical. 2

The introduction of Relational MDs is motivated by the application of MDs in

ERBlox (cf. Chapter 7), but applications can be easily foreseen in other areas where

declarative relational knowledge may be useful in combination with matching and

merging.

1.4 A New Class of Well-behaved Relational MDs

Under the semantics of MDs introduced in [Bertossi et al., 2013], it is possible that,

for a given initial instance D and set Σ of MDs, multiple clean instances exist, as

shown in Example 1.0.2. This makes it interesting to identify relevant sets of MDs

for which a single clean instance can be obtained starting from the initial one. It has

been established that this is the case for sets of MDs with similarity preserving MFs,

i.e., for every a, a′, a′′ : a ≈ a′ implies a ≈ MF (a′, a′′). The same happens with sets

of interaction-free MDs, i.e. no attribute appears both in a RHS and LHS of MDs

in the set [Bertossi et al., 2013]. In the both cases, the unique clean instance can be

obtained in polynomial time in the size of the initial instance [Bertossi et al., 2013].
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Example 1.4.1 (ex. 1.0.2 cont.) Σ is a set of interacting MDs since attribute B

appears both in the RHS of ϕ1 and LHS of ϕ2.

Furthermore, suppose that matching function mB is similarity preserving. Then,

enforcing Σ on D results in a single clean instance D′3, even if we apply the MDs on

D in different orders:

R(D) A B

t1 a1 b1

t2 a2 b2

t3 a3 b3

⇒ϕ1

R(D′
1) A B

t1 a1 b12

t2 a2 b12

t3 a3 b3

⇒ϕ2

R(D′
2) A B

t1 a1 b12

t2 a2 b123

t3 a3 b123

⇒ϕ2

R(D′
3) A B

t1 a1 b123

t2 a2 b123

t3 a3 b123

Here, t2[B] ≈ t3[B] holds in the initial instance D. After enforcing ϕ1 on D, t2[B] ≈
t3[B] still holds in D′1. This is because of similarity preserving matching function

mB. Due to t
D′1
2 [B] ≈ t

D′1
3 [B], we can apply ϕ2 on D′1. Similarly, t1[B] ≈ t2[B] keeps

holding in D′1, D
′
2, D

′
3. 2

Enforcing Relational MDs that are similarity-preserving (i.e. that use similarity-

preserving matching functions) leads to single clean instances, because only new ad-

ditional conditions have to be verified before enforcing the MDs. In this work, we

generalize the interaction-free class to the relational case.

In addition to the above well-behaved classes of relational MDs, in this thesis we

identify a new class of combinations of relational MDs and initial instances, called

the blocking class, for which single clean instances can be obtained starting from the

initial instances.

Let D be a given, possibly dirty initial instance w.r.t. a set Σ of relational MDs

where one of the three well-behaved classes of MDs with similarity preserving MFs,

interaction-free MDs and blocking combination of the initial instance and the set of

MDs holds for D,Σ. Then, we say that (D,Σ) have the unique clean instance property

(UCI property). Make notice that the first two cases do not depend on D.
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1.5 Specialized Cleaning Programs for UCI Class

In Section 1.1, general sets of MDs can be represented by means of disjunctive answer

set programs, with the possibly multiple clean instances corresponding to the stable

models of the program. The programs belong to the class Datalog∨,not ,s, disjunctive

Datalog programs with stratified negation.

The fact that the enforcement of Σ on D leads to a single clean instance, when

(D,Σ) have the unique clean instance property, gives us the hope that we can use a

computationally well-behaved extension of plain Datalog to enforce these MDs on D.

In this work we present a uniform methodology to specialize the general cleaning

programs to produce programs for cases with the unique clean instance property.

In other words, the general programs Π(D,Σ) are specialized to the classes with

the unique clean instance property, obtaining residual programs ΠU(D,Σ) in non-

disjunctive Datalog with stratified negation, Datalog not ,s.

1.6 The ERBlox Approach to ER

In this work we describe our ERBlox system which enables/supports ML-techniques

for ER. Indeed, different ML techniques can be used for the classification model.

To be more precise, ERBlox implements ER applying to ML techniques, and the

specification and enforcement of relational MDs.

For duplicate detection, one of the main ER phases, one must first analyze multiple

pairs of records, comparing the two records in them, and discriminating between: pairs

of duplicate records and pairs of non-duplicate records. This classification problem is

approached with machine learning (ML) methods, to learn from previously known

or already made classifications (a training set for supervised learning), building a

classification model (a classifier) for deciding about other record pairs [Christen and

Goiser, 2010,Elmagarmid et al., 2007].

In principle, every two records (forming a pair) have to be compared, and then

classified. Most of the work on applying ML to ER work at the record level [Ras-

togi et al., 2011, Christen and Goiser, 2010, Christen, 2008], and only with some of

the attributes, or their features, i.e. numerical values associated to them, may be
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involved in duplicate detection. The choice of relevant sets of attributes and features

is application dependent.

In our ERBlox system MDs have to be specified in a declarative manner, and

at some point enforced, by producing changes on the data. For this purpose, we

use the LogicBlox platform, a data management system developed by the LogicBlox1

company, that is centered around its declarative language, LogiQL. LogiQL supports

relational data management and, among several other features [Aref et al., 2015], an

extended form of Datalog with stratified negation [Ceri et al., 1989]. LogicBlox is

expressive enough for the kind of MDs considered in ERBlox system (more details

follow below).

ERBlox has four main components or modules, that are executed in this order:

(a) MD-based collective blocking,

(b) ML-based classification model construction,

(c) Duplicate detection, and

(d) MD-based merging (of duplicates).

In the following, we briefly explain each component.

1.6.1 MD-based collective blocking

ER may be a task of quadratic complexity since it requires comparing every two

records. To reduce the large number of two-record comparisons, blocking techniques

are used [Steorts et al., 2014,Baxter et al., 2003,Herzog, 2007,Whang et al., 2009a].

Commonly, a single record attribute, or a combination of attributes, the so-called

blocking key, is used to split the database records into blocks. Next, under the as-

sumption that any two records in different blocks are unlikely to be duplicates of each

other, only every two records in a same block are compared for duplicate detection.

Although blocking will discard many record pairs that are obvious non-duplicates,

some true duplicate pairs might be missed (by putting them in different blocks), due

to errors or typographical variations in attribute values. More interestingly, similarity

1www.logicblox.com
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between blocking keys alone may fail to capture the relationships that naturally hold

in the data and could be used for blocking. Thus, entity blocking based only on

blocking key similarities may cause low recall2. This is a major drawback of traditional

blocking techniques.

In our ERBlox system we consider different and coexisting entities. For each of

them, there is a collection of records. Records for different entities may be related

via attributes in common or referential constraints. However, we do not assume

that integrity constraints (ICs) always exist. Blocking can be performed on each

of the participating entities, and the way records for an entity are placed in blocks

may influence the way the records for another entity are assigned to blocks. This is

called “collective blocking”. Semantic information, in addition to that provided by

blocking keys for single entities, can be used to state relationships between different

entities and their corresponding similarity criteria. So, blocking becomes a collective

and intertwined process involving several entities. In the end, the records for each

individual entity will be placed in blocks associated to that entity.

Example 1.6.1 Consider two entities, Author and Paper. For each of them, there is

a set of records (for all practical purposes, think of database tuples in a single table

for each entity). For Author we have records with a = 〈name, . . . , affiliation, . . . ,

paper title, . . .〉, with {name, affiliation} the blocking key formed by two attributes;

and for Paper, records of the form p = 〈title, . . . , author name, . . .〉, with attribute

title the blocking key. We want to group Author and Paper records at the same time,

in an entwined process.

We block together two Author entities on the basis of the similarities of authors’

names and affiliations. Assume that Author entities a1, a2 have similar names, but

their affiliations are not. So, the two records would not be put in the same block.

However, a1, a2 are authors of papers (in Paper records) p1,p2, resp., which have been

put in the same block (of papers) on the basis of similarities of paper titles. In this

case, additional semantic knowledge might specify that if two papers are in the same

block, then corresponding Author records that have similar author names should be

2Recall is the ratio of the number of duplicate record-pairs found to the total number of duplicate
record-pairs in the database.
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put in the same block too. Then, a1 and a2 would end up in the same block.

In this example, we are blocking Author and Paper entities, separately, but collec-

tively and in interaction. 2

Collective blocking is based on blocking keys and the enforcement of semantic in-

formation about the relational closeness of entities Author and Paper, which is captured

by a set of relational MDs. So, we propose “MD-based collective blocking”.

MD-based collective blocking uses relational MDs to specify the blocking strat-

egy. Relational MDs express conditions in terms of blocking key similarities and also

relational closeness -the semantic knowledge- to assign two records to a same block,

by making the block identifiers identical. Then, under MD-based collective blocking

different records of possibly several related entities are simultaneously assigned to

blocks through the enforcement of MDs (cf. Section 7.3 for details).

Example 1.6.2 (ex. 1.6.1 cont.) We could use the following relational MD for

blocking Author records. In it there are similarity comparisons involving attributes

for both entities Author and Paper:

Author(x1, y1, bl1) ∧ Paper(y1, z1, bl4) ∧ Author(x2, y2, bl2) ∧ (1.2)

Paper(y2, z2, bl4) ∧ x1 ≈1 x2 ∧ z1 ≈2 z2 −→ bl1
.
= bl2.

It specifies that when the Author record similarities on the LHS hold, and correspond-

ing papers are in the same block, then blocks bl1, bl2 have to be made identical. 2

Although in general a set of relational MDs may lead to alternative final instances

through its enforcement [Bertossi et al., 2013], in the case of MD-based collective

blocking, for each entity, a unique set of blocks is generated. The reason is that the

combination of the set of relational MDs and the initial database instance falls into

a newly identified, well-behaved blocking class, which we introduced in Section 1.4

(and Section 6.1.1).
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1.6.2 ML-based classification model construction and duplicate detection

On the machine learning side (item (b) above), the problem is about building and

implementing a model for the detection of pairs of duplicate records. The classification

model is trained using record-pairs known to be duplicates or non-duplicates. We

used the established classification algorithm support vector machines (SVM) [Vapnik,

2009]. We used the Ismion3 implementation of it due to the in-house expertise at

LogicBlox.

After records are divided in blocks, the proper duplicate detection process starts

(item (c) above). It is carried out by comparing every two records in a block, and

classifying the pair as “duplicates” or “non-duplicates” using the trained ML model

at hand.

1.6.3 MD-based merging

In the end, records in duplicate pairs are considered to represent the same external

entity, and have to be merged into a single representation, i.e. into a single record.

This second phase is also application dependent. MDs were originally proposed to

support this task.

The sets of MDs used in (a) and (d) are different, and play different roles. The

blocking phase, (a) above, is a non-traditional, novel use of MDs, whereas the appli-

cation of MDs for the proper merging, (d) above, corresponds to the intended use of

MDs [Fan, 2008]. In both cases, they are application-dependent, but have a canon-

ical representation in the system, as Datalog rules. The MDs are then enforced by

applying (running) those rules. In general a set of MDs may lead to multiple final

instances through its enforcement [Bertossi et al., 2013]. But, in the case of (d), the

set of MDs leads to a single, duplicate-free instance for each entity. This is because

the MDs in the set turn out to be interaction-free (as introduced in [Bertossi et al.,

2013]).

As presented in Section 1.1, general sets of MDs are expressed by means of cleaning

ASPs. However, both classes of MDs used by ERBlox, have the unique clean instance

property. They are expressed by Datalog with stratified negation, as developed in

3http://www.ismion.com
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Section 1.5, which is supported by LogicQL.

For experimentation with the ERBlox system, we used as dataset a snapshot of

Microsoft Academic Search (MAS)4 that includes 250K authors, 2.5M papers, and a

training set. We also used, independently, datasets from DBLP and Cora Citation.

The experimental results show that our system improves ER recall and precision

over traditional, standard blocking techniques [Jaro, 1989], where just blocking-key

similarities are used. Actually, MD-based collective blocking leads to higher precision

and recall on the given datasets.

Our work also shows the integration under a single system of different forms of data

retrieval, storage and transformation, on one side, and machine learning techniques,

on the other. All this is enabled by the use of optimized Datalog-rules declaration

and execution as supported by the LogicBLox platform.

1.6.4 Thesis Structure

This thesis is structured as follows. In Chapter 2 we recall some definitions and con-

cepts. Chapter 3 presents the state of the art in ER, MDs, and blocking techniques.

In Chapter 4 we describe the objectives of the thesis. Chapter 5 contains ASPs for

ER process based on MDs and a declarative reconstruction of union-case of Swoosh.

Chapter 6 introduces relational MDs and blocking combinations of MDs and initial

instances. The general cleaning ASPs are specialized for the cases with the unique

clean instance property in Chapter 6. Chapter 7 proposes MD-based collective block-

ing, and describes the ERBlox system. Experimental results are shown in Chapter 7.

Chapters 8 and 9 provide related work, some final conclusions and future work.

Some of the results of this thesis have been published in [Bahmani et al., 2012,

Bahmani et al., 2016,Bahmani et al., 2017].

4http://academic.research.microsoft.com. As of January 2013.



Chapter 2

Background

2.1 Relational Databases

We consider relational schemas R with a possibly infinite data domain U , whose

elements are called constants, a finite set of database predicates, e.g. R, and a set of

built-in predicates, e.g. =, 6=. Each R ∈ R has a fixed set of attributes, say A1, . . . , An,

each of them with a domain DomAi
⊆ U . We may assume that the Ais are different,

and different predicates do not share attributes. However, different attributes may

share the same domain.

An instance D for R is a finite set of ground atoms (or tuples) of the form

R(c1, . . . , cn), with R ∈ R, ci ∈ DomAi
. The active domain of an instance D, denoted

Adom(D), is the finite set of all constants from U that appear in D. We will assume

that tuples have unique, global identifiers, as in Example 1.0.1. They allow us to

compare extensions of the same predicate in different instances, and trace changes

of attribute values in tuples. Tuple identifiers can be accommodated by adding to

each predicate R ∈ R an extra attribute, T , that acts as a key. Then, tuples take

the form R(t, c1, . . . , cn), with t a value for T . Most of the time we leave the tuple

identifier implicit, or we use it to denote the whole tuple. More precisely, if t is a

tuple identifier in an instance D, then tD denotes the entire atom, R(c̄), identified by

t. Similarly, if A is a list of attributes of predicate R, then tD[A] denotes the tuple

identified by t, but restricted to the attributes in A. We assume that tuple identifiers

are unique across the entire instance.

Schema R determines a language L(R) of first-order (FO) predicate logic. A

conjunctive query is a formula of L(R) of the form Q(x̄) : ∃ȳ(P1(x̄1)∧· · ·∧Pm(x̄m)),

where Pi ∈ R, ȳ, x̄1, · · · , x̄m are lists of variables, x̄ = (∪ix̄i) r ȳ is the list free

variables of the query, say x̄ = x1 · · ·xk. An answer to Q in instance D is a sequence

〈a1, . . . , ak〉 ∈ Uk that makes Q true in D, denoted D |= Q[a1, . . . , ak]. Q(D) denotes

15
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the set of answers to Q in D.

2.2 Matching Dependencies

For a schema R with predicates R1[L̄1], R2[L̄2], with lists of attributes L̄1, L̄2, resp.,

a matching dependency (MD) [Fan et al., 2009] is an expression of the form

ϕ : R1[X̄1] ≈ R2[X̄2] −→ R1[Ȳ1]
.
= R2[Ȳ2]. (2.1)

Here, X̄1, Ȳ1 are sublists of L̄1, and X̄2, Ȳ2 sublists of L̄2. The lists X̄1, X̄2 (also Ȳ1, Ȳ2)

are comparable, i.e., the attributes in them, say Xj
1 , X

j
2 , are pairwise comparable in

the sense that they share the same data domain Domj on which a binary similarity

(i.e., reflexive and symmetric) relation ≈j is defined. LHS (ϕ) and RHS (ϕ) denote

the sets of atoms on the LHS and RHS of ϕ, respectively. Actually, (2.1) can be seen

as an abbreviation for

ϕ :
∧
j R1[Xj

1 ] ≈j R2[Xj
2 ] −→

∧
k R1[Y k

1 ]
.
= R2[Y k

2 ].

This MD intuitively states that if for an R1-tuple t1 and an R2-tuple t2 in an instance

D, the attribute values in tD1 [X̄1] are similar to attribute values in tD2 [X̄2], then the

values tD1 [Ȳ1] and tD2 [Ȳ2] have to be made identical. This update results in another

instance D′, where tD
′

1 [Ȳ1] = tD
′

2 [Ȳ2] holds.

Let D,D′ be “corrected” instances, i.e. they have same tuple ids. For a set Σ of

MDs, a pair of instances (D,D′) satisfies Σ if whenever D satisfies the antecedents

of the MDs, then D′ satisfies the consequents (taken as equalities). If (D,D) 6|= Σ,

we say that D is “dirty” (w.r.t. Σ). On the other side, an instance D is stable if

(D,D) |= Σ [Fan et al., 2009].

In order to enforce MDs on pairs of tuples, making values of attributes identical, we

assume, according to [Bertossi et al., 2013], that for each comparable pair of attributes

A1, A2 with domain (in common) DomA, there is a binary matching function (MF)

mA : DomA × DomA → DomA, such that mA(a, a′) is used to replace two values

a, a′ ∈ DomA whenever necessary. We expect MFs to be idempotent, commutative,

and associative [Bertossi et al., 2013,Benjelloun et al., 2009].

The structure (DomA,mA) forms a join semilattice, that is, a partial order with
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a least upper bound (lub) for every pair of elements. The induced partial order �A
on DomA is defined by: a �A a′ whenever mA(a, a′) = a′. The lub coincides with

mA: lub�A
{a, a′} = mA(a, a′) [Bertossi et al., 2013]. We also assume the existence of

the greatest lower bounds, glb(a, a′). In this thesis, we will assume by default that

similarity relations and MFs are built-in relations.

A chase-based semantics for entity resolution with MDs is given in [Bertossi et

al., 2013]: starting from an instance D0, we identify pairs of tuples t1, t2 that satisfy

the similarity conditions on the left-hand side of a matching dependency ϕ, i.e.,

tD0
1 [X̄1] ≈ tD0

2 [X̄2] (but not its RHS), and apply an MF on the values for the right-

hand side attribute, tD0
1 [A1], tD0

2 [A2], to make them both equal to mA(tD0
1 [A1], tD0

2 [A2]).

We keep doing this on the resulting instance, in a chase-like procedure, until a stable

instance is reached. Below we make all this precise.

Definition 2.2.1 Let D,D′ be database instances with the same set of tuple identi-

fiers, Σ be a set of MDs, and ϕ : R1[X̄1] ≈ R2[X̄2]→ R1[Ȳ1]
.
= R2[Ȳ2] be an MD in Σ.

Let t1, t2 be an R1-tuple and an R2-tuple identifiers, respectively, in both D and D′.

Instance D′ is the immediate result of enforcing ϕ on t1, t2 in instance D, denoted

(D,D′)[t1,t2] |= ϕ, if

(a) tD1 [X̄1] ≈ tD2 [X̄2], but tD1 [Ȳ1] 6= tD2 [Ȳ2];

(b) tD
′

1 [Ȳ1] = tD
′

2 [Ȳ2] = mA(tD1 [Ȳ1], tD2 [Ȳ2]); and

(c) D,D′ agree on every other tuple and attribute value. 2

Notice that there are no unnecessary changes.

Definition 2.2.2 For an instance D0 and a set of MDs Σ, an instance Dk is (D0,Σ)-

clean if Dk is stable, and there exists a finite sequence of instances D1, . . . , Dk−1 such

that, for every i ∈ [1, k], (Di−1, Di)[ti1,t
i
2] |= ϕ, for some ϕ ∈ Σ and tuple identifiers

ti1, t
i
2. 2

As shown in Example 1.0.2, an instance D0 may have several (D0, Σ)-clean in-

stances. C(D0, Σ) denotes the set of clean instances for instanceD0 w.r.t. Σ. However,
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there is a unique clean instance that is computable in polynomial time in |D0| if one

of the following holds [Bertossi et al., 2013]:

(a) MFs used by Σ are similarity-preserving, i.e., for every a, a′, a′′ : a ≈ a′ implies a ≈
mA(a′, a′′).

(b) Σ is interaction-free (IF), i.e. no attribute appears both in a RHS and LHS of

MDs in Σ.

For example, the set Σ1 = {R[A] ≈ T [B] → R[C]
.
= T [D], T [D] ≈ S[A] →

T [A]
.
= S[B]} is interacting due to the presence of attribute T [D]. Σ2 =

{R[A] ≈ T [B] → R[C]
.
= T [D], T [A] ≈ S[A] → T [C]

.
= S[C]} is non-

interacting.

Let D be a given, possibly dirty initial instance w.r.t. a set Σ of MDs where one

of the two well-behaved classes of similarity preserving MFs and IF MDs holds for

D,Σ. Then, we say that (D,Σ) have unique clean instance property (UCI property).

The domain-level relations a �A a′ can be thought of in terms of relative informa-

tion contents [Bertossi et al., 2013]. They can be lifted to a tuple-level partial order,

defined by: t1 � t2 iff t1[A] �A t2[A], for each attribute A. This in turn can be lifted

to a relation-level partial order: D1 v D2 iff ∀t1 ∈ D1 ∃t2 ∈ D2 t1 � t2.

When a tuple tD in instance D is updated to tD
′
in instance D′ by enforcing an MD

and applying an MF, it holds tD � tD
′
; and the instances D and D′ satisfy: D v D′. If

instances are all “reduced”, Red, by eliminating tuples that are dominated by others,

the set of reduced instances with v forms a lattice. That is, we can compute the

glb and the lub of every finite set of instances w.r.t. v. This is a useful result that

allows us to compare sets of query answers w.r.t. v. The glb of two instances D1, D2

of schema R w.r.t. v is defined as

glbv{D1, D2} = Red({t1 f t2 | t1 ∈ D1, t2 ∈ D2, and t1, t2 are R−tuples}), (2.2)

where R ∈ R, and t1 f t2 is the tuple t, such that t[A] = glb�A
{tD1

1 [A], tD2
2 [A]} for

every attribute A in R.

Example 2.2.1 Consider the following instances
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R(D1) name addr

John Doe 25 Main st., Ottawa

J. Doe 25 Main st., Ottawa

R(D2) name addr

John Doe Main st., Ottawa

J. Doe 25 Main st., Vancouver

The instance {t′ f t′′ | t′ ∈ D1, t
′′ ∈ D2} is:

R(D1) name addr

John Doe Main st., Ottawa

J. Doe 25 Main st.

J. Doe Main st., Ottawa

We have “Main st.” � “Main st., Ottawa” � “25 Main st., Ottawa”, “J. Doe” �
“John Doe”, “Main st.” � “25 Main st.” � “25 Main st., Ottawa”. After reduc-

tion, we obtain

R(D1) name addr

John Doe Main st., Ottawa

J. Doe 25 Main st.

which is the glbv{D1, D2}. 2

The set of clean answers to a query Q from instance D w.r.t. Σ is formally defined

by CleanDΣ (Q) := glb
v
{Q(D′) | D′ ∈ C(D,Σ)} where each Q(D′) is reduced. [Bertossi

et al., 2013].

If the query is boolean, i.e. a sentence, then, for an instance D, Q(D) := {yes}
when Q is true in D, and {no}, otherwise. It is also assumed that {no} � {yes}, but

{yes} � {no}, creating a two-valued lattice. Accordingly, {no} v {yes} is defined.

Example 2.2.2 Consider the MD ϕ : R[name] ≈ R[name] −→ R[addr]
.
= R[addr]

applied to the instance D0 below. Assume that John Doe ≈ J. Doe, Jane Doe ≈
J. Doe. Moreover, suppose that matching function mB is as follows: maddr(Main st.,

Ottawa, 25 Main st., Canada) = 25 Main st., Ottawa Canada, maddr(25 Main,

st. Vancouver , 25 Main st., Canada) = 25 Main st., Vancouver Canada.
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R(D0) name addr
John Doe Main st., Ottawa

J. Doe 25 Main st., Canada
Jane Doe 25 Main st., Vancouver

Enforcing ϕ on D0 results in two clean instances D′ and D′′:

R(D′) name addr
John Doe 25 Main st., Ottawa Canada

J. Doe 25 Main st., Ottawa Canada
Jane Doe 25 Main st., Vancouver

R(D′′) name addr
John Doe Main st., Ottawa

J. Doe 25 Main st., Vancouver Canada
Jane Doe 25 Main st., Vancouver Canada

For the queryQ(x) : R(“J. Doe”, x), it holds: CleanD0
Σ (Q) = {25 Main st., Canada}.

This is because Q(D′) = {25 Main st., Ottawa Canada}, Q(D′′) = {25 Main st.,

Vancouver Canada}, and glb
v
{{25 Main st., Ottawa Canada}, {25 Main st., Van-

couver Canada}} = {25 Main st., Canada}.
For the Boolean query Q : R(J. Doe, 25 Main st. Vancouver Canada), we have

Q(D′) = {no}, Q(D′′) = {yes}. Therefore, CleanDΣ (Q) = {no}. 2

2.3 Datalog

Datalog is a logic programming language for deductive databases, first formalized

by [Ullman, 1989]. A comprehensive review of Datalog was published by [Ceri et al.,

1989].

A literal, p(t1, ..., tk) is a predicate applied to its arguments, each of which is either

a constant or a variable. A variable is an identifier that starts with an upper-case

letter. A constant is one that starts with a lower-case letter. Let P0, P1, . . . , Pn be

literals, a Horn clause in Datalog has the form

P0 ← P1, . . . , Pm.

Semantically, it means if P1, . . . , Pn are true then P0 is also true. The left-hand

side is called the head and the right-hand side is called the body. A clause with an

empty body is called a fact. A clause with a nonempty body is called a rule.
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Datalog is often used in deductive databases. In such settings, data records in the

database are represented as Datalog facts, and the deductive engine is implemented

as a Datalog program that runs on the inputs from the database. The Datalog facts

representing the original database are called the extensional database (EDB), and the

Datalog facts computed by the deductive engine are called the intensional database

(IDB).

Datalog is more powerful than SQL, which is based on relational calculus, be-

cause Datalog predicates can be recursively defined [Ullman, 1989] 1. Other query

languages based on first-order logic are also incapable of expressing many simple re-

cursive queries like finding the transitive closure of an input graph [Benedikt et al.,

1998].

Enhanced definitions of Datalog including negation and their effects have been

extensively studied in literature (see, e.g., [Ullman, 1989]). Negations can occur in

the rule bodies of Datalog programs in different places: In front of EDB relations and

in front of IDB relations.

There are several proposals on defining the “right” meaning to rules with negated

predicates. The straightforward case involves Datalog programs with stratified nega-

tion, Datalognot ,s, [Chandra and Harel, 1985]. Stratified negation restricts the use of

negation to non-recursive rules.

2.4 Disjunctive Datalog with Stable Models Semantics

We will use logic programs Π in Datalog∨,not , i.e. disjunctive Datalog programs with

weak negation [Gelfond and Lifschitz, 1991,Eiter et al., 1997]. They are formed by a

finite number of rules of the form

A1 ∨ . . . ∨ An ← P1, . . . , Pm, not N1, . . . , not Nk,

where 0 ≤ n,m, k, and Ai, Pj, Ns are (positive) atoms. All the variables in the Ai, Ns

appear among those in the Pj. The constants in program Π form the (finite) Herbrand

universe H of the program. The ground version of program Π, gr(Π), is obtained

by instantiating the variables in Π in all possible ways using values from H. The

1Some ideas from Datalog are incorporated to SQL:1999 in order to support recursive queries
[Horwitz and Teitelbaum, 1986].
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Herbrand base HB of Π consists of all the possible atoms obtained by instantiating

the predicates in Π with constants in H.

A subset M of HB is a model of Π if it satisfies gr(Π), i.e.: For every ground rule

A1 ∨ . . .∨An ← P1, . . . , Pm, not N1, . . . , not Nk of gr(Π), if {P1, . . . , Pm} ⊆ M and

{N1, . . . , Nk} ∩M = ∅, then {A1, . . . , An} ∩M 6= ∅. M is a minimal model of Π if

it is a model of Π, and Π has no model that is properly contained in M . MM (Π)

denotes the class of minimal models of Π.

Now, for S ⊆ HB(Π), transform gr(Π) into a new, positive program gr(Π)S (i.e.

without not), as follows: Delete every rule A1 ∨ . . . ∨ An ← P1, . . . , Pm, not N1,

. . . , not Nk for which {N1, . . . , Nk} ∩ S 6= ∅. Next, transform each remaining rule

A1 ∨ . . . ∨ An ← P1, . . . , Pm, not N1, . . . , not Nk into A1 ∨ . . . ∨ An ← P1, . . . , Pm.

Now, S is a stable model of Π if S ∈ MM (gr(Π)S). Every stable model of Π is also a

minimal model of Π.

With Datalog∨,not ,s, we denote the subclass of programs in Datalog∨,not that have

stratified negation [Eiter and Gottlob, 1995]. For these programs, the set of predicates

P can be partitioned into a sequence P1, . . . ,Pk in such a way that, for every P ∈ P :

1. If P ∈ Pi and predicate Q appears in a head of a rule with P , then Q ∈ Pi.

2. If P ∈ Pi and Q appears positively in the body of a rule that has P in the head,

then Q ∈ Pj, with j ≤ i.

3. If P ∈ Pi and Q appears negatively in the body of a rule that has P in the

head, then Q ∈ Pj, with j < i.

If a program is stratified, then its stable models can be computed bottom-up by

propagating data upwards from the underlying extensional database, and making sure

to minimize the selection of true atoms from the disjunctive heads. Since the latter

introduces a form of non-determinism, a program may have several stable models.

Programs in Datalog and Datalognot,s have a single stable model that can be com-

puted in polynomial time in the size of the extensional database. This single sta-

ble model can be computed in a bottom-up manner starting from the extensional

database. In general, disjunctive Datalog programs and those in Datalognot (without

stratified negation) may have multiple stable models.
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The (likely) higher expressive power of Datalog∨,not w.r.t. Datalog and Datalog not ,s

is reflected in, or caused by, the (probable) difference in computational complex-

ity. The problem of deciding if a ground atom A is entailed by a program Π ∈
Datalog∨,not , i.e. if A is true in all the stable models of Π, is ΠP

2 -complete in the size

of the EDB. This decision problem is also referred to as skeptical (cautious) query

answering. The same problem can be solved in polynomial time for programs in

Datalog and Datalog not ,s (cf. [Dantsin et al., 2001] for more details).

The expressive power of Datalog∨,not has been useful and necessary for appli-

cations to database repairs and consistent query answering (CQA) [Caniupan and

Bertossi, 2010] due to the inherently rather high complexity of CQA [Bertossi, 2011].

2.5 Support Vector Machines

The support-vector machines technique (SVM) [Vapnik, 2009] is a form of kernel-

based learning. SVM can be used for classifying vectors in an inner-product vector

space V over R. Vectors are classified in two classes, say with labels 0 or 1. The

classification model is a hyper-plane in V : vectors are classified depending on the side

of the hyperplane they fall.

The hyper-plane has to be learned through an algorithm applied to a training

set of examples, say E = {(e1, f(e1)), (e2, f(e2)), (e3, f(e3)), . . . , (en, f(en))}. Here,

ei ∈ V , and for the real-valued feature (function) f : f(ei) ∈ {0, 1}.
The SVM algorithm finds an optimal hyperplane, H, in V that separates the two

classes in which the training vectors are classified. Hyperplane H has an equation

of the form w • x + b, where • denotes the inner product, x is a vector variable, w

is a weight-vector of real values, and b is a real number. Now, a new vector e in V
can be classified as positive or negative depending on the side of H it lies. This is

determined by computing h(e) := sign(w • e + b). If h(e) > 0, e belongs to class 1;

otherwise, to class 0.

It is possible to compute real numbers α1, . . . , αn, the coefficients of the “support

vectors”, such that the classifier h can be computed through: h(e) = sign(
∑

i αi ·
f(ei) · ei • e + b) [Flach, 2014].



Chapter 3

State of the Art

3.1 A Generic Approach to ER: Swoosh

Swoosh, a generic approach to entity resolution [Benjelloun et al., 2009], considers a

general match function, Match(·, ·), taking values true or false; and a general merge

function, µ. The match function Match and the merge function µ are defined at the

record (or tuple) level.

More precisely, we consider a finite set Rec of tuples, i.e. ground atoms of the form

R(a1, . . . , an), for a relational predicate R(A1, . . . , An), where the Ai are attributes,

with domains DomAi
, and ai ∈ DomAi

. For r1, r2 ∈ Rec, Match(r1, r2) takes the value

true if r1, r2 match; otherwise, false. In the former case, the actual matching is the

tuple µ(r1, r2) ∈ Rec.

When Match and µ have the ICAR properties (idempotency, commutativity, asso-

ciativity and representativity), there is a natural domination partial order on Rec, the

merge domination: r1 ≤s r2 iff Match(r1, r2) = true and µ(r1, r2) = r2 [Benjelloun et

al., 2009]. Domination can be extended to a partial order �S on database instances.

Given an instance D, the merge closure of D is defined as the smallest set of

records D̄, such that includes D, and for every r1, r2 ∈ D̄, when M(r1, r2) = true,

also µ(r1, r2) ∈ D̄. For an instance D, its Swoosh entity resolution is defined as the

(unique) instance ERS(D) that satisfies the conditions: (a) ERS(D) ⊆ D̄. (b) D̄ �s
ERS(D). (c) No strict subset of ERS(D) satisfies the first two conditions [Benjelloun

et al., 2009].

There is a particular, but still common and broad, class of match and merge

functions that is based on union of values. This is the union-case for Swoosh (UC

Swoosh), on which we concentrate in Section 5.4. In it, attribute values are repre-

sented as sets of finer granularity values, like objects, i.e. sets of attribute/value pairs.

A common way of merging records is via their union, as objects.

24
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Example 3.1.1 Consider the instance D0 below.

