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Abstract. Consistent query answering is the problem of computing the
answers from a database that are consistent with respect to certain
integrity constraints that the database as a whole may fail to satisfy.
Those answers are characterized as those that are invariant under mini-
mal forms of restoring the consistency of the database. In this context, we
study the problem of repairing databases by fixing integer numerical val-
ues at the attribute level with respect to denial and aggregate constraints.
We introduce a quantitative definition of database fix, and investigate
the complexity of several problems such as DFP, i.e. the existence of
fixes within a given distance from the original instance, and CQA, i.e.
deciding consistency of answers to aggregate conjunctive queries under
different semantics. We provide sharp complexity bounds, identify rele-
vant tractable cases; and introduce approximation algorithms for some
of those that are intractable. More specifically, we obtain results like
undecidability of existence of fixes for aggregate constraints; MAXSNP-
hardness of DFP, but a good approximation algorithm for a relevant
special case; and intractability but good approximation for CQA for ag-
gregate queries for one database atom denials (plus built-ins).

1 Introduction
Integrity constraints (ICs) are conditions expressed as logical sentences that are
used to impose semantics on a database with the purpose of making the database
an accurate model of an application domain. Database management systems or
application programs enforce the satisfaction of the ICs by rejecting undesirable
updates or executing additional compensating actions. However, there are many
situations where we need to interact with databases that are inconsistent in the
sense that they do not satisfy certain desirable ICs. In this context, an important
problem in database research consists in characterizing and retrieving consistent
data from inconsistent databases [4], in particular consistent answers to queries.
From the logical point of view, as we will see below, consistently answering a
query posed to an inconsistent database amounts to evaluating the truth of a
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formula against a particular class of first-order structures [2], as opposed to the
usual process of truth evaluation in a single structure (the relational database).

Certain database applications, like census, demographic, financial, and ex-
perimental data, contain quantitative data, usually associated to nominal or
qualitative data, e.g. number of children associated to a household identification
code (or address); or measurements associated to a sample identification code.
Usually this kind of data contains errors or mistakes with respect to certain se-
mantic constraints. For example, a census form for a particular household may
be considered incorrect if the number of children exceeds 20; or if the age of the
wife is less than 10. These restrictions can be expressed with denial integrity
constraints, that prevent some attributes from taking certain values [12]. Other
restrictions may be expressed with aggregation ICs, e.g. the maximum concen-
tration of certain toxin in a sample may not exceed a certain specified amount;
or the number of married men and married women must be the same. Inconsis-
tencies in numerical data are resolved by changing individual attribute values,
while keeping values in the keys, e.g. without changing the household code, the
number of children is decreased considering the admissible values.

We consider the problem of fixing integer numerical data wrt certain con-
straints while (a) keeping the values for the attributes in the keys of the relations,
and (b) minimizing the quantitative global distance between the original and
modified instances. Since the problem may admit several global solutions, each
of them involving possibly many individual changes, we are interested in char-
acterizing and computing data and properties that remain invariant under any
of these fixing processes. We concentrate on denial and aggregation constraints;
and conjunctive queries, with or without aggregation.

Database repairs have been studied in the context of consistent query an-
swering (CQA), i.e. the process of obtaining the answers to a query that are
consistent wrt a given set of ICs [2] (c.f. [4] for a survey). There, consistent data
is characterized as invariant under all minimal restorations of consistency, i.e.
as data that is present in all minimally repaired versions of the original instance
(the repairs). Thus, an answer to a query is consistent if it can be obtained as
a standard answer to the query from every possible repair. In most of the re-
search on CQA, a repair is a new instance that satisfies the given ICs, but differs
from the original instance by a minimal set, under set inclusion, of (completely)
deleted or inserted tuples. Changing the value of a particular attribute can be
modelled as a deletion followed by an insertion, but this may not correspond
to a minimal repair. However, in certain applications it may make more sense
to correct (update) numerical values only in certain attributes. This requires a
new definition of repair that considers: (a) the quantitative nature of individual
changes, (b) the association of the numerical values to other key values; and (c)
a quantitative distance between database instances.

Example 1. Consider a network traffic
database D that stores flow measure-
ments and maximum capacity of links
in a network. This network has two
types of links, labelled 0 and 1, with

Traffic Time Link Type Flow
1.1 a 0 1100
1.1 b 1 900
1.3 b 1 850



maximum capacities 1000 and 1500, resp. Database D is inconsistent wrt this
IC. Under the tuple and set oriented semantics of repairs [2], there is a unique re-
pair, namely deleting tuple Traffic(1.1, a, 0, 1100). However, we have two options
that make more sense than deleting the flow measurement, namely changing the
violating tuple to Traffic(1.1, a, 0, 1000) or to Traffic(1.1, a, 1, 1100); satisfying
an implicit requirement that the numbers should not change too much. �
Update-based repairs for restoring consistency are studied in [26]; where chang-
ing values in attributes in a tuple is made a primitive repair action; and semantic
and computational problems around CQA are analyzed from this perspective.
However, peculiarities of changing numerical attributes are not considered, and
more importantly, the distance between databases instances used in [26, 27] is
based on set-theoretic homomorphisms, and is not quantitative, as in this pa-
per. Those repaired versions in [26] are called fixes, a term that we keep here
(instead of repairs), because our basic repair actions are also changes of (nu-
merical) attribute values. In this paper we consider fixable attributes that take
integer values and the quadratic, Euclidean distance L2 between database in-
stances. The latter assumption already allows us to show the main results and
issues than can be obtained or investigated. Fixes and approximations may be
different, e.g. under the “city distance” L1 (the sum of absolute differences),
that is another reasonable alternative to consider, but the general results should
persist. However, moving to the case of real numbers will certainly bring new
issues that require different approaches; they are left for ongoing and future re-
search. Actually it would be natural to investigate them in the richer context of
constraint databases [19].