R(D) Name Street City
r1 J . Doe 55 Toronto
r2 J . Doe Grenadier Vancouver

The records are represented as objects as follows:

r1 = {〈Name, {J. Doe}〉, 〈Street, {55}〉, 〈City, {Toronto}〉}

r2 = {〈Name, {J. Doe}〉, 〈Street, {Grenadier}〉, 〈City, {Vancouver}〉}

If they are considered to be similar on the basis of the underlined values, they can be

merged into:

µ(r1, r2) = {〈Name, {J. Doe}〉, 〈Street, {55,Grenadier}〉,

〈City, {Toronto,Vancouver}〉},

leading to a unique clean instance. 2

More generally, if S1, S2 are (sets of) values for attribute A, they are merged via a

local merge function µA defined by µA(S1, S2) := S1∪S2, e.g. µCity({Toronto}, {Vancou

ver}) := {Toronto,Vancouver}. The “global” merge function µ can be defined in

terms of the local merge functions µA. The match function can also be defined in

terms of local, component-based match functions. The resulting merge and match

functions satisfy the ICAR properties [Benjelloun et al., 2009,Bertossi et al., 2013].

Example 3.1.2 Consider the instance D below. Attribute A takes as values finite

sets of elements from the domain of an underlying, lower-level attribute A. E.g.

a1, a2 ∈ DomA, {a1, a2} ∈ DomA. (Similarly for attribute B.) Two tuples match

when the values for attribute A match, which happens when there is a pair of values

in the A-sets that match: For values S1, S2 for A, MatchA(S1, S2) holds when there

are v1 ∈ S1, v2 ∈ S2 with MatchA(v1, v2) = true, where MatchA is a lower-level match

function.
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Assume MatchA(a1, a2), MatchA(a2, a3) are true. The following is an ER process

starting from D:

R(D) A B

{a1} {b1}
{a2} {b2}
{a3} {b3}

⇒
R(D′) A B

{a1, a2} {b1, b2}
{a2, a3} {b2, b3}

⇒

ERS(D) A B

{a1, a2, a3} {b1, b2, b3}

Here, we are not using tuple identifiers and we are also getting rid of dominated

tuples, as Swoosh does. However, if we had tuple identifiers, keeping them along the

ER process, the final instance above would have had three identical tuples, modulo

the tuple id. 2

If the merge and match functions satisfy the ICAR properties, for any instance

D0, the Swoosh entity resolution ERS(D0) exists and is unique [Benjelloun et al.,

2009, Proposition 2.1]. Although ER is well defined, it may be infinite. Even when

it is finite, its computation may be very expensive. However, if the ICAR properties

are satisfied by the match and merge functions for any instance D0, like merge and

match functions in UC Swoosh, then it ensures that the ER computation is tractable

[Benjelloun et al., 2009].

In [Whang et al., 2009a], the original Swoosh approach to ER is extended with

negative rules, that impose constraints on the merge results. More specifically, nega-

tive rules are used to avoid inconsistencies (e.g. with respect to semantic constraints)

that could be introduced by indiscriminate matching.

Example 3.1.3 Consider the database instance D, shown blow, which is to be re-

solved (to represent tuples better, we are using ri with 1 ≤ i ≤ 3).

R(D) name phone gender

r1 {Mishael} {7654321} {}
r2 {Michael} {} {M}
r3 {Mishale} {7654322} {F}
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If two tuples r, r′ have similar names, then M(r, r′) = true. Assume Mishael ≈
Michael , Mishael ≈ Mishale. Suppose first r1 and r2 are merged into new tuple r12.

R(D1) name phone gender

r12 {Mishael , Michael} {7654321} {M}
r3 {Mishale} {7654322} {F}

Using the original Swoosh approach, we could obtain the following final result:

R(D2) name phone gender

r123 {Mishael , Michael , Mishale} {7654321, 7654322} {F,M}

However, a negative rule prohibiting for a person to be both M and F , would avoid

reaching this instance. This might require to appeal to an external expert, to make

the right merge decisions.

Assume there is another negative rule stating an inconsistency in an ER instance

if there exist two persons with an identical phone number. Here, R(D2) is consistent

w.r.t this negative rule. 2

In [Whang et al., 2009a], it is formally defined what the valid ER instance is in

the presence of negative rules. Given an initial instance D and the merge closure D̄,

a valid entity resolution instance of D is a consistent set of tuples D′ that satisfies the

following conditions: (a) D′⊆ D̄, (b) ∀r1 ∈ D̄−D′: ∃r2 ∈D′ such that r2 dominates r1

or D′∪{r1} is inconsistent, (c) no strict subset of D′ satisfies the first two conditions,

(d) no other instance satisfying the first three conditions dominate D′.

In general, there can be more than one valid ER instance. In [Whang et al.,

2009a], it is discussed how a domain expert can guide the ER process to capture a

desirable and valid set of tuples in the ER instance. In other words, the expert looks

at the tuples, and selects one that is consistent, non dominated and more desirable

to have in the final instance in order to prevent inconsistencies.
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3.2 The Union Case for Swoosh via MDs

As Section 3.1, we assume that records correspond to ground tuples of a single rela-

tional predicate, say R, and Rec denotes the set of records.

A direct MD-based reconstruction of union case of Swoosh has been proposed

in [Bertossi et al., 2013]. More precisely, a possibly denumerable domain DAi
is

considered for each attribute Ai of R, 1 ≤ i ≤ n, and a reflexive and symmetric

similarity relation ≈Ai
is defined for each domain. Now, the domain for each Ai of R

becomes DomAi
which consists of all subsets of DAi

, i.e. DomAi
contains sets. Thus,

the elements of Rec are of the form R(s1, ..., sn), with each si being a set that belongs

to DomAi
.

The similarity relation ≈Ai
on DAi

induces a similarity relation ≈{Ai} on DomAi
,

as follows: s1 ≈{Ai} s2 holds iff there exists a1 ∈ s1 and a2 ∈ s2 such that a1 ≈Ai
a2.

Matching functionsm{Ai} on DomAi
×DomAi

are considered such thatm{Ai} (s1, s2)

= s1 ∪ s2. Matching functions m{Ai} are similarity preserving w.r.t. ≈{Ai}. In fact, if

s1 ≈{Ai} s2, then there are a1 ∈ s1, a2 ∈ s2 with a1 ≈Ai
a2. Since a2 also belongs to s2∪

s3, for every s3 ∈ DomAi
, it holds s2∪s3 = m{Ai}(s2, s3) ≈{Ai} s1. Based on these defi-

nitions, given r1 = R(s̄1), r2 = R(s̄2): (a) Match(r1, r2) holds iff for some i, s1i ≈{Ai} s
2
i .

(b) When Match(r1, r2) = true, µ(r1, r2) = R(m{A1}(s
1
1, s

2
1), ...,m{An}(s

1
n, s

2
n)).

Example 3.2.1 (ex. 3.1.3 cont.) Consider domain Dname for attribute name, and

similarity relation ≈name for this domain. Then, Domname consists of all subsets of

Dname. Therefore, we have Domname = {{Mishael , Michael , Mishale}, {Mishael , Mic-

hael} , {Mishale}, . . .}. {Mishael , Michael} ≈{name} {Mishale} holds since Mishael

≈name Mishale, and m{name}({Mishael , Michael}, {Mishale}) = {Mishael , Michael ,

Mishale}. 2

Now, UC Swoosh framework with Match and µ on DomA are reconstructed by means

of the set ΣS of MDs R[Ai] ≈{Ai} R[Ai] → R[Aj]
.
= R[Aj] for 1 ≤ i, j ≤ n where

the RHSs have to be applied by matching functions m{Aj}. Consistently with the

MD framework, it is also assumed that tuples of Rec have tuple identifiers which are

the first and extra attribute of relation R. In consequence, the elements of D and
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(D,ΣS)-clean instance Dm under the MD framework are of the form R(t, s̄), and those

in D and the entity resolution instance ERS(D) obtained directly via UC Swoosh are

the records r of the form R(s̄). There is a single (D,ΣS)-clean instance Dm since

matching function m{Ai} is similarity preserving.

The following example explicitly shows how ΣS can be defined for reconstructing

union case of Swoosh by MDs.

Example 3.2.2 (ex. 3.1.2 cont.) Assume that instance R(D) has tuple identifiers ti

with 1 ≤ i ≤ 3). For reconstructing UC Swoosh framework by MDs, we consider ΣS

consisting of the following MDs. Observe that two tuples match when the values for

attribute A match. Then, they should be merged.

ϕ1 : R[A] ≈{A} R[A] −→ R[A]
.
= R[A]

ϕ2 : R[A] ≈{A} R[A] −→ R[B]
.
= R[B]

R(Dm) A B

t1 {a1, a2, a3} {b1, b2, b3}
t2 {a1, a2, a3} {b1, b2, b3}
t3 {a1, a2, a3} {b1, b2, b3}

More precisely, the MDs state that if the values for attribute A are similar in two

tuples based on ≈{A}, then they should have identical values for attributes A and B

meaning that the two tuples should be merged. 2

In [Bertossi et al., 2013], it is proved that in UC Swoosh the clean instance of

D resulting from the chase procedure (cf. Definition 2.2.2) with MDs ΣS, similarity

relations ≈{Ai} and matching functions m{Ai} is equivalent to the Swoosh entity reso-

lution ERS(D) (more precisely, they are equivalent if we look at the reduced version

of the clean instance).

3.3 Rules and Ontologies for Duplicate Detection and Merging

In the previous sections we have mostly concentrated on the merge part of entity

resolution. However, identifying similarities and duplicates is also an important and
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common problem [Bleiholder and Naumann, 2008]. There are some declarative ap-

proaches to duplicate detection. They could be naturally combined with declarative

approaches to merging.

A declarative framework for collective entity deduplication of large data sets us-

ing domain-specific soft and hard constraints is proposed in [Arasu et al., 2009]. The

constraints specify the deduplication. They use a novel Datalog-style language, Dedu-

palog, to write the constraints as rules. The deduplication process tries to satisfy all

the hard constraints, but minimizing the number of violations to the soft constraints.

Dedupalog is used for identifying groups of tuples that are candidates for merging.

They do not do the merging or base their work on MDs.

Another declarative approach to ER is presented in [Sais et al., 2007]. The empha-

sis is placed mainly on the detection of duplicates rather than on the actual merging.

An ontology expressed in a logical language based on RDF-S and OWL-DL is used

for this task. Reconciliation rules are captured by SWRL, a rule language for the

semantic web. Also negative rules that prevent reconciliation of certain values can be

expressed, much in the spirit of Swoosh with negative rules [Whang et al., 2009a].

Recently, a declarative framework for entity linking is developed in [Burdick et al.,

2015]. The framework is based on the use of constraints. The authors consider ER

as a problem of defining links between entities. The salient feature of this framework

is linking entities that are not necessarily of the same type, for example, linking a

manager with her company. The adopted constraints enable the declarative listing of

all the reasons as to why two entities should be linked.

A clustering-based approach to collective deduplication is proposed in [Bhat-

tacharya and Getoor, 2007]. While traditional deduplication techniques assume that

only similarities between attribute values are available, in relational data the entities

are assumed to have additional relational information that can be used to improve

the deduplication process. For example, when resolving author names, looking at

co-authors can be helpful as an author may regularly work together with the same

co-authors, which would then help in identifying both as the same individuals. This

process is referred as collective deduplication.

More precisely, in [Bhattacharya and Getoor, 2007], a relationship graph is built
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whose nodes are the entities (records), and edges connect nodes if there is a logico-

relational relationship between them as captured by logical constraints. The graph

supports the propagation of similarity information to related entities. In particular,

the similarity between two nodes is calculated as the weighted sum of the attribute-

value similarity and their relational similarity (as captured through the graph). Ex-

perimental results in [Bhattacharya and Getoor, 2007] show that this form of collective

deduplication outperforms traditional deduplication.

3.4 On-the-fly ER in Data Integration

The problem of ER has a prominent role in the data integration literature. Actually,

a virtual data integration system (VDIS) that is fed by several independent sources

cannot be cleaned as a stand alone, single database. The cleaning has to be done

on-the-fly, at query answering time. However, most existing ER techniques are aimed

at the offline processing of static databases [Bertossi et al., 2013,Gardezi et al., 2012,

Dong et al., 2012,Arasu et al., 2009], and limited work exists on the applicability of

query rewriting methodologies for computing clean answers under ER.

Several works have considered on-the-fly ER techniques [Bhattacharya and Getoor,

2007,Ioannou et al., 2001,Sismanis et al., 2009]. The technique in [Bhattacharya and

Getoor, 2007] answers queries collectively using a two-step “expand and resolve” al-

gorithm. It retrieves the related records for a query using two expansion operators,

and then answers the query by only considering the extracted records. However, this

approach just considers selection queries where the type of the condition attribute

is a string, e.g. a query to to retrieve all books written by author “J. Doe”. It

does not take into account other kinds of selection queries, such as range queries.

This approach is computationally very expensive. Hence, it is not scalable to large

databases.

The approach in [Ioannou et al., 2001] is also on-the-fly ER, but it solves a different

problem, that of queries under data uncertainty by connecting ideas of ER and proba-

bilistic databases. The term query refers to a combination of (attribute-name/value)

pairs and each record retrieved as an answer is accompanied by a probability that

this record will be selected amongst all possible worlds. More specifically, possible
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duplicate records (which have a probability attached to them) are kept in a database,

and the attributes values of all records have their attached probabilities. These prob-

abilities show the confidence one has in the correctness of the attribute values in a

record. When a query record is given to such a probabilistic database, a matching

and merging step of entity records is guided based on the probabilities, and all merged

records that fulfil the query terms are being returned to the user.

In [Sismanis et al., 2009], the authors handle entity uncertainty at query time

for OLAP applications. This approach assumes the existence of a record-to-cluster

mapping table and its goal is to answer group-by OLAP queries by retrieving results

in the form of strict ranges.

More recently, a query rewriting-based methodology for polynomial-time clean

query answering under MDs is presented in [Gardezi and Bertossi, 2012]. The rewrit-

ing uses recursive Datalog with stratified negation and aggregation, but applies to a

restricted class of conjunctive queries and MDs.

3.5 Unifying Data Repairing and Deduplication

Integrity constraints (ICs) capture the semantics of data and are expected to be

satisfied by a database in order to keep its correspondence with the outside reality

it is modeling. For several reasons, databases may become inconsistent with respect

to a given set of ICs. A database instance D, that is expected to satisfy certain

integrity constraints may fail to do so. In this case, a repair of D is a database D′

that does satisfy the integrity constraints and minimally departs from D. Different

forms of minimality can be applied and investigated [Arenas et al., 1999 , Greco et

al., 2003,Bertossi, 2011]. A number of studies have been proposed to interleave data

repairing and deduplication in one single framework [Fan et al., 2011, Geerts et al.,

2013,Geerts et al., 2014].

In [Fan et al., 2011], the interaction of MDs and ICs on single databases has been

partially investigated. In that case, the ICs are conditional functional dependencies

(CFDs). In particular, this work on the interaction between MDs and data repairs

combines record matching and data repairing for better data quality. MDs are used for

ER, while CFDs are used to specify certain equalities of values within a given relation.
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In order to obtain a clean instance, certain pre-defined strategies are followed (e.g.,

using master data), to actually force the correction of attribute values. However, the

work does not have a unified formal semantics, with a precise definition of a clean

instance.

Furthermore, [Geerts et al., 2013] develops a uniform framework to solve repair

problems in a single database instance that involves different kinds of constraints,

including equality-generating dependencies (egds), MDs, CFDs. The core contribu-

tion of the paper consists in the definition of a novel semantics for the data cleaning

problem. More specifically, the authors reformulate repairing as finding intended in-

stances using a chase procedure. The chase uses the notion of the partial order to

clean a dirty instance as the process of upgrading its quality, similar to [Bertossi et

al., 2013].

Following this approach, [Geerts et al., 2014] builds on [Geerts et al., 2013], and

making some contributions to data transformation and data cleaning. In particular,

they propose a general framework for schema mapping and data cleaning that can be

used to generate solutions to data transformation scenarios, and to repair conflicts and

inconsistencies with respect to a class of constraints. More specifically, they propose a

new semantics representing a conservative extension of previous semantics for schema

mappings and data repairing. Based on the semantics, a chase is introduced to

compute the intended instances. Similar to [Geerts et al., 2013], the notion of partial

order is incorporated to the chase.

3.6 Support Vector Machines Techniques for ER

ER can be handled as a supervised learning problem, if training data is present. In

this direction, classification techniques has been applied, in particular SVMs [Bilenko

and Mooney, 2003a,Bilenko and Mooney, 2003b,Christen and Goiser, 2010].

For supervised classification techniques, selection of training examples may be

manual, semi-automatic or automatic. With manual selection entities have to be

chosen and labeled by a user. Semi-automatic selection still requires a human for

labeling, but entity pairs are automatically chosen for labeling. Automatic selection

provides and labels training examples automatically without any inspection by a
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user [Kopcke and Rahm, 2010].

In [Bilenko and Mooney, 2003a,Bilenko and Mooney, 2003b], the MARLIN (Mul-

tiply Adaptive Record Linkage with Induction) framework a SVMs classifier has been

developed to learn the costs for edit operations (such as character inserts, deletes or

substitutions). The goal is to have a better separation of the string pairs associated

to duplicate pairs from those associated to non-duplicate pairs, by learning the men-

tioned costs. The training data required for this approach consists of pairs of strings

and their duplicate and non-duplicate status.

In [Christen, 2008], an automatic classification approach is proposed for duplicate

detection based on a SVMs technique. The approach consists of two steps. Firstly,

training examples are automatically selected from the set of all weight vectors W .

Two strategies for automatic selection of training examples are supported: threshold-

and nearest-based. For specifying duplicate and non-duplicate training vectors, the

threshold method selects entity vectors whose all similarity values are within a certain

distance to the exact similarity value 1 or to total dissimilarity 0. The nearest method

sorts the similarity vectors of the entity vectors according to their distances from the

vectors containing only exact similarities and only total dissimilarities, resp, and

then selects the nearest entity vectors for training. In this way, the duplicate training

examples set WD, and the non-duplicate training examples set WN are created.

Based on the initial training set WT = WD ∪WN , a first SVM classifier is trained.

Then, the set of comparison vectors WU that is not selected for training data, i.e.

WU = W \WT , is classified using first trained SVM classifier. In the second step, the

comparison vectors from WU that were classified to be furthest away from the SVM

decision boundary are removed from WU and added into the training set WT . In this

way, a new training set W ′
T is made, and a second SVM classifier is trained on this

enlarged training set W ′
T . This process of adding more comparison vectors into the

training set followed by training a new SVM classifier is repeated until there is no

unclassified weight vector in WU .
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3.7 Blocking Techniques for ER

Several blocking techniques have been proposed to significantly improve the efficiency

of ER by avoiding a possibly expensive similarity computation for all record pairs

and computing the similarity for only blocks of record pairs [Christen, 2011]. For a

comprehensive survey on blocking see [Baxter et al., 2003,Draisbach and Naumann,

2009,Christen, 2011,Christen, 2012]. However, most prior approaches to blocking are

inflexible for at least one of two reasons: (1) They allow blocking of only a single

entity type in isolation, (2) They ignore valuable domain or semantic knowledge that

can be used for blocking. Possible exceptions are [Rastogi et al., 2011, Nin et al.,

2007].

In [Rastogi et al., 2011], similarity of blocking keys and relational closeness are

considered for entity deduplication (not the merging). However, the semantics of

relational closeness between blocking keys and entities is not thoroughly developed.

Semantic blocking in [Nin et al., 2007] completely disregards blocking keys and

creates blocks by considering exclusively the relationships between entities. At its

core lies a collaborative graph, where every node corresponds to an entity and every

edge connects two associated entities. For instance, the collaborative graph for a

bibliographic data collection can be formed by mapping every author to a node and

adding edges between co-authors. In this context, blocks are created in the following

way: for each node n, a new block is formed, containing all nodes connected with n

through a path, whose length does not exceed a predefined limit.

From another point of view, blocking techniques are generally distinguished in

two categories: those that produce disjoint blocks, such as standard blocking [Fellegi

and Sunter, 1969], and those techniques that yield overlapping blocks with redundant

comparisons, such as meta-blocking [Papadakis et al., 2014,Papadakis et al., 2016a],

in an effort to achieve high recall in the context of highly heterogeneous data, such as

the Web of Data [Bizer et al., 2009]. Redundancy comes at the cost of lower efficiency

since it may increase the number of required pair-wise comparisons.

Meta-blocking [Papadakis et al., 2014, Papadakis et al., 2016a] has been intro-

duced as a generic procedure that intervenes between the creation and the processing

of blocks, transforming an initial set of blocks into a new one with substantially fewer
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comparisons and equally high effectiveness. Basically, a meta-blocking technique re-

ceives as input an existing block collection, and transforms it to a new block collection

that contains fewer unnecessary comparisons. To this end, it first builds an abstract

graph representation of the original set of blocks, with the nodes corresponding to

entities and the edges connecting the co-occurring ones. During the creation of this

structure all redundant comparisons are discarded, while the superfluous ones can be

removed by pruning the edges with the lowest weight.

Despite the significant enhancements in efficiency, meta-blocking techniques suffer

from a crucial drawback: processing of voluminous datasets involves a significant

overhead. The corresponding blocking graphs comprise millions of nodes that are

strongly connected with billions of edges. Inevitably, the pruning of such graphs is

very time-consuming [Papadakis et al., 2016a].

Iterative Blocking [Whang et al., 2009b] propagates all identified duplicates to the

subsequently processed blocks so as to save repeated comparisons and to detect more

duplicates. Hence, it improves both precision and recall. Similar to Meta-blocking,

it targets redundant comparisons between duplicate entities.



Chapter 4

Thesis Contributions

This thesis makes the following specific contributions on the topic of MDs and entity

resolution:

1. We present cleaning answer set programs (ASPs), in the form of disjunctive

Datalog programs with stable model semantics. They capture through their

models the class of alternative clean instances obtained after an ER process

based on MDs.

2. Clean answers to a query posed to a “dirty” instance are not defined via a

set-theoretic intersection (as usual in answer set programming), but via the

lattice-theoretic greatest lower bound (glb) (cf. Section 2.2). We introduce

some additional rules into a given query program that capture the glb in set-

theoretic terms. In this way, the clean answers are obtained by set-theoretic

cautious reasoning from a cleaning program.

3. As an important special and practical case of ER, we provide a declarative re-

construction of the so-called union-case ER methodology, as presented through a

generic Swoosh approach to ER. Swoosh has been extended with negative rules.

Accordingly, we extend our ASP-based account of the union-case of Swoosh by

considering negative rules.

4. We introduce relational MDs, and identify a new class of combinations of re-

lational MDs and initial instances that have good properties in terms of the

number of clean instances: a single one, in our case, and computable in poly-

nomial time.

5. We describe the ERBlox system in which relational MDs and machine learning

methods, including preliminary tasks such as blocking, can all be integrated

37
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into a single Datalog-driven platform. We built ERBlox on top of the LogicBlox

platform. More specifically, MDs declaration and enforcement, data process-

ing in general, and machine learning are all be integrated using the LogiQL

language.

6. We propose MD-based collective blocking where relational MDs are used for

blocking records before classification in the ERBlox system, which is a novel

and not original intended use of MDs.

7. We show experiments with our ERBlox system using as dataset a snapshot of

Microsoft Academic Search (MAS) (as of January 2013) that includes 250K

authors, 2.5M papers, and a training set. We also use, independently, datasets

from DBLP and Cora Citation.

8. We show that our system improves ER recall and precision over traditional,

standard blocking techniques [Jaro, 1989], where just blocking-key similarities

are used. Actually, MD-based collective blocking leads to higher precision and

recall on the given datasets.



Chapter 5

Answer Set Programs for MD-based ER

A natural research goal is to come up with a general methodology to logically specify

the result of an MD-based ER process. More precisely, the aim is to compactly and

declaratively specify the class of clean instances for an instance D0 subject to ER on

the basis of a set Σ of MDs. In principle, a logic-based specification of that kind could

be used to reason about/from the class of clean instances, in particular, enabling a

process of clean query answering. In this chapter we present logic-based specifications

such that the logical language of choice will be that of answer set programs (ASPs)

[Brewka et al., 2011].

We start by showing that clean query answering is a non-monotonic process in the

sense that the set of clean answers does not monotonically grow with the database

instance.

Example 5.0.1 Consider the MD ϕ : R [phone, addr] ≈ R [phone, addr] → R [addr]
.
=

R [addr], and the following instance D:

R(D) name phone addr

t1 John Doe (613)7654321 Bank St.

t2 Alex Smith (514)1234567 10 Oak St.

D is a stable, clean instance w.r.t. ϕ. Now consider the query asking for the address

of John Doe: Q(z) : ∃yR(John Doe, y, z). In this case, CleanD{ϕ}(Q) = Q(D) =

{〈Bank St .〉}.
Now, suppose that D is updated into D′:

R(D′) name phone addr

t1 John Doe (613)7654321 Bank St.

t2 Alex Smith (514)1234567 10 Oak St.

t3 J.Doe 7654321 25 Bank St.
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Assuming that “(613)7654321” ≈ “7654321”, Bank St . ≈ 25 Bank St ., and also

maddr(Bank St., 25 Bank St.) = 25 Bank St., then D′′ below is the only clean

instance:
R(D′′) name phone addr

t1 John Doe (613)7654321 25 Bank St.

t2 Alex Smith 6131234567 10 Oak St.

t3 J.Doe 7654321 25 Bank St.

Now, CleanD
′

{ϕ}(Q) = Q(D′′) = {〈25 Bank St .〉}. Clearly, Q(D) 6⊆ Q(D′), even

though D ⊆ D′. The previous answer was lost after the update. 2

This example shows the specification mentioned above must appeal to some sort

of non-monotonic logical formalism. Intuitively, when an MD is enforced on two

tuples of an instance in a single step of the chase procedure, the tuples are updated

to newer versions. The older versions of the tuples are no longer available during the

rest of the chase. The chase grows in terms of information contents.

In this chapter, we use answer set programs (ASPs) as the basic formalism to

capture the result of this non-monotonic chase procedure. More precisely, given an

instance D0 and a set Σ of MDs, we propose logic programs Π(D0,Σ) with stable

model semantics whose stable models correspond to the (D0,Σ)-clean instances. On

this basis, the clean answers to a query posed to D0 can be obtained via cautious

reasoning from the program.

The main idea is that program Π(D0,Σ) implicitly simulates the chase sequences,

each one represented by a model of the program. For this, Π(D0,Σ) has rules to:

(a) enforce MDs on pairs of tuples satisfying similarities conditions, (b) create newer

versions of those tuples by applying MFs, (c) make the older versions of the tuples

unavailable for further matchings, and (d) make each stable model correspond to a

valid chase sequence, leading to a clean instance. The latter is the most intricate part.

The program Π(D0,Σ) explicitly eliminates, using program constraints, instances

that are the result of illegal applications of MDs. A set of matching applications is

illegal if we cannot put them in a chronological order to represent the steps of a chase.

That is, there are some matchings that use old versions of tuples that have already

been replaced by new versions.
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To ensure that the matchings are enforced according to an order that correctly

represents a chase, we will record pairs of matchings in an auxiliary relation, Prec,

used by the cleaning program, and explicitly impose an order on Prec via program

constraints.

5.1 Cleaning Programs for MDs

Let D0 be a given, possibly dirty initial instance w.r.t. a set Σ of MDs. The cleaning

program Π(D0,Σ) that we will introduce contains an (n + 1)-ary program predicate

Ri, for each n-ary database predicate Ri, plus other predicates to be introduced

below. Predicate Ri will be used in the form Ri(T, Z̄), where T is used for the tuple

identifier database attribute, and Z̄ is a list standing for the (ordinary) attributes of

Ri. If you assume the database already has tuple identifiers (tid’s), you do not need

this distinction.

For every attribute A in the schema, with domain DomA, the ternary predicate

MA represents the MF mA, i.e. MA(a, a′, a′′) means mA(a, a′) = a′′. X �A Y is used

as an abbreviation for MA(X, Y, Y ). When an attribute A (or its domain) does not

have a matching function, because it is not affected by an MD, then �A becomes the

equality, =A. For lists of variables Z̄1 = 〈Z1
1 , . . . Z

n
1 〉 and Z̄2 = 〈Z1

2 , . . . Z
n
2 〉, Z̄1 � Z̄2

denotes the conjunction Z1
1 �A1 Z

1
2 ∧ . . . ∧ Zn

1 �An Z
n
2 . Moreover, for each attribute

A, there is a binary predicate ≈A. For two lists of variables X̄1 = 〈X1
1 , . . . X

l
1〉 and

X̄2 = 〈X1
2 , . . . X

l
2〉 representing componentwise comparable attribute values, X̄1 ≈ X̄2

denotes the conjunction X1
1 ≈1 X

1
2 ∧ . . . ∧X l

1 ≈l X l
2.

For a given instance D0 and set of MDs Σ, the program Π(D0,Σ) contains the

rules in 1.-9. below:

1. For every tuple (id) tD0 = Rj(ā), the fact Rj(t, ā). We also need facts for the

MFs as tables and similarity relations.

2. For each MD ϕj: R1[X1] ≈ R2[X2]→ R1[A1]
.
= R2[A2], the program rule:

Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2) ∨ NotMatchϕj(T1, X̄1, Y1, T2, X̄2, Y2) ←

R1(T1, X̄1, Y1), R2(T2, X̄2, Y2), X̄1 ≈ X̄2, Y1 6= Y2.
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Here, the X̄is are lists of variables corresponding to lists of attributes on the LHS of

the MD, whereas the Yis are single variables corresponding to the attribute on the

RHS of the MD. Also, the Z̄is are lists of variables corresponding to all attributes in

a tuple, and Ti is a variable standing for a tuple ID. We use this notation to make

the association with attributes or lists thereof in MDs easier.

This rule is used to capture possible matchings when similarities hold for two

tuples. Notice that predicate Match does not do the actual merging; and we need the

freedom to match or not to match, to obtain different chase sequences (cf. below).

When the two predicates appearing in ϕj are the same, say R1, the above rule

becomes symmetric w.r.t. every two atoms R1(t1, ā1) and R1(t2, ā2) that satisfy the

body of the rule. We need to make sure that if the matching takes place for these

two tuples, then both Matchϕj
(t1, ā1, t2, ā2) and Matchϕj

(t2, ā2, t1, ā1) exist. Thus, for

every such MD, we need a rule of the following form

Matchϕj(T2, X̄2, Y2, T1, X̄1, Y1) ← Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2).

3. Match does not take place if one of the involved tuples was used for another

matching, and replaced by newer version. For each MD ϕj, we need:

←NotMatchϕj(T1, Z̄1, T2, Z̄2), not OldVersion1(T1, Z̄1), not OldVersion2(T2, Z̄2).

This is a program constraint filtering out models that make the body true. More

precisely, the program constraint states that if: (a) we have “live”, never replaced

versions of two tuples (ids) t1 and t2 from relations R1 and R2, respectively, (b)

the similarity conditions holds for them according to an MD, and (c) both are not

matched (together or with some other tuples), then the model should be rejected.

That is, t1 and t2 have to be either matched together, or be replaced by newer

versions (becoming unavailable). This constraint enforces at least one match for a

tuple that satisfies some match condition.

4. Predicate OldVersion i contains different versions of every tuple (id) in relation
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Ri which has been replaced by a newer version (during the ER process). This is

captured by upward lattice navigation:

OldVersion i(T1, Z̄1) ← Ri(T1, Z̄1), Ri(T1, Z̄
′
1), Z̄1 � Z̄ ′1, Z̄1 6= Z̄ ′1.

For each tuple identifier t there could be many atoms of the form Ri(t, ā) correspond-

ing to different versions of the tuple associated with t that represent the evolution of

the tuple during the enforcement of MDs.

For convenience, below we refer to the various atoms associated with a given tuple

identifier t as versions of the tuple identifier t.

We haven’t done the actual merging yet. This is done next.

5. Rules to insert new tuples into R1, R2, as a result of enforcing ϕj (Mj stands for

the MF for the RHS of ϕj):

R1(T1, X̄1, Y3) ← Matchϕj
(T1, X̄1, Y1, T2, X̄2, Y2), Mj(Y1, Y2, Y3).

R2(T2, X̄2, Y3) ← Matchϕj
(T1, X̄1, Y1, T2, X̄2, Y2), Mj(Y1, Y2, Y3).

All the previous rules tell us what can be done or not, but not exactly how to combine

those possibilities. We need additional structure to create valid chase sequences, which

are ordered sequences of instances within a partial order of instances. Those ordered

sequences are captured by additional conditions (cf. below).

6. For every two matchings applicable to different versions of a tuple with a given

identifier, we record in Prec the relative order of the matchings.

This predicate applies to two pairs of tuples, and to two possible matchings of

two tuples. The matching applied to the smaller version of the tuple w.r.t. � has to

precede the other.

Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3) ←

Matchϕj(T1, Z̄1, T2, Z̄2),Matchϕk(T1, Z̄
′
1, T3, Z̄3), Z̄1 � Z̄ ′1, Z̄1 6= Z̄ ′1.
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A more clear reading of this predicate arguments could be as follows:

Prec(〈T1, Z̄1〉, 〈T2, Z̄2〉|〈T1, Z̄
′
1〉, 〈T3, Z̄3〉), emphasizing that two pairs are being related.

We need similar rules (four in total) for the cases where the common tuple identifier

variable T1 appears in different components of the two Match predicates (cf. rules 6.

in Example 5.1.1 below).

7. Each version of a tuple identifier can participate in more than one matching only if

at most one of them changes the tuple. For every two matchings applicable to a single

version of a tuple identifier, we record in Prec the relative order of the two matchings.

The matching that produces a new version for the tuple has to come after the other

matching. If both of the matchings do not produce a new version of the tuple, they

can be applied in any order, making unnecessary to record their relative order in Prec.

Prec(T1, X̄1, Y1, T2, X̄2, Y2, T1, X̄1, Y1, T3, X̄3, Y3) ←

Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2),Matchϕk(T1, X̄1, Y1, T3, X̄3, Y3),MA(Y1, Y3, Y4),

Y1 6= Y4.

Here, MA is the built-in matching function (relation) for attribute (generically denoted

by) A to whose values variables Y1, Y2, Y3 refer to. This rule says that, in case (a

ground version of) a tuple 〈T1, X̄1, Y1〉 participates in two matching, via MDs ϕj and

ϕk, and the tuple changes according to ϕk, as captured by the last two body atoms

that use ϕk’s matching function Mk, then the matching via ϕk must come after the

matching via ϕj. By this same rule, the reverse Prec-order could also be true, but we

will disallow having both by imposing conditions on Prec, making it a partial order

(see below). By the rule(s) in 2. above, a stable model can always choose between

doing a matching or not, and then choosing between one of the two possible Prec-

orders. As in rules 6. above, we need four rules of this form, for different possible

appearances of the common variable T1 (cf. rules 7. in Example 5.1.1 below).

This rule disallows two matchings that produce incomparable versions of a tuple

w.r.t. �, because Prec is antisymmetric (due to rules 8. below). As a consequence,

every two matchings applicable to a given tuple identifier will fire one of the two rules
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6. or 7., and they will have a relative order recorded in Prec, unless they both do not

change the tuple.

8. With the definitions so far, Prec could still not be an order relation, exhibiting

antisymmetry. Program constraints are used to make it an order, Consequently, rules

for making Prec a reflexive, antisymmetric and transitive relation, respectively:

Prec(T1, Z̄1, T2, Z̄2, T1, Z̄1, T2, Z̄2) ← Matchϕj(T1, Z̄1, T2, Z̄2).

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),Prec(T1, Z̄

′
1, T3, Z̄3, T1, Z̄1, T2, Z̄2),

(T1, Z̄1, T2, Z̄2) 6= (T1, Z̄
′
1, T3, Z̄3).

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),Prec(T1, Z̄

′
1, T3, Z̄3, T1, Z̄

′′
1 , T4, Z̄4),

not Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′′
1 , T4, Z̄4).

Notice that we do not use Prec in body conditions. In consequence, the main rules

around it are the last two program constraints. They are used to to eliminate instances

(models) that result from illegal applications of MDs. As a consequence, each stable

model will represent a particular version of that order; and different orders correspond

to different models, and to different chase sequences.

9. Finally, rules to collect in Rc
i the latest version of each tuple for every predicate

Ri ; they are used to form the clean instances.

Rc
i (T1, Z̄1) ← Ri(T1, Z̄1), not OldVersion i(T1, Z̄1).

Notice that the rules in 2. above are the only one that depend on an essential

manner on the particular MDs at hand. Rules 1. are just the facts that represent the

initial, underlying database, the MFs as tables, and similarity relations. All the other

rules are basically generic, and could be used by any cleaning program, as long as
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there is a correspondence between the predicates Matchϕ with the MDs ϕ, for which

the former have subindices for the latter.

Notice that, given a relational schema and a set of MDs on it, a program like the

one above can be automatically created, and can be used for that schema and MDs.

Only the facts of the program depend on the actual relational instance at had. An

alternative to our approach would be to build a single program that can be used with

any schema and finite set of MDs associated to it. Such a program is bound to be

much more complex than those, specific but still generic, that we are proposing here.

Example 5.1.1 (ex. 1.0.2 cont.) The cleaning program Π(D0,Σ) has the following

rules: (skipping rules 6.)

1. R(t1, a1, b1). R(t2, a2, b2). R(t3, a3, b3)., plus MB(b1, b2, b12). MB(b2, b3, b23).

MB(b1, b23, b123). a1 ≈ a2. b2 ≈ b3.

From now on we will omit extensions for the MFs and similarity relations.

2.

Matchϕ1(T1, X1, Y1, T2, X2, Y2) ∨ NotMatchϕ1(T1, X1, Y1, T2, X2, Y2) ←

R(T1, X1, Y1), R(T2, X2, Y2), X1 ≈ X2, Y1 6= Y2.

Matchϕ2(T1, X1, Y1, T2, X2, Y2) ∨ NotMatchϕ2(T1, X1, Y1, T2, X2, Y2) ←

R(T1, X1, Y1), R(T2, X2, Y2), Y1 ≈ Y2, Y1 6= Y2.

Matchϕ1(T1, X1, Y1, T2, X2, Y2) ← Matchϕ1(T2, X2, Y2, T1, X1, Y1).

(similarly for Matchϕ2)

3.

← NotMatchϕ1(T1, X1, Y1, T2, X2, Y2), not OldVersion
R
(T1, X1, Y1),

not OldVersion(T2, X2, Y2). (similarly for NotMatchϕ2)
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4.

OldVersion(T1, Z̄1) ← R(T1, Z̄1), R(T1, Z̄
′
1), Z̄1 � Z̄ ′1, Z̄1 6= Z̄ ′1.

5.

R(T1, X1, Y3) ← Matchϕ1(T1, X1, Y1, T2, X2, Y2),MB(Y1, Y2, Y3).

R(T1, X1, Y3) ← Matchϕ2(T1, X1, Y1, T2, X2, Y2),MB(Y1, Y2, Y3).

6.

Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y
′

1 , T3, X3, Y3) ←

Matchϕj(T1, X1, Y1, T2, X2, Y2),Matchϕk(T1, X1, Y
′

1 , T3, X3, Y3),

Y1 � Y ′1 , Y1 6= Y ′1 . (with 1 ≤ j, k ≤ 2)

7.

Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y1, T3, X3, Y3) ←

Matchϕj(T1, X1, Y1, T2, X2, Y2),Matchϕk(T1, X1, Y1, T3, X3, Y3),

MB(Y1, Y3, Y4), Y1 6= Y4. (with 1 ≤ j, k ≤ 2)

9.

Rc(T1, X1, Y1) ← R(T1, X1, Y1), not OldVersion(T1, X1, Y1).

Program Π(D0,Σ) has two stable models, whose Rc-atoms are shown below:

M1 = {..., Rc(t1, a1, b12), Rc(t2, a2, b12), Rc(t3, a3, b3)},

M2 = {..., Rc(t1, a1, b123), Rc(t2, a2, b123), Rc(t3, a3, b23)}.

We show some of other missing atoms in M2 to describe how the second chase is

captured by the program (for simplicity facts and atoms obtained by the symmetric

rules are not shown):
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M2 = {Matchϕ2(t2, a2, b2, t3, a3, b3), R(t2, a2, b23), R(t3, a3, b23),OldVersion(t2, a2, b2),

OldVersion(t3, a3, b3),NotMatchϕ1(t1, a1, b1, t2, a2, b2),Matchϕ1(t1, a1, b1, t2 , a2, b23), R(t1,

a1, b123), R(t2, a2, b123),OldVersion(t1, a1, b1),OldVersion(t2, a2, b23),NotMatchϕ1(t1, a1,

b123, t2, a2, b23), Rc(t1, a1, b123), Rc(t2, a2, b123), Rc(t3, a3, b23),Prec(〈t2, a2, b2〉, 〈t3, a3, b3〉|
〈t2, a2, b23〉, 〈t1, a1, b1〉), NotMatchϕ1(t1, a1, b123, t2, a2, b2),NotMatchϕ2(t2, a2, b123, t3, a3,

b23)}.

M2 contains Prec(〈t2, a2, b2〉, 〈t3, a3, b3, 〉|〈t2, a2, b23〉, 〈t1, a1, b1〉), showing that two

matchings are applicable to different versions of tuple t2, and the matching applied

to the smaller version of the tuple t2 w.r.t. �, i.e. Matchϕ2(t2, a2, b2, t3, a3, b3), has to

precede the other, i.e. Matchϕ1(t1, a1, b1, t2, a2, b23), (cf. rule 6. above). By the first

rule in 2. above we have NotMatchϕ1(t1, a1, b1, t2, a2, b2) meaning that the matching

Matchϕ1(t1, a1, b1, t2, a2, b2) does not take place. Notice that the stable model M2 does

not make the body of the program constraint in 3. true since tuple R(t2, a2, b2) is

used for another matching, and replaced by a newer version.

From the stable models M1,M2 we can read off the two clean instances D1, D′2

for D0 that were obtained from the chase. The stable models of the program can be

computed using the DLV system [Leone et al., 2006]. The DLV code for this example

can be found in Appendix A. 2

Theorem 5.1.1 There is a one-to-one correspondence between C(D0,Σ) and the set

SM (Π(D0,Σ)) of stable models of the cleaning program Π(D0,Σ). More precisely,

the clean instances for D0 w.r.t. Σ are exactly the restrictions of the elements of

SM (Π(D0,Σ)) to schema Rc.

Proof: The proof of the theorem consists of two parts. For the first part, we need

to show that for every (D0,Σ)-clean instance D′ (obtained through a chase as in

Definition 2.2.2), we can construct a set of atoms SD
′

that is a stable model for

the logic program Π(D0,Σ), and the atoms in SD
′

are obtained from the valid chase

sequence starting from D0 and leading to Dk, with Dk = D′, by enforcing MDs in Σ.

For D′ a (D0,Σ)-clean instance, there are instances D1, . . . , Dk−1, Dk = D′ such

that, for every j ∈ [1, k], (Dj−1, Dj)[tj1,t
j
2] |= ϕ, for some ϕ ∈ Σ and tuple identifiers
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tj1, t
j
2. We construct SD

′
, a set of atoms over relations of the logic program Π(D0,Σ),

as follows.

• For every instance Dj, j ∈ [0, k] and every tuple identifier t of a relation R

of relational schema, SDk
contains an atom R(t, ā), where tDj = ā. SD

′
also

contains facts for the MFs as tables and similarity relations.

• For every tuple identifier t of relation R, SD
′

contains an atom Rc(t, ā), where

tD
′
= ā for clean instance D′.

• For every instance Dj, j ∈ [0, k − 1] and every tuple identifier t of relation R

such that tDj 6= tDk , SD
′

contains an atom OldVersion(t, ā), where tDj = ā.

• For every j ∈ [1, k], identifiers tj1, t
j
2 and MD ϕ, such that (Dj−1, Dj)[tj1,t

j
2] |= ϕ,

for some ϕ ∈ Σ, SD
′

contains an atom Matchϕ(t1, ā1, t2, ā2), where tj1 = ā1 and

tj2 = ā2 in Dj−1. If the two relation names appearing in ϕ are the same, SD
′

also contains Matchϕ(t2, ā2, t1, ā1).

• For every j, l ∈ [1, k], tuple identifiers tj1, t
l
2 and MD ϕ, such that tj1 = ā1 in Dj,

tl2 = ā2 in Dl, t
j
1, t

l
2 satisfy the similarities in the left-hand side of ϕ, but not the

equality in the right-hand side, SDk
contains NotMatchϕ(t1, ā1, t2, ā2).

• For every j, l ∈ [1, k], tuple identifiers tj1, t
l
1, t

j
2, t

l
3 and MDs ϕ1, ϕ2, such that

(Dj−1, Dj)[tj1,t
j
2] |= ϕ1, (Dl−1, Dl)[tl1,t

l
3] |= ϕ2, and j ≤ l, SD

′
contains an atom

prec(t1, ā1, t2, ā2, t1, ā
′
1, t3, ā3), where tj1 = ā1, tj2 = ā2 in Dj−1, and tl1 = ā′1,

tl3 = ā3 in Dl−1.

Next, we show that SD
′

is a stable model for the program Π(D0,Σ). For this,

we need to show that SD
′

is a minimal model of gr(Π(D0,Σ))S
D′

, the ground version

of program Π(D0,Σ) that is obtained by transforming gr(Π(D0,Σ)) into a positive

program according to atoms in SD
′

(cf. Section 2.4). For obtaining gr(Π(D0,Σ))S
D′

,

from gr(Π(D0,Σ)):

• Delete every rule 3. that has a subgoal not OldVersion(t1, ā1) in the body, with

OldVersion(t1, ā1) ∈ SD′ ,



50

• Delete every program constraint in 8. that has a subgoal not prec(t1, ā1, t2, ā2, t1,

ā′1, t3, ā3) in the body, with prec(t1, ā1, t2, ā2, t1, ā
′
1, t3, ā3) ∈ SD′ , and

• Delete the negative subgoal not OldVersion(t1, ā1) from the remaining rules.

We are left with a program gr(Π(D0,Σ))S
D′

with the following rules and con-

straints in their generic forms (all of them are ground):

1’. R(t1, c̄1). R(t2, c̄2). . . .

2’.

Matchϕj(t1, ā1, b1, t2, ā2, b2) ∨ NotMatchϕj(t1, ā1, b1, t2, ā2, b2) ←

R(t1, ā1, b1), R(t2, ā2, b2), ā1 ≈ ā2, b1 6= b2.

3’. The following ground rule whenever SD
′

does not contain atoms OldVersion(t1, c̄1),

OldVersion(t2, c̄2):

← NotMatchϕj(t1, c̄1, T2, c̄2).

Notice that if SD
′
contains OldVersion(t1, c̄1) or OldVersion(t2, c̄2), then gr(Π(D0,

Σ))S
D′

does not have any ground version of rule 3..

4’.

OldVersion(t1, c̄1) ← R(t1, c̄1), R(t1, c̄
′
1), c̄1 � c̄′1, c̄1 6= c̄′1.

5’.

R(t1, ā1, b3) ← Matchϕj
(t1, ā1, b1, t2, ā2, b2), Mj(b1, b2, b3).

6’.

Prec(t1, c̄1, t2, c̄2, t1, c̄
′
1, t3, c̄3) ←

Matchϕj(t1, c̄1, t2, c̄2),Matchϕk(t1, c̄
′
1, t3, c̄3), c̄1 � c̄′1, c̄1 6= c̄′1.
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7’.

Prec(t1, ā1, b1, t2, ā2, b2, t1, ā1, b1, t3, ā3, b3) ←

Matchϕj(t1, ā1, b1, t2, ā2, b2),Matchϕk(t1, ā1, Y β1, t3, ā3, b3),MA(b1, b3, b4),

b1 6= b4.

8’. The last program constraint in 8. is the only one with a negative atom in the

body, namely atom not Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′′
1 , T4, Z̄4), so we obtain:

Prec(t1, c̄1, t2, c̄2, t1, c̄1, t2, c̄2) ← Matchϕj(t1, c̄1, t2, c̄2).

← Prec(t1, c̄1, t2, c̄2, t1, c̄
′
1, t3, c̄3),Prec(t1, c̄

′
1, t3, c̄3, t1, c̄1, t2, c̄2),

(t1, c̄1, t2, c̄2) 6= (t1, c̄
′
1, t3, c̄3). (5.1)

← Prec(t1, c̄1, t2, c̄2, t1, c̄
′
1, t3, c̄3),Prec(t1, c̄

′
1, t3, c̄3, t1, c̄

′′
1, t4, c̄4). (5.2)

In (5.1), for interpreting the inequality of sequences, i.e., (t1, c̄1, t2, c̄2) 6= (t1, c̄
′
1, t3,

c̄3), it unfolds into several constraints, each with one inequality between two val-

ues. Program gr(Π(D0,Σ))S
D′

has the constraint (5.2) whenever SD
′

does not

contain the atom Prec(t1, c̄1, t2, c̄2, t1, c̄
′′
1, t4, c̄4).

The program constraint (5.2) has to do with making Prec a transitive rela-

tion, and is obtained when SD
′

does not contain Prec(t1, c̄1, t2, c̄2, t1, c̄
′′
1, t4, c̄4).

If SD
′

contains this atom, the program constraint is discarded. Whereas, the

program constraint (5.1) is related to making Prec antisymmetric, and it is

always in gr(Π(D0,Σ))S
D′

because there is no negative atoms in the body.

Therefore, it may happen that the program constraint (5.2) does not appear in

gr(Π(D0,Σ))S
D′

, but (5.1) does.
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9’. The following ground rule whenever SD
′

does not contain OldVersion(t1, c̄1).

Rc(t1, c̄1) ← R(t1, c̄1).

As expected, the residual program gr(Π(D0,Σ))S
D′

depends on SD
′
, the candidate

to be a stable model for Π(D0,Σ). We used the atoms in SD
′
to simplify gr(Π(D0,Σ))

by partially evaluating all rules with negative literals against SD
′
. Atoms in SD

′

specify which ground rules of the forms 3., 8., 9. should be in gr(Π(D0,Σ))S
D′

and with what ground atoms in the body. For example, if in a different candi-

date S ′, to be a stable model, there is atom OldVersion(t1, c̄1), then the ground

rule Rc(t1, c̄1) ← R(t1, c̄1), not OldVersion(t1, c̄1) would not appear in the residual

program gr(Π(D0,Σ))S
′
.

Program gr(Π(D0,Σ))S
D′

is positive disjunctive. Thus, it may have more than

one minimal model [Eiter et al., 1997]. The minimal models of a positive disjunctive

program gr(Π(D0,Σ))S
D′

can be obtained as the fix-points of a bottom-up evaluation

of the program (cf. Section 2.4). For the bottom-up evaluation of gr(Π(D0,Σ))S
D′

,

we need to construct the predicate dependency graph for gr(Π(D0,Σ))S
D′

.

The predicate dependency graph of a disjunctive logic program Π is the directed

graph DG(Π) = (V,E). The set V of nodes is the set of all predicates that occur in Π,

and there is an edge from q to p, i.e. (q, p) ∈ E ⊆ V × V , if and only if the predicate

q occurs in the body of a rule with p as one of its head predicates [Ben-Eliyahu and

Dechter, 1994].

We build the following dependency graph for gr(Π(D0,Σ))S
D′

.

In this graph, due to rule 2’., there is an edge from predicate R to predicates

Match and NotMatch. Notice that if the two relation names appearing in ϕ are the
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same, then the dependency graph should have a self-loop on node Match.

In general, for fix-points evaluation of a positive disjunctive program Π, we first

put all the extensional database (EDB) into an initial set M . Then, starting from the

facts, we traverse the dependency graph upwards, propagating the facts through the

rules, from right to left, iteratively. This procedure, starting from the initial set M

starts producing and updating a set of sets MM due to the application of disjunctive

rules that make true only one disjunct at a time. In other words, when we apply a

disjunctive rule the number of sets satisfying the ground rules may start growing, in

addition to the change of each single set in MM . The fix-points are reached when

no new sets in MM are created and no new atoms are obtained in each single set in

MM . At the end, we discard those sets in MM that violate a program constraint.

Then, MM is the set of minimal models of Π.

Next, we show that we can reconstruct SD
′

as one of the sets in MM, say M ′,

following the one path of the fix-point construction. We take advantage of our con-

struction of SD
′

starting from the chase sequence D0, D1, . . . , Dk = D′ with stable

instance D′.

• First, we put all the atoms in 1’. in a single set M .

• There are edges from predicates R,Mj to predicates Match,NotMatch in the

above dependency graph. Therefore, M should satisfy rules of the form 2’..

For satisfying these rules, for every tuple identifiers t1, t2 and MD ϕ, such that

(D0, D1)[t1,t2] |= ϕ with tD0
1 = ā1 and tD0

2 = ā2, we put Matchϕ(t1, ā1, t2, ā2) in

M . For every tuple identifiers t3, t4 and MD ϕ, such that tD0
3 = ā3, tD0

4 = ā4,

tD0
3 , tD0

4 satisfy the similarities in the left-hand side of ϕ, but not the equality

in the right-hand side, M contains NotMatchϕ(t3, ā3, t4, ā4).

• We traverse the dependency graph upwards. There is an edge from predicate

Match to predicate R. Accordingly, M should satisfy rules of the form 5’. in

gr(Π(D0,Σ))S
D′

. For satisfying these rules, M contains an atom R(t, ā), where

tD1 = ā.

• Next, we repeat steps 2. and 3., with D0 and D1 becoming Di and Di+1, respec-

tively, with (Di, Di+1)[ti1,t
i
2] |= ϕ, for some ϕ ∈ Σ, and atoms are inserted into
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M ′ ∈MM , until no new atoms are obtained in M ′, the set we are constructing.

Actually, we are starting from M and creating an M ′ ∈ MM that is being

updated through an iterative process. We also put NotMatchϕ(t1, ā1, t2, ā2) in

M ′ for every j, l ∈ [1, k], tuple identifiers tj1, t
l
2 and MD ϕ, such that tj1 = ā1 in

Dj, t
l
2 = ā2 in Dl, tj1, t

l
2 satisfy the similarities in the left-hand side of ϕ, but

not the equality in the right-hand side.

• Since there is an edge from predicate R to predicate OldVersion, M ′ should

satisfy rules of the form 4’.. Accordingly, for every instance Dj, j ∈ [0, k − 1]

and every tuple identifier t of a relation R such that tDj 6= tDk , M ′ contains an

atom OldVersion(t, ā), where tDj = ā.

• There are edges from predicates Match,Mj to predicate Prec. Therefore, M ′

should satisfy rules of the forms 6’., 7’., and the first rule in 8’. in gr(Π(D0,Σ))S
D′

.

Then, for every j, l ∈ [1, k], tuple identifiers tj1, t
l
1, t

j
2, t

l
3 and MDs ϕ1, ϕ2, such

that (Dj−1, Dj)[tj1,t
j
2] |= ϕ1, (Dl−1, Dl)[tl1,t

l
3] |= ϕ2, and j ≤ l, M ′ contains an

atom prec(t1, ā1, t2, ā2, t1, ā
′
1, t3, ā3), where tj1 = ā1, tj2 = ā2 in Dj−1, and tl1 = ā′1,

tl3 = ā3 in Dl−1.

• Finally, there is an edge from predicate R to predicate Rc. Accordingly, M ′

should satisfy rules of the form 9’.. Then, for every tuple identifier t of relation

R, M ′ contains an atom Rc(t, ā), where tDk = ā.

It is clear from this construction that M ′ = SD
′
. Therefore, SD

′
is a minimal

model for gr(Π(D0,Σ))S
D′

, and then, a stable model for Π(D0,Σ).

For the second part of the theorem, we need to show that, for every stable model

S of the program Π(D0,Σ), we can construct a (D0,Σ)-clean instance DS.

Let S be a stable model for the logic program Π(D0,Σ). For every relation R and

every tuple identifier t of relation R such that Rc(t, ā) ∈ S, we let tD
S

= ā. To show

that DS is a (D0,Σ)-clean instance, we need to construct instances D1, . . . , Dk = DS,

such that, for every j ∈ [1, k], (Dj−1, Dj)[tj1,t
j
2] |= ϕ, for some ϕ ∈ Σ and tuple

identifiers tj1, t
j
2. We use the following lemma for the proof.
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Lemma 5.1.1 For every stable model S of the program Π(D0,Σ), the relation prec

is a partial order on the set of sequences of constants, MS = {(t1, ā1, t2, ā2) |
Matchϕ(t1, ā1, t2, ā2) ∈ S, for some ϕ ∈ Σ}.

Proof of Lemma 5.1.1: For the proof, we need to show that Prec is a reflexive,

antisymmetric and transitive relation on the set of sequences of constants MS.

For proving the first property, we need to show that for all sequence of con-

stants (t1, ā1, t2, ā2) ∈ MS, we have Prec(〈t1, ā1, t2, ā2〉|〈t1, ā1, t2, ā2〉) in S. Let

(t1, ā1, t2, ā2) ∈ MS. This means that we have Matchϕ(t1, ā1, t2, ā2) ∈ S. S is a

stable model for Π(D0,Σ). This means that all the rules in Π(D0,Σ) should be sat-

isfied by S. The body of the first rule in 8. is satisfied by Matchϕ(t1, ā, t2, ā2). Thus,

for satisfying the head of that rule and, consequently, the whole rule, we should have

Prec(〈t1, ā1, t2, ā2〉|〈t1, ā1, t2, ā2〉) in S. Therefore, Prec is a reflexive relation on MS.

For showing the second property, let Prec(〈t1, ā1, t2, ā2〉|〈t1, ā′1, t3, ā3〉) in S. Sup-

pose Prec is symmetric onMS. This means that we also have Prec(〈t1, ā′1, t3, ā3〉|〈t1, ā1,

t2, ā2〉) in S. This contradicts the fact that S is a stable model of Π(D0,Σ) because

S would not satisfy the first program constraint in 8. in Π(D0,Σ).

For proving that Prec is transitive onMS, we need to show that if Prec(〈t1, ā1, t2,

ā2〉|〈t1, ā′1, t3, ā3〉) and Prec(〈t1, ā′1, t3, ā3〉|〈t1, ā′′1, t4, ā4〉) ∈ S, then we have Prec(〈t1, ā1,

t2, ā2〉|〈t1, ā′′1, t4, ā4〉) in S. Let Prec(〈t1, ā1, t2, ā2〉|〈t1, ā′1, t3, ā3〉) and Prec(〈t1, ā′1, t3, ā3

〉|〈t1, ā′′1, t4, ā4〉) be in S. Atoms Prec(〈t1, ā1, t2, ā2〉|〈t1, ā′1, t3, ā3〉) and Prec(〈t1, ā′1, t3,
ā3〉|〈t1, ā′′1, t4, ā4〉) exist in S only if we have Matchϕ(t1, ā1, t2, ā2), Matchϕ(t1, ā

′
1, t3, ā3),

Matchϕ(t1, ā
′′
1, t4, ā4) in S, and ā1 � ā′1, ā′1 � ā′′1 (cf. rule 6.).

By the associativity of matching functions (cf. Section 2.2), ā1 � ā′′1 holds. By ap-

plying rule 6. with atoms Matchϕ(t1, ā1, t2, ā2), Matchϕ(t1, ā
′′
1, t4, ā4), and ā1 � ā′′1 as

inputs for the body, and propagating to the head, we get Prec(〈t1, ā1, t2, ā2〉|〈t1, ā′′1, t4,
ā4〉). Thus, Prec is transitive on MS.

Hence, the relation Prec is a partial order on the set of sequences of constants

MS. 2

The sequences of constants inMS may have different length, e.g. (t1, a1, b1, t2, a3,

b3), (t5, a1, c1, d1, t6, a2, c2, d2) ∈MS. This is because various relations of a relational
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schema with different numbers of attributes may be involved in the MDs in Σ.

Every partial order can be extended to a linear order (that is compatible with the

former). The reason why we need the linear order will be explained in below. So, in

the following, ≤ is a fixed such linear order.

For every two match atoms Matchϕj
(t1, ā1, t2, ā2) and Matchϕl

(t3, ā3, t4, ā4) in S,

we have (t1, ā1, t2, ā2) ≤ (t3, ā3, t4, ā4) when prec(t1, ā1, t2, ā2, t3, ā3, t4, ā4) holds in S,

and equality holds only when the two sequences of constants are identical.

We need to construct instances D1, . . . , Dn = DS, for some n ≥ 0, such that, for

every j ∈ [1, n], (Dj−1, Dj)[tj1,t
j
2] |= ϕ, for some ϕ ∈ Σ and tuple identifiers tj1, t

j
2. For

this purpose, for every i ∈ [1, k], k = |MS|, we construct instance Di as follows. Let

(t1, ā1, t2, ā2) be the ith smallest sequence of constants in the linear order ≤. For every

tuple identifier t, we let tDi = tDi−1 if t 6= ti1, t
i
2, and we let ti1, t

i
2 in Di be the result of

enforcing ϕ, for some ϕ ∈ Σ, on R(ā1), R(ā2). By the definition of a stable model, S

is a minimal model for Π(D0,Σ). Due to this, Matchϕ(t1, ā1, t2, ā2) exists in S only

if the similarities in the left-hand side of the MD ϕ hold for R(t1, ā1), R(t2, ā2), and

the equality in the right-hand side does not hold. We thus have (Di−1, Di)[ti1,t
i
2] |= ϕ.

It remains to show that Dk is a stable instance, and it is actually equal to DS. For

proving them, we need the following lemma.

Lemma 5.1.2 Let R be a relation of a relational schema R, and k = |MS|.
(a) For every i ∈ [0, k], if (Di, Di+1)[ti1,t

i
2] |= ϕ, for some ϕ ∈ Σ, where ti1 and ti2

denote R(ā1) and R(ā2) in Di, resp, and ti+1
1 and ti+1

2 denote R(ā′1) and R(ā′2) in

Di+1, resp, then (t1, ā1, t2, ā2) is the i+ 1th smallest sequence of constants of MS in

the linear order ≤ and R(t1, ā
′
1), R(t2, ā

′
2) ∈ S.

(b) For every i ∈ [1, k], if (t1, ā1, t2, ā2) is the ith smallest sequence of constants of

MS in the linear order ≤, and R(t1, ā
′
1), R(t2, ā

′
2) are the atoms obtained by applying

rule 5. with atom Matchϕ(t1, ā1, t2, ā2), then (Di−1, Di)[ti1,t
i
2] |= ϕ, for some ϕ ∈ Σ,

where ti1 and ti2 denote R(ā1) and R(ā2) in Di−1, resp, and ti+1
1 and ti+1

2 denote R(ā′1)

and R(ā′2) in Di, resp.

Proof of Lemma 5.1.2: The proof of this lemma is by an induction on i.

First, we prove (a). For i = 0, if (D0, D1)[t1,t2] |= ϕ, then, for the MD ϕ : R[A] ≈
R[A] → R[B]

.
= R[B], we have t1[A] ≈ t2[A], t1[B] 6= t2[B] in D0. Stable model S
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contains all the facts of the initial instance D0 (cf. rule 1.). By rule 2., we get atom

Matchϕ(t1, ā1, t2, ā2) in S. This is because the necessary similarities in the RHS of

rule 2. hold between two atoms R(t1, ā1), R(t2, ā2). Thus, (t1, ā1, t2, ā2) is the first

smallest sequence of constants in the linear order ≤. Let R(t1, ā
′
1), R(t2, ā

′
2) be in D1.

Then, by the rule 5., R(t1, ā
′
1), R(t2, ā

′
2) ∈ S.

Suppose (a) holds for every j < i. Let (Di−1, Di)[ti1,t
i
2] |= ϕ, where ϕ : R[A] ≈

R[A] → R[B]
.
= R[B]. We then have ti1[A] ≈ ti2[A] in Di−1 and ti+1

1 [B] = ti+1
2 [B] =

mB(ti1[B], ti2[B]) in Di. Let ti1 and ti2 denote R(ā1) and R(ā2) in Di−1, resp. Moreover,

by the induction hypothesis, R(t1, ā1), R(t2, ā2) are in S, and there is a sequence of

constants inMS that is the ith smallest sequence of constants in the linear order ≤.

Since S is a stable model of Π(D0,Σ), and the necessary similarities in the RHS of

rule 2. hold between two atoms R(t1, ā1), R(t2, ā2), S contains Matchϕ(t1, ā1, t2, ā2)

(by rule 2.). Therefore, (t1, ā1, t2, ā2) is the i+ 1th smallest sequence of constants of

MS in the linear order ≤. Let ti+1
1 and ti+1

2 denote R(ā′1), R(ā′2) in Di, resp. By the

rule 5., R(t1, ā
′
1), R(t2, ā

′
2) ∈ S.

For proving the second part, for i = 1, let (t1, ā1, t2, ā2) be the first smallest

sequence of constants ofMS in the linear order≤. This means that R(t1, ā1), R(t2, ā2)

are facts in 1.. Let R(t1, ā
′
1), R(t2, ā

′
2) be the atoms obtained by applying rule 5. with

atom Matchϕ(t1, ā1, t2, ā2) in the body, where ϕ : R[A] ≈ R[A] → R[B]
.
= R[B]. By

the definition of a stable model, S is a minimal model for Π(D0,Σ). Due to this,

Matchϕ(t1, ā1, t2, ā2) exists in S only if the similarities in the left-hand side of the MD

ϕ hold for R(t1, ā1), R(t2, ā2), and the equality in the right-hand side does not hold.

We thus have R(t1, ā1), R(t2, ā2) in D0 and tD0
1 6= tD1

1 , tD0
2 6= tD1

2 , tD0
1 [A] ≈ tD0

2 [A] and

tD1
1 [B] = tD1

2 [B] = mB(tD0
1 [B], tD0

2 [B]). Therefore, we have (D0, D1)[t1,t2] |= ϕ with

R(t1, ā
′
1), R(t2, ā

′
2) in D1.

Assume that (b) holds for every j < i. Let (t1, ā1, t2, ā2) be the ith smallest

sequences of constants in the linear order ≤. Since S is a stable model for Π(D0,Σ),

Matchϕ(t1, ā1, t2, ā2) exists in S only if the similarities in the left-hand side of the MD

ϕ hold for R(t1, ā1), R(t2, ā2), and the equality in the right-hand side does not hold,

with ϕ : R[A] ≈ R[A]→ R[B]
.
= R[B]. Let R(t1, ā

′
1), R(t2, ā

′
2) be the atoms obtained

by applying rule 5. with atom Matchϕ(t1, ā1, t2, ā2) in the body. By the induction
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hypothesis, we have R(ti1, ā1), R(ti2, ā2) in Di−1. Thus, ti1[A] ≈ ti2[A] in Di−1. We then

have (Di−1, Di)[ti1,t
i
2] |= ϕ. Therefore, we have ti+1

1 [B] = ti+1
2 [B] = mB(ti1[B], ti2[B]) in

Di. Thus, R(ti+1
1 , ā′1), R(ti+1

2 , ā′2) in Di. 2

We continue proving Theorem 5.1.1. Let SR contain all the R atoms from the sta-

ble model S, i.e. SR = {R(t, ā) | R(t, ā) ∈ S}. Let DR be a set of R atoms constructed

from instancesD0, . . . , Dk above, defined asDR = {R(t, ā) | t is an R-tuple, and tDi =

ā for some i ∈ [0, k]}. By Lemma 5.1.2, it holds SR = DR. Since Dk and DS col-

lect the largest version of each tuple identifier, w.r.t. �, from the identical sets of

atoms SR and DR, the two instances should be equal. Thus, there is a valid chase

sequence D0, D1, . . . , Dk = DS. It remains to show that Dk is a stable instance, i.e.

(Dk, Dk) |= Σ. Assume that Dk is not stable. This means that there is at least a pair

of tuples t1, t2 in Dk such that they do not satisfy an MD ϕ ∈ Σ. Since DS = Dk,

we should have atom Matchϕ(t1, ā1, t2, ā2) in S. This contradicts the fact that S is a

stable model of the program Π(D0,Σ). 2

The restriction of the stable models to the relational schema Rc in Theorem 5.1.1

is due to the fact that they also have extensions for the auxiliary predicates used in

the programs, as shown in Example 5.1.1.