The problem of correcting census data forms using disjunctive logic programs
with stable model semantics is addressed in [12]. Several underlying assumptions
that are necessary for that approach to work are made explicit and used here,
extending the semantic framework introduced in [12].

We provide semantic foundations for fixes that are based on changes on
numerical attributes in the presence of key dependencies and wrt denial and
aggregate ICs, while keeping the numerical distance to the original database to a
minimum. This framework introduces new challenging decision and optimization
problems, and many algorithmic and complexity theoretic issues. We concentrate
in particular on the “Database Fix Problem” (DFP), of determining the existence
of a fix at a distance not bigger than a given bound, in particular considering the
problems of construction and verification of such a fix. These problems are highly
relevant for large inconsistent databases. For example, solving DFP can help us
find the minimum distance from a fix to the original instance; information that
can be used to prune impossible branches in the process of materialization of a
fix. The CQA problem of deciding the consistency of query answers is studied
wrt decidability and complexity under several alternative semantics.

We prove that DFP and CQA become undecidable in the presence of aggre-
gation constraints. However, DFP is NP-complete for linear denials, which are
enough to capture census like applications. CQA belongs to ΠP

2 and becomes
coNP -hard, but for a relevant class of denials we get tractability of CQA to
non aggregate queries, which is again lost with aggregate queries. Considering
approximation algorithms, we prove that DFP is MAXSNP -hard [22] in general,



but for a relevant subclass of denials it can be approximated within a constant
factor that depends on the number of atoms in them. All the algorithmic and
complexity results, unless otherwise stated, refer to data complexity [1], i.e. to
the size of the database that here includes a binary representation for numbers.
For complexity theoretic definitions and classical results we refer to [22].

This paper is structured as follows. Section 2 introduces basic definitions.
Sections 3 presents the notion of database fix, several notions of consistent answer
to a query; and some relevant decision problems. Section 4 investigates their
complexity. In Section 5 approximations for the problem of finding the minimum
distance to a fix are studied, obtaining negative results for the general case, but
good approximation for the class of local denial constraints. Section 6 investigates
tractability of CQA for conjunctive queries and denial constraints containing one
database atom plus built-ins. Section 7 presents some conclusions and refers to
related work. Proofs and other technical results can be found in [5].

2 Preliminaries
Consider a relational schema Σ = (U ,R ∪ B,A), with domain U that includes
Z,1 R a set of database predicates, B a set of built-in predicates, and A a set
of attributes. A database instance is a finite collection D of database tuples, i.e.
of ground atoms P (c̄), with P ∈ R and c̄ a tuple of constants in U . There is
a set F ⊆ A of all the flexible attributes, those that take values in Z and are
allowed to be fixed. Attributes outside F are called hard. F need not contain all
the numerical attributes, that is we may also have hard numerical attributes.

We also have a set of key constraints K, expressing that relations R ∈ R have
a primary key KR, KR ⊆ A. Later on (c.f. Definition 2), we will assume that K
is satisfied both by an initial instance D, denoted D |= K, and by its fixes. It
also holds F ∩KR = ∅, i.e. values in key attributes cannot be changed in a fixing
process; so the constraints in K are hard. In addition, there may be a separate
set of flexible ICs IC that may be violated, and it is the job of a fix to restore
consistency wrt them (while still satisfying K).

A linear denial constraint [19] has the form ∀x̄¬(A1 ∧ . . . ∧Am), where the
Ai are database atoms (i.e. with predicate in R), or built-in atoms of the form
xθc, where x is a variable, c is a constant and θ ∈ {=, �=, <, >, ≤, ≥}, or x = y.
If x �= y is allowed, we call them extended linear denial. We will usually replace
∧ by commas in denials.
Example 2. The following are linear denials: (a) No customer is younger than
21: ∀Id , Age, Income,Status¬(Customer(Id ,Age, Income, Status),Age < 21).
(b) No customer with income less than 60000 has “silver” status: ∀Id ,Age,
Income,Status¬(Customer(Id ,Age, Income,Status), Income < 60000,Status =
silver). (c) The constraints in Example 1, e.g. ∀T ,L,Type,Flow¬(Traffic(T,L,
Type,Flow), Type = 0, Flow > 1000). �
We consider aggregation constraints (ACs) [24] and aggregate queries with sum,
count, average. Filtering ACs impose conditions on the tuples over which ag-
gregation is applied, e.g. sum(A1 : A2 = 3) > 5 is a sum over A1 of tuples
with A2 = 3. Multi-attribute ACs allow arithmetical combinations of attributes

1 With simple denial constraints, numbers can be restricted to, e.g. N or {0, 1}.



as arguments for sum, e.g. sum(A1 + A2) > 5 and sum(A1 × A2) > 100. If
an AC has attributes from more than one relation, it is multi-relation, e.g.
sumR1(A1) = sumR2(A1), otherwise it is single-relation.

An aggregate conjunctive query has the form q(x1, . . . xm; agg(z)) ← B(x1,
. . . , xm, z, y1, . . . , yn), where agg is an aggregation function and its non-aggregate
matrix (NAM) given by q′(x1, . . . xm)← B(x1, . . . , xm, z, y1, . . . , yn) is a usual
first-order (FO) conjunctive query with built-in atoms, such that the aggregation
attribute z does not appear among the xi. Here we follow set semantics. An
aggregate conjunctive query is cyclic (acyclic) if its NAM is cyclic (acyclic) [1].

Example 3. q(x, y, sum(z)) ← R(x, y), Q(y, z, w), w �= 3 is an aggregate con-
junctive query, with aggregation attribute z. Each answer (x, y) to its NAM, i.e.
to q(x, y)← R(x, y), Q(y, z, w), w �= 3, is expanded to (x, y, sum(z)) as an answer
to the aggregate query. sum(z) is the sum of all the values for z having a w, such
that (x, y, z, w) makes R(x, y), Q(y, z, w), w �= 3 true. In the database instance
D = {R(1, 2), R(2, 3), Q(2, 5, 9), Q(2, 6, 7), Q(3, 1, 1), Q(3, 1, 5), Q(3, 8, 3)} the
answer set for the aggregate query is {(1, 2, 5 + 6), (2, 3, 1 + 1)}. �
An aggregate comparison query is a sentence of the form q(agg(z)), agg(z)θk,
where q(agg(z )) is the head of a scalar aggregate conjunctive query (with no free
variables), θ is a comparison operator, and k is an integer number. For example,
the following is an aggregate comparison query asking whether the aggregated
value obtained via q(sum(z)) is bigger than 5: Q : q(sum(z)), sum(z) > 5, with
q(sum(z))← R(x, y), Q(y, z, w), w �= 3.

3 Least Squares Fixes
When we update numerical values to restore consistency, it is desirable to make
the smallest overall variation of the original values while considering the relative
relevance or specific scale of each of the flexible attributes. Since the original
instance and a fix will share the same key values (c.f. Definition 2), we can use
them to compute variations in the numerical values. For a tuple k̄ of values for
the key KR of relation R in an instance D, t̄(k̄, R,D) denotes the unique tuple
t̄ in relation R in instance D whose key value is k̄. To each attribute A ∈ F a
fixed numerical weight α

A
is assigned.

Definition 1. For instances D and D ′ over schema Σ with the same set val(KR)
of tuples of key values for each relation R ∈ R, their square distance is

∆ᾱ(D ,D ′) =
∑

R∈R,A∈F
k̄∈val(KR)

α
A
(π

A
(t̄(k̄, R,D))− π

A
(t̄(k̄, R,D′)))2

where π
A

is the projection on attribute A and ᾱ = (α
A
)A∈F . �

Definition 2. For an instance D, a set of flexible attributes F , a set of key
dependencies K, such that D |= K, and a set of flexible ICs IC: A fix for D wrt
IC is an instance D′ such that: (a) D′ has the same schema and domain as D;
(b) D′ has the same values as D in the attributes in A � F ; (c) D′ |= K; and
(d) D′ |= IC. A least squares fix (LS-fix) for D is a fix D′ that minimizes the
square distance ∆ᾱ(D,D′) over all the instances that satisfy (a) - (d). �

In general we are interested in LS-fixes, but (non-necessarily minimal) fixes will
be useful auxiliary instances.



Example 4. (example 1 cont.) R = {Traffic}, A = {Time, Link, Type, F low},
KTraffic = {Time, Link}, F = {Type, F low}, with weights ᾱ = (10−5, 1),
resp. For original instanceD, val(KTraffic) = {(1.1, a), (1.1, b), (1.3, b)}, t̄((1.1, a),
Traffic,D) = (1.1, a, 0, 1100), etc. Fixes areD1 = {(1.1, a, 0, 1000), (1.1, b, 1, 900),
(1.3, b, 1, 850)} and D2 = {(1.1, a, 1, 1100), (1.1, b, 1, 900), (1.3, b, 1, 850)}, with
distances ∆ᾱ(D,D1) = 1002 × 10−5 = 10−1 and ∆ᾱ(D,D2) = 12 × 1, resp.
Therefore, D1 is the only LS-fix. �
The coefficients α

A
can be chosen in many ways depending on their relevance, the

actual distribution of the data, or a compensation of different scales of measure-
ment. In the rest of this paper we will assume, for simplification, that α

A
= 1

for all A ∈ F and ∆ᾱ(D ,D ′) will be simply denoted by ∆(D ,D ′).

Example 5. The database D has relations Client(ID , A,M ), with key Id , at-
tributes A for age and M for amount of money; and Buy(ID , I ,P), with key
{ID , I}, I for items, and P for prices. We have denials IC1 : ∀ID , P,A,M¬(
Buy(ID , I, P ),Client(ID , A,M), A < 18, P > 25) and IC2 : ∀ID , A,M¬(
Client( ID , A,M), A < 18, M > 50), requiring that people younger than 18 can-
D:

Client ID A M
1 15 52 t1
2 16 51 t2
3 60 900 t3

Buy ID I P
1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

not spend more than 25 on one item
nor spend more than 50 in the store.
We added an extra column in the ta-
bles with a notation for each tuple. IC1

is violated by {t1,t4} and {t1,t5}; and
IC2 by {t1} and {t2}. We have two LS-
fixes (the modified version of tuple t1
is t′1, etc.), with distances ∆(D,D′) =

D′: D′′:Client’ ID A M
1 15 50 t′1
2 16 50 t2

′

3 60 900 t3
Buy’ ID I P

1 CD 25 t4
′

1 DVD 25 t5
′

3 DVD 40 t6

Client” ID A M
1 18 52 t1

′′

2 16 50 t2
′′

3 60 900 t3
Buy” ID I P

1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

22 + 12 + 22 + 12 = 10, and ∆(D,D′′) = 32 + 12 = 10. We can see that a global
fix may not be the result of applying “local” minimal fixes to tuples. �
The built-in atoms in linear denials determine an intersection of semi-spaces as
a solution space for fixes, which can be found at its “borders” (c.f. previous
example and Proposition A.1 in [5]). It is easy to construct examples with an
exponential number of fixes. For the kind of fixes and ICs we are considering,
it is possible that no fix exists, in contrast to [2, 3], where, if the set of ICs is
consistent as a set of logical sentences, a fix for a database always exist.