5.2 Clean Query Answering

We can use the cleaning program Π(D0,Σ) to compute the clean answers to a query

Q posed to D0. In Section 2.2 the clean answers were defined by taking into account

the underlying lattices, as the glb of all the sets of answers that can be obtained by

separately evaluating the query on the clean instances. This is not the same as the

usual certain (or skeptical) answers, i.e. the set-theoretic intersection of all the answers

from every clean instance, and therefore it is not equivalent to classical skeptical query

answering on the logic program. In this section we provide a mechanism for computing

clean answers while still using skeptical query answering from the program.

Given an FO query Q(x1, . . . , xn), with free variables standing for attributes
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A1, . . . , An of R, and defined by a formula ϕ(x̄), (with x̄ = x1, . . . , xn), a non-

disjunctive and stratified query program Π(Q) can be obtained from ϕ, using a stan-

dard transformation [Lloyd, 1987]. It contains an answer predicate AnsQ(x̄) to collect

the answers to Q, and rules defining it, of the form AnsQ(x̄)← B(x̄′), where the Bs

are conjunctions of literals (i.e. atoms or negations not A thereof). The R-atoms in

Q, with R ∈ R, are replaced in Π(Q) by Rc-atoms.

In [Bertossi et al., 2013], it is proved that the glb for every finite set of reduced

instances exist. This means that for clean query answering we need reduced of answers

sets (cf. Section 2.2). We can obtain reduced of answer sets by adding two new rules

to Π(Q):1

AnsrQ(x̄) ← AnsQ(x̄), not DominatedQ(x̄).

DominatedQ(x̄) ← AnsQ(ȳ), x̄ � ȳ, x̄ 6= ȳ.

The stable models S of Π(D0,Σ,Q) := Π(D0,Σ) ∪ Π(Q) are the stable models

of Π(D0,Σ) expanded with extensions AnsrQ(S) for predicate AnsrQ. Those exten-

sions, as database instances, are already reduced. Assume that SM (Π(D0,Σ,Q))

= {S1, . . . , Sm}. By definition, we have CleanD0
Σ (Q) = glbv{AnsrQ(Si) | i = 1, . . . ,m}.

Moreover, from equation (2.2) which is defined in [Bertossi et al., 2013] for computing

the glb of two instances, we obtain

glbv{AnsrQ(Si) | i = 1, . . . ,m} = Redv({glb�{ā1, . . . , ām} | āi ∈ AnsrQ(Si), i = 1, . . . ,m})
(5.3)

where Redv produces the reduced version of a set under v, i.e. the dominated

elements are discarded from the set. We use (5.3) for computing the glb of reduced

answer sets (cf. Proposition 5.2.1).

Now we show how the program Π(D0,Σ,Q) can be modified, so that the clean

answers to query Q can be obtained by running the program under the skeptical

semantics.

Given Ansr
Q(Si), i.e. the set of answers to Q from the clean instance corresponding

to the stable model Si, we define its downward expansion by:

1Notice that � in the second rule is defined in terms of the relations MA.
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Ansexp
Q (Si) := {b̄ | b̄ � ā, for some ā ∈ Ansr

Q(Si)}.

Ansexp
Q (Si) contains all the answers in Ansr

Q(Si) and everything below w.r.t. the �
lattice. Since Ansr

Q(Si) is finite, Ansexp
Q (Si) is also finite, because we consider finite

lattices.

Example 5.2.1 (ex. 3.1.2 cont.) Assume that S ′ and S ′′ are stables models of the

program corresponding to D′ and D′′. For the query Q : π
addr

(σname=“J. Doe”(R)),

it holds: AnsrQ(S
′) = {25 Main st. Ottawa Canada} and AnsrQ(S

′′) = {25 Main st.

Vancouver Canada}.

According to the above lattice, the downward expansions are as follows: Ansexp
Q

(S ′) = {25 Main st. Ottawa Canada,Main st. Ottawa, 25 Main st.,Main st., Canada

} and Ansexp
Q (S ′′) = {25 Main st. Vancouver Canada, 25 Main st.,Main st.,Canada}.

The set-theoretically intersection of extensions of predicates Ansexp
Q (S ′), Ansexp

Q (S ′′)

is Ansexp
Q (S ′) ∩ Ansexp

Q (S ′′) = {25 Main st.,Main st.,Canada}. As can be seen, the

intersection has a dominated element, i.e. Main st. ≺ 25 Main st.. If the domi-

nated element is deleted from Ansexp
Q (S ′) ∩ Ansexp

Q (S ′′), we get Redv({Ansexp
Q (S ′) ∩

Ansexp
Q (S ′)}) = {25 Main st.,Canada}. In this way, we reobtain CleanD0

Σ (Q) =

{25 Main st.,Canada}. 2

Example 5.2.1 is a motivation for the following proposition.

Proposition 5.2.1 Let D0 be an instance, Σ be a set of MDs, and Q be a query.

Let SM (Π(D0,Σ,Q)) = {S1, . . . , Sm}, then CleanD0
Σ (Q) = Redv(

⋂
{Ansexp

Q (Si) |
i = 1, . . . ,m}).

Proof: For proving CleanD0
Σ (Q) = Redv(

⋂
{Ansexp

Q (Si) | i = 1, . . . ,m}), we need to
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show that (a) CleanD0
Σ (Q) ⊆ Redv(

⋂
{Ansexp

Q (Si) | i = 1, . . . ,m}), and (b) Redv(
⋂

{Ansexp
Q (Si) | i = 1, . . . ,m}) ⊆ CleanD0

Σ (Q).

First, we prove (a). Let ā ∈ CleanD0
Σ (Q). By (5.3), for all ā′ ∈ Ansr

Q(Si), with

1 < i < m, ā � ā′ holds, and ā is non-dominated. By definition of Ansexp
Q (Si), it

thus follows that, for each Si, ā ∈ Ansexp
Q (Si) . Therefore, ā ∈

⋂
{Ansexp

Q (Si) | i =

1, . . . ,m}. Since ā is non-dominated, ā ∈ Redv(
⋂
{Ansexp

Q (Si) | i = 1, . . . ,m}). It

thus follows that CleanD0
Σ (Q) ⊆ Redv(

⋂
{Ansexp

Q (Si) | i = 1, . . . ,m}).
For proving (b), let ā ∈ Redv(

⋂
{Ansexp

Q (Si) | i = 1, . . . ,m}). It thus follows that

ā is non-dominated, and for each Si, ā ∈ Ansexp
Q (Si). By definition of Ansexp

Q (Si), for

each Si, ā ∈ Ansr
Q(Si) holds. By (5.3), it thus follows that ā ∈ CleanD0

Σ (Q). Hence,

Redv(
⋂
{Ansexp

Q (Si) | i = 1, . . . ,m}) ⊆ CleanD0
Σ (Q).

We obtain CleanD0
Σ (Q) ⊆ Redv(

⋂
{Ansexp

Q (Si) | i = 1, . . . ,m}) and Redv(
⋂

{Ansexp
Q (Si) | i = 1, . . . ,m}) ⊆ CleanD0

Σ (Q) . Thus, the two sets should be identical.

2

As a consequence of this result, the clean answers can be obtained by taking

the (set-theoretic) intersection of all sets Ansexp
Q (Si) (followed by a final reduction)

instead of taking the glb over all sets Ansr
Q(Si). This can be achieved directly through

Π(D0,Σ,Q) by adding to it the following rule:

Ansexp
Q (ȳ)← AnsrQ(x̄), ȳ � x̄, DomL(ȳ). (5.4)

Here, DomL(·) is stands for the cartesian product of the finite domains DomA for the

local lattices LA.

The new rule will expand each stable model by adding finitely many Ansexp
Q (b̄)

atoms for every AnsrQ(ā) atom, where b̄ � ā. The values for ȳ are taken from DomL.

Then each stable model will contain the atoms in the glb of all stable models, restricted

to the Ansexp
Q predicate, and therefore the intersection of all stable models followed

by a final reduction will contain the glb. The final reduction is not captured by

the program, and happens outside. This observation will help understand the next

section. In this way we can obtain the clean answers to query Q.
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Example 5.2.2 (ex. 5.1.1 cont.) Consider the query Q : πB(R). For the clean in-

stances D1, D
′
2 in Example 5.1.1 it holds: Q(D1) = {b12, b3} and Q(D′2) = {b123, b23}.

We obtain CleanDΣ (Q) = glb
v
{Q(D1),Q(D′2)} = glb

v
{{b12, b3}, {b123, b23}} = {b12, b3}.

We will use the downward expansion approach. The rule defining Q is AnsQ(y)←
Rc(x, y). From SM (Π(D0,Σ,Q)) = {M ′

1,M
′
2}, where stable models M ′

1 and M ′
2

contain atoms in M1 and M2, respectively, plus atoms involved in query answering,

we have:

AnsQ(M
′
1) = {b12, b3}, AnsrQ(M ′

1) = {b12, b3}, Ansexp
Q (M ′

1) = {b1, b2, b3, b12},

AnsQ(M
′
2) = {b123, b23} AnsrQ(M ′

2) = {b123}, Ansexp
Q (M ′

2) = {b1, b2, b3, b12, b23, b123}.

Consequently, Redv(Ansexp
Q (M ′

1)
⋂

Ansexp
Q (M ′

2)) = {b12, b3}. 2

5.2.1 Manifold programs and query answering

We have just described a way to compute, by means of the downward expanded pro-

grams, the clean answers to a query Q. In this way we avoid a separate and off-line

gathering of query answers from each of the stable models for later combination via

the glb. The manifold programs (MF programs) [Faber and Woltran, 2011] offer an-

other alternative for using a single ASP for the whole task. Here we will just sketch

the way they can be used in this direction, actually in combination with an extension

of ASP with sets and unions thereof [Calimeri et al., 2009]. More details on this

extension will be given in Section 5.4.1.

Given a program Π, an MF program for Π, say MF (Π), extends Π by collecting

brave or skeptical atomic consequences from what would have been Π -now a part of

MF (Π)- and using them for further processing by MF (Π).

In our case, properly marked brave consequences from Π(D0, Σ, Q) of the form

AnsQ(ā)S, with S ∈ SM (Π(D0, Σ, Q)), can be further used by MF (Π(D0,Σ,Q)) to

compute the glbs. For this, MF (Π(D0,Σ,Q)) includes rules of the form (we give a

high-level description of them):
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glb�(x̄, U) ← U = #Union({ȳ}, U ′), glb�(ū, U
′), x̄ = glbt�(ū, ȳ).

glb�(x̄, {x̄}) ← Dom(x̄).

PAnsQ(x̄) ← glb�(x̄, {x̄1, . . . , x̄m}),AnsQ(x̄1)S1, . . . ,AnsQ(x̄m)Sm.

DominatedpQ(x̄) ← PAnsQ(ȳ), x̄ � ȳ, x̄ 6= ȳ.

CAns(x̄) ← PAnsQ(x̄), not DominatedpQ(x̄).

Here, glb�(x̄, U) is a binary predicate that says that tuple x̄ is the glb� of set U ; and is

defined by recursion and associativity: glb�({ȳ} ∪ U ′) = glbt�(ȳ, glb�(U
′)). glbt�(ū, ȳ) is

a function that produces the glb� of two tuples. The first two rules use the extension

of ASP with sets and operations with them (as in Section 5.4.1). They recursively

compute the glb of a set. The domain predicate, Dom, is associated to the cartesian

product of the finite attribute domains involved.

The third rule computes the pre-answers by combination into the glb x̄ of brave an-

swers obtained from the AnsQ(x̄i)
Si . The next rule computes the dominated answers.

The last one computes clean answers by discarding pre-answers that are dominated

by other pre-answers. Notice that the “manifold part” of the program above is used

to form a set of values for a higher-level aggregation. The sets and the aggregation

do no appear in the properly manifold part.

5.3 Analysis of Cleaning Programs

In this section we investigate the properties of the cleaning programs in terms of

their syntactic structure, and by doing so, shedding some light of their expressive

power and computational complexity. At the same time, this analysis will provide

upper-bounds for natural computational problems in relation to entity resolution via

MDs.

Proposition 5.3.1 The cleaning programs Π(D,Σ) belong to the class Datalog∨,not ,s.

Proof: Since rules in 2. of the cleaning programs Π(D,Σ) contain disjunction

and negation, the programs belong to the class Datalog∨,not (cf. Section 2.3). It

remains to show that the programs are stratified. The cleaning programs Π(D,Σ)
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are stratified due to the following partition Π(D,Σ) = P1

⋃
P2

⋃
P3

⋃
P4 of rules for

which the conditions in [Eiter and Gottlob, 1995] hold.

• P1 has facts in 1., rules in 2., 6., 7., and the first rule in 8.,

• P2 contains the rules in 5.,

• P3 has the rules in 4., and finally

• P4 consists of the rules in 9., 3., and the remaining rules in 8.. 2

As a consequence of this result, the stable models of the programs introduced in

Section 5.1 can be obtained by means of a bottom-up computation that defines the

clean instances.

The data complexity of skeptical query evaluation for programs in Datalog∨,not ,s

is the same as for programs with unstratified negation, i.e. for the class Datalog∨,not ,

i.e. ΠP
2 -complete [Eiter and Gottlob, 1995, Dantsin et al., 2001, Gelfond and Leone,

2002].

Repair programs for CQA under ICs, also belong to the class Datalog∨,not ,s [Cani-

upan and Bertossi, 2010]; and their relatively high expressive power is really needed

to specify database repairs, because the intrinsic data complexity of CQA is provably

ΠP
2 -complete (cf. [Bertossi, 2011] for a survey of complexity results in CQA). In the

case of cleaning programs two natural questions arise. First, whether they provide an

expressive power that exceeds the one needed for clean query answering. Secondly,

whether we can obtain an informative upper bound on the complexity of clean query

answering. Observe that we have— in principle so far— ΠP
2 -complete program and a

co-NP -complete problem [Bertossi et al., 2013], so the question is whether there is a

gap.

These questions are closely related to the properties of the cleaning programs as

determined by their syntactic structure. Actually, it turns out that their syntactic

structure can be simplified. More precisely, a cleaning program can be transformed

into one that that is non-disjunctive. To undertake this task, we need some termi-

nology.
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Let Π ∈ Datalog∨,not , and gr(Π) be its ground version. The dependency graph,

DG(gr(Π)), is a directed graph whose nodes are literals of gr(Π). There is an arc

from L1 to L2 iff there is a rule in gr(Π) where L1 appears positive in the body and L2

appears in the head. Π is head-cycle free (HCF) iff DG(gr(Π)) has no cycle through

two literals that belong to the head of a same rule [Ben-Eliyahu and Dechter, 1994].

Example 5.3.1 Consider the ground program Π = {a ∨ b ← c, d ← b, a ∨ b ←
e, not f }.

Its dependency graph is shown in the fig-

ure besides. Π is HCF, because there is

no cycle involving both a and b, the atoms

that appear in the disjunctive head. 2

HCF programs in Datalog∨,not can be transformed into equivalent non-disjunctive

programs, i.e. with the same stable models [Ben-Eliyahu and Dechter, 1994,Dantsin

et al., 2001]. That is, they can be written as programs in Datalognot . This actually

holds for our cleaning programs.

Proposition 5.3.2 Every cleaning program Π(D0,Σ) is HCF, and hence can be

transformed into an equivalent non-disjunctive program in Datalognot .

Proof: Let us suppose that Π(D,Σ) is not HCF. Then the program Π(D,Σ) has a di-

rected cycle in its dependency graph that goes through Matchφj(T1, X̄1, Y1, T2, X̄2, Y2)

and NotMatchφj(T1, X̄1, Y1, T2, X̄2, Y2) (the atoms that appear in the only disjunctive

head), but NotMatchφj(T1, X̄1, Y1, T2, X̄2, Y2) cannot be involved in a directed cycle

since there is no rule in program Π(D,Σ) in which NotMatchφj(T1, X̄1, Y1, T2, X̄2, Y2)

appears in the body of a rule having heads, a contradiction. 2

The transformation is standard. Each disjunctive rule generates as many non-

disjunctive rules as atoms in the head, by keeping one at a time in the head, and
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moving the others in negated form to the body. In our case, the disjunctive rule

Matchφj(T1, X̄1, Y1, T2, X̄2, Y2) ∨ NotMatchφj(T1, X̄1, Y1, T2, X̄2, Y2) ←

R′1(T1, X̄1, Y1), R′2(T2, X̄2, Y2), X̄1 ≈ X̄2, Y1 6= Y2.

gives rise to two rules:

Matchφj(T1, X̄1, Y1, T2, X̄2, Y2) ← R′1(T1, X̄1, Y1), R′2(T2, X̄2, Y2),

not NotMatchφj(T1, X̄1, Y1, T2, X̄2, Y2), X̄1 ≈ X̄2, Y1 6= Y2.

and

NotMatchφj(T1, X̄1, Y1, T2, X̄2, Y2) ← R′1(T1, X̄1, Y1), R′2(T2, X̄2, Y2),

not Matchφj(T1, X̄1, Y1, T2, X̄2, Y2), X̄1 ≈ X̄2, Y1 6= Y2.

In general, for a HCF program, checking if a set of atoms is a stable model can

be done in polynomial time [Gelfond and Leone, 2002]. However, checking if a set of

atoms is contained in a stable model becomes an NP -complete problem [Ben-Eliyahu

and Dechter, 1994]. In our case, by Theorem 5.1.1, checking if an instance D′ is a clean

instance (for D0 and Σ), amounts to checking if D′ is contained in stable model of

Π(D0,Σ) (remember that the stable models of cleaning programs also contain atoms

other than R-atoms, e.g. those representing the “cleaning-history” (chase steps).

That cleaning-history seems to be necessary to check if D′ is a clean instance (just

checking stability, i.e. if (D′, D′) |= Σ, is the easy part). In consequence, directly from

Proposition 5.3.2 we can only obtain that checking if an instance is a clean instance

belongs to NP .

The data complexity of skeptical query answering from programs in Datalog not

is co-NP -complete [Dantsin et al., 2001]. In consequence, the decision problem of

skeptical query answering from Π(D0,Σ) belongs to the class co-NP . From this result

and Theorem 5.1.1, we obtain

Proposition 5.3.3 For a set Σ of MDs, and a FO query Q(x̄), deciding if a tuple c̄

is a clean answer to Q from an instance D0 belongs to the class co-NP (in the size of
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D0).2 2

This result should be contrasted with the co-NP -complete data complexity of

deciding clean query answers presented in [Bertossi et al., 2013, Theorem 3]. We have

reobtained the membership of co-NP via cleaning programs, but, more importantly,

we can conclude that our cleaning programs are not overkilling the problem of clean

query answering, and that we need all the expressive power that they provide.

By the proof of co-NP -hardness for clean query answering in [Bertossi et al.,

2013], we establish that cautious query answering, i.e. truth in all clean instances

(as opposed to taking the glb), is also co-NP -hard. This result, combined with the

reduction provided by Theorem 5.1.1, tells us that, among the HCF programs in

Datalog∨,not , the cleaning programs are among the hardest.

Proposition 5.3.4 Skeptical query answering from cleaning programs is co-NP -com-

plete. 2

It is possible to obtain a non-disjunctive, stratified cleaning program when match-

ing functions are similarity preserving or MDs are interaction-free. In these cases, the

cleaning program has a single stable model, computable in polynomial time, which

confirms via cleaning programs a similar result in [Bertossi et al., 2013] saying that

there is a unique (D0,Σ)-clean instance D0 if matching functions are similarity pre-

serving or MDs in Σ are interaction-free. This is done in Section 6.3 where the general

programs Π(D0,Σ) are specialized to the well-behaved classes of similarity preserving

MFs and interaction-free MDs, obtaining residual programs in Datalog not ,s.

5.4 Declarative Swoosh ER: The Union Case

5.4.1 Special cleaning programs for UC-Swoosh

In this section we use ASPs for the declarative specification of UC Swoosh (cf. Section

3.2). In this union case, an attribute, say A, can take as a value a whole, finite

2To be precise, we have to use program Π(D0,Σ,Q) expanded with rule (5.4), which actually
adds to D0 the extension of DomL. However, the latter could be left as a fixed parameter.
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set of values from an underlying, lower-level attribute, A. For example, if A =

{a1, a2, a3, . . . , }, A can take as value {a1, a3}.
In this case the ASPs have to be able to represent sets and sets operations, such

as set union. For this purpose we use an extension of disjunctive logic programs with

stable model semantics that supports function terms and set terms, with built-in

functions for their manipulation [Calimeri et al., 2008,Calimeri et al., 2009].

In this extension of ASP, basic terms are constants and variables, and complex

terms, such as functional, list and set terms, are inductively defined: for terms

t1, ..., tn: 1. A functional term is of the form f(t1, ..., tn), where f is a function

symbol. 2. A list term has any of the forms: (a) [t1, ..., tn]; (b) [h|t], where h is

a term, and t is a list term. 3. A set term is of the form {t1, ..., tn}, where the ti

are terms that do not contain any variables. Some functional terms, called built-in

functions, have predefined meaning. They are prefixed with #, and we use them

below, for sets, lists, membership, and union [Calimeri et al., 2009].

Given a database instanceD of schemaR(Ai, . . . , An), the swoosh-program ΠUCS(D)

that follows captures UC Swoosh. It contains the rules 1.-4. below:

1. For every atom R(s̄) ∈ D, ΠUCS(D) contains a fact of the form R(s̄). For every

attribute A of R, that takes finite sets of values from an underlying domain DomA,

facts of the form MatchA(a1, a2), with a1, a2 ∈ DomA (cf. Example 3.1.2).

2. Two tuples in D match whenever for some attributes Ai, Aj, Ak, . . . of R, 1 ≤
i, j, k ≤ n, there exists a pair of values, one in each of the set values for Ai, Aj, Ak, . . .

that match. Hence, the rule:

R(#Union(S̄1, S̄2)) ← R(S̄1), R(S̄2),#Member(At i, S
1
i ),#Member(At j, S

1
j ),

#Member(Atk, S
1
k),#Member(At ′i, S

2
i ),#Member(At ′j, S

2
j ),#Member(At ′k, S

2
k)

MatchAi
(At i,At ′i),MatchAj

(At j,At ′j),MatchAk
(Atk,At ′k), S̄

1 6= S̄2.

With them we obtain the merge closure of the original instance, which is a set of

records obtained by adding merges of matching records until a fixpoint is reached

(cf. Section 3.1). Here, in records R(S̄1), R(S̄2), the S̄1 and S̄2 are lists of variables

corresponding to all attributes in a record. In other words, S̄1 = 〈S1
1 , . . . , S

1
n〉, a list
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of variables, where each S1
i , 1 ≤ i ≤ n, is related to the attribute Ai; similarly for S̄2.

R(#Union(S̄1, S̄2)) is an abbreviation for the componentwise union of two records

R(S̄1), R(S̄2), namely: R(#Union(S1
1 , S

2
1), . . . , #Union(S1

n, S
2
n)). The S1

i , S
1
j , S

1
k ,

S2
i , S

2
j , S

2
k , At i, At ′i, At j, At ′j, Atk, At ′k are variables, whereas in Ai, Aj, Ak, the

attributes are fixed. Notice that these rules both specify the match function based

on the elements of the set values for attributes, and also the result of the merge.

Recall that the match function Match and the merge function µ in Swoosh are

defined at the record level (cf. Section 3.1). This means that we apply union on

each pair of attribute values of two records based on similarities of values of some

attributes.

3. A rule defining tuple domination, basically via subset relation:

Dominated(S̄1) ← R(S̄1), R(S̄2), #Union(S̄1, S̄2) = S̄2, S̄1 6= S̄2.

By the ICAR properties of match and merge functions for the UC Swoosh, dominated

tuples in the merge closure of D can be eliminated via merge domination, which is

specified by the above rule.

4. A predicate that collects the result of the ER process:

Er(S̄) ← R(S̄), not Dominated(S̄).

The facts in 1. correspond to the elements of the initial instance, and the pairs of

low-level attributes values that match. The merge closure of the instance is obtained

with rules in 2.. The natural domination partial order on the tuples in the merge

closure of D is captured by rule 3.. Rule 4. collects those tuples of the merge closure

D̄ that are not dominated.

Example 5.4.1 (ex. 3.1.2 cont.) The specific rules are:

1.

R({a1} , {b1}). R({a2} , {b2}). R({a3} , {b3}). MatchA(a1, a2). MatchA(a2, a3).

2. As mentioned in Example 3.1.2, two tuples R(S1
1 , S

1
2), R(S2

1 , S
2
2) in D match
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when the values for attribute A match, which happens when there is a pair of

values in the A-sets that match: For values S1
1 , S

2
1 for A, MatchA(S1

1 , S
2
1) holds

when there are v1 ∈ S1
1 , v2 ∈ S2

1 with MatchA(v1, v2) = true. Accordingly, we

obtain the merge closure of instance D by the following rule:

R(#Union(S1
1 , S

2
1),#Union(S1

2 , S
2
2)) ← R(S1

1 , S
1
2), R(S2

1 , S
2
2),

#Member(At1, S
1
1),#Member(At ′1, S

2
1),

MatchA(At1,At ′1), (S1
1 , S

1
2) 6= (S2

1 , S
2
2).

In this case we are matching via attribute A. Notice that we are still computing

the union of values of attribute B to merge two tuples. This is because in Swoosh

the match and the merge function are defined at the record level. If we also

used B, we would have a similar, additional rule for it. Assume that two tuples

match in D when the values for attribute A and B match. In this case, we need

the following rule instead of the above rule:

R(#Union(S1
1 , S

2
1),#Union(S1

2 , S
2
2)) ← R(S1

1 , S
1
2), R(S2

1 , S
2
2),

#Member(At1, S
1
1),#Member(At ′1, S

2
1),

#Member(At2, S
1
2),#Member(At ′2, S

2
2),

MatchA(At1, At ′1),MatchB(At2,At ′2), (S1
1 , S

1
2) 6= (S2

1 , S
2
2).

3. For two non-identical tuples R(S1
1 , S

1
2), R(S2

1 , S
2
2) in the merge closure D̄, if the

union of these tuples is R(S2
1 , S

2
2), then R(S1

1 , S
1
2) is dominated by R(S2

1 , S
2
2).

This is captured by the following rule:

Dominated(S1
1 , S

1
2) ← R(S1

1 , S
1
2), R(S2

1 , S
2
2),

(#Union(S1
1 , S

2
1),#Union(S1

2 , S
2
2)) = (S2

1 , S
2
2), (S1

1 , S
1
2) 6= (S2

1 , S
2
2).

4. Tuple R(S1
1 , S

1
2) in the merge closure D̄ that is not dominated by another tuple
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in D̄ is a tuple in Swoosh entity resolution instance ERS(D).

Er(S1
1 , S

1
2) ← R(S1

1 , S
1
2), not Dominated(S1

1 , S
1
2).

This program, containing set terms and operations, can be run with DLV-Complex

[Calimeri et al., 2009].3 2

It is easy to verify that the program ΠUCS(D) is stratified. Then, it has a single

minimal model that can be computed bottom-up in polynomial time in the size of

D. We establish in the following that this model, restricted to predicate Er , coincides

with the ER instance procedurally computed in [Benjelloun et al., 2009], where it was

shown that the ICAR properties make the ER computation tractable. In consequence,

our declarative approach to UC Swoosh is in line with the results in [Benjelloun et

al., 2009].

Theorem 5.4.1 The unique minimal model MUCS(D) of the program ΠUCS(D) co-

incides with the unique Swoosh entity resolution instance ERS(D). More precisely,

{Er(s̄) | Er(s̄) ∈ MUCS(D)} = ERS(D). 2

For the proof of Theorem 5.4.1, we need the following definition from [Benjelloun

et al., 2009].

Definition 5.4.1 [Benjelloun et al., 2009] (a) Given an instance D, a derivation

step D → D′ is a transformation of instance D into instance D′ obtained by applying

one of the following two operations:

• Merge step: Given two tuples r1 and r2 of D s.t. Match(r1, r2) = true, and

µ(r1, r2) = r3 6∈ D,D′ = D ∪ {r3},

• Purge step: Given two tuples r1 and r2 of D such that r2 dominates r1, D′ =

D − {r1}.
3http://www.mat.unical.it/dlv-complex. Cf. Appendix C for the DLV code.
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(b) A derivation sequence D
?−→ Dn is any non-empty sequence of derivation steps

D → D1 → . . . → Dn. A derivation sequence D
?−→ Dn is maximal if there exists no

instance Dn+1 s.t. Dn → Dn+1 is a valid derivation step. 2

In [Benjelloun et al., 2009] it is also proved that, given match and merge functions

that have the ICAR properties, for any instance D0, ERS(D0) is finite, and any

maximal derivation sequence starting from D0 computes ERS(D0). This is used in

the proof of Theorem 5.4.1.

Proof of Theorem 5.4.1: The proof of the theorem consists of two parts. In the

first part, we show that for the unique ERS(D0) instance Dk, we can construct a set

of atoms SDk
that is a minimal model for the logic program ΠUCS(D0).

Let Dk be an ERS(D0) instance. That is, there is a maximal derivation sequence

D1 → D2, . . . , Dk−2 → Dk−1 such that, for every j ∈ [1, k], Dj−1 → Dj, is either a

valid merge step or purge step. We construct SDk
, a set of atoms over relations of

the logic program ΠUCS(D0), as follows.

• For every instance Dj, j ∈ [0, k] and every record R(s̄) ∈ Dj, SDk
contains

an atom R(s̄). Moreover, for every attribute A of R, that takes finite sets

of values from an underlying domain DomA, SDk
contains facts of the form

MatchA(a1, a2), with a1, a2 ∈ DomA if a1, a2 is a pair of values that match.

• For every record R(s̄) ∈ Dk, SDk
contains an atom Er(s̄).

• For every instance Dj, j ∈ [0, k − 1] and every record R(s̄) ∈ Dj such that

R(s̄) 6∈ Dk, SDk
contains an atom Dominated(s̄).

Next, we show that SDk
is a minimal model for the program ΠUCS(D0). The

minimal model of a stratified datalog program can be obtained as the fix-point of the

bottom-up evaluation of the program (cf. Section 2.4). For the bottom-up evaluation

of ΠUCS(D0), we need to construct the predicate dependency graph for ΠUCS(D0). We
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build the following dependency graph for ΠUCS(D0).

In general, for fix-points evaluation of a positive datalog program Π, we first put

all the extensional database (EDB) into an initial set M . Then, starting from the

facts, we traverse the dependency graph upwards, propagating the facts through the

rules, from right to left, iteratively. The fix-point is reached when no new atoms are

obtained in M . Then, M is a minimal model of Π.

Next, we show that we can reconstruct SDk
as a minimal model M , following the

fix-point construction. We take advantage of our construction of SDk
starting from

the maximal derivation sequence D0 → D1, . . . , Dk−1 → Dk, with entity resolution

instance Dk.

• First we put all the atoms in 1. in a single set M .

• There are edges from predicates R,MatchA to predicate R in the above depen-

dency graph. Therefore, M should satisfy rules of the form 2.. For satisfying

these rules, for every records R(s̄1), R(s̄2), such that there is a derivation step

D → D′ with Match(R(s̄1), R(s̄2)) = true, and µ(R(s̄1), R(s̄2)) = R(s̄3) 6∈
D,D′ = D ∪ {R(s̄3)}, we put R(s̄3) in M .

• We traverse the dependency graph upwards. There is an edge from predicate

R to predicate Dominated in the above graph. Accordingly, M should satisfy

rules of the form 3. in ΠUCS(D0). For satisfying these rules, for every records

R(s̄1), R(s̄2), such that there is a derivation step D → D′ with R(s̄2) dominates

R(s̄1), D′ = D − {R(s̄1)}, M contains an atom Dominated(s̄1).

• Finally, there are edges from predicates R, Dominated to predicate Er in the

above graph. Accordingly, M should satisfy rules of the form 4.. For satisfying
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such rules, for every record R(s̄) ∈ Dk, with entity resolution instance Dk, M

contains an atom Er(s̄).

It is clear from this construction that M = SDk
. Therefore, SDk

is a minimal

model for ΠUCS(D0).

In the second part of the proof, we show that, for a unique minimal model S of

the program ΠUCS(D0), we can reconstruct the ERS(D0) instance DS.

Let S be a minimal model for the logic program ΠUCS(D0). To show that DS

is ERS(D0) instance, we need to construct a maximal derivation sequence D0
?−→

DS = ERS(D0). For this, we consider two sets M = {R(s̄) | R(s̄) ∈ S, R(s̄) 6∈ D0},
P = {Dominated(s̄) | Dominated(s̄) ∈ S}. We construct a derivation sequence using

M,P as follows: starting from R(s̄) such that R(s̄) ∈ D0, we do all necessary merge

steps in any order using atoms fromM to construct merge closure D̄0, thus we have the

sequence D0 → D1, . . . , Dn−1 → Dn, where n = |M |. Next, we perform all purge steps

in any order using atoms from P , we then have D̄n → Dn+1, . . . , Dm−1 → Dn+m = DS,

where m = |P |. We thus have the derivation sequence D0
?−→ DS.

It remains to show that D0
?−→ DS is a maximal derivation sequence. S is a minimal

model. Hence, R(s̄) such that R(s̄) 6∈ D0 exists only if the similarity between two

records holds, and the merge of two records does not exist. Similarly, Dominated(s̄1)

exists only if the union of two records R(s̄1), R(s̄2) is the record R(s̄2). Thus, no

additional purge steps are possible, and no additional merge steps are possible for

extending the derivation sequence D0
?−→ DS. Therefore, it is maximal. Hence,

DS = ERS(D0) since every maximal derivation sequence starting from the initial

instance D0 results in a unique instance ERS(D0). 2

5.4.2 UC-Swoosh with negative rules

In [Whang et al., 2009a], the original Swoosh approach to ER is extended with nega-

tive rules, to impose constraints on the merge results; and interaction with an external

expert.