Example 6. R(X,Y ) has key X and flexible Y . IC1 = {∀X1X2Y ¬(R(X1, Y ),
R(X2, Y ),X1 = 1,X2 = 2), ∀X1X2Y ¬(R(X1, Y ), R(X2, Y ),X1 = 1,X2 = 3),
∀X1X2Y ¬( R(X1, Y ), R(X2, Y ),X1 =2,X2 =3), ∀XY ¬(R(X,Y ), Y >3), ∀XY ¬(
R(X,Y ), Y < 2)} is consistent. The first three ICs force Y to be different in
every tuple. The last two ICs require 2 ≤ Y ≤ 3. The inconsistent database



R = {(1,−1), (2, 1), (3, 5)} has no fix. Now, for IC2 with ∀X,Y ¬(R(X,Y ),
Y > 1) and sum(Y ) = 10, any database with less than 10 tuples has no fixes. �
Proposition 1. If D has a fix wrt IC, then it also has an LS-fix wrt IC. �
4 Decidability and Complexity

In applications where fixes are based on changes of numerical values, computing
concrete fixes is a relevant problem. In databases containing census forms, cor-
recting the latter before doing statistical processing is a common problem [12]. In
databases with experimental samples, we can fix certain erroneous quantities as
specified by linear ICs. In these cases, the fixes are relevant objects to compute
explicitly, which contrasts with CQA [2], whose main motivation for introducing
repairs is to formally characterize the notion of a consistent answer to a query as
an answer that remains under all possible fixes. In consequence, we now consider
some decision problems related to existence and verification of LS-fixes, and to
CQA under different semantics.
Definition 3. For an instance D and a set of ICs IC, we denote
(a) Fix (D, IC) := {D′ | D′ is an LS-fix of D wrt IC}, the fix checking problem.
(b) Fix (IC) := {(D,D′) | D′ ∈ Fix (D, IC)}.
(c) NE (IC) := {D | Fix (D, IC) �= ∅}, for non-empty set of fixes, i.e. the problem
of checking existence of LS-fixes.
(d) NE := {(D, IC) | Fix (D, IC) �= ∅}.
(e) DFP(IC) := {(D, k)| there is D′ ∈ Fix(D, IC) with ∆(D,D′) ≤ k}, the
database fix problem, i.e. the problem of checking existence of LS-fixes within
a given positive distance k.
(f) DFOP(IC) is the optimization problem of finding the minimum distance from
an LS-fix wrt IC to a given input instance. �
Definition 4. Let D be a database, IC a set ICs, and Q a conjunctive query2.
(a) A ground tuple t̄ is a consistent answer to Q(x̄) under the: (a1) skeptical
semantics if for every D′ ∈ Fix (D, IC), D′ |= Q(t̄). (a2) brave semantics if there
exists D′ ∈ Fix (D, IC) with D′ |= Q(t̄). (a3) majority semantics if |{D′ | D′ ∈
Fix (D, IC) and D′ |= Q(t̄)}| > |{D′ | D′ ∈ Fix (D, IC) and D′ �|= Q(t̄)}|.
(b) That t̄ is a consistent answer toQ inD under semantics S is denoted byD |=S
Q[t̄]. If Q is ground andD |=S Q, we say that yes is a consistent answer, meaning
that Q is true in the fixes of D according to semantics S. CA(Q,D, IC,S) is the
set of consistent answers to Q in D wrt IC under semantics S. For ground Q, if
CA(Q,D, IC,S) �= {yes}, CA(Q,D, IC,S) := {no}.
(c) CQA(Q, IC,S) := {(D, t̄) | t̄ ∈ CA(Q,D, IC,S)} is the decision problem of
consistent query answering, of checking consistent answers. �
Proposition 2. NE (IC) can be reduced in polynomial time to the complements
of CQA(False, IC, Skeptical), CQA(True, IC,Majority), where False,True are
ground queries that are always false, resp. true. �
In Proposition 2, it suffices for queries False,True to be false, resp. true, in all
instances that share the key values with the input database. Then, they can
be represented by ∃Y R(c̄, Y ), where c̄ are not (for False), or are (for True) key
values in the original instance.
2 Whenever we say just “conjunctive query” we understand it is a non aggregate query.



Theorem 1. Under extended linear denials and complex, filtering, multi-attri-
bute, single-relation, aggregation constraints, the problems NE of existence of
LS-fixes, and CQA under skeptical or majority semantics are undecidable. �
The result about NE can be proved by reduction from the undecidable Hilbert’s
problem on solvability of diophantine equations. For CQA, apply Proposition
2. Here we have the original database and the set of ICs as input parameters.
In the following we will be interested in data complexity, when only the input
database varies and the set of ICs is fixed [1].

Theorem 2. For a fixed set IC of linear denials: (a) Deciding if for an instance
D there is an instance D′ (with the same key values as D) that satisfies IC with
∆(D,D′) ≤ k, with positive integer k that is part of the input, is in NP . (b)
DFP(IC) is NP -complete. (c.f. Definition 3(e)) �
By Proposition 1, there is a fix forD wrt IC at a distance ≤ k iff there is an LS-fix
at a distance ≤ k. Part (b) of Theorem 2 follows from part (a) and a reduction
of Vertex Cover to DFP(IC0), for a fixed set of denials IC0. By Theorem 2(a),
if there is a fix at a distance ≤ k, the minimum distance to D for a fix can be
found by binary search in log(k) steps. Actually, if an LS-fix exists, its square
distance to D is polynomially bounded by the size of D (c.f. proof of Theorem 3
in [5]). Since D and a fix have the same number of tuples, only the size of their
values in a fix matter, and they are constrained by a fixed set of linear denials
and the condition of minimality.
Theorem 3. For a fixed set IC of extended linear denials: (a) The problem
NE (IC) of deciding if an instance has an LS-fix wrt IC is NP -complete, and (b)
CQA under the skeptical and the majority semantics are coNP -hard. �
Theorem 4. For a fixed set IC of extended linear denials: (a) The problem
Fix (IC) of checking if an instance is an LS-fix is coNP -complete, and (b) CQA
under skeptical semantics is in ΠP

2 . �
The results on complexity of CQA in the two previous theorems follow from
the corresponding (a) parts.3 By polynomial time reduction of the Vertex Cover
Problem to CQA for aggregate comparison queries under the brave semantics,
we obtain
Theorem 5. For aggregate comparison queries using sum, CQA under linear
denials and brave semantics is coNP -hard. �

5 Approximation for the Database Fix Problem

We consider the problem of finding a good approximation for the general opti-
mization problem DFOP(IC).