In general, there can be more than one valid ER instance. In [Whang et al., 2009a],

it is discussed how a domain expert can guide the ER process, to capture a desirable
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and valid set of tuples in the ER instance. In other words, with the help of a domain

expert, the ER process is started identifying tuples that wanted to be in ER. Actually,

the expert looks at the tuples, and selects one that is consistent, not dominated, and

more desirable to have in the final instance, e.g. to avoid inconsistencies.

It is possible to extend our ASP-based account of UC Swoosh by considering neg-

ative rules and the use of external experts. The latter is achieved via HEX programs

that extend ASPs with calls to external sources [Eiter et al., 2005].

More specifically, HEX programs are non-monotonic logic programs admitting

external atoms [Eiter et al., 2005]. By means of HEX programs, the new logic program

for obtaining ER instance in the presence of negative rules delegates the task of

identifying non-dominated and consistent tuples that is more desirable to be in the

ER instance to an external computational source (e.g. an external deduction system).

The new logic program significantly differs from that for the union case of Swoosh

without any negative rules. This is because an expert chooses non-dominated and

consistent tuples from merge closure to be located in the ER instance as more desirable

ones. Then those tuples from merge closure that are inconsistent w.r.t. tuples in ER

would be unavailable to be chosen as tuples in ER. In contrast, in Swoosh without

any negative rules, only non-dominated tuples are chosen from the merge closure to

be in ER instance, i.e., without any needs to look at which tuples are already in the

ER instance, and check consistency.

Example 5.4.2 (ex. 3.1.3 cont.) The following HEX program computes the ER

instance in the presence of the given two negative rules: One prohibits for a person

in the ER instance to be both M and F , the other one stats an inconsistency in an

ER instance if there exist two persons with an identical phone number (functional

dependency on the attribute phone). These negative rules are outside the program,

(for simplicity facts are not shown in the following):

1. A rule to obtain the merge closure of D, which is a set of records obtained by
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adding merges of matching records until a fixpoint is reached (cf. Section 3.1):

R′(#Union(S1
1 , S

2
1),#Union(S1

2 , S
2
2),#Union(S1

3 , S
2
3))← R′(S1

1 , S
1
2 , S

1
3),

R′(S2
1 , S

2
2 , S

2
3),#Member(A1, S

1
1),#Member(A2, S

2
1), MatchA(A1, A2),

(S1
1 , S

1
2 , S

1
3) 6= (S2

1 , S
2
2 , S

2
3).

2. This rule checks if a tuple is inconsistent w.r.t. the negative rule prohibiting for

a person to be both M and F :

Inconsistent(S̄) ← R′(S̄),#Member(A1, S3),#Member(A2, S3)

A1 6= A2.

We also have an inconsistency referring to the functional dependency on the

attribute phone if there are two tuples with an identical phone number. This

rule specifies those tuples that are inconsistent with tuples in ER and makes

them unavailable to be chosen as tuples in ER.

Inconsistent(S̄2) ← Er(S̄1), R′(S̄2), S1
2 = S2

2 , S̄
1 6= S̄2.

3. We need a rule to determine tuples of the merge closure that are not dominated,

inconsistent and already in ER instance, in order to be selected by an expert

to place them in ER instances, as more desirable ones:

Select(S̄) ← R′(S̄), not Inconsistent(S̄), not Dominated(S̄),

not Er(S̄).

4. The following rule computes the predicate Er taking values from the predi-

cate #External, which chooses via #External[Select] more desirable tuples from
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tuples in Select to be located in Er, delegating this task to an external compu-

tational source that behaves as a domain expert.

Er(S̄) ← #External[Select](S̄).

5. We need a rule to find dominated tuples.

Dominated(S1
1 , S

1
2 , S

1
3) ← R′(S1

1 , S
1
2 , S

1
3), R′(S2

1 , S
2
2 , S

2
3),

(#Union(S1
1 , S

2
1),#Union(S1

2 , S
2
2),#Union(S1

3 , S
2
3)) = (S2

1 , S
2
2 , S

2
3),

(S1
1 , S

1
2 , S

1
3) 6= (S2

1 , S
2
2 , S

2
3).

2

The above logic program is non-disjunctive.

In general, the logic programs developed for UC-Swoosh with negative rules are

non-disjunctive.

5.5 Conclusions

In this chapter, we have introduced and developed a declarative approach to ER. It

is based on MDs, that can be used to specify details related to ER objectives, such

as matchings of attribute values when other values are similar. Our work provides a

declarative, model-theoretic specification of the process of enforcement of those MDs.

The intended clean instances obtained from a dirty instance become the stable models

of a specification given by a cleaning ASP.

We have provided a declarative specification for a usually procedural process. The

prcoedure can be executed for ER and clean query answering using a standard ASP

solver. Our focus has been on fundamental questions, e.g. required expressive power,

complexity issues, and capturing of clean instances. We have made important steps

towards those goals, and created the basis for further improvements, e.g. for clean

query answering.
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Our ASPs can be automatically generated from MDs, and run on ASP solvers.

Indeed, we have used DLV and DLV-Complex. The DLV code for Example 5.1.1 and

DLV-Complex code for Example 5.4.1 can be found in Appendix A. The programs

run and terminate as expected.

We have also proposed a declarative specification of UC Swoosh, and UC Swoosh

with negative rules, as important special and practical cases of ER.

As with repair programs for CQA, there is room for many optimizations [Caniupan

and Bertossi, 2010, Eiter et al., 2008] (cf. Section 9.2). We will point to important

extensions and research directions in Section 9.2, most importantly to applications

in virtual data integration systems, where the system can be specified declaratively

using ASPs. Indeed, explicitly computing clean instances is not practical, rather

computing clean query answers on-the-fly from the ASP is the only realistic option.

Some of the results in this chapter have been published in [Bahmani et al., 2012].



Chapter 6

Relational MDs with Unique Clean Instance

In this chapter, we formally extend the class of matching dependencies introduced in

Section 2.2, which we call classical MDs from now on, to the larger class of relational

MDs. This extension is motivated by the application of MDs in ERBlox (cf. Chapter

7), but applications can be easily foreseen in other areas where declarative relational

knowledge may be useful in combination with matching and merging.

We also identify classes of relational MDs for which a single clean instance ex-

ists, no matter how the MDs are enforced, that can be computed through the chase

procedure in polynomial time in the size of the database. We say that the MDs (in

some cases in combination with an initial instance) have the unique clean instance

property (UCI property). In this direction, we introduce a class of combinations of

relational MDs and initial instances, called blocking class. This class includes the sets

of MDs used for the blocking component of ERBlox (cf. Chapter 7). There are two

other classes, namely MDs with similarity-preserving MFs and interaction-free MDs

(cf. Section 2.2), that have similar good properties [Bertossi et al., 2013]. However,

these two classes do not depend on the initial data.

In this chapter, we also specialize the cleaning programs Π(D,Σ) developed in

Section 5.1, to obtain specific programs for enforcing sets of MDs in the three classes

with the UCI property. We establish that the resulting residual programs belong to

a computationally well-behaved extension of plain Datalog. In particular, the single

clean instance can be computed with the program in polynomial time in the size of

the initial instance.

6.1 Relational MDs

As defined in Section 2.2, classical MDs are formulas of the form:

79
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ϕ :
∧
j

R1[Xj
1 ] ≈j R2[Xj

2 ] −→
∧
k

R1[Y k
1 ]

.
= R2[Y k

2 ], (6.1)

where attributes (treated as variables) Xj
1 and Xj

2 , and Y k
1 , Y

k
2 , pairwise share the

same data domain. We can consider only MDs with a single identity atom (with
.
=)

in the RHSs. Accordingly, an explicit formulation of the MD in (6.1) is:

ϕ : ∀t1t2 ∀x̄1x̄2(R1(t1, x̄1) ∧R2(t2, x̄2) ∧
∧
j

xj1 ≈j x
j
2 −→ y1

.
= y2), (6.2)

with xj1, y1 ∈ x̄1, x
j
2, y2 ∈ x̄2. The ti are used as variables for tuple IDs. As in previous

chapters, we usually leave the universal quantifiers implicit. In (6.2), ≈j is a binary

similarity relation on domain Domj.

In (6.2), LHS (ϕ) contains, apart from similarity atoms, atoms R1(t1, x̄1) and

R2(t2, x̄2), which contain all the variables in the MD, including those in the RHS (ϕ).

Identity atoms in the RHS of ϕ involve one variable from predicate R1 and one from

predicate R2.

Example 6.1.1 For predicates Emp(Tid,EID ,Dpt ,City), Loc(Tid,Dpt ,City), the

following MD is classical:

Emp[Dpt ] ≈ Loc[Dpt ] −→ Emp[City ]
.
= Loc[City ]. (6.3)

The explicit formulation is:

Emp(t1, eid , dpt1, city1)∧Loc(t2, dpt2, city2)∧ dpt1 ≈ dpt2 −→ city1
.
= city2, (6.4)

which states that if for an Emp-tuple t1 and an Loc-tuple t2 in an instance D, the

attribute value in tD1 [Dpt ] is similar to attribute value in tD2 [Dpt ], then the values

tD1 [City ] and tD2 [City ] have to be made identical. The similarity and identity atoms

in (6.4) involve one variable from predicate Emp and one from predicate Loc. 2

In MDs, tuples for different relations may be related via attributes in common.

The way attribute values in tuples in certain relations are merged, as a result of en-

forcing an MD, may influence the way attribute values for tuples in other relations are
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merged. Furthermore, in an extended form of MDs we could consider additional rela-

tional atoms in the LHS, as conditions for merging. For capturing all this, we extend

the class of classical MDs to the class of relational MDs, where semantic information

is used to express relationships between different relations and their corresponding

similarity conditions.

Definition 6.1.1 Given a relational schema R, a relational MD is a sentence of the

form:

ϕ : ∀t1t2t̄3 ∀y1y2x̄ (R1(t1, y1, x̄1) ∧ R2(t2, y2, x̄2) ∧ ψ(t̄3, z̄) −→ y1
.
= y2), (6.5)

where the following conditions hold:

• R1, R2 ∈ R, the x̄i, etc. are lists of variables, and the yi are single and distinct

variables, the ti are tid variables, and the t̄i are lists of tid variables, all of them

distinct.

• Variables y1, y2 appear each only in one of the different relational atoms (with

predicates in R) R1(t1, y1, x̄1), R2(t2, y2, x̄2) on the LHS, which are called the

leading atoms. Variables y1, y2 (and its attributes) are called the leading vari-

ables (attributes).

• x̄ = x̄1 ∪ x̄2 ∪ z̄, ({t1, t2} ∪ t̄3) ∩ x̄ = ∅ and {y1, y2}, x̄1, x̄2, z̄ are not necessarily

mutually disjoint.

• Formula ψ(t̄3, z̄) is a conjunction of similarity atoms and relational atoms, where

z̄ contains y1, or y2 only if they appear in a similarity atom in ψ(t̄3, z̄). 2

Notice that there are exactly two leading atoms in (6.5), because ψ(t̄3, z̄) does not

contain relational atoms with variables y1 or y2. The reason for having this restriction

is that the relational MDs extend the classical MDs with additional relational atoms

in the LHSs, as conditions for merging. In classical MDs, there are exactly two leading

atoms. Moreover, if the relational MDs were allowed to have more than two leading

atoms, then we would decide if enforcing the MDs would affect all the relations with

a leading variable.
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It is worth comparing classical MDs in (6.2) with this extended form, in which

the arguments in the relational part of the MD, namely in ψ(t̄3, z̄), may interact via

variables in common (joins) with the arguments in the leading atoms.

Example 6.1.2 With predicates Author(AID ,Name, PTitle, ABlock), Paper(PID ,

PTitle,Venue,PBlock) (with ID and block attributes), this MD, ϕ, is relational:

Author(t1, x1, y1, bl1) ∧ Paper(t3, y
′
1, z1, bl4) ∧ y1 ≈ y′1 ∧

Author(t2, x2, y2, bl2) ∧ Paper(t4, y
′
2, z2, bl4) ∧ y2 ≈ y′2 ∧

x1 ≈ x2 ∧ y1 ≈ y2 −→ bl1
.
= bl2,

with underlined leading atoms (they contain the identified variables on the RHS). It

contains similarity comparisons involving attribute values for both relations Author

and Paper. It specifies that when the Author-tuple similarities on the LHS hold, and

their papers are similar to those in corresponding Paper-tuples that are in the same

block (an implicit similarity, actually equality, captured by the join variable bl4), then

blocks bl1, bl2 have to be made identical. 2

Example 6.1.3 The following formulas

ϕ1 : R1(t1, x1, y1) ∧ R2(t2, x2, y2) ∧ R3(t3, y1, y2) ∧ x1 ≈ x2 −→ y1
.
= y2,

ϕ2 : R1(t1, x1, y1, x2, y2) ∧ x1 ≈ x2 −→ y1
.
= y2,

are not relational MDs since the leading variables y1, y2 appear in more than two

relational atoms in LHS of ϕ1, and in a single relational atom in the LHS of ϕ2. 2

The LHS of a relational MD ϕ may contain more than two relational atoms, but

only some variables from relational atoms appear in similarity atoms. We introduce

LSim(ϕ) to denote the set of such relational atoms.

Definition 6.1.2 For a relational MD ϕ, LSim(ϕ) denotes the set of relational atoms

appearing in LHS (ϕ), where some of their variables (attributes) appear in similarity

or implicit equality atoms in LHS (ϕ). 2
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LSim(ϕ) might not contain the leading atoms of ϕ. Only if the leading variables y1

or y2 appear in the similarity atoms in LHS (ϕ), LSim(ϕ) contains the leading atoms.

LSim(ϕ) might contain only one of the leading atoms.

Example 6.1.4 For schema Author(Name,Aff ,PapTitle,Bl#),Paper(PTitle,Kwd ,

Venue,Bl#), the following is a properly relational MD:

ϕ : Author(t1, x1, y1, p1, bl1) ∧ Author(t2, x2, y2, p2, bl2) ∧ x1 ≈ x2 ∧ bl1 ≈ bl2 ∧

Paper(t3, p
′
1, z1, w1, bl4) ∧ Paper(t4, p

′
2, z2, w2, bl4) ∧ p1 ≈ p′1 ∧ p2 ≈ p′2

−→ bl1
.
= bl2.

Here, the leading atoms are underlined. They contain the two variables bl1, bl2 that

appear in the identity atom on the RHS. Notice that there is an implicit similarity

atom (an equality) represented by the use of the shared (join) variable bl4, and the

two leading variables bl1, bl2 appear in a similarity atom in the LHS (ϕ).

Due to occurrence of x1 ≈ x2, bl1 ≈ bl2, p1 ≈ p′1, p2 ≈ p′2, and the implicit similar-

ity atom via variable bl4, LSim(ϕ) = {Author(t1, x1, y1, p1, bl1), Author(t2, x2, y2, p2,

bl2), Paper(t3, p
′
1, z1, w1, bl4), Paper(t4, p

′
2, z2, w2, bl4)}. In this case, LSim(ϕ) con-

tains the leading atoms, in addition to other relational atoms. 2

The chase-based semantics developed for classical MDs can be applied to relational

MDs without any relevant change: the new relational conditions in the LHSs of them

have to be made true to enforce the MDs. Notice that a relational MD might be

enforced on a set of tuples of an instance, as opposed to a classical MD which is only

applied on two tuples. Thus, for a set of relational MDs Σ, (D0,Σ)-clean instance is

defined as follows:

Definition 6.1.3 For an instance D0 and a set of relational MDs Σ, an instance

Dk is (D0,Σ)-clean if Dk is stable, and there exists a finite sequence of instances
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D1, . . . , Dk−1 such that, for every i ∈ [1, k], (Di−1, Di)[ti] |= ϕ, for some ϕ ∈ Σ and a

list of tuple identifiers ti. 2

For classical MDs (cf. Section 2.2), two special classes of MDs were identified:

similarity-preserving MDs, and interaction-free (IF) MDs. They have the UCI prop-

erty. Now, relational MDs that are similarity-preserving (i.e. that use similarity-

preserving matching functions) are clearly UCI, because only new additional condi-

tions have to be verified before enforcing the MDs.

We proceed now to generalize the interaction-free class to the relational case, and

prepare the ground for introducing a new class of relational MDs, the blocking class.

Definition 6.1.4 (a) For a relational MD ϕ, ALHS (ϕ) denotes the sets of attributes

(with their predicates) appearing in similarity atoms in its LHS. 1 ARHS (ϕ) denotes

the set of attributes appearing in the identity atom (with
.
=) in its RHS.2 Notice from

(6.5) that variables y1, y2 in the RHS have implicit predicates, R1[Y1], and R2[Y2],

resp.

(b) A set of relational MDs Σ is interaction-free (IF) if, for every ϕ1, ϕ2 ∈ Σ,

ARHS (ϕ1) ∩ ALHS (ϕ2) = ∅. Here, ϕ1 and ϕ2 can be the same. 2

ALHS (ϕ) contains the leading attributes only if the leading variables appear in sim-

ilarity atoms in the LHS (ϕ). However, ARHS (ϕ) always contains the leading at-

tributes. Notice that ALHS (ϕ) is the set of attributes appearing in the atoms in

LSim(ϕ). In this way, an attribute in ARHS (ϕ1)∩ALHS (ϕ2) appears, as in 6.1.4(b),

in a leading atom of ϕ1 and also in an atom in LSim(ϕ2).

Example 6.1.5 Consider the initial instance D, and the set of relational MDs Σ =

1Attributes appearing in the implicit forms of similarity (equalities), represented by the use of
the shared (join) variables, are also considered in ALHS (ϕ).

2These are different from LHS (ϕ) and RHS (ϕ), used in Chapter 5 and in this chapter to denote
the sets of atoms in the LHS and RHS of ϕ, respectively.
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{ϕ1, ϕ2} with:

ϕ1 : Author(t1, x1, y1, p1, bl1) ∧ Author(t2, x2, y2, p2, bl2) ∧ x1 ≈ x2 ∧

Paper(t3, p1, z1, w1, bl4) ∧ Paper(t4, p2, z2, w2, bl4) −→ bl1
.
= bl2.

ϕ2 : Paper(t1, p1, z1, w1, bl1) ∧ Paper(t2, p2, z2, w2, bl2) ∧ z1 ≈ z2 ∧

Author(t3, x1, y1, p1, bl3) ∧ Author(t4, x2, y2, p2, bl3) −→ bl1
.
= bl2.

Author(D) Name Aff PID Bl#

t1 n1 a1 120 250

t2 n2 a2 121 251

t3 n3 a3 122 252

Paper(D) PID Title Key Bl#

t4 120 title1 k1 302

t5 122 title2 k2 300

t6 121 title3 k3 300

Here, ALHS (ϕ2) = {Paper [Title], Author [Bl#]} and ARHS (ϕ1) = {Author [Bl#]}.
Then, ARHS (ϕ1)∩ALHS (ϕ2) = {Author [Bl#]}. So, {ϕ1, ϕ2} is not IF. Here, enforc-

ing ϕ1 affects the Bl# values in Author-tuples, with predicate Author not appearing

in the leading atoms of ϕ2. 2

In Example 6.1.4, ALHS (ϕ) = {Author [Name],Author [PTitle],Paper [PTitle],

Paper [Bl#]} and ARHS (ϕ) = {Author [Bl#]}. Since ARHS (ϕ) ∩ ALHS (ϕ) = ∅,
Σ = {ϕ} is IF.

Notice that we could have more than one attribute in ARHS (ϕ1)∩ALHS (ϕ2), as

illustrated in the following example.

Example 6.1.6 Consider the initial instance D0, and the following set Σ of classical

MDs:

ϕ1 : R1(t1, x1, y1, z1) ∧R2(t2, x2, y2, z2) ∧ x1 ≈ x2 → y1
.
= y2,

ϕ2 : R1(t1, x1, y1, z1) ∧R2(t2, x2, y1, z2)→ z1
.
= z2.

R1(D0) A B C

t1 a1 b1 c1

t2 a2 b2 c2

R2(D0) A B C

t3 a3 b3 c3

t4 a4 b4 c4
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Here, ARHS (ϕ1)∩ALHS (ϕ2) = {R1 [B] , R2 [B]}. So, {ϕ1, ϕ2} is not IF. LSim(ϕ2) =

{R1(t1, x1, y1, z1), R2(t2, x2, y2, z2)}, and atoms R1(t1, x1, y1, z1), R2(t2, x2, y2, z2) are

leading atoms of ϕ1. Then, enforcing ϕ1 affects the A-values in R1, R2-tuples, with

the R1, R2-atoms as leading atoms of ϕ2. 2

So as with similarity-preserving relational MDs, enforcing IF sets of relational

MDs on an initial instance results in a single clean instance, which can be computed

in polynomial time in the size of the initial instance. Accordingly, IF sets of relational

MDs have the UCI property.

Next, we introduce a notion of cyclic (set of) relational MDs.

Definition 6.1.5 (a) For Σ a set of relational MDs, its directed MD-graph, MDG(Σ),

is defined as follows: (1) there is a node for every attributeR[A] withR[A] ∈ ALHS (ϕ)

or R[A] ∈ ARHS (ϕ), for some ϕ ∈ Σ; (2) for every ϕ ∈ Σ and attribute R[A] ∈
ALHS (ϕ) and attribute R[B] ∈ ARHS (ϕ), there is an edge from R[A] to R[B].

(b) A set of MDs whose MD-graph contains a cycle is called cyclic. Otherwise, it

is acyclic. 2

Example 6.1.7 Consider the set Σ of MDs below. MDG(Σ) shows that Σ is cyclic.

ϕ1 : R[A] ≈ R[A]→ R[B]
.
= R[B],

ϕ2 : R[B] ≈ R[B]→ R[C]
.
= R[C],

ϕ3 : R[C] ≈ R[C]→ R[A]
.
= R[A].

2

Notice that we can recognize an interacting set of MDs from its MD-graph: Σ

is interacting if there is a node in MDG(Σ) with an in-coming and out-going edge.

Every set of cyclic MDs is interacting, but not necessarily the other way around.

In next section, we will introduce a class of MDs that includes the sets of MDs

used for the blocking component of ERBlox (cf. Chapter 7). Interestingly, this class

has the UCI property.
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6.1.1 Blocking Combinations of Relational MDs and Initial Instances

In this section we define the blocking class of sets of relational MDs, motivated by the

application of MDs in ERBlox (cf. Chapter 7).

Definition 6.1.6 Let Σ be a set of relational MDs and D0 an instance. (Σ, D0) is a

blocking combination (in short, is blocking) if the following conditions hold for every

ϕ1, ϕ2 ∈ Σ (which could be the same) and attribute R[A] ∈ ARHS (ϕ1) ∩ ALHS (ϕ2):

(a) Σ is a set of relational MDs of the form (6.5) and their formulas ψ in the LHSs

are conjunctions of similarity atoms and relational atoms, but not ≈-similarities

for R[A]. The implicit form of similarity (an equality) for variables associated

to R[A], represented by use of shared (join) variables, is not prohibited.

(b) If R[A], R′[A′] share the same domain, and there exists an equality involving

variables associated to R[A], R′[A′] in LHS (ϕ2), there are no two tuples t ∈
R(D0), t′∈ R′(D0) with t[A] = t′[A′].

(c) The matching function MF for attribute R[A] is such that for every pair of

values a, a′, MF (a, a′) takes one of the values a or a′. 2

The blocking class requires that there are no two tuples t ∈ R(D0), t′ ∈ R′(D0)

with t[A] ≈ t′[A′] if there is a similarity atom with variables associated to R[A], R′[A′]

in LHS (ϕ2). On the other hand, there is no MD in Σ with ≈-similarity for R[A] in

LHS. Therefore, we have condition (b) in Definition 6.1.6 stating that there are no two

tuples in D0 with t[A] = t′[A′]. Clearly, if the condition (b) holds, then R[A]-attribute

values are different from R′[A′]-attribute values in D0.

Notice that the condition (b) in Definition 6.1.6 is checked only against the initial

instance, and not on later instances obtained along a chase sequence. Non-interacting

sets of MDs are trivially blocking for every initial instance D0.

Notice that a blocking combination (Σ, D0) may be cyclic, as shown in the follow-

ing example.
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Example 6.1.8 Consider the initial instance D0 and the set of relational MDs Σ =

{ϕ1, ϕ2, ϕ3, ϕ4} with:

ϕ1 : Author(t1, x1, y1, p1, bl1) ∧ Author(t2, x2, y2, p2, bl2) ∧ x1 ≈ x2 ∧

Paper(t3, p1, z1, w1, bl4) ∧ Paper(t4, p2, z2, w2, bl4) −→ bl1
.
= bl2.

ϕ2 : Paper(t1, p1, z1, w1, bl1) ∧ Paper(t2, p2, z2, w2, bl2) ∧ z1 ≈ z2 ∧

Author(t3, x1, y1, p1, bl3) ∧ Author(t4, x2, y2, p2, bl3) −→ bl1
.
= bl2.

ϕ3 : Paper(t1, p1, z1, w1, bl1) ∧ Paper(t2, p2, z2, w2, bl2) ∧

z1 ≈ z2 ∧ w1 ≈ w2 → bl1
.
= bl2.

ϕ4 : Author(t1, x1, y1, p1, bl1) ∧ Author(t2, x2, y2, p2, bl2) ∧

x1 ≈ x2 ∧ y1 ≈ y2 → bl1
.
= bl2.

Author Name Aff PID Bl#

t1 n1 a1 120 250

t2 n2 a2 121 251

t3 n3 a3 122 252

Paper PID Title Key Bl#

t4 120 title1 k1 300

t5 122 title2 k2 303

t6 121 title3 k3 304

Assume that for enforcing MDs on two tuples, the matching function mBl is used. It

makes two block numbers identical: mBl(i, j) := i if j ≤ i.

For checking the conditions in Definition 6.1.6 for (Σ, D0), we find four cases

of interaction: (1) ARHS (ϕ1) ∩ ALHS (ϕ2) = {Author [Bl#]}, (2) ARHS (ϕ2) ∩
ALHS (ϕ1) = {Paper [Bl#]}, (3) ARHS (ϕ4) ∩ ALHS (ϕ2) = {Author [Bl#]}, (4)

ARHS (ϕ3) ∩ ALHS (ϕ1) = {Paper [Bl#]}.

For the second case, Paper(x̄) is a leading atom since Paper [Bl#] is the leading

attribute of ϕ2. Paper(x̄) also belongs to LSim(ϕ1) because of the use of the join

variable bl4 in LHS (ϕ1).

(Σ, D0) satisfies the condition (a) in Definition 6.1.6 since there is no ≈-similarity

in the LHSs of the MDs in Σ for Author [Bl#] or Paper [Bl#]. Notice that, in the

case of ϕ1, there is an implicit equality of blocks through the use of the same block

variable in the two Paper atoms. For ϕ2, there is an implicit similarity atom (an

equality) represented by the use of the shared (join) variable bl3.
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There exists an equality involving attributes associated to Author [Bl#] in LHS (ϕ2).

Then, for cases (1) and (3), we check if there are Author-tuples in D0 with same

blocking numbers. This does not hold in D0. Thus, these two cases do not lead to a

violation of the condition (b) in Definition 6.1.6.

There is an equality containing attributes associated to Paper [Bl#] in LHS (ϕ1).

Therefore, for cases (2) and (4), (Σ, D0) is not blocking if there are two Paper-tuples

in D0 with same blocking numbers. This does not hold in D0. Then, the condition

(b) in Definition 6.1.6 is satisfied by (Σ, D0).

Moreover, mBl#(i, j) = j if i < j. Thus, (Σ, D0) is a blocking combination. Notice

that Σ is a cyclic set of MDs by the following MDG(Σ).

For a negative example, consider a different initial instance D1 with the same

MDs:

Author(D1) Name Aff PID Bl#

t1 n1 a1 122 250

t2 n2 a2 121 251

t3 n3 a3 122 252

t4 n4 a4 123 253

Paper(D1) PID Title Key Bl#

t5 120 title1 k1 302

t6 122 title2 k2 300

t7 121 title3 k3 300

t8 123 title4 k4 303

For checking the condition (b) for cases (2) and (4) of interaction, two Paper-tuples t6,

t7 in D1 have same blocking numbers. Thus, (Σ, D1) is not a blocking combination.

2

As expected, the notion of blocking combinations can be applied to classical MDs.
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Example 6.1.9 Consider predicate R(A,B,C), the instance D0, and the set of clas-

sical MDs Σ below:

ϕ1 : R[A] ≈ R[A]→ R[B]
.
= R[B],

ϕ2 : R[B] = R[B]→ R[C]
.
= R[C].

R(D0) A B C

t1 a1 b1 c1

t2 a2 b2 c2

t3 a3 b3 c3

t4 a4 b4 c4

Assume that the matching function mB acts as follows: mB(b1, b2) = b2, mB(b1, b3) =

b3, mB(b2, b3) = b3, mB(b3, b4) = b4. Σ is interacting (i.e. not IF), because ARHS (ϕ1)∩
ALHS (ϕ2) = {R[B]}.

(Σ, D0) satisfies condition (a) in Definition 6.1.6 because there is no ≈-similarity

in the LHS of ϕ1 or ϕ2 for attribute R [B].

Since there are no tuples t, t′ in D0 with t[B] = t′[B], (Σ, D0) satisfies condition (b)

in Definition 6.1.6. Condition (c) in Definition 6.1.6 is also satisfied. Then, (Σ, D0)

is blocking. 2

In the following example, condition (b) in Definition 6.1.6 is investigated more.

Example 6.1.10 (ex. 6.1.6 cont.) As mentioned in Example 6.1.6, {ϕ1, ϕ2} is not

IF since ARHS (ϕ1) ∩ ALHS (ϕ2) = {R1 [B] , R2 [B]}.
Suppose that the matching function mB for identifying values of attributes R1 [B],

R2 [B] acts as follows: mB(b1, b2) = b2, mB(b1, b3) = b3, mB(b2, b3) = b3.

(Σ, D0) satisfies condition (a) in Definition 6.1.6 because there is no ≈-similarity

in the LHSs of the MDs for R1 [B] or R2 [B].

For checking the condition (b) in Definition 6.1.6, R1[B], R2[B] share the same

domain, and there is only one equality including variables associated to R1[B], R2[B]

in LHS (ϕ2). There are no two tuples t∈ R1(D0), t′∈ R2(D0) with t[B] = t′[B]. Then,

the condition (b) in Definition 6.1.6 is satisfied by (Σ, D0). Furthermore, the matching

function mB(a, a′) takes one of the values. Thus, (Σ, D0) is a blocking combination.

For another example, consider Σ1 = {ϕ1, ϕ3} with same initial instance.
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ϕ3 : R1(t1, x1, y1, z1) ∧R1(t2, x2, y1, z2)→ z1
.
= z2.

In this case, ARHS (ϕ1) ∩ ALHS (ϕ3) = {R1 [B]}. Conditions (a), (c) are checked in

the same way as for (Σ, D0), but not condition (b). In ϕ3, there is not an equality

for R1[B], R2[B]. Actually, there exists an equality for only R1[B] in LHS (ϕ3). In

this case, we check if there are two tuples t∈ R1(D0), t′∈ R1(D0) with t[B] = t′[B].

This does not hold in D0. Then, the condition (b) in Definition 6.1.6 is satisfied by

(Σ1, D0). 2

The conditions in Definition 6.1.6 are strong for relational MDs. However, we

require the blocking class to capture the sets of MDs used for the blocking component

of ERBlox (cf. Chapter 7).

Blocking combinations lead to single clean instances. This also holds for the cyclic

set of MDs, as illustrated in the following example.

Example 6.1.11 (ex. 6.1.8 cont.) Assume that the only similarities that hold are

a1 ≈ a2, n1 ≈ n2, n1 ≈ n3, title1 ≈ title3, title1 ≈ title2 and k1 ≈ k2.

For the blocking combination of Σ and D0, different orders of MD enforcements

lead in the end to the same single clean instance. This behavior can be better appre-

ciated below.

We will show that the enforcement of Σ on D0 generates a unique clean in-

stance, through different chase sequences. First, we show a possibly chase sequence

D0, D1, D2, D3, D4, D5, D6, with D6 a stable instance.

As a result of enforcing ϕ4 on D0 first, the tuples t1, t2 get the identical values for

Author [Bl#], as shown in the new instance D1 (cf. Figure 6.1).

Author Name Aff PID Bl#
t1 n1 a1 120 251
t2 n2 a2 121 251
t3 n3 a3 122 252

Paper PID Title Key Bl#
t4 120 title1 k1 300
t5 122 title2 k2 303
t6 121 title3 k3 304

Figure 6.1: Instance D1

Next, since t4 and t5 have similar values for Paper [Title] and Paper [Key ], we
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can enforce ϕ3, leading to t4, t5 getting the same value for Paper [Bl#], as shown in

instance D2 (cf. Figure 6.2).

Author Name Aff PID Bl#
t1 n1 a1 120 251
t2 n2 a2 121 251
t3 n3 a3 122 252

Paper PID Title Key Bl#
t4 120 title1 k1 303
t5 122 title2 k2 303
t6 121 title3 k3 304

Figure 6.2: Instance D2

As we can see, through MD enforcement new similarities may be created, in this

case t1[Bl#] = t2[Bl#] inD1. Furthermore, the equality of values in t1, t2 for attribute

Author [Bl#] feeds the LHS of ϕ2. Now, enforcing ϕ2 on t4, t6, t1, t2 in D2 makes the

tuples t4, t6 get the same value for attribute Paper [Bl#], as shown in instance D3 (cf.

Figure 6.3).

Author Name Aff PID Bl#
t1 n1 a1 120 251
t2 n2 a2 121 251
t3 n3 a3 122 252

Paper PID Title Key Bl#
t4 120 title1 k1 304
t5 122 title2 k2 303
t6 121 title3 k3 304

Figure 6.3: Instance D3

At this stage we have broken the equality of t4[Bl#], t5[Bl#] we had in D2, as

shown underlined in Figure 6.3. This is a crucial point: ϕ3 is still applicable on

D3 with t4, t5, because there are no MDs with attribute Paper [Title] or Paper [Key ]

in their RHSs that could destroy the initial similarities that held in D0, in partic-

ular tD3
4 [Title] = title1 ≈ title2 = tD3

5 [Title] and tD3
4 [Key ] = k1 ≈ k2 = tD3

5 [Key ]:

ϕ3 is applicable with t4, t5 along the enforcement path. So, enforcing ϕ3 makes

t4[Bl#], t5[Bl#] identical again, as shown in instance D4 (cf. Figure 6.4).