Proposition 3. For a fixed set of linear denials IC, DFOP(IC) is MAXSNP -
hard. �
3 We conjecture that CQA under the skeptical semantics and extended linear denials

is hard for the class PNP(log(n)) that contains the decision problems that are solvable
in polynomial time with O(log(n)) calls to an oracle in NP [18, 8]. Our current proof
depends upon an unpublished result by someone else that we have been unable to
check in detail.



This result is obtained by establishing an L-reduction to DFOP(IC) from the
MAXSNP -complete [23, 22] B-Minimum Vertex Cover Problem, i.e. the vertex
cover minimization problem for graphs of bounded degree [17, Chapter 10]. As
an immediate consequence, we obtain that DFOP(IC) cannot be uniformly ap-
proximated within arbitrarily small constant factors [22].
Corollary 1. Unless P = NP , there is no Polynomial Time Approximation
Schema for DFOP . �
Due to this negative result, we now turn to the problem of finding better ap-
proximation algorithm for a restricted but useful class of denial constraints.
5.1 Local denials

Definition 5. A set of linear denials IC is local if: (a) Attributes participating
in equality atoms or joins are all hard attributes; (b) There is a built-in atom
with a flexible attribute in each element of IC; (c) No attribute A appears in IC
both in comparisons of the form A < c1 and A > c2.4 �
In Example 5, IC is local. In Example 6, IC1 is not local. Local constraints have
the property that by doing local fixes, no new inconsistencies will be generated,
and there will always be an LS-fix wrt to them (c.f. Proposition A.2 in [5]).
Locality is a sufficient, but not necessary condition for existence of LS-fixes as
can be seen from the database {P (a, 2)}, with key the first attribute and non-
local denials ¬(P (x, y), y < 3),¬(P (x, y), y > 5), that has the LS-fix {P (a, 3)}.
Proposition 4. For the class of local denials, DFP is NP -complete. �
This proposition implies that the problem of finding good approximations in the
case of local denials is still relevant.
Definition 6. A set I of database tuples from D is a violation set for ic ∈ IC
if I �|= ic, and for every I ′ � I, I ′ |= ic. I(D, ic, t) denotes the set of violation
sets for ic that contain tuple t. �
A violation set I for ic is a minimal set of tuples that simultaneously participate
in the violation of ic. We label I with the corresponding ic using the pair (I, ic).

Definition 7. Given an instance D and ICs IC, a local fix for t ∈ D, is a
tuple t′ with: (a) the same values for the hard attributes as t; (b) S(t, t′) :=
{(I, ic) | ic ∈ IC, I ∈ I(D, ic, t) and ((I � {t}) ∪ {t′}) |= ic} �= ∅; and
(c) there is no tuple t′′ that simultaneously satisfies (a), S(t, t′′) = S(t, t′), and
∆({t}, {t′′}) ≤ ∆({t}, {t′}), where ∆ denotes quadratic distance. �
S(t, t′) contains the violation sets that include t and are solved changing t by t′.
A local fix t′ solves some of them and minimizes the distance to t.

5.2 Database fix problem as a set cover problem

For a fixed set IC of local denials, we can solve an instance of DFOP by trans-
forming it into an instance of the Minimum Weighted Set Cover Optimization
Problem (MWSCP), that is MAXSNP -hard [21, 22]. By concentrating on local
denials, we will obtain better approximation results than for the general case of
MWSCP [21], namely a constant approximation factor.
4 To check condition (c), x ≤ c, x ≥ c, x �= c have to be expressed using <, >, e.g.

x ≤ c by x < c + 1.



Definition 8. For a database D and a set IC of local denials, G(D, IC) = (T,H)
denotes the conflict hyper-graph for D wrt IC [9], which has in the set T of
vertices the database tuples, and in the set H of hyper-edges, the violation sets
for elements ic ∈ IC. �
The hyper-edges in H will be usually labelled with the corresponding ic, so that
we can have different hyper-edges with the same tuples in them. Now we build
an instance for theMWSCP.
Definition 9. For a database D and a set IC of local denials, the instance
(U,S, w) for theMWSCP, where U is the underlying set, S is the set collection,
and w is the weight function, is given by: (a) U := H, the set of hyper-edges of
G(D, IC). (b) S contains the S(t, t′), where t′ is a local fix for a tuple t ∈ D. (c)
w(S(t, t′)) := ∆({t}, {t′}). �
It can be proved that the S(t, t′) in this construction are non empty, and that
S covers U (c.f. Proposition A.2 in [5]).

If for the instance (U,S, w) of MWSCP we find a minimum weight cover C,
we could think of constructing a fix by replacing each inconsistent tuple t ∈ D by
a local fix t′ with S(t, t′) ∈ C. The problem is that there might be more than one
t′ and the key dependencies would not be respected. Fortunately, this problem
can be circumvented.
Definition 10. Let C be a cover for instance (U,S, w) of the MWSCP associ-
ated to D, IC. (a) C� is obtained from C as follows: For each tuple t with local
fixes t1, . . . , tn, n > 1, such that S(t, ti) ∈ C, replace in C all the S(t, ti) by a
single S(t, t�), where t� is such that S(t, t�) =

⋃n
i=1 S(t, ti). (b) D(C) is the

database instance obtained from D by replacing t by t′ if S(t, t′) ∈ C�. �
It holds (c.f. Proposition A.3 in [5]) that such an S(t, t�) ∈ S exists in part (a)
of Definition 10. Notice that there, tuple t could have other S(t, t′) outside C.
Now we can show that the reduction to MWSCP keeps the value of the objective
function.
Proposition 5. If C is an optimal cover for instance (U,S, w) of the MWSCP
associated to D, IC, then D(C) is an LS-fix of D wrt IC, and ∆(D,D(C)) =
w(C) = w(C∗). �
Proposition 6. For every LS-fix D′ of D wrt a set of local denials IC, there
exists an optimal cover C for the associated instance (U,S, w) of the MWSCP ,
such that D′ = D(C). �
Proposition 7. The transformation of DFOP into MWSCP , and the construc-
tion of database instance D(C) from a cover C for (U,S, w) can be done in
polynomial time in the size of D. �
We have established that the transformation of DFOP into MWSCP is an L-
reduction [22]. Proposition 7 proves, in particular, that the number of violation
sets S(t, t′) is polynomially bounded by the size of the original database D.
Example 7. (example 5 continued) We illustrate the reduction from DFOP to
MWSCP . The violation sets are {t1,t4} and {t1,t5} for IC1 and {t1} and {t2} for
IC2. The figure shows the hyper-graph. For the MWSCP instance, we need the
local fixes. Tuple t1 has two local fixes t′1 = (1, 15, 50), that solves the violation
set {t1} of IC2 (Hyperedge B), and t′′1 = (1, 18, 52), that solves the violation sets



{t1, t4} and {t1, t5} of IC1, and {t1} of IC2 (Hyperedge A,B and C), with weights
4 and 9, resp. t2, t4 and t5 have one local fix each corresponding to: (2, 16, 50),
(1,CD , 25) and (1,DVD , 25) resp. The consistent tuple t3 has no local fix.

Set S1 S2 S3 S4 S5

Local Fix t1’ t1” t2’ t4’ t5’
Weight 4 9 1 4 1
Hyperedge A 0 1 0 1 0
Hyperedge B 1 1 0 0 0
Hyperedge C 0 1 0 0 1
Hyperedge D 0 0 1 0 0

The MWSCP instance is shown in the table, where the elements are rows and
the sets (e.g. S1 = S(t1, t′1)), columns. An entry 1 means that the set contains
the corresponding element; and a 0, otherwise. There are two minimal covers,
both with weight 10: C1 = {S2, S3} and C2 = {S1, S3, S4, S5}. D(C1) and D(C2)
are the two fixes for this problem. �
If we apply the transformation to Example 6, that had non-local set of ICs and
no repairs, we will find that instance D(C), for C a set cover, can be constructed
as above, but it does not satisfy the flexible ICs, because changing inconsis-
tent tuples by their local fixes solves only the initial inconsistencies, but new
inconsistencies are introduced.

5.3 Approximation via set cover optimization
Now that we have transformed the database fix problem into a set cover problem,
we can apply approximation algorithms for the latter. We know, for example,
that using a greedy algorithm, MWSCP can be approximated within a factor
log(N), where N is the size of the underlying set U [10]. The approximation
algorithm returns not only an approximation ŵ to the optimal weight wo, but
also a -non necessarily optimal- cover Ĉ for problem (U,S, w). As in Definition
10, Ĉ can be used to generate via (Ĉ)�, a fix D(Ĉ) for D that may not be LS-
minimal.

Example 8. (examples 5 and 7 continued) We show how to to compute a solution
to this particular instance of DFOP using the greedy approximation algorithm
for MWSCP presented in [10]. We start with Ĉ := ∅, S0

i := Si; and we add to C
the Si such that S0

i has the maximum contribution ratio |S0
i |/w(S0

i ). The alterna-
tives are |S1|/w(S1) = 1/4, |S2|/w(S2) = 3/9, |S3|/w(S3) = 1, |S4|/w(S4) = 1/4
and |S5|/w(S5) = 1. The ratio is maximum for S3 and S5, so we can add any
of them to Ĉ. If we choose the first, we get Ĉ = {S3}. Now we compute the
S1

i := S0
i � S0

3 , and choose again an Si for Ĉ such that S1
i maximizes the contri-

bution ratio. Now S5 is added to Ĉ, because S1
5 gives the maximum. By repeating

this process until we get all the elements of U covered, i.e. all the Sk
i become

empty at some iteration point k, we finally obtain Ĉ = {S3, S5, S1, S4}. In this
case Ĉ is an optimal cover and therefore, D(Ĉ) is exactly an LS-fix, namely D′

in Example 5. Since this is an approximation algorithm, in other examples the
cover obtained might not be optimal. �
In general, we have an approximation to DFOP within a logarithmic factor.



Proposition 8. Given database instance D with local ICs IC, the database
instance D(Ĉ) obtained from the approximate cover Ĉ is a fix and it holds
∆(D,D(Ĉ)) ≤ log(N) × ∆(D,D′), where D′ is any LS-fix of D wrt IC and
N is the number of of violation sets for D wrt IC. �
In consequence, for any set IC of local denials, we have a polynomial time ap-
proximation algorithm that solves DFOP(IC) within an O(log(N)) factor, where
N is the number of violation sets for D wrt IC. As mentioned before, this num-
ber N , the number of hyper-edges in G, is polynomially bounded by |D| (c.f.
Proposition 7). N may be relatively small if the number of inconsistencies is
small or the number of database atoms in the ICs is small, which is likely the
case in real applications.