Notice that the initial similarities of attributes values we had in the initial instance

are not destroyed at any time later along a chase sequence.

Next, applying ϕ1 on t1, t3, t4, t5 in D4 makes the tuples t1, t3 get the same value

for attribute Author [Bl#], as shown in instance D5 (cf. Figure 6.5).

At this stage, we have broken the equality for t1[Bl#], t2[Bl#] we had in D4, as
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Author Name Aff PID Bl#
t1 n1 a1 120 251
t2 n2 a2 121 251
t3 n3 a3 122 252

Paper PID Title Key Bl#
t4 120 title1 k1 304
t5 122 title2 k2 304
t6 121 title3 k3 304

Figure 6.4: Instance D4

Author Name Aff PID Bl#
t1 n1 a1 120 252
t2 n2 a2 121 251
t3 n3 a3 122 252

Paper PID Title Key Bl#
t4 120 title1 k1 304
t5 122 title2 k2 304
t6 121 title3 k3 304

Figure 6.5: Instance D5

shown underlined in Figure 6.5. ϕ4 is still applicable on D5 with t1, t2. So, enforcing

ϕ4 makes t1[Bl#], t2[Bl#] identical again, as shown in instance D6. No further

applications of MDs are possible, and we have reached a stable instance.

Author Name Aff PID Bl#
t1 n1 a1 120 252
t2 n2 a2 121 252
t3 n3 a3 122 252

Paper PID Title Key Bl#
t4 120 title1 k1 303
t5 122 title2 k2 303
t6 121 title3 k3 303

Figure 6.6: Instance D6

Actually, D6 is the only instance that can be reached through any chase sequence.

For example, we will now show another chase sequence leading to the same clean

instance D6.

In the above chase sequence, we applied ϕ3 on t4, t6 in D1. We could have enforced

ϕ2 on t4, t6, t1, t2 in D1. This makes the tuples t4, t6 get the same value for attribute

Paper [Bl#], as shown in instance D′′2 (cf. Figure 6.7).

Next, enforcing ϕ3 on t4, t5 in D′′2 results in instance D′′3 , where t4, t5 have identical

values for attribute Paper [Bl#], as shown in Figure 6.8.

Now, applying ϕ1 on t1, t3, t4, t5 in D′′3 , makes the tuples t1, t3 get the same value

for attribute Author [Bl#], as shown in instance D′′4 (cf. Figure 6.9). Again, we have

broken the equality of t1[Bl#], t2[Bl#] we had in D′′3 , as shown underlined in Figure

6.9. MD ϕ4 is still applicable on D′′4 with t1, t2. Enforcing ϕ4 on t1, t2 in D′′4 results
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Author Name Aff PID Bl#
t1 n1 a1 120 251
t2 n2 a2 121 251
t3 n3 a3 122 252

Paper PID Title Key Bl#
t4 120 title1 k1 304
t5 122 title2 k2 303
t6 121 title3 k3 304

Figure 6.7: Instance D′′2
Author Name Aff PID Bl#
t1 n1 a1 120 251
t2 n2 a2 121 251
t3 n3 a3 122 252

Paper PID Title Key Bl#
t4 120 title1 k1 304
t5 122 title2 k2 304
t6 121 title3 k3 304

Figure 6.8: Instance D′′3

in instance D6 which we had obtained before through a different chase sequence.

Author Name Aff PID Bl#
t1 n1 a1 120 252
t2 n2 a2 121 251
t3 n3 a3 122 252

Paper PID Title Key Bl#
t4 120 title1 k1 304
t5 122 title2 k2 304
t6 121 title3 k3 304

Figure 6.9: Instance D′′4

The MD ϕ may become applicable with t̄ along a chase sequence, which is not

applicable on the initial instance. In a chase sequence, the similarities of attributes

values, which do not hold in the initial instance, may be broken. As a result, ϕ may be

not applicable with t̄ on an instance in the chase sequence. But ϕ will be applicable

with t̄ later on in the same and the other chase sequences. In this example, ϕ2 is

applicable on D2 with t4, t6, t1, t2, but is not applicable on D5 with t4, t6, t1, t2. Again,

ϕ2 is applicable on D6 with t4, t6, t1, t2.

In other words, two tuples with similar attribute values, not in the initial instance

D0-becoming similar along a chase sequence- may have the similarities broken in a

chase sequence, but they will reappear later on in the same and the other chase

sequences.

Actually, no matter in what order the MDs are enforced in this case, the final, clean

instance will be D6, which is due to a specific property of the blocking combination

(Σ, D0). 2
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Example 6.1.12 (ex. 6.1.9 cont.) Let’s assume that the matching function mB acts

as follows: mB(b1, b2) = b3, mB(b1, b3) = b13, mB(b2, b3) = b23, mB(b3, b4) = b4. In this

case, the condition (b) is not satisfied by (Σ, D0). Then, (Σ, D0) is not a blocking.

Enforcing Σ on D0 leads to two clean instances:

R(D1) A B C

t1 a1 b3 c123

t2 a2 b3 c123

t3 a3 b4 c1234

t4 a4 b4 c1234

R(D2) A B C

t1 a1 b3 c12

t2 a2 b3 c12

t3 a3 b4 c34

t4 a4 b4 c34

2

In general, different orders of MD enforcements may result in different clean in-

stances, because similarities between attributes values of tuples may be broken during

the chase with interacting MDs and non-similarity-preserving MFs, without reappear-

ing again [Bertossi et al., 2013].

Proposition 6.2.1 will establish that blocking combinations lead to single clean

instances. Before addressing this, let’s address the blocking class checking problem.

In the general relational case of MDs, one would wonder how difficult is checking

the blocking class. Notice that checking the condition (a) or the condition (c) in

Definition 6.1.6 is decidable because a finite set of MDs and matching functions have

to be checked. In this way, only checking the condition (b) in Definition 6.1.6 is crucial.

Notice that only the active domain, Adom(D0), of the initial instance D0 matters for

the condition (b) in Definition 6.1.6, because attributes values are checked in D0.

Actually, checking the condition (b) is also decidable because a finite set of MDs has

to be checked for interaction, and D0 is finite.

Actually, checking the condition (b) in Definition 6.1.6 can be performed in poly-

nomial time in the size of D0 (i.e. in data) by posing Boolean conjunctive queries

(BCQs) to D0. More precisely, for each pair ϕ1, ϕ2 in Σ, one has to issue one BCQ

for each attribute in the intersection of ARHS (ϕ1) and ALHS (ϕ2), and another BCQ

for each attribute in the intersection of ARHS (ϕ2) and ALHS (ϕ1). If one of those

queries gets the value true in D0, the condition (b) in Definition 6.1.6 does not hold.
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Example 6.1.13 (ex. 6.1.9 cont.) There is only one case of interaction between

ϕ1 and ϕ2. The condition (b) for D0 with ϕ1, ϕ2 for the intersection ARHS (ϕ1) ∩
ALHS (ϕ2) = {R[B]} can be checked by posing the following Boolean conjunctive

query to D0:

∃t̄ ∃x̄ ∃ȳ ∃z̄ (R(t1, x1, y1, z1) ∧ R(t2, x2, y2, z2)) ∧ y1 = y2).

In fact, for checking if tuples t, t′ in D0 with t[B] = t′[B] exist, the query contains

two relational atoms.

The above query gets the value false in D0. Then, the condition (b) in Definition

6.1.6 holds for (Σ, D0), which was also verified by other means in Example 6.1.9. 2

Lemma 6.1.1 Let D0 an initial instance, and ϕ1, ϕ2 be relational MDs with attribute

R[A] ∈ ARHS (ϕ1) ∩ ALHS (ϕ2). Let R[A], R′[A′] share the same domain, and there

exists an equality involving variables associated to R[A], R′[A′] in LHS (ϕ2). There is

a BCQ, QR[A]
ϕ1,ϕ2 , that evaluates to true in D0 iff there are two tuples t ∈ R(D0), t′ ∈

R′(D0), such that t[A] = t′[A′].

Proof: Assume that R[A], R′[A′] share the same domain, and there exists an equality

involving variables associated to R[A], R′[A′] in LHS (ϕ2). For R[A] ∈ ARHS (ϕ1) ∩
ALHS (ϕ2), checking the condition (b) in Definition 6.1.6 requires checking if there

are two tuples t ∈ R(D0), t′ ∈ R′(D0) with t[A] = t′[A′]. For this reason, the query

contains two relational atoms. QR[A]
ϕ1,ϕ2 is the following BCQ:

QR[A]
ϕ1,ϕ2

: ∃t̄ ∃x̄ ∃ȳ (R(t1, y1, x̄1) ∧R′(t2, y2, x̄2) ∧ z1 = z2). (6.6)

where zi ∈ xi ∪ {yi} with i ∈ {1, 2}, and z1 and z2 are associated to the attributes

R[A] and R′[A′], resp.

Next, we prove that the query QR[A]
ϕ1,ϕ2 is true in D0 iff there are two tuples t ∈

R(D0), t′ ∈ R′(D0), such that t[A] = t′[A′].

(⇒): Assume that the query QR[A]
ϕ1,ϕ2 , as in (6.6), is true in D0. By construction of

QR[A]
ϕ1,ϕ2 , evaluating QR[A]

ϕ1,ϕ2 to true in D0 means that there are two tuples t ∈ R(D0), t′ ∈
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R′(D0), such that t[A] = t′[A′].

(⇐): Assume that there are two tuples t ∈ R(D0), t′ ∈ R′(D0), such that

t[A] = t′[A′]. By the construction of QR[A]
ϕ1,ϕ2 , if we substitute variables in QR[A]

ϕ1,ϕ2

by attributes values from tuples t ∈ R(D0), t′ ∈ R′(D0), then QR[A]
ϕ1,ϕ2 evaluates to true

in D0. 2

From the fact that BCQ can be evaluated in polynomial time in data (see, e.g.,

[Abiteboul et al., 1995]), we obtain the following.

Corollary 1. Checking the condition (b) in Definition 6.1.6 on an instance D0 can

be done in polynomial time in data complexity, i.e. in the size of D0. 2

Let R[A], R′[A′] ∈ ARHS (ϕ1) ∩ ALHS (ϕ2). By the construction of the query in

the proof of Lemma 6.1.1, for checking the non-satisfaction of the condition (b) for

D0 with ϕ1, ϕ2, QR[A]
ϕ1,ϕ2 , and QR

′[A′]
ϕ1,ϕ2 are the same queries. This is because checking the

non-satisfaction of the condition (b) for D0 with ϕ1, ϕ2 requires checking if there are

two tuples t ∈ R(D0), t′ ∈ R′(D0), such that t[A] = t′[A′]. Checking this gives rise to

only one query for both R[A] ∈ ARHS (ϕ1) ∩ ALHS (ϕ2) and R′[A′] ∈ ARHS (ϕ1) ∩
ALHS (ϕ2).

Example 6.1.14 (ex. 6.1.6 cont.) For the interaction case ARHS (ϕ1)∩ALHS (ϕ2) =

{R1 [B] , R2 [B]}, we consider the BCQs QR1[B]
ϕ1,ϕ2 and QR2[B]

ϕ1,ϕ2 , respectively:

QR1[B]
ϕ1,ϕ2

: ∃t̄ ∃x̄ ∃ȳ∃z̄ (R1(t1, x1, y1, z1) ∧R2(t2, x2, y2, z2) ∧ y1 = y2,

QR2[B]
ϕ1,ϕ2

: ∃t̄ ∃x̄ ∃ȳ ∃z̄ (R1(t1, x1, y1, z1) ∧R2(t2, x2, y2, z2) ∧ y1 = y2.

These queries are the same. Thus, in this example, checking the condition (b) for

(Σ, D0) gives rise to only one query. These queries evaluate to false in D0. Then,

(Σ, D0) is blocking. 2
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Example 6.1.15 (ex. 6.1.8 cont.) For the first case of interaction between the MDs,

ARHS (ϕ1) ∩ ALHS (ϕ2) = {Author [Bl#]}, the following BCQ is posed to D0:

QAuthor
ϕ1,ϕ2

: ∃t̄ ∃x̄ ∃ȳ ∃p̄ ∃b̄l ∃z̄ ∃w̄(Author(t1, x1, y1, p3, bl1) ∧ Author(t2, x2, y2, p4, bl2)

∧ bl1 = bl2).

QAuthor
ϕ1,ϕ2

takes the value false in D0, then this case (case (1) in Example 6.1.8) does not

lead to a violation of the condition (b). Interestingly, QAuthor
ϕ1,ϕ2

,QAuthor
ϕ3,ϕ2

are the same

queries. This is because checking the non-satisfaction of the condition (b) for D0 with

ϕ1, ϕ2 and with ϕ1, ϕ2 require checking if there are two tuples t ∈ Author(D0), t′ ∈
Author(D0), such that t[Bl#] = t′[Bl#].

QPaper
ϕ2,ϕ1

and QPaper
ϕ4,ϕ1

are the same queries since for cases (2),(4) in Example 6.1.8, we

check if there are Paper-tuples in D0 with same blocking numbers. For these cases,

we consider the following BCQ:

∃t̄ ∃x̄ ∃ȳ ∃p̄ ∃b̄l ∃z̄ ∃w̄(Paper(t1, x1, y1, p3, bl1) ∧ Paper(t2, x2, y2, p4, bl2)

∧ bl1 = bl2).

This query also takes the value false in D0. Then, (Σ, D0) is blocking. 2

6.2 The UCI Classes

In this section, we identify and prove a general property, called Tuple-Similarity

Preservation (TSP), for the blocking class. This property is used to establish that

if (Σ, D0) is blocking, enforcing Σ on D0 results in a single clean instance. As a

consequence, the three classes of relational MDs: IF, with similarity preserving MFs,

and blocking class have the UCI property, defined in the beginning of this chapter.

We also prove that the TSP property holds for the two other classes of relational

MDs with the UCI property. This property is used in Section 6.3 to specialize the

general cleaning programs, developed in Section 5.1, for the three classes of MDs with
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the UCI property.

As shown in Example 6.1.11, for a blocking combination (Σ, D0), the tuple simi-

larities held in D0 for attributes that appear in ALHS of the MDs are not destroyed

during the chase sequence: These similarities keep holding along the enforcement

path.

Lemma 6.2.1 Let (Σ, D0) be a blocking combination. Let D0, . . . , Dk be a chase

sequence with Dk stable, such that for every i ∈ [1, k], (Di−1, Di)[t̄i] |= ϕi, for some

ϕi ∈ Σ and a list of tuple identifiers t̄i. Then, tDi [A] = tD0 [A] and t′Di [A′] = t′D0 [A′],

for every i ∈ [0, k], every two tuple identifiers t, t′, and every MD ϕi ∈ Σ, where A,A′

are two comparable attributes in ALHS (ϕi).

Proof: We prove it by an induction on i. For i = 0, it clearly holds.

Let LHS (ϕ) be true in D0 with t̄. Now suppose that LHS (ϕ) is true in Di

with t̄ for i < j, and it does not hold for i = j: LHS (ϕ) is true in D0 with t̄,

but LHS (ϕ) is false in Dj with t̄. Since it holds for every i < j, for ϕ ∈ Σ, and

for the list of tuple identifiers t̄, there are some tuple identifier t′ ∈ t̄, and some

attribute R1[X1] ∈ ALHS (ϕ), such that t′Dj [X1] 6= t′Dj−1 [X1]. Therefore, there

should be an MD ϕj : R1(t1, ȳ1, x1) ∧ R2(t2, ȳ2, x2) ∧ ψ(t̄3, ȳ3) → x1
.
= x2 in Σ,

with variables x1, x2 corresponding to attributes R1[X1], R2[X2], respectively, and a

tuple identifier t′′, such that Dj is the immediate result of enforcing ϕj on t̄′′′ with

t′, t′′ ∈ t̄′′′ in Dj−1. That is, LHS (ϕj) is true in Dj−1 with t̄′′′, t′Dj−1 [X1] 6= t′′Dj−1 [X2],

and t′Dj [X1] = t′′Dj [X2] = mX(t′Dj−1[X1], t′′Dj−1 [X2]). Since (Σ, D0) is blocking and

R1[X1] ∈ ARHS (ϕj)∪ALHS (ϕ), ϕ is not applicable in D0. This means that LHS (ϕ)

is false in D0 with t̄, which leads to a contradiction. 2

Next, we identify and prove a general property, called Tuple-Similarity Preserva-

tion (TSP), for the blocking combination class.

The MD ϕ may become applicable with t̄ along a chase sequence, which is not

applicable on the initial instance. In a chase sequence, the similarities of attributes

values, which do not hold in the initial instance, may be broken, and, as a result, ϕ

may be not applicable on an instance in the chase sequence with t̄. Interestingly, when
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(Σ, D0) is blocking, ϕ will be applicable with t̄ later on in the same and the other

chase sequences. In this case, we say that (Σ, D0) has Tuple-Similarity Preservation

property. As in Example 6.1.11, ϕ2 is applicable on D2 with t4, t6, t1, t2, but is not

applicable on D5 with t4, t6, t1, t2. Again, ϕ2 is applicable on D6 with t4, t6, t1, t2.

Definition 6.2.1 Let Σ be a set of MDs, D0 an initial instance, and D0, D1, . . . , Dk

a chase sequence with Dk stable, and for every i ∈ [1, k], (Di−1, Di)[t̄i] |= ϕi, for some

ϕi ∈ Σ and a list of tuple identifiers t̄i. Let D be a clean instance for D0 and Σ

(not necessarily equal to Dk). (Σ, D0) is Tuple-Similarity Preservation (we say that

(Σ, D0) has the TSP property) if LHS (ϕ) is true in Di with t̄, then LHS (ϕ) is true

in D with t̄, for every i ∈ [0, k], for every ϕ ∈ Σ, and for every list of tuple identifiers

t̄. 2

Lemma 6.2.2 Let (Σ, D0) be a blocking combination. Then, (Σ, D0) has TSP prop-

erty.

Proof: For the proof of the lemma, we need Definition 6.2.2 and Lemma 6.2.3. In

the following definition, we make a directed link-graph for every chase sequence of D0

with Σ. Intuitively, the graph shows how each attribute value tDi [A] 6= tD0 [A], with

i ∈ [1, k], is obtained by a sequence of MD enforcements on tuples of chase instances.

Definition 6.2.2 Let Σ be a set of MDs, D0 an initial instance, and D0, D1, . . . , Dk

a chase sequence with Dk stable, and for every i ∈ [1, k], (Di−1, Di)[t̄i] |= ϕi, for

some ϕi ∈ Σ and a list of tuple identifiers t̄i. (a) For Σ and the chase sequence

S̄ : D0, . . . , Dk, their directed link-graph, LG(Σ, S̄), is defined as follows:

There is a node for every attribute value tDi [A]:

• If (Di, Di+1)[t̄i+1] |= ϕi+1, t ∈ t̄i+1, R[A] ∈ ALHS (ϕi+1), or

• If (Di−1, Di)[t̄i] |= ϕi, t ∈ t̄i, R[A] ∈ ARHS (ϕi).

Edges in LG(Σ, S̄) are added as follows:

• For every tDi−1 [A], t′Di [B], such that (Di−1, Di)[t̄i] |= ϕi, t, t
′ ∈ t̄i, R[A] ∈

ALHS (ϕi), and R[B] ∈ ARHS (ϕi), there is an edge from tDi−1 [A] to t′Di [B].
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• For every tDi [A], tDj [A] with i < j and tDi [A] = tDj [A], there is an edge from

tDi [A] to tDj [A].

(b) A node tDi [A] in LG(Σ, S̄) is called initial if tDi [A]= tD0 [A], and there is no

MD ϕ in Σ with R[A] ∈ ARHS (ϕ). 2

In the following lemma, we prove that there exists a path from some initial node

to every node in LG(Σ, S̄) for blocking (Σ, D0).

Lemma 6.2.3 Let (Σ, D0) be a blocking combination. Then, for every node tDi [A]

with i ∈ [1, k] in LG(Σ, S̄), there is a path from some initial node to tDi [A].

Proof of Lemma 6.2.3: We prove it by an induction on i. For i = 1, it holds

because if (D0, D1)[t̄] |= ϕ, t ∈ t̄, then there is an edge from some initial node to

tD1 [A]. If t 6∈ t̄, then tD0 [A] = tD1 [A]. Thus, by construction of LG(Σ, S̄), there is an

edge from initial node tD0 [A] to tD1 [A].

Now suppose that for every node tDi [A] with i < j, there is a path from some

initial node to tDi [A], and it does not hold for i = j: there exists node t′Dj [B] such

that there is no path from an initial node to t′Dj [B]. Here, we distinguish two cases

for attribute R[B]:

(a) If R[B] ∈ ARHS (ϕj) with ϕj ∈ Σ, then (Dj−1, Dj)[t̄j ] |= ϕj with t′ ∈ t̄j. By

induction hypothesis, there is a path in LG(Σ, S̄) from some initial node to

tDi [A], such that i < j, t ∈ t′Dj [B], and R′[A] ∈ ALHS (ϕj). By construction of

LG(Σ, S̄), there is an edge from tDi [A] to t′Dj [B]. Then, there is a path from

some initial node to t′Dj [B], which leads to a contradiction.

(b) If R[B] ∈ ALHS (ϕj+1) with ϕj+1 ∈ Σ, then t′Dj [B] = t′′Dj [B′] holds where

(Dj, Dj+1)[t̄j+1] |= ϕj+1, t′, t′′ ∈ t̄j+1 and R′[B′] ∈ ALHS (ϕj+1). There is

no path from an initial node to t′Dj [B]. Then, there is MD ϕ′ in Σ with

R[B] or R′[B′] in ARHS (ϕ′). Thus, R[B] ∈ ARHS (ϕ′) ∩ ALHS(ϕj+1) or

R′[B′] ∈ ARHS (ϕ′) ∩ ALHS(ϕj+1). If both R[B] ∈ ARHS (ϕ′) ∩ ALHS(ϕj+1)

and R′[B′] ∈ ARHS (ϕ′)∩ALHS(ϕj+1) hold, then case (a) happens. Thus, there
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is a path from some initial node to t′Dj [B], which leads to a contradiction. If only

one of R[B] ∈ ARHS (ϕ′)∩ALHS(ϕj+1) and R′[B′] ∈ ARHS (ϕ′)∩ALHS(ϕj+1)

holds, then there are two tuples t∈ R(D0), t′∈ R′(D0) with t[B] = t′[B′] or there

is not a matching function for attribute R[B] (R′[B′]), such that for each pair

of values a, a′, mB(a, a′) takes one of the values a or a′. These contradict with

the fact that (Σ, D0) is blocking. 2

We continue proving Lemma 6.2.2. It is immediately follows from Lemma 6.2.1

and Lemma 6.2.3. 2

Proposition 6.2.1 Let (Σ, D0) be a blocking combination. Then, there is a unique

(D0,Σ)-clean instance D.

Proof: For the proof of the proposition, we need the following lemma.

Lemma 6.2.4 Let (Σ, D0) be a blocking combination. Also let D0, D1, . . . , Dk be a

sequence of instances such that Dk is stable, and for every i ∈ [1, k], (Di−1, Di)[t̄i] |= ϕi,

for some ϕi ∈ Σ and a list of tuple identifiers t̄i. Let D be a clean instance for D0 (Σ

not necessarily equal to Dk). Then, for every i ∈ [0, k], every tuple identifier t and

attribute X, tDi [X] � tD[X] hold.

Proof of Lemma 6.2.4: We prove it by an induction on i. For i = 0, we clearly

have tD0 [X1] � tD[X1] since D is a clean instance for D0 and Σ.

Now suppose tDi [X1] � tD[X1] holds for i < j, and it does not hold for i = j:

tDj [X1] 6� tD[X1]. Since it holds for every i < j, the value of tDj [X1] should be different

from tDj−1 [X1]. Therefore, there should be an MD ϕj : R1(t1, ȳ1, x1)∧R2(t2, ȳ2, x2)∧
ψ(t̄3, ȳ3) → x1

.
= x2 in Σ, with variable x1 corresponding to attribute R1[X1], and

a tuple identifier t′, such that Dj is the immediate result of enforcing ϕj on t̄′′ with

t, t′ ∈ t̄′′ in Dj−1. That is, LHS (ϕj) is true in Dj−1 with t̄′′, tDj−1 [X1] 6= t′Dj−1 [X2], and

tDj [X1] = t′Dj [X2] = mX(tDj−1[X1], t′Dj−1 [X2]). Since LHS (ϕj) is true in Dj−1 with

t̄′′, by Lemma 6.2.2, we have LHS (ϕj) is true in D with t̄′′, and thus tD[X1] = t′D[X2],
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because D is a stable instance. Again by induction hypothesis, tDj−1 [X1] � tD[X1]

and t′Dj−1 [X2] � t′D[X2] = tD[X1]. Therefore, tDj [X1] = mX(tDj−1 [X1], t′Dj−1 [X2]) �
tD[X1] since mX takes the least upper bound, which leads to a contradiction. 2

We continue proving Proposition 6.2.1. Let D,D′ be two clean instances for D0,Σ.

Notice that, from Lemma 6.2.4, we obtain tD[X] � tD
′
[X] and tD

′
[X] � tD[X] for

every tuple identifier t and every attribute X. Thus, the two clean instances D,D′

should be identical. 2

By Proposition 6.2.1, if (Σ, D0) is blocking, then it has the UCI property. The

class of IF relational MDs is trivially blocking for every initial instance D0. Thus,

(Σ, D0), with a set of IF relational MDs Σ, has the TSP property.

Lemma 6.2.5 Let Σ be a set of relational MDs with similarity preserving MFs, and

D0 an initial instance. Then, (Σ, D0) has TSP property.

Proof: Let Σ be a set of classical MDs, D0 an initial instance, and D0, D1, . . . , Dk be a

sequence of instances such that Dk is stable, and for every i ∈ [1, k], (Di−1, Di)[ti1,t
i
2] |=

ϕi, for some ϕi ∈ Σ, and tuple identifiers ti1, t
i
2. Let D be a clean instance for D0

(Σ not necessarily equal to Dk). It has been proved in [Bertossi et al., 2013] that

if tDi [A1] ≈ t′Di [A2], then tD[A1] ≈ t′D[A2], for every i ∈ [0, k], for every two tuple

identifiers t, t′ and two comparable attributes A1, A2. This follows that (Σ, D0) has

TSP property. The proof in [Bertossi et al., 2013] can be used for establishing that

(Σ, D0) has TSP property for a set of relation MDs Σ. 2

6.3 Specialized Cleaning Programs for UCI Class

In this section we specialize the cleaning programs Π(D0,Σ), developed in Section 5.1,

to obtain the unique clean instance-programs ΠUCI(D0,Σ) for enforcing sets of MDs

with the UCI property. We establish that the resulting residual programs ΠUCI(D0,Σ)

belong to a computationally well-behaved extension of plain Datalog.
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Let D0 be a given, possibly dirty initial instance w.r.t. a set Σ of classical MDs.

As explained in Section 5.1, the cleaning program Π(D0,Σ) contains the rules in 1.-

9. to implicitly simulate the chase sequences, each one represented by a model of

the program. In this direction, Π(D0,Σ) provides the freedom to match or not to

match tuples, to obtain different chase sequences. In particular, the disjunctive rule

in 2., with predicates Matchϕj and NotMatchϕj in the head, is used to capture possible

matchings when similarities hold for two tuples. Moreover, Π(D0,Σ) explicitly elim-

inates, using program constraints, instances that are the result of illegal applications

of MDs. A set of MDs applications is illegal if there are some MDs enforcements that

use old versions of tuples that have been replaced by new versions (cf. Section 5.1).

Since the chase-based semantics developed for classical MDs can be applied to

relational MDs without any relevant change, the cleaning programs Π(D0,Σ), with a

set Σ of relational MDs, can be developed without any relevant change. Actually, for

relational MDs, we only have additional atoms in the body of the rule in 2.. In this

way, a set of tuples satisfy the body of the rule.

In general, different orders of MD enforcements may result in different clean in-

stances, because tuple similarities may be broken during the chase with interacting

MDs and non-similarity-preserving MFs, without reappearing again [Bertossi et al.,

2013].

When (Σ, D0), with a set Σ of relational MDs, has the TSP property, two tuples

with similar attribute values, not in the initial instance D0-becoming similar along a

chase sequence- may have the similarities broken in a chase sequence, but they will

reappear later on in the same and the other chase sequences. Thus, different orders

of MD enforcements cannot lead in the end to different clean instances.

For (Σ, D0) with the TSP property, if an MD application uses the older versions

of tuples in t̄ in a chase sequence, the MD would be applicable again with the newer

versions of tuples in t̄ later on in the same and the other chase sequences. As a result,

with the TSP property, there is no need to have rules in the cleaning program to

provide the freedom to match or not to match tuples. Consequently, there is no need

to record the relative order of the two matchings using the auxiliary relation, Prec,

in Π(D0,Σ). Therefore, we could remove the predicate NotMatchϕj from the head of
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the rule in 2. resulting a non-disjunctive rule. We could also get rid of the program

constraints and rules containing the relation Prec in Π(D0,Σ).

Notice that a pruning process based on the domination partial order between

tuples has to be applied to collect the latest version of each tuple that is used to form

the clean instance. Therefore, ΠUCI(D0,Σ) contains the rule in 4. of Π(D0,Σ).

For a given instance D0 and set of relational MDs Σ, the program ΠUCI(D0,Σ)

contains the following rules:

1. For every tuple (id) tD0 = Rj(ā), the fact Rj(t, ā). We also need facts for the

MFs as tables and similarity relations.

2. For each MD ϕj: R1(t1, x̄1, y1) ∧ R2(t2, x̄2, y2) ∧ ψ(t̄3, z̄) −→ y1
.
= y2, the

program rule:

Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2) ← R1(T1, X̄1, Y1), R2(T2, X̄2, Y2),

ψ(T̄3, Z̄), Y1 6= Y2.

3.

OldVersion i(T1, Z̄1) ← Ri(T1, Z̄1), Ri(T1, Z̄
′
1), Z̄1 � Z̄ ′1, Z̄1 6= Z̄ ′1.

4.

R1(T1, X̄1, Y3) ← Matchϕj
(T1, X̄1, Y1, T2, X̄2, Y2), Mj(Y1, Y2, Y3).

R2(T2, X̄2, Y3) ← Matchϕj
(T1, X̄1, Y1, T2, X̄2, Y2), Mj(Y1, Y2, Y3).

5.

Rc
i (T1, Z̄1) ← Ri(T1, Z̄1), not OldVersion i(T1, Z̄1).

Theorem 6.3.1 Let (Σ, D0) be a blocking combination. (a) The (D0,Σ)-clean in-

stance D is exactly the restrictions of the elements of the single stable model of

the unique clean instance-program ΠUCI(D0,Σ) to schema Rc. (b) The unique clean

instance-program ΠUCI(D0,Σ) belongs to the class Datalog not ,s. 2
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Proof: Part (a) immediately follows from Lemma 6.2.2. Part (b) follows from the fact

that the rules of the program ΠUCI(D0,Σ) are from the cleaning program Π(D0,Σ),

belonging to the class Datalog∨,not ,s (cf. Proposition 5.3.1), and the fact that there is

no disjunctive rule in ΠUCI(D0,Σ). 2

Example 6.3.1 (ex. 6.1.11 cont.) The unique clean instance-program ΠUCI(D0,Σ)

has the following rules (facts are not shown):

2.

Matchϕ4(T1, X1, Y1, Z1,Bl1, T2, X2, Y2, Z2,Bl2) ← Author(T1, X1, Y1, Z1,Bl1),

Author(T2, X2, Y2, Z2,Bl2), X1 ≈ X2, Y1 ≈ Y2, Bl1 6= Bl2.

Matchϕ3(T1, X1, Y1, Z1,Bl1, T2, X2, Y2, Z2,Bl2) ← Paper(T1, X1, Y1, Z1,Bl1),

Paper(T2, X2, Y2, Z2,Bl2), Y1 ≈ Y2, Z1 ≈ Z2, Bl1 6= Bl2.

Matchϕ2(T3, X
′
1, Y

′
1 , Z1,Bl1, T4, X

′
2, Y

′
2 , Z2,Bl2) ← Author(T1, X1, Y1, Z1,Bl3),

Author(T2, X2, Y2, Z2,Bl3),Paper(T3, X
′
1, Y

′
1 , Z1,Bl1),

Paper(T4, X
′
2, Y

′
2 , Z2,Bl2), X ′1 ≈ X ′2, Bl1 6= Bl2.

Matchϕ1(T1, X1, Y1, Z1,Bl1, T2, X2, Y2, Z2,Bl2) ← Author(T1, X1, Y1, Z1,Bl1),

Author(T2, X2, Y2, Z2,Bl2),Paper(T3, X
′
1, Y

′
1 , Z1,Bl3),

Paper(T4, X
′
2, Y

′
2 , Z2,Bl3), X1 ≈ X2, Bl1 6= Bl2.

3.

AOldVersion(T1, W̄1)←Author(T1, W̄1), Author(T1, W̄
′
1), W̄1 � W̄ ′

1, W̄1 6= W̄ ′
1.

POldVersion(T1, W̄1)←Paper(T1, W̄1), Paper(T1, W̄
′
1), W̄1 � W̄ ′

1, W̄1 6= W̄ ′
1.
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4.

Author(T1, X1, Y3, Z1,Bl3) ← Matchϕ4(T1, X1, Y1, Z1,Bl1, T2, X2, Y2, Z2,Bl2),

MB(Bl1,Bl2,Bl3).

Paper(T1, X1, Y1, Z3,Bl3) ← Matchϕ3(T3, X
′
1, Y

′
1 , Z1,Bl1, T4, X

′
2, Y

′
2 , Z2,Bl2),

MB(Bl1,Bl2,Bl3).