However, in our case we can get even better approximations via a cover Ĉ
obtained with an approximation algorithms for the special case of the MWSCP
where the number of occurrences of an element of U in elements of S is bounded
by a constant. For this case of the MWSCP there are approximations within a
constant factor based on “linear relaxation” [17, Chapter 3]. This is clearly the
case in our application, being m× |F| × |IC | a constant -and |D| independent-
bound on the frequency of the elements, where m is the maximum number of
database atoms in an IC.
Theorem 6. There is an approximation algorithm that, for a given database
instance D with local ICs IC, returns a fix D(Ĉ) such that ∆(D,D(Ĉ)) ≤ c ×
∆(D,D′), where c is a constant and D′ is any LS-fix of D. �

6 One Atoms Denials and Conjunctive Queries

In this section we concentrate on the common case of one database atom denials
(1AD), i.e. of the form ∀¬(A,B), where atom A has a predicate in R, and B
is a conjunction of built-in atoms. They capture range constraints; and census
data is usually stored in single relation schemas [12].

For 1ADs, we can identify tractable cases for CQA under LS-fixes by reduc-
tion to CQA for (tuple and set-theoretic) repairs of the form introduced in [2]
for key constraints. This is because each violation set (c.f. Definition 6) contains
one tuple, maybe with several local fixes, but all sharing the same key values;
and then the problem consists in choosing one from different tuples with the
same key values (c.f. proof in [5] of Theorem 7). The transformation preserves
consistent answers to both ground and open queries.

The “classical” -tuple and set oriented- repair problem as introduced in [2]
has been studied in detail for functional dependencies in [9, 13]. In particular, for
tractability of CQA in our setting, we can use results and algorithms obtained
in [13] for the classical framework.

The join graph G(Q) [13] of a conjunctive query Q is a directed graph, whose
vertices are the database atoms in Q. There is an arc from L to L′ if L �= L′

and there is a variable w that occurs at the position of a non-key attribute in L
and also occurs in L′. Furthermore, there is a self-loop at L if there is a variable
that occurs at the position of a non-key attribute in L, and at least twice in L.

When Q does not have repeated relations symbols, we write Q ∈ CTree if
G(Q) is a forest and every non-key to key join of Q is full i.e. involves the whole
key. Classical CQA is tractable for queries in CTree [13].



Theorem 7. For a fixed set of 1ADs and queries in CTree , consistent query
answering under LS-fixes is in PTIME . �
We may define that a conjunctive aggregate query belongs to CTree if its un-
derlying non-aggregate conjunctive query, i.e. its NAM (c.f. Section 2) belongs
to CTree . Even for 1ADs, with simple comparison aggregate queries with sum,
tractability is lost under the brave semantics.
Proposition 9. For a fixed set of 1ADs, and for aggregate queries that are in
CTree or acyclic, CQA is NP -hard under the brave semantics. �
For queries Q returning numerical values, which is common in our framework,
it is natural to use the range semantics for CQA, introduced in [3] for scalar
aggregate queries and functional dependencies under classical repairs. Under it,
a consistent answer is the pair consisting of the min-max and max-min answers,
i.e. the supremum and the infimum, resp., of the set of answers to Q obtained
from LS-fixes. The CQA decision problems under range semantics consist in
determining if a numerical query Q, e.g. an aggregate query, has its answer ≤ k1

in every fix (min-max case), or ≥ k2 in every fix (max-min case).
Theorem 8. For each of the aggregate functions sum, count distinct, and aver-
age, there is a fixed set of 1ADs and a fixed aggregate acyclic conjunctive query,
such that CQA under the range semantics is NP -hard. �
For the three aggregate functions one 1AD suffices. The results for count distinct
and average are obtained by reduction from MAXSAT [22] and 3SAT , resp. For
sum, we use a reduction from the Bounded Degree Independent Set Problem [15].
Despite bad approximation properties of Independent Set [17, Chapter 10], a
reduction from it does not preclude the existence of a good approximation for
sum: The reduction uses graphs of degree 3, and for graphs of bounded degree,
Independent Set has approximations within a constant factor that depends on
the bounded degree [16].
Theorem 9. For any set of 1ADs and conjunctive query with sum over a non-
negative attribute, there is a polynomial time approximation algorithm with a
constant factor for CQA under min-max range semantics. �
The factor in this theorem depends upon the ICs and the query, but not on the
size of the database. The acyclicity of the query is not required. The algorithm
is based on a reduction of our problem to satisfying a subsystem with maximum
weight of a system of weighted algebraic equations over the Galois field with two
elements GF [2] (a generalization of problems in [14, 25]), for which a polynomial
time approximation similar to the one of MAXSAT is given [25].

7 Conclusions
We have shown that fixing numerical values in databases that fail to satisfy some
integrity constraints poses many new computational challenges that had not been
addressed before in the context of consistent query answering. In this paper we
have just started to investigate some of the many problems that appear in this
context, and several extensions are in development. We concentrated on integer
numerical values, which provide a useful and challenging domain. Considering
real numbers in flexible attributes opens many new issues and requires different
approaches. This is a subject of ongoing research.



The framework established in this paper could be applied to qualitative at-
tributes with an implicit linear order given by the application. The result we
have presented for flexible attributes that are all equally relevant (α

A
= 1 in

Definitions 1 and 2) should carry over without much difficulty to the general
case of arbitrary weighted fixes. We have developed (but not reported here) ex-
tensions to our approach that consider minimum distribution variation LS-fixes
that keep the overall statistical properties of the database. We have also devel-
oped optimizations of the approximation algorithm presented in Section 5; and
its implementation and experiments are ongoing efforts. More research on the
impact of aggregation constraints on LS-fixes is needed.

Of course, if instead of the L2 distance, the L1 distance is used, we may get
for the same database a different set of (now L1) fixes. The actual approxima-
tions obtained in this paper change too. However, the general complexity and
approximability results should remain. They basically depend on the fact that
distance functions are non-negative, additive wrt attributes and tuples, com-
putable in polynomial time, and monotonically increasing. Another semantics
that could be explored, is to consider an epsilon of error in the distance in such
a way that if, for example, the distance of a fix is 5 and the distance to another
fix is 5.001 we would take both of them as LS-fixes.