Paper(T1, X1, Y1, Z3,Bl3) ← Matchϕ2(T3, X
′
1, Y

′
1 , Z1,Bl1, T4, X

′
2, Y

′
2 , Z2,Bl2),

MB(Bl1,Bl2,Bl3).

Author(T1, X1, Y3, Z1,Bl3) ← Matchϕ1(T1, X1, Y1, Z1,Bl1, T2, X2, Y2, Z2,Bl2),

MB(Bl1,Bl2,Bl3).

5.

Author c(T1, W̄1) ← Author(T1, W̄1), not AOldVersion(T1, W̄1).

Paper c(T1, W̄1) ← Paper(T1, W̄1), not POldVersion(T1, W̄1).

2

From the fact that the single clean instance of a program belonging to Datalog not ,s

can be computed in polynomial time in the size of the initial instance [Abiteboul et

al., 1995], we obtain the following.

Corollary 2. For blocking (Σ, D0), the single clean instance can be computed with

the program ΠUCI(D0,Σ) in polynomial time in the size of the instance D0. 2

6.4 Conclusions

In this chapter, we have identified a class of MDs and initial instances that has

good properties in terms of the number of models (a single one, in our case), and

computable in polynomial time. We present a uniform methodology to specialize the
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developed cleaning programs to obtain residual programs for enforcing MDs in classes

with the unique clean instance property, containing MDs with similarity preserving

MFs, interaction-free MDs and blocking combinations of MDs and initial instances.

As a result, the residual programs belong to computationally well-behaved extension

of plain Datalog.

The results presented in this chapter have been published in [Bahmani et al.,

2017].



Chapter 7

ERBlox: Combining MDs with Machine Learning for ER

In this chapter, we describe our ERBlox system, and show the process and the benefits

of integrating four components of ER in ERBlox system: (a) Building a classifier for

duplicate/non-duplicate record pairs built using machine learning (ML) techniques;

(b) Use of MDs for supporting the blocking phase of ML; (c) Record merging on

the basis of the classifier results; and (d) The use of the declarative language LogiQL

-an extended form of Datalog supported by the LogicBlox platform- for all activities

related to data processing, and the specification and enforcement of MDs.

7.1 Overview of ERBlox

A high-level description of the components and workflow of ERBlox is given in Fig-

ure 7.1. In the rest of this section, numbers in boldface refer to the edges in that

figure. ERBlox’s main four components are: 1. MD-based collective blocking (path

1,3,5, {6,8}), 2. Classification-model construction (all the tasks up to 12, inclu-

sive), 3. Duplicate detection (continues with edge 13), and 4. MD-based merging

(previous path extended with 14,15). All the tasks in the figure, except for the clas-

sification model construction (that applying the SVM algorithm), are supported by

LogiQL.1

The initial input data is stored in structured text files, which are initially standard-

ized and free of misspellings, etc.. However, there may be duplicates. The general

LogiQL program supporting the above workflow contains rules for importing data

from the files into the extensions of relational predicates (tables). This is edge 1.

This results in a relational database instance T containing the training data (edge

2), and instance D to be subject to ER (edge 3).

1The implementation of in-house developed ML algorithms as components of the LogicBlox plat-
form is ongoing work.
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Figure 7.1: Overview of ERBlox
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Figure 7.2: Records

Entity records are represented as relational tuples as shown in Figure 7.2. How-

ever, we will keep referring to them as records, and will be generally denoted with

r1, r2, ....

The next tasks require similarity computation of pairs of records 〈r1, r2〉 in T

and (separately) in D (edges 4 and 5). Similarity computation is based on two-

argument similarity functions on the domain of a record attribute, say fi : Dom(Ai)×
Dom(Ai)→ [0, 1], each of which assigns a numerical value to (the comparison of) two

values for attribute Ai, in two different records.

These similarity functions, being real-valued functions of the objects under classi-

fication, correspond to features in the general context of machine learning. They

are considered only for a pre-chosen subset of record attributes. Weight-vectors

w(r1, r2) = 〈· · · , wi(fi(r1[Ai], r2[Ai])), · · · 〉 are formed by applying predefined weights,

wi, on real-valued similarity functions, fi, on pair of of values for attributes Ai (edges

4 and 5), as in Figure 7.3. (For more details on similarity computation see Section

7.2.)

Some record-pairs in the training dataset T are considered as duplicates and others

as non-duplicates, which results (according to path 4,7) in a “similarity-enhanced”
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r1

r2

f1

f2 f3
w(r1,r2)  =  <w1(f1(r1,r2)),  … >

Figure 7.3: Feature-based similarity

training database Ts of tuples of the form 〈r1, r2, w(r1, r2), L〉, with label L ∈ {0, 1}.
Label L indicates if the two records are duplicates (L = 1) or not (L = 0). These

labels are consistent with the corresponding weight vectors. The classifier is trained

using Ts, leading, through the application of the SVM algorithm, to the classification

model (edges 9,10) to be used for ER.

Blocking is applied to instance D, pre-classifying records into blocks, so that only

records in a same block will form input pairs for the trained classification model.

Accordingly, two records in a same block may end up as duplicates (of each other) or

not, but two records in different blocks will never be duplicates.

We assume each record r ∈ D has two extra, auxiliary attributes: a unique and

global (numerical) record identifier (rid) whose value is originally assigned and never

changes; and a block number that initially takes the rid as value. This block number

is subject to changes.

For the records in D, similarity measures are used for blocking (see sub-path 5,8).

To decide if two records, r1, r2, go into the same block, the weight-vector w(r1, r2)

can be used: it can be read off from it if their values for certain attributes are similar

enough or not. However, the similarity computations required for blocking may be

different from those involved in the computation of the weight-vectors w(r1, r2), which

are related to the classification model. Either way, this similarity information is

used by the blocking-matching dependencies, which are pre-declared and domain-

dependent.

Blocking-MDs specify and enforce (through their RHSs) that the blocks (block

numbers) of two records have to be made identical. This happens when certain

similarities between pairs of attribute values appearing in the LHSs of the relational
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MDs hold.

Example 7.1.1 (ex. 1.6.1 cont.) We could use the following MD for blocking Author

records. In it there are similarity comparisons involving attributes for both entities

Author and Paper:

Author(x1, y1, bl1) ∧ Paper(y1, z1, bl4) ∧ Author(x2, y2, bl2) ∧ (7.1)

Paper(y2, z2, bl4) ∧ x1 ≈1 x2 ∧ z1 ≈2 z2 −→ bl1
.
= bl2.

It specifies that when the Author record similarities on the LHS hold, and correspond-

ing papers are in the same block, then blocks bl1, bl2 have to be made identical. 2

Authors Papers

a =  <a1 , … , an> p =  <p1 , … , pm>

a3
a6

a8 a1
a7

p1
p5

a7
a9 p3

p8 p10p8 p10

Figure 7.4: Collective blocking

We can see from (7.1) that information about classifications in blocks of records

for the entity at hand (Author in this case) and for others entities (Paper in this case)

may simultaneously appear as conditions in the LHSs of blocking-MDs. Furthermore,

blocking-MDs may involve in their LHSs similarity conditions about attribute values

in records for entities that are different (z1 ≈2 z2 for Paper in (7.1)) from that under

blocking (i.e. Author). All this is the basis for our “semantically-enhanced” collective

blocking process. Cf. Example 1.6.1 and Figure 7.4.

The MD-based collective blocking stage (steps 5,8,6) consists in the enforcement

of the blocking-MDs on D, which results in database D enhanced with information

about the blocks to which the records are assigned. Pairs of records with the same

block form candidate duplicate record pairs.
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We make notice that blocking-MDs are more general than those of the form (2.1)

introduced in [Fan et al., 2009] or Section 2.2: In their LHSs, they may contain regular

database atoms, from more that one relation, that are used to give context to the

similarity atoms in the MD.

A unique assignment of blocks is obtained after the enforcement of the blocking-

MDs. Uniqueness is guaranteed by the properties of the classes of relational MDs we

use for blocking: the blocking-MDs with D turn out to belong to the blocking class.

About this, see the brief discussion in Section 7.3, and Chapter 6 for more details.

After the records have been assigned to blocks, record-pairs 〈r1, r2〉, with r1, r2 in

the same block, are considered for the duplicate test. As this point, we proceed as

we did for the training data: the weight-vectors w(r1, r2), which represent the record-

pairs in the “feature vector space”, are computed and passed over to the classifier

(edges 11,12).2

The result of applying the trained ML-based classifier to the record-pairs is a set of

triples 〈r1, r2, 1〉 containing records that come from the same block and are considered

to be duplicates. Equivalently, the output is a set M ⊆ D × D containing pairs of

duplicate records (edge 13). The records in pairs in M are merged by enforcing an

application-dependent set of (merge-)MDs (edge 14). This set of MDs is classical

which is different from that used for blocking.

Since records have kept their rids, we define a “similarity” predicate ≈id on the

domain of rids as follows: r1[rid ] ≈id r2[rid ] iff 〈r1, r2〉 ∈M , i.e. iff the correspond-

ing records are considered to be duplicates by the classifier. We informally denote

r1[rid ] ≈id r2[rid ] by r1 ≈ r2. Using this notation, the merge-MDs are usually and

informally written in the form: r1 ≈ r2 → r1
.
= r2. Here, the RHS is a shorthand

for r1[A1]
.
= r2[A1] ∧ · · · ∧ r1[Am]

.
= r2[Am], where A1, . . . , Am are all the record at-

tributes, excluding the first and last, i.e. ignoring the identifier and the block number

(cf. Figure 7.2). Putting all together, merge-MDs take the official form:

r1[rid ] ≈id r2[rid ] −→ r1[A1]
.
= r2[A1] ∧ · · · ∧ r1[Am]

.
= r2[Am]. (7.2)

2Similarity computations are kept in appropriate program predicates. So, similarity values com-
puted before blocking can be reused at this stage, or whenever needed.
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Merging at the attribute level, as required by the RHS, uses the predefined and

domain-dependent matching functions mAi
.

After applying the merge-MDs, a single duplicate-free instance is obtained from

D (edge 15). Uniqueness is guaranteed by the fact that the classes of merge-MDs

that we use in our generic approach turn out to be interaction-free. More details are

given in Section 7.5. (See also the brief discussion in Section 2.2.)

More details about the ERBlox system and our approach to ER are found in the

subsequent sections.

7.2 Data Sets and Similarity Computation

We now describe some aspects of the MAS dataset that are relevant for the description

of the ERBlox system components,3 and the way the initial data is processed and

created for their use with the LogiQL language of LogicBlox.

7.2.1 Data files and relational data

In the initial, structured data files, entries (non-relational records) for entity Author

relation contains authors names and their affiliations. The entries for entity Paper

contain: paper titles, years of publication, conference IDs, journal IDs, and keywords.

Entries for the PaperAuthor relationship contain: papers IDs, authors IDs, authors

names, and their affiliations. The entries for the Journal and Conference entities contain

both short names of the publication venue, their full names, and their home pages.

the affiliation of the authors is often missing in the publications dataset of Mi-

crosoft Academic Search.

There are missing values in the MAS dataset. For example, the journal IDs or

conference IDs of the papers are often missing in the publications of MAS. Addition-

ally, there are non-word characters in the MAS dataset, e.g. in the affiliations of the

authors. These make the MAS dataset noisy. The dataset is preprocessed by means

of Python scripts, in preparation for proper ERBlox tasks. This is necessary because

3We also independently experimented with the DBLP and Cora Citation data sets, but we will
concentrate on MAS.



115

the data gathering methods in general, and for the MAS dataset in particular, are of-

ten loosely controlled, resulting in out-of-range values, impossible data combinations,

missing values, etc. For example, non-word characters are replaced by blanks, some

strings are converted into lower case, etc. Not solving this problems may lead to later

execution problems and, in the end, to misleading ER results. This preprocessing

produces updated structured data files. As expected, there is no ER at this stage,

and in the new files there may be many authors who publish under several variations

of their names; also the same paper may appear under slightly different titles, etc.

This kind of cleaning is that that will be performed with ERBlox.

Next, from the data in (the preprocessed) structured files, relational predicates

and extensions (contents) for them extensions are created and computed, by means

of a generic Datalog program in LogiQL [Aref et al., 2015,Halpin and Rugaber, 2015].

For example, these rules are part of the program:

file in(x1, x2, x3) −→ string(x1), string(x2), string(x3). (7.3)

lang : physical : filePath[‘ file in] = ”author .csv”. (7.4)

+author(id1, x2, x3) ← file in(x1, x2, x3), string : int64:convert [x1] = id1. (7.5)

Here, (7.3) is a predicate schema declaration, in this case of the “ file in” predicate with

three string-valued attributes. It is used to automatically store the contents extracted

from the source file “author.csv”, as specified in (7.4). In LogiQL in general, metadata

declarations use “→”. (In LogiQL, each predicate’s schema has to be declared, unless

it can be inferred from the rest of the program.) Derivation rules, such as (7.5), use

“←”, as usual in Datalog. It defines the author predicate, and the “+” in the rule

head inserts the data into the predicate extension. The rules also makes the first

attribute a tuple identifier.

Figure 7.5 shows three relational predicates that are created and populated in

this way: Author(AID ,Name,Affiliation,Bl#), Paper(PID ,Title,Year ,CID , JID ,

Keyword ,Bl#), PaperAuthor(PID ,AID ,Name,Affiliation). The (partial) tables show

that there may be missing attributes values.
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Author AID Name Affiliation Bl#
659 Jean-Pierre Olivier de Ecole des Hautes 659

2546 Olivier de Sardan Recherche Scientifique 2546
612 Matthias Roeckl German Aerospace Center 612

4994 Matthias Roeckl Institute of Communications 4994

Paper PID Title Year CID JID · · ·
123 Illness entities in West Africa 1998 179
205 Illness entities in Africa 1998 179
769 DLR Simulation Environment m3 2007 146
195 DLR Simulation Environment 2007 146 · · ·

· · · Keyword Bl#
West Africa, Illness 123
Africa, Illness 205
Simulation m3 769

· · · Simulation 195

PaperAuthor PID AID Name Affiliation
123 659 Jean-Pierre Olivier de Ecole des Hautes
205 2546 Olivier de Sardan Recherche Scientifique
769 612 Matthias Roeckl German Aerospace Center
195 4994 Matthias Roeckl Institute of Communications

Figure 7.5: Relation extensions from MAS using LogiQL rules

7.2.2 Features and similarity computation

Form the general description of our methodology in Section 7.1, a crucial component

is similarity computation. It is needed for: (a) blocking, and (b) building the

classification model. Similarity measures are related to features, which are numerical

functions of the data, more precisely of the values of some specially chosen attributes.

Feature selection is a fundamental task in machine learning [Dash and Liu, 1997,Tang

et al., 2015]. Going in detail into this subject is beyond the scope of this work.

Example 7.2.1 shows some specific aspects of this task as related to our dataset.

In relation to blocking, in order to decide if two records, r1, r2 in D, go into

the same block, similarity of values for certain attributes are computed, those that

are appear in similarity conditions in the LHSs of blocking-MDs. All is needed is

whether they are similar enough or not, which is determined by predefined numerical

thresholds.

For model building, similarity values are computed to build the weight-vectors,

w(r1, r2), for records r1, r2 from the training data in T . The numerical values in those

vectors depend on the values taken by some selected record attributes (cf. Figure

7.3).



117

Example 7.2.1 (ex. 1.6.1 cont.) Bibliographic datasets, such as MAS, have been

commonly used for evaluation of machine learning techniques, in particular, classifi-

cation for ER. In our case, the features chosen in our work for the classification of

records for entities Paper and Author from the MAS dataset (and the other datasets)

correspond to those previously used in [Torvik and Smalheiser, 2009,Christen, 2008].

Experiments in [Kopcke and Rahm, 2010] show that the chosen features enhance

generalization power of the classification model, by reducing over-fitting.

In the case of Paper-records, if the “journal ID” values are null in both records, but

not their “conference ID” values, “journal ID” is not considered for feature compu-

tation, because it does not contribute to the recall or precision of the classifier under

construction. Similarly, when the “conference ID” values are null. However, the val-

ues for “journal ID” and “conference ID” are replaced by “journal full name” and

“conference full name” values that are found in Conference- and Journal-records, resp.

Attributes Title, Year, ConfFullName or JourFullName, and Keyword are chosen for

feature computation.

For feature computation in the case of Author-records, the Name attribute is split in

two, the Fname and Lname attributes, to increase recall and precision of the classifier

under construction. Accordingly, features are computed for attributes Fname, Lname

and Affiliation. 2

Once the classifier has been build, also weight-vectors, w(r1, r2) are computed as

inputs for the classifier, but this time for records from the data under classification

(in D).4

Notice that numerical values, associated to similarities, in a weight-vector w(r1, r2)

for r1, r2 under classification, could be used as similarity information for blocking.

However, the attributes and features used for blocking may be different from those

used for weight-vectors. For example, in our experiments with the MAS dataset, the

classification of Author-records is based on attributes Fname, Lname, and Affiliation.

4In our experiments, we did not care about null values in records under classification. Learning,
inference, and prediction in the presence of missing values are pervasive problems in machine learning
and statistical data analysis. Dealing with missing values is beyond the scope of this work.
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For blocking, the latter is reused as such (cf. MD (7.9) below), but also the combina-

tion of Fname and Lname is reused, as attribute Name in MDs (cf. MDs (7.9) and

(7.11) below).

There is a class of well-known and widely applied similarity functions that are

used in data cleaning and machine learning [Cohen et al., 2003]. For our application

with ERBlox we used three of them, depending on the attribute domains for the MAS

dataset. Long-text-valued attributes, in our case, e.g. for the Affiliation attribute,

their values are represented as lists of strings. For computing similarities between

these kind of attribute values, the “TF-IDF cosine” measure was used [Salton and

Buckley, 1988]. It assigns low weights to frequent strings and high weights to rare

strings. For example, affiliation values usually contain multiple strings, e.g. “Car-

leton University, School of Computer Science”. Among them, some are frequent, e.g.

“School”, and others are rare, e.g. “Carleton”.

For attributes with “short” string values, such as author names, “Jaro-Winkler”

similarity was used [Jaro, 1995,Winkler, 1999]. This measure counts the characters in

common in two strings, even if they are misplaced by a short distance. For example,

this measure gives a high similarity value to the pair of first names “Zeinab” and

“Zienab”. In the MAS dataset, there are many author first names and last names

presenting this kind of misspellings.

For numerical attributes, such as publication year, the “Levenshtein distance”

was used [Navarro, 2001]. The similarity of two numbers is based on the minimum

number of operations required to transform one into the other.

As already mentioned in Section 7.1, these similarity measures are used, but dif-

ferently, for blocking and the creation and application of the classification algorithm.

In the former case, similarity values related to LHSs of blocking-MDs are compared

with user-defined thresholds, in essence, making them boolean variables. In the lat-

ter case, they are used for computing the similarity vectors, which contain numerical

values (in R). Notice that similarity measures are not used beyond the output of the

classification algorithm, in particular, not for MD-based record merging.

Similarity computation for ERBlox is done through LogiQL-rules that define the

similarity functions. In particular, similarity computations are kept in extensions of
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program-defined predicates. For example, if the similarity value for the pair of values,

a1, a2, for attribute Title is above the threshold, a tuple Title-Sim(a1, a2) is created

by the program.

It is worth noting that the datasets used in this work are balanced, meaning there

are approximately the same number of duplicate and non-duplicate record-pairs [Roy

et al., 2013].

7.3 MD-Based Collective Blocking

As described in Section 7.1, the Block attribute, Bl , in records takes integer numerical

values; and before the blocking process starts (or blocking-MDs are enforced), each

record in the instance D has a unique block number that coincides with its rid.

Blocking policies are specified by blocking-MDs, all of which use the same matching

function for identity enforcement, given by:

For i, j ∈ N, with j ≤ i, mBl(i, j) := i. (7.6)

A blocking MD that identifies block numbers (i.e. makes them identical) in two records

(tuples) for database relation R (cf. Figure 7.2) takes the form:

R(x̄1, bl1) ∧ R(x̄2, bl2) ∧ ψ(x̄3) −→ bl1
.
= bl2. (7.7)

Here, bl1, bl2 are variables for block numbers, R is a database predicate (representing

an entity), the lists of variables x̄1, x̄2 stand for all the attributes in R but Bl#, for

which variables bl i are used. The MD in (7.7) is relational when formula ψ in it is

a conjunction of relational atoms plus comparison atoms via similarity predicates;

including implicit equalities of block numbers (but not ≈-similarities between block

numbers). The variables in ψ(x̄3) may appear among those in x̄1, x̄2 (in R) or in

another database predicate or in a similarity atom. We assume that (x̄1∪x̄2)∩x̄3 6= ∅.
(Cf. 6.1 for more details on relational MDs.)

An example is the MD in (7.1), where the leading R1, R2-atoms are Author tuples,

the extra conjunction contains Paper atoms, non-block-similarities, and an implicit

equality of blocks through the shared use of variable bl4. There, ψ is Paper(t3, y
′
1, z1,
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bl4) ∧ y1 ≈ y′1 ∧ Paper(t4, y
′
2, z2, bl4) ∧ y2 ≈ y′2 ∧ x1 ≈ x2 ∧ y1 ≈ y2.

Example 7.3.1 These are some of the blocking-MDs used with the MAS dataset.

The first two are classical blocking-MDs, and the last two are properly relational

blocking-MDs:

Paper(pid1, x1, y1, z1, w1, v1, bl1) ∧ Paper(pid2, x2, y2, z2, w2, v2, bl2) ∧ (7.8)

x1 ≈Title x2 ∧ y1 = y2 ∧ z1 = z2 −→ bl1
.
= bl2.

Author(aid1, x1, y1, bl1) ∧ Author(aid2, x2, y2, bl2) ∧ (7.9)

x1 ≈Name x2 ∧ y1 ≈Aff y2 −→ bl1
.
= bl2.

Paper(pid1, x1, y1, z1, w1, v1, bl1) ∧ Paper(pid2, x2, y2, z2, w2, v2, bl2) ∧ (7.10)

PaperAuthor(pid1, aid1, x
′
1, y
′
1) ∧ PaperAuthor(pid2, aid2, x

′
2, y
′
2) ∧

Author(aid1, x
′
1, y
′
1, bl3) ∧ Author(aid2, x

′
2, y
′
2, bl3) ∧ x1 ≈Title x2

−→ bl1
.
= bl2.

Author(aid1, x1, y1, bl1) ∧ Author(aid2, x2, y2, bl2) ∧ x1 ≈Name x2 ∧ (7.11)

PaperAuthor(pid1, aid1, x1, y1) ∧ PaperAuthor(pid2, aid2, x2, y2) ∧

Paper(pid1, x
′
1, y
′
1, z
′
1, w

′
1, v
′
1, bl3) ∧ Paper(pid2, x

′
2, y
′
2, z
′
2, w

′
2, v
′
2, bl3)

−→ bl1
.
= bl2.

In informal terms, (7.8) requires that, for every two Paper entities p1,p2 for which the

values for attribute Title are similar, and with the same publication year and con-

ference ID, the values for attribute Bl# must be made identical. According to (7.9),

whenever there are similar values for name and affiliation in Author, the corresponding

authors should go into the same block.

The relational blocking-MDs in (7.10) and (7.11) collectively block Paper and Author

entities. According to (7.10), a blocking-MD for Paper, if two authors are in the same

block, their papers p1, p2 having similar titles must be in the same block too. Notice

that if papers p1 and p2 have similar titles, but they do not have same publication
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year or conference ID, we cannot block them together using (7.8) alone. The blocking-

MD (7.11) for Author is similar to that discussed in Example 6.1.2. 2

For the application-dependent set, ΣBl , of blocking-MDs we adopt the chase-based

semantics [Bertossi et al., 2013], which may lead, in general, to several, alternative

final instances. In each of them, every record is assigned to a unique block, but now

records may share block numbers, which is interpreted as belonging to the same block.

In principle, there might be two final instances where the same pair of records is put

in the same block in one of them, but not in the other one. However, with a set of

the relational blocking-MDs of the form (7.7) acting on an initial instance D (created

with LogicBlox as described above), the chase-based enforcement of the MDs results

in a single, final instance, DBl . This is because the combination of the blocking-MDs

with the initial instance D turns out to belong to the blocking class, which has the

UCI property (cf. Section 6.1.1 and 6.2).

That the initial instance and the blocking-MDs form a blocking combination is

easy to see. In fact, initially the block numbers in tuples (or records) are all differ-

ent, they are the same as their tids. Now, the only relevant attributes in records

(for blocking class membership) are “block attributes”, those appearing in RHSs of

blocking-MDs (cf. (7.7)). In the LHSs of blocking-MDs they may appear only in

implicit equality atoms. Since all initial block numbers in D are different, no relevant

equality holds in D.

Due to the UCI property of blocking-MDs in combination with the initial instance,

MD enforcement leads to a single instance that can be computed in polynomial time

in data, which gives us the hope to use a computationally well-behaved extension of

plain Datalog for MD enforcement (and blocking). It turns out that the representation

and enforcement of these MDs can be done by means of Datalog with stratified

negation [Ceri et al., 1989, Abiteboul et al., 1995], which is supported by LogiQL.

Stratified Datalog programs have a unique stable model, which can be computed in

a bottom-up manner in polynomial time in the size of the extensional database.

General sets of MDs are specified and enforced by means of disjunctive, stratified
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answer set programs, with the possibly multiple resolved instances corresponding to

the stable models of the program (cf. Section 5.1). These programs are specialized,

via an automated rewriting mechanism, for the blocking class, obtaining residual

programs in Datalog with stratified negation (cf. Section 6.3).

In LogiQL, blocking-MDs take the form as Datalog rules:

R[X̄1]=Bl2, R[X̄2]=Bl2 ←− R[X̄1] = Bl1, R[X̄2] = Bl2, (7.12)

ψ(X̄3), Bl1 < Bl2,

subject to the same conditions as for (7.7). The condition Bl1 < Bl2 in the rule body

corresponds to the use of the MF mBl in (7.6).

An atom of the form R[X̄]=Bl not only declares Bl as an attribute value for R,

but also that predicate R is functional on X̄ [Aref et al., 2015]: Each record in R can

have only one block number.

In addition to the blocking-MDs, we need some auxiliary rules (cf. Section 6.3),

which we discuss next. Given an initial instance D and a set of blocking-MDs ΣBl ,

the LogiQL-program ΠBl(D) that specifies MD-based collective blocking contains the

following rules:

1. For every atom R(rid , x̄, bl) ∈ D, the fact R[rid , x̄] = bl . That is, initially, the

block number, bl , is functionally assigned the value rid .

2. Facts of the form A-Sim(a1, a2), where a1, a2 ∈ Dom(A), the finite attribute

domain of an attribute A. They state that the two values are similar, which is

determined by similarity computation. (Cf. Section 7.2.2 for more on similarity

computation.)

3. Rules for the blocking-MDs, as in (7.12).

4. Rules specifying older versions of entity records (in relation R) after MD-

enforcement:

R-OldVer(r, x̄, bl1) ←− R[r, x̄] = bl1, R[r, x̄] = bl2, bl1 < bl2.
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Here, variable r stands for the rid. Since for each rid, r, there could be several

atoms of the form R[r, x̄] = bl , corresponding to the evolution of the record

identified by r through an MD-based chase sequence, the rule specifies as old

those versions of the record with a block number that is smaller than the last

one obtained for it.

5. Rules that collect the records’ latest versions, to form blocks:

R-Block [r, x̄] = bl ←− R[r, x̄] = bl , not R-OldVer(r, x̄, bl).

The rule collects R-records that are not old versions.5

Program ΠBl(D) as above is a Datalog program with stratified negation (there

is no recursion through negation). In computational terms, this means that the

program computes old version of records (using negation), and next definitive blocks

are computed. As expected from the UCI property of blocking-MDs in combination

with the initial instance, the program has and computes a single model, in polynomial

time in the size of the initial instance. From it, the final block numbers of records

can be read off.

Example 7.3.2 (ex. 7.3.1 cont.) We consider only blocking-MDs (7.8) and (7.10).

The portion of ΠBl(D) that does the blocking of records for the Paper entity has the

following rules (we follow the numbering used in the generic program):

2. Facts such as:

Title-Sim(“Illness entities in West Africa”, “Illness entities in Africa”).

Title-Sim(“DLR Simulation Environment m3 ”, “DLR Simulation

Environment”).

3. Paper [pid1, x1, y1, z1, w1, v1] = bl2,Paper [pid2, x2, y2, z2, w2, v2] = bl2 ←

Paper [pid1, x1, y1, z1, w1, v1] = bl1,Paper [pid2, x2, y2, z2, w2, v2] = bl2,

Title-Sim(x1, x2), y1 = y2, z1 = z2, bl1 < bl2.

Paper [pid1, x1, y1, z1, w1, v1] = bl2,Paper [pid2, x2, y2, z2, w2, v2] = bl2 ←
5LogiQL, uses “!” instead of not for Datalog negation [Aref et al., 2015].
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Paper [pid1, x1, y1, z1, w1, v1] = bl1,Paper [pid2, x2, y2, z2, w2, v2] = bl2,

Title-Sim(x1, x2),PaperAuthor(pid1, aid1, x
′
1, y
′
1), bl1 < bl2,

PaperAuthor(pid2, aid2, x
′
2, y
′
2),Author [aid1, x

′
1, y
′
1] = bl3,

Author [aid2, x
′
2, y
′
2] = bl3.

4. Paper-OldVer(pid , x, y, z, w, v, bl1) ← Paper [pid , x, y, z, w, v] = bl1,

Paper [pid , x, y, z, w, v] = bl2, bl1 < bl2.

5. Paper-Block [pid , x, y, z, w, v] = bl ← Paper [pid , x, y, z, w, v] = bl ,

not Paper-OldVer(pid , x, y, z, w, v, bl).

By restricting the model of the program to attributes PID and Block# of predicate

Paper-Block , we obtain blocks: {123, 205}, {195, 769}, . . .. That is, the papers with

pids 123 and 205 are blocked together; similarly for those with pids 195 and 769, etc.

2

The execution of the blocking-program ΠBl(D) will return in the end, for each entity-

relation R a list of subsets of the extension of R in D. These subsets are blocks of

R-records. Pairs of records in a same block will be inputs to the classification model,

which has to be independently constructed first.

7.4 Classification Model Construction

Both for the classification model construction and duplicate detection with it, weight-

vectors for record-pairs have to be computed. The numerical values for these vectors

come from features related to similarity comparisons between attribute values for

two records r1, r2. Only a subset of record attributes are chosen, those attributes

that have strong discriminatory power, to achieve maximum classification recall and

precision (cf. Section 7.2.2).

Different ML techniques can be used for the classification model. We used the

established classification algorithm support vector machines (SVM). This algorithm

works well on small datasets with high dimensional feature vectors [Vapnik, 2009].
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Data in MAS, DBLP and Cora used in this work have the mentioned property. Ad-

ditionally, SVM delivers a unique solution, in contrast to some ML algorithms which

have multiple solutions, e.g. classification with neural networks [Zhang, 2000].

As Figure 7.6 shows, in our case we need to classify pairs of records, that is our

weight vectors are record-pairs of the form e = 〈r1, r2〉. If h(e) = 1, the SVM classifier

returns as output 〈r1, r2, 1〉, meaning that the two records are duplicates (of each

other). Otherwise, it returns 〈r1, r2, 0〉, meaning that the records are non-duplicates

(of each other).

( d li t )
H

< r1, r2, 1>
< r r 0>

(r1 r2 duplicates)

< r3, r4, 0>

(r3 r4 not duplicates)

Figure 7.6: SVM classification hyperplane

The input to the SVM algorithm (that will produce the classification model) is

a set of tuples of the form 〈r1, r2, w(r1, r2), L〉, where r1, r2 are records (for the

same entity) in the training dataset T , L ∈ {0, 1}, and w(r1, r2) is the computed

weight-vector for the record-pair. In the LogiQL program, that input uses two defined

predicates. Predicate TrainLabel has two arguments: One for pairs of rids, r1r2,

together, which is called “the vector id” for vector w(r1, r2) = 〈w1, . . . , wn〉, and

another to represents label L associated to w(r1, r2). Predicate TrainVector contains

one argument for vector ids, and n arguments to represent entries wi in the weight-

vectors w(r1, r2).

Several ML techniques are accessible from (or within) the LogicBlox platform,

through the BloxMLPack library that provides a generic Datalog interface. Then,

ERBlox can call a SVM-based classification model constructor, through the general

LogiQL program.

In particular, the BloxMLPack wraps calls to the machine learning library in a

predicate-to-predicate mapping called mlpack, and manages marshalling the inputs

and outputs to the machine learning library from/to LogiQL predicates. This is done

via special rules in LogiQL that come in two modes: the learning mode (when a model
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is being learned, in our case, a SVM classification model), and the evaluation mode

(when the model is applied, for record-pair classification in our case) [LOGICBLOX,

2012, Aref et al., 2015]. We do not give here the formal syntax and semantics for

these rules, but just the gist by means of an example.

Assume that we want to train a SVM-model for Author-record classification. For

invoking SVM from LogiQL, a relation InputMatrix [j, i] is needed. It contains tab-

ular data where each column (j) represents a feature of Author-records, while each

row i represents a vector id for which the tuple TrainVector(i, w1, w2, w3) exists. So,

InputMatrix [j, i] represents the value of the feature j in the weight-vector i. The

following rules are used in LogiQl to populate relation InputMatrix : (They involve

predicates Feature(“Fname”), Feature(“Lname”), and Feature(“Affiliation”), associ-

ated to the three chosen attributes for Author-records. They appear in quotes, because

they are constants, i.e. attribute names.)

InputMatrix[“Fname”, i] = w1, InputMatrix[“Lname”, i] = w2,

InputMatrix[“Affiliation”, i] = w3 ←− TrainVector(i, w1, w2, w3),

Feature(“Fname”), Feature(“Lname”), Feature(“Affiliation”).

The following learning rule learns a SVM model for Author, and stores the resulting

model in the predicate SVMsModel(model):

SVMsModel(m) ←− mlpack � m = SVM (p̄), train � InputMatrix [j, i] = v,

Feature(j),TrainLabel(i, l).

Here, the head of the rule defines a predicate where the ML algorithm outputs its

results, while the body of the rule lists a collection of predicates that supplies data

for the ML algorithm. In the above rule, the required parameters p̄ for running the

SVM algorithm are specified by the user. The above rule is in the training mode.
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7.5 Duplicate Detection and MD-Based Merging

The input to the trained classifier is a set of tuples of the form 〈r1, r2, w(r1, r2)〉,
where r1, r2 are record (ids) in a same block for a relation R, and w(r1, r2) is the

weight-vector for the record-pair 〈r1, r2〉. The output is a set of triples of the form

〈r1, r2, 1〉 or 〈r1, r2, 0〉.

Using LogiQL rules, the triples 〈r1, r2, 1〉 form the extension of a defined predicate

R-Duplicate.

Example 7.5.1 (ex. 7.2.1 and 7.3.2 cont.) Considering the previous Paper-records,

the input to the trained classifier consists of: 〈123, 205, w(123, 205)〉, with w(123, 205) =

[0.8, 1.0, 1.0, 0.7]; and 〈195, 769, w(195, 769)〉, with w(195, 769) = [0.93, 1.0, 1.0, 0.5].

In this case, the SVM-based classifier returns 〈[0.8, 1.0, 1.0, 0.7], 1〉 and 〈[0.93, 1.0,

1.0, 0.5], 1〉. Accordingly, the tuples Paper -Duplicate(123, 205) and Paper -Duplicate

(195, 769) are created. 2

The extensions of predicates R-Duplicate will be the input to the merging process.

Record merging is carried out through the enforcement of merge-MDs, as described

in Section 7.1, where we showed that they form an interaction-free set. Consequently,

there is a single instance resulting from their enforcement.

The merge-MDs use application-dependent matching functions (MFs). The generic

merge-MDs in (7.2) can be expressed in their Datalog versions by means of the above

mentioned R-Duplicate predicates. The RHSs of MDs in (7.2) have to be expressed

in terms of MFs, mAi
. All these become ingredients of a Datalog merge-program

ΠM . Actually, the general cleaning programs for general sets of MDs in Section 5.1

are specialized to the case of interaction-free MDs, obtaining residual programs in

Datalog with stratified negation in Section 6.3. Therefore, the representation and

enforcement of merge-MDs in ΠM can be done by means of LogiQL.

Example 7.5.2 (ex. 7.2.1 cont.) Duplicate Paper-records are merged by enforcing

the merge-MD:
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Paper [pid1] ≈ Paper [pid2] −→ Paper [Title,Year ,CID ,Keyword ]
.
=

Paper [Title, Year ,CID , Keyword ]. 2

The general LogiQL program, ΠM , for MD-based merging contains rules as in

1.-4. below (cf. Section 6.3 for more details):

1. The ground atoms of the form R-Duplicate(r1, r2) mentioned above, and those

representing MFs, of the form mA(a1, a2) = a3.

2. For an MD R[r1] ≈ R[r2] −→ R[r̄1]
.
= R[r̄2], the rules:

R(r1, x̄3), R(r2, x̄3) ←− R-Duplicate(r1, r2), R(r1, x̄1), R(r2, x̄2),

m(x̄1, x̄2) = x̄3,

where x̄1, x̄2, x̄3 stand for all attributes of relation R, except for the rid and the

block number (block numbers play no role in merging). m(x̄1, x̄2) = x̄3 is just

a shorthand to denote the componentwise application of m individual MFs mAi

(cf. (7.2)).

At the end of the iterative application of these rules, there may be several tuples

with different rids but identical “tails”. Only one of those tuples is is kept in

the resolved instance.

3. As for the blocking-program ΠBl(D) of Section 7.3, we need rules specifying the

old versions of a record:

R-OldVer(r1, x̄1) ←− R(r1, x̄1), R(r1, x̄2), x̄1 ≺ x̄2,

where x̄1 stands for all attributes other than rid and the block number; and

x̄1 ≺ x̄2 means componentwise comparison of values according to the partial

orders defined by the MFs. (Recall from Section 2.2, that each application of

an MF makes us grow in the information lattice: the highest values are the

newest values.)
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4. Finally, we introduce rules to collect, in a new predicate R-ER, the latest version

of each record, to build the final resolved instance:

R-ER(r, x̄) ← R(r, x̄), not R-OldVer(r, x̄).

This is a stratified Datalog program that computes a single resolved instance in

polynomial time in the size of the extensional database, (cf. Section 6.3), in this case

formed by the contents of relations R-Duplicate and D.

In our application to bibliographic datasets, we used as matching functions “the

union case” [Benjelloun et al., 2009], which was investigated in detail in [Bertossi et al.,

2013] in terms of MDs. The idea is to treat attribute values as objects, i.e. sets of pairs

attribute/value. For example, the address “250 Hamilton Str., Peterbrook, K2J5G3”

could be represented as the set {〈number, 250〉, 〈stName,Hamilton Str .〉, 〈city,Peter

brook〉, 〈areaCode,K2J5G3 〉}. When two values of this kind are merged, their union is

computed. For example, the two strings “250 Hamilton Str., K2J5G3” and “Hamil-

ton Str., Peterbook”, represented as objects, are merged into “250 Hamilton Str.,

Peterbook, K2J5G3” [Bertossi et al., 2013]. This generic merge function has the

advantage that information is preserved. It also works fine when two values com-

plete each other. In the case of two alternative values, the two versions will be kept

in the union. This may require some sort of domain-dependent postprocessing, es-

sentially making choices and possibly edits. In any case, working with the union

case for matching dependencies is good enough for our purposes, namely to compare

traditional techniques with ours.

We point out that MD-based merging takes care of “transitive cases” produced by

the classifier. More precisely, if it returns 〈r1, r2, 1〉 and 〈r2, r3, 1〉, but not 〈r1, r3, 1〉,
we still merge r1, r3 (even when r1 ≈ r3 does not hold). Indeed, if MD-enforcement

first merges r1, r2 into the same record, the similarity between r2 and r3 still holds

(it was pre-computed and stored, and not destroyed by the updating of attributes

values of r2). Then, the merge-MD will be applied to r3 and the new version of r2.

Iteratively, r1, r2, r3 will end up having the same attribute values (except for the rid).6

6There is certain similarity with the argument around the blocking case of MDs in Section 7.3.
This is not a coincidence: interaction-free MDs form a case of blocking, for any initial instance.
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There might be applications where we do not want this form of full entity resolution

triggered by transitivity. If that is the case, we could use semantic constraints on the

ER result (or process). Actually, negative rules have been proposed in [Whang et al.,

2009a], and discussed in Section 5.4.2 in the context of general answer set programs

for MD-based ER. However, the introduction of constraints into Datalog changes the

entire picture. Under a common approach, if the intended model of the program

does not satisfy the constraint, it is rejected. This is not particularly appealing from

the application point of view. An alternative is to transform constraints into non-

stratified program rules, which would take us in general to the realm of ASPs [Brewka

et al., 2011]. In any case, developing this case in full is outside the scope of this work.

7.6 Experimental Results

In comparison with standard blocking (SB) techniques, our experiments with the MAS

dataset show that our approach to ER, in particular, through the use of semantically

rich matching dependencies for blocking result in lower reduction ratio for blocking,

and higher recall and precision for classification. These are positive results that

can also be observed in the experimental results with the DBLP and Cora Citation

datasets. Cf. Figures 7.7, 7.9, and 7.10 (more details follow below).

Figure 7.7: The experiments (MAS)

We considered three different blocking techniques, shown, respectively, in the sets

of columns in Figure 7.7: (a) Standard Blocking (SB), (b) MD-based Standard Block-

ing (MDSB), and (c) MD-based Collective Blocking (MDCB), which we now describe:
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(a) According to SB, records are clustered into a same block when they share the

identical values for blocking keys [Jaro, 1989].

(b) MDSB generalizes standard blocking through the use of blocking-MDs that con-

sider on the LHS exactly the same attributes (actually, keys) as in SB. However,

for some of the attributes, equality is replaced by similarity, adding more flexi-

bility and the possibility of increasing the number of two-record comparisons.

For example, the following could be an MD directly representing a blocking-key

rule:

Author(aid1, x1, y1, bl1) ∧ Author(aid2, x2, y2, bl2) ∧ x1 = x2 ∧

y1 = y2 −→ bl1
.
= bl2;

and the following could be a relaxed version of it, a single-relation MD where

instead of equalities we now have similarities:

Author(aid1, x1, y1, bl1) ∧ Author(aid2, x2, y2, bl2) ∧ x1 ≈Name x2 ∧

y1 ≈Aff y2 −→ bl1
.
= bl2.

In this case we had as many MDs as blocking keys in SB, and they are each,

single entity, such as (7.8) and (7.9) in Example 7.3.1).

(c) MDCB uses, in addition to single-entity blocking-MDs, also multi-relational

MDs, such as (7.10) and (7.11) in Example 7.3.1. In this case, the set of MDs

contains all those in MDSB plus properly multi-relational ones.

Reduction ratio refers to the record-blocking task of ER, and is defined by 1− S
N

,

where S is the number of candidate duplicate record-pairs produced by the blocking

technique, and N is the total number of possible candidate duplicate record-pairs in

the entire dataset. If there are n records for an entity, then N = n×n for that entity.

Reduction ratio is the relative reduction in the number of candidate duplicate

record-pairs to be compared. The higher the reduction ratio, the fewer the candidate
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record-pairs that are generated, but the quality of the generated candidate record-

pairs is not considered [Christen, 2011].

That the reduction ratio decreases from left to right in Figure 7.7 shows that the

use of blocking-MDs increasingly captures more potential record-pairs comparisons

that would be missed otherwise.

Recall, precision and F-measure refer to the result of the next task, that of clas-

sification [Christen, 2011]. Recall (R) is defined by TP/(TP + FN), where TP and

FN stand for true positives and false negatives, resp. Higher recall means that more

true candidate duplicate record-pairs have been actually found. Now, with precision

(P) defined by TP/ (TP + FP), where FP stands for flase positives, higher precision

means more of the retrieved candidate duplicate record-pairs are actually true (cf.

Figure 7.8).

The F-measure, commonly used in information retrieval [Manning and Schutze,

2008], measures accuracy using precision and recall. It is given by (2 × P × R)/

(P + R). The F-measure wights recall and precision equally. F-measure tells how

many candidate duplicate record-pairs the classifier finds correctly, as well as how

robust it is (it does not miss a significant number of candidate duplicates).

true positives+       +

+

- -

- -

+ 
+

+ 
+

- -
- -

- -

-

true positives

false negatives

false positives

true negatives

precision  =  true positives / (true positives + false positives)

recall  =  true positives / (true positives + false negatives)
Figure 7.8: Precision and recall

If we want high recall and precision, then, as Figure 7.8 shows, we prefer a blocking

technique that generates a small number of candidates for false positives and false

negatives.

Our experiments focused mainly on the recall, precision and F-measure of the

overall results after classification (and before merging). They indirectly allow for

the evaluation of the blocking techniques, as well. Actually, recall measures the ef-

fectiveness a blocking technique through non-dismissal of true candidate duplicate
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record-pairs. Similarly, a high precision reflects that the blocking technique gener-

ates mostly true candidate duplicate record-pairs. Inversely, a low precision shows

a large number of non-duplicate record-pairs are also considered, through blocking,

as candidate duplicate record-pairs. We can see that it becomes crucial to verify

that filtering out record-pairs by a particular blocking technique does not affect the

quality of the results obtained after classification.

All the above mentioned measures were computed by training than test method-

ology, on the basis of the training data. Approximately 70% of the training data was

used for training, and the other 30%, for testing.

The SVM parameters have to be tuned to find the optimal separating hyperplane.

For example, we have to find C parameter in SVM algorithm which is the degree of

correct classification that the algorithm has to meet. The parameters selection affects

the results of the classifier. The most common and reliable approach to parameter

selection is to do an exhaustive grid search over the parameter space to find the best

setting. Multiple rounds of the experiments were performed to keep track of the

precision, recall and F-measure while tuning parameters in SVM. At the end, the

experiments with the best measures are picked.

The MAS dataset includes 250K authors, 2.5M papers, and a training set. For the

authors dataset, the training and test sets contain 3,739 and 2,244 cases (author ids),

respectively. Figures 7.7, 7.9 and 7.10 show the comparative performances of ERBlox

with the three forms of blocking mentioned above, for three different datasets. In all

cases, the same SVM technique was applied.

Figure 7.9: The experiments (DBLP)
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Figure 7.10: The experiments (Cora)

In our concrete application domain, standard blocking based on key-equalities of

Paper-records of the MAS dataset used attributes Title, Publication Year, and Con-

ference ID, together, as one blocking key. The MD-version of this key, for MD-based

standard blocking and MD-based collective blocking, is the MD (7.8) in Example

7.3.1. According to it, if two records have similar titles, with the same publication

year and conference ID, they have the same block numbers. Deciding which attribute

equalities become similarities is domain-dependent.

Standard blocking based on key-equalities has higher reduction ratio than MD-

based standard blocking, i.e. the former generates fewer candidate duplicate record-

pairs. Standard blocking also leads to higher precision than MD-based standard

blocking, i.e. we can trust more candidate duplicate record-pairs judgements obtained

via standard blocking. However, this standard blocking is very conservative, and has

a very low rate of recall, i.e. many of the true candidate duplicate record-pairs are

not identified as such. All this makes sense since with standard blocking based on

keys we only consider equalities of blocking keys, not similarities.

Precision, recall and F-measure of MD-based collective blocking are higher than

those for the two standard blocking techniques. This emphasizes the importance of

MDs that supporting collective blocking, and shows that blocking based on string

similarity alone fails to capture the semantic interrelationships that naturally hold

in the data. On the other side, MD-based collective blocking has lower reduction

ratio than standard MD-based blocking, which may lead to better ER results, but

may impact computational cost: larger blocks may be produced, and then, more
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candidate duplicate record-pairs become inputs for the classifier. In blocking, this is

a common tradeoff that needs to be considered [Christen, 2011].

Overall, the quality of MD-based collective blocking dominates standard blocking,

both in its key-based and MD-based forms, for the three datasets.

It may be interesting to also compare the MD-based collective blocking against

the case where no blocking techniques are applied on records before the classification.

However, our goal was to compare MD-based collective blocking with the standard

blocking techniques used in literature to conclude that blocking records with addi-

tional semantic knowledge, captured by MDs, leads to better result.

7.7 Conclusions

In this chapter, we have shown that matching dependencies, a new class of semantic

constraints for data quality and cleaning, can be profitably integrated with traditional

ML-methods, in our case for developing classification models for entity resolution.

These dependencies play a role not only in their intended goal, that of merging dupli-

cate representations, but also in the record-blocking process that precedes the proper

learning task. At that stage they declaratively capture semantic information that can

be used to enrich the blocking activity.

The results presented in this chapter have been published in [Bahmani et al.,

2015], and in a slightly extended version have been submitted in [Bahmani et al.,

2016].



Chapter 8

Related Work

8.1 Related Work

An unsupervised clustering-based approach to collective deduplication is proposed in

[Bhattacharya and Getoor, 2007]. While traditional deduplication techniques assume

that only similarities between attribute values are available, in relational data the

entities are assumed to have additional relational information that can be used to

improve the deduplication process. This approach falls in the context of relational

learning [Getoor and Taskar, 2007]. More precisely, in [Bhattacharya and Getoor,

2007], a relationship graph is built whose nodes are the entities (records), and edges

indicate entities which co-occur. The graph supports the propagation of similarity

information to related entities. In particular, the similarity between two nodes is

calculated as the weighted sum of the attribute-value similarity and their relational

similarity (as captured through the graph). Experimental results [Bhattacharya and

Getoor, 2007] show that this form of collective deduplication outperforms traditional

deduplication.

The approach to ER in [Bhattacharya and Getoor, 2007] could be seen as implicitly

involving collective blocking, where relationships between entities and similarities

between attribute values are used to create the blocks of records. However, this form of

collective blocking does not take advantage of a declarative, logic-based semantics. In

contrast, a relationship graph is used for collective deduplication. In our case, semantic

information for this task is captured by matching dependencies. Most importantly,

the main focus of our approach to ER is MD-based collective blocking. For this reason,

our experiments compare this approach with other blocking techniques. A comparison

of our whole approach to ER with other (whole) collective approaches to ER, such as

that in [Bhattacharya and Getoor, 2007] has to be left for future research. However,

the results of such a comparison may not be very eloquent, because our approach is
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based on crucial intermediate techniques, such as the use of SVM for the classification

task, which is somehow orthogonal to the blocking approach.

Dedupalog, a declarative approach to collective entity deduplication in the pres-

ence of constraints, is proposed in [Arasu et al., 2009]. Constraints are represented by

a form of Datalog language. The focus of this work is unsupervised clustering, where

constraints are an additional element. Clusters of records make their elements candi-

dates for merging, but blocking per se or the actual merging are not main objectives.

However, this kind of clustering could be interpreted as a form of blocking. The ad-

ditional use of constraints could be seen as a form of collective clustering. In [Arasu

et al., 2009], equality-generating dependencies were used as hard constraints, and

clustering-rules as weak constraints.

The success of duplicate detection methods based on supervised machine learning

techniques critically depends on being able to provide a set of training pairs, such

that the set is representative for the objects to be matched and exhibits the variety

and distribution of errors observed in practice [Kopcke and Rahm, 2010]. This is non-

trivial because it requires manually searching for various data inconsistencies between

any two records spread apart in large data.

A learning-based deduplication system has been proposed in [Sarawagi and Bhamidi-

paty, 2002] that uses a novel method of interactively discovering suitable training pairs

using active learning. Active learning is defined by contrast to the passive model of

supervised learning where all the labels for learning are obtained without reference

to the learning algorithm. In active learning, the learner interactively chooses which

data points to label. The aim of active learning is that interaction can substantially

reduce the number of labels required, making solving problems via machine learning

more practical.

Our approach can also be seen as a form of relational learning. However, in our

case, the semantic relational information (constraints) are, in some sense, implicitly

captured through matching dependencies. Their semantics is non-classical (it is chase-

based as seen in Section 2.2), and involves directly the blocking or merging processes,

as opposed to having higher-level logical constraints “compiled” into them. In our

case, the proper learning part of the process, i.e. classification-model learning via
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SVM, is supervised,1 but it does not use any kind of additional relational knowledge.

In this regard, it is worth pointing out to quite recent research proposing supervised

ML-techniques for classification that involve semantic knowledge in the form of logical

formulas in kernels for kernel-based methods (such as SVM) [Diligenti et al., 2012].

Various blocking techniques have been proposed, investigated and applied. See

[Baxter et al., 2003,Christen, 2011,Draisbach and Naumann, 2009,Papadakis et al.,

2016b, Steorts et al., 2014] for comprehensive surveys and comparative studies. To

the best of our knowledge, existing approaches to blocking are inflexible and limited

in that they: (a) allow blocking on only single entity types, in isolation from other

entity types, or (b) do not take advantage of valuable domain or semantic knowledge.

Possible exceptions are [Nin et al., 2007, Rastogi et al., 2011]. Collective blocking

in [Nin et al., 2007] disregards blocking keys and creates blocks by considering ex-

clusively the relationships between entities. The relationships correspond to links

in a graph connecting entities, and blocks are formed by grouping together entities

within neighborhoods with a predefined (path) “diameter”. Under this approach, in

contrast with ours (cf. Example 1.6.1), relationships are not declarative, and blocking

decisions on one entity do not have a direct, explicit impact on blocking decisions to

be made on another related entity.

In [Rastogi et al., 2011], similarity of blocking keys and relational relationships

are considered for blocking in the context of identification of duplicates (not the

merging). However, the semantics of relational relationships (or closeness) between

blocking keys and entities is not fully developed.

1We refer to [Kopcke and Rahm, 2010] for a discussion on supervised vs. unsupervised approaches.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

There is a lack of fundamental research in data cleaning. We are contributing to fill

that vacuum by investigating the logical foundations of some data cleaning activities,

in the case of this thesis, of entity resolution based on MDs, a new class of semantic

constraints for data quality and cleaning. The semantics of this process, considering

matching functions, has been given in terms of intended instances, those that appear

after all the MDs have been enforced, through a chase-like procedure in [Bertossi et

al., 2013].

In this thesis, we have proposed a general methodology for specifying, by means

of logic programs with stable model semantics, the intended clean instances of a dirty

instance subject to MDs. The programs provide compact specifications of the classes

of clean instances, as their stable models. This approach enables reasoning and clean

query answering on top of the virtual results of ER. We have analyzed the programs,

obtaining additional complexity results for resolved query answering, query rewriting

techniques, and optimizations.

Since clean query answering in the presence of MDs is based on the underlying

lattices, the notion of certain answer is not purely set-theoretic. As a consequence,

skeptical reasoning from logic programs, which is suitable for a set-theoretic defini-

tion of certain answer, had to be adapted for our purposes. In this thesis, we have

presented and studied a couple of alternatives. This is an interesting direction that

deserves further investigation.

In this work we have provided a fully declarative version of Swoosh’s union

case [Benjelloun et al., 2009]. It uses some extensions with sets and functional terms

of the logic programming paradigm. We have experimented with this approach and

the DLV-Complex system [Calimeri et al., 2009] that supports such extensions. The
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Swoosh approach to ER has been extended with negative rules [Whang et al., 2009a].

We have extended our ASP reconstruction of the Swoosh’s union case approach to

include them too. This sometimes requires calls/access to external experts. In our

approach they will be simulated as a separate program or as calls to external predi-

cates [Eiter et al., 2005].

In this thesis, we have shown that MDs can be extended to capture additional

semantic knowledge, which is important in applications, in particular, to machine

learning.

Computing with MDs has a relatively high data complexity [Bertossi et al., 2013].

In this thesis we have identified a new class of MDs and initial instances, called

blocking, that has good properties in terms of the number of models (a single one, in

our case), and computable in polynomial time.

Furthermore, we have presented a uniform methodology to specialize the proposed

declarative specification for ER via MDs to obtain residual programs for enforcing

the MDs in classes with the unique clean property, containing the three well-behaved

cases of MDs with similarity preserving MFs, interaction-free MDs and blocking com-

binations of MDs and initial instances, which leads to single stable instances. As a

result, the residual programs belong to computationally well-behaved extension of

plain Datalog.

In this thesis, we have shown that MDs can be profitably integrated with tra-

ditional machine learning methods, in our case for developing classification models

for entity resolution. These dependencies play a role not only in their intended goal,

that of merging duplicate representations, but also in the record-blocking process that

precedes the proper learning task. At that stage they declaratively capture semantic

information that can be used to enrich the blocking activity.

MDs declaration and enforcement, data cleaning in general, and machine learning

can all be integrated using the LogiQL language. Actually, all the data extraction,

movement and transformation tasks are carried out via LogicQL, a form of extended

Datalog supported by the LogicBlox platform.

In this regards it is interesting to mention that Datalog has been around since the

early 80s, as a declarative and executable rule-based language for relational databases.
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• Datalog enables declarative and executable specifications

of data-related domains

An extension of relational algebra/calculus/databases
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• LogicQL is being extended with interaction with optimization
and machine learning packages and systems!

Figure 9.1: LogicQL and extended LogicBlox

It was used mostly in DB research, until recently. In the last few years Datalog has

experienced a revival, and many new applications have been found.

LogicQL, in particular, is being extended in such a way it can smoothly interact

with optimization and machine learning algorithms, on top of a single platform. Data

for optimization and ML problems stored as “extensions” for a relational database

(that is a component of LogicBlox), and Datalog predicates. The results of those algo-

rithms can be automatically stored in existing database predicates or or newly defined

Datalog predicates, for additional computations or query answering. Currently new

ML methods are being implemented as components of the LogicBlox system (cf.

Figure 9.1).

9.2 Future Work

In this section we point to and present some ideas for interesting extensions to our

work.

9.2.1 Optimization of Query Answering via Cleaning Programs

The MF-induced lattice structure on attribute domains [Bertossi et al., 2013] com-

plicates clean query answering via ASP for MD-based ER. We have provided some
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first ideas and techniques on how to do clean query answering using the cleaning pro-

gram in Section 5.2, but they incur in possibly avoidable overhead. The complication

resides in the above mentioned lattice-theoretic structure (and minimality) vs. the

set-theoretic minimality of ASP models. A more satisfactory solution should come

from a deeper investigation of the interaction between these two forms of minimality.

9.2.2 MDs and Database Repairs

The combination and interaction of database repairs, as found in CQA [Bertossi,

2011], and matching dependencies has been initially investigated in [Fan et al., 2011].

The cleaning programs we have presented could be combined with repair programs,

which are disjunctive programs with stable model semantics that specify -as stable

models- the repairs of a database that fails to satisfy a given set of ICs [Arenas et al.,

2003,Barcelo et al., 2003,Greco et al., 2003,Caniupan and Bertossi, 2010].

Repair policies, e.g., changes of attribute values and tuple deletions, can also

be expressed via repair programs. Repair and cleaning programs could interact in

different ways, as it is described in Section 3.5.

We should emphasize that data cleaning and CQA are different problems. For the

former, the main goal is to compute a clean instance, as determined by MDs. For the

latter, the main goal is obtaining semantically correct query answers. Furthermore,

MDs are not (static) ICs. In principle, we could see clean instances as repairs, treating

MDs similarly to static FDs. However, none of the existing repair semantics captures

the matchings based on MDs with MFs.

9.2.3 ER and Virtual Data Integration

Doing entity resolution on a virtual data integration system is a challenging problem.

A user may not have access to the data sources, and the matchings can be applied

only on-the-fly, at query answering time. Something similar happens with violations

of global ICs and database repairs.

Actually, this idea was developed in [Bravo and Bertossi,2003], as follows. First,

leaving the ICs aside, the legal, intended global instances of a virtual data integration

system [Lenzerini, 2002] can be specified as the stable models of an ASP. On top of
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it, a repair program, fully combined with the former into a single program, computes

the repairs of the global instances. In this way, the consistent answers from the

integration system can be computed.

A similar approach could be attempted with ER via global MDs. The cleaning

program can be combined with the ASP that specifies the legal instances of the

integration system.

9.2.4 ER in Data Exchange

Data exchange is about materializing a target instance using data from a source in-

stance. The source and target instances are related by source-to-target (st) logical

mappings that are tuple generating dependencies. Participation of MDs in the data

exchange process is worth investigating. More precisely, we may have st-MDs, and

possibly target MDs. The former are particularly interesting because the entity res-

olution process is expected to be applied at data transportation time (much in the

spirit of ETL), as opposed to ER applied after a classic data exchange process is

applied. This requires producing the model for data exchange under MDs. The in-

teraction of MDs and ICs (or ER and repairs) has been investigated in [Fan et al.,

2011], but that is not a data exchange setting.

9.2.5 Improving MD-based Collective Blocking

A most interesting extension to MD-based collective blocking would consider the use

of more expressive blocking-MDs than those of the form 7.7. Actually, they could

have in their RHSs attributes other than Bl#, the block attributes. As a consequence,

blocking-MDs, together with making block numbers identical, would make identical

pairs of application-dependent values for some other attributes. Doing this would

refine the blocking process itself (modifying the data for the next applications of

blocking-MDs), but would also prepare the data for the next task in ERblox system,

that of classification for entity resolution.
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Appendix A

DLV Codes

Example A.0.1 (ex. 5.1.1 cont.) The DLV codes are:

%Extensional database

r(t1,a1,b1).

r(t2,a2,b2).

r(t3,a3,b3).

%Domain of database

dom(a1). dom(a2). dom(a3). dom(b1).

dom(b2). dom(b3). dom(b12). dom(b23).

dom(b123).

%Existing similarities

att(a1,a2). att(b2,b3).

%Matching functions

ma(b1,b2,b12). ma(b2,b3,b23).

ma(b1,b23,b123).

%Rules related to match functions and similarity relations

attmatch(X,Y) :- attmatch(Y,X).

ma(Y,X,Z) :- ma(X,Y,Z).

attmatch(X,X) :- dom(X).

ma(X,X,X) :- dom(X).

ma(X,S,V) :- ma(X,Y,Z), ma(W,Z,V), ma(Y,W,S).

ma(Z,W,V) :- ma(Y,W,S), ma(X,S,V), ma(X,Y,Z).
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%Rules for obtaining clean solutions

match(T1,X1,Y1,T2,X2,Y2) v notmatch(T1,X1,Y1,T2,X2,Y2) :-

r(T1,X1,Y1), r(T2,X2,Y2), att(X1,X2), Y1!=Y2, T1!=T2.

:- notmatch(T1,X1,Y1,T2,X2,Y2), not old(T1,X1,Y1), not old(T2,X2,Y2).

old(T1,X1,Y1):- r(T1,X1,Y1), r(T1,X1,Y2), ma(Y1,Y2,Y2), Y2!=Y1.

match(T2,X2,Y2,T1,X1,Y1) :- match(T1,X1,Y1,T2,X2,Y2).

r(T1,X1,Y3) :- match(T1,X1,Y1,T2,X2,Y2), ma(Y1,Y2,Y3).

match(T1,X1,Y1,T2,X2,Y2) v notmatch(T1,X1,Y1,T2,X2,Y2) :-

r(T1,X1,Y1), r(T2,X2,Y2), att(Y1,Y2), Y1!=Y2,T1!=T2.

:- notmatch(T1,X1,Y1,T2,X2,Y2), not old(T1,X1,Y1), not old(T2,X2,Y2).

old(T1,X1,Y1) :- r(T1,X1,Y1), r(T1,X1,Y2), ma(Y1,Y2,Y2), Y2!=Y1.

prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y3,T4,X4,Y4) :- match(T1,X1,Y1,T2,X2,Y2),

match(T1,X1,Y3,T4,X4,Y4), ma(Y1,Y3,Y3), Y3!=Y1.

prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y1,T4,X4,Y4) :- match(T1,X1,Y1,T2,X2,Y2),

match(T1,X1,Y1,T4,X4,Y4), ma(Y1,Y4,Y3),Y1!=Y3.

prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y1,T2,X2,Y2) :- match(T1,X1,Y1,T2,X2,Y2).

:- prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y3,T4,X4,Y4),
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prec(T1,X1,Y3,T4,X4,Y4,T1,X1,Y1,T2,X2,Y2), Y1 !=Y3.

:- prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y3,T4,X4,Y4),

prec(T1,X1,Y3,T4,X4,Y4,T1,X1,Y1,T2,X2,Y2), T2!=T4.

:- prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y3,T4,X4,Y4),

prec(T1,X1,Y3,T4,X4,Y4,T1,X1,Y1,T2,X2,Y2), X2 != X4.

:- prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y3,T4,X4,Y4),

prec(T1,X1,Y3,T4,X4,Y4,T1,X1,Y1,T2,X2,Y2), Y2 !=Y4.

:- prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y3,T4,X4,Y4),

prec(T1,X1,Y3,T4,X4,Y4,T1,X1,Y5,T6,X6,Y6),

not prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y5,T6,X6,Y6).

match(T2,X2,Y2,T1,X1,Y1) :- match(T1,X1,Y1,T2,X2,Y2).

r(T1,X1,Y3) :- match(T1,X1,Y1,T2,X2,Y2), ma(Y1,Y2,Y3).

match(T1,X1,Y1,T2,X2,Y2) v notmatch(T1,X1,Y1,T2,X2,Y2) :-

r(T1,X1,Y1), r(T2,X2,Y2), att(Y1,Y2), Y1!=Y2,T1!=T2.

:- notmatch(T1,X1,Y1,T2,X2,Y2), not old(T1,X1,Y1), not old(T2,X2,Y2).

old(T1,X1,Y1) :- r(T1,X1,Y1), r(T1,X1,Y2), ma(Y1,Y2,Y2), Y2!=Y1.

prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y3,T4,X4,Y4) :- match(T1,X1,Y1,T2,X2,Y2),

match(T1,X1,Y3,T4,X4,Y4), ma(Y1,Y3,Y3), Y3!=Y1.

:- prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y3,T4,X4,Y4),

prec(T1,X1,Y3,T4,X4,Y4,T1,X1,Y1,T2,X2,Y2), Y2 !=Y4.
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:- prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y3,T4,X4,Y4),

prec(T1,X1,Y3,T4,X4,Y4,T1,X1,Y5,T6,X6,Y6),

not prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y5,T6,X6,Y6).

match(T2,X2,Y2,T1,X1,Y1) :- match(T1,X1,Y1,T2,X2,Y2).

rc(T1,X1,Y1) :- r(T1,X1,Y1), not old(T1,X1,Y1).

2

Example A.0.2 (ex. 5.4.1 cont.) Since in this example we exploit built-in predi-

cates and functions from library of the system, the logic program must contain, in

the preamble, a line that tells the system to include the library itself. Other used

predicates have the same meanings as mentioned before in the example.

#include<ListAndSet>

%Extensional database

r({a1},{b1}). r({a2},{b2}). r({a3},{b3}).

%Existing similarities

match(a1,a2). match(a2,a3). match(a3,a2). match(a2,a1).

%Rules for obtaining resolution instance

r(As3,Bs3) :- #union(As1,As2,As3), #union(Bs1,Bs2,Bs3), r(As1,Bs1),

r(As2,Bs2), #member(S1,As1), #member(S2,As2),

match(S1,S2).

r(As3,Bs3) :- #union(As1,As2,As3), #union(Bs1,Bs2,Bs3), r(As1,Bs1),

r(As2,Bs2), #member(S1,As1), #member(S2,As2),

match(S1,S2).

dominated(As1,Bs1) :- r(As1,Bs1), r(As2,Bs2), #union(As1,As2,As2),

As2!= As1, #union(Bs1,Bs2,Bs2).
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dominated(As1,Bs1) :- r(As1,Bs1), r(As2,Bs2), #union(As1,As2,As2),

Bs2!= Bs1, #union(Bs1,Bs2,Bs2).

er(As1,Bs1) :- r(As1,Bs1), not dominated(As1,Bs1).

2