For related work, we refer to the literature on consistent query answering (c.f.
[4] for a survey and references). Papers [26] and [12] are the closest to our work,
because changes in attribute values are basic repair actions, but the peculiar-
ities of numerical values and quantitative distances between databases are not
investigated. Under the set-theoretic, tuple-based semantics, [9, 7, 13] report on
complexity issues for conjunctive queries, functional dependencies and foreign
key constraints. A majority semantics was studied in [20] for database merging.
Quite recent papers, but under semantics different than ours, report research
on fixing numerical values under aggregation constraints [11]; and heuristic con-
struction of repairs based on attribute values changes [6].
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A Appendix

A.1 Proofs

Those auxiliary technical results that are stated in this appendix, but not in the
main body of the paper, are numbered in the form A.n, e.g. Lemma A.1.

Proof of Proposition 1: Let ρ be the square distance between D and D′ in
Definition 1. The circle of radius ρ around D intersects the non empty “consis-
tent” region that contains the database instances with the same schema and key
values as D and satisfy IC. Since the circle has a finite number of instances, the
distance takes a minimum in the consistent region. �

The following lemma proves that if a tuple is involved in an inconsistency,
the set of constraints is consistent and there is at least one flexible attribute in
each integrity constraint, then there always exists a local fix (see Definition 7)
for it.

Lemma A.1. For a database D and a consistent set of linear denial constraints
IC, where each constraint contains at least one built-in involving a flexible con-
straint and there are equalities or joins only between hard attributes. Then,
for every tuple t with at least one flexible attribute and at least one ic in IC,
I(D, ic, t) �= ∅, there exists at least one local fix t′ (see Definition 7) �

Proof: Each constraint ic ∈ IC has the form ∀x̄¬(P1(x̄), . . . , Pn(x̄), Ai <
ci, Aj ≥ cj , Ak = ck, Al �= cl, . . .) and can be rewritten as a clause only with <,
> and =:

∀x̄(¬P1(x̄)∨ . . .∨¬Pn(x̄)∨Ai ≥ ci∨Aj < cj ∨Ak < ck ∨Ak > ck ∨Al = cl∨ . . .)
(1)

This formula shows that since the repairs are done by attributes updates, the
only way we have of solving an inconsistency is by fixing at least one of the val-
ues of a flexible attribute. Let ic be a constraint in IC such that I(D, ic, t) �= ∅
and I be a violation set I ∈ I(D, ic, t). Now, since ic ∈ IC, ic is a consistent
constraints. Then for each flexible attribute A in ic we are able to derive an
interval [cl, cu] such that if the value of A is in it, we would restore the con-
sistency of I. For example if we have a constraint in form of equation (1) with
A ≤ 5, then, if we want to restore consistency by modifying A we would need
to have A ∈ (−∞, 5]. If the constraint had also A ≥ 1 the interval would be
[1, 5]. Since t has at least one flexible attribute and each flexible attribute has
an interval, it is always possible to adjust the value of that flexible attribute to
a value in the interval [cl, cu] and restore consistency. By finding the adjustment
that minimizes the distance from the original tuple we have find a local fix for
the tuple t. �

The borders of an attribute in an extended linear denial correspond to the
surfaces of the semi-spaces determined by the built-in atoms in it.

Proposition A.1. Given a database D and a set of linear denials IC, where
equalities and joins can only exist between hard attributes, the values in every



flexible attributes in a local fix t′ (c.f. Definition 7) of a tuple t ∈ D will corre-
spond to the original value in t or to a border of a constraint in IC. Furthermore,
the values in every attributes of a tuple t′ ∈ D′ will correspond to the original
value of the attribute in the tuple in D or to a border of a constraint in IC. �

Proof: First we will replace in all the constraints X ≤ c by X < (c+ 1), X ≥ c
by X > (c − 1) and X = c by (X > (c − 1) ∧ X < (c + 1)). We can do this
because we are dealing with integer values. Then, a constraint ic would have the
form ∀x̄¬(P1(x̄), . . . , Pn(x̄), Ai < ci, Aj > cj , Ak �= ck, . . .) and can be rewritten
as ∀x̄(¬P1(x̄) ∨ . . . ∨ ¬Pn(x̄) ∨Ai ≥ ci ∨Aj ≤ cj ∨Ak = ck ∨ . . .) (2)
This formula shows that since the repairs are done by attributes updates, the
only way we have of solving an inconsistency is by fixing at least one of the
values of a flexible attribute. This would imply to change the value of a flexible
attribute Ai to something equal or greater than ci, to change the value of a
flexible attribute Aj to a value equal or smaller than cj or to change the value
of attribute Ak to ck.

If D is consistent wrt IC then there is a unique LS-fix D′ = D and all the
values are the same as the original ones and therefore the proposition holds. If
D is inconsistent wrt IC then there exists a tuple t with at least one flexible
attribute and a set ICt ⊆ IC such that for every ic ∈ ICt it holds I(D, ic, t) �= ∅.
If ICt is an inconsistent set of constraints then there exists no local fix and the
proposition holds. If ICt is consistent but there is at least one constraint with no
flexible attributes involved then, since it is not possible to modify any attribute
in order to satisfy the constraint, there is no local fix and the proposition holds.

So we are only missing to prove the proposition for ICt consistent and with
at least one flexible attributes for each ic in ICt. From Lemma A.1 we know
that there exists a local fix for t. Also, since ICt is consistent, using the same
arguments as in proof of Lemma A.1, it is possible to define for each flexible
attribute A an interval such that if the value of A is in it we would restore the
consistency of the violation sets for constraints in ICt involving t. Then, we need
to prove that if a value of an attribute, say A, of a local fix t′ of t is different
than the one in t, then the value corresponds to one of the closed limits of the
interval for A. Let us assume that an attribute A is restricted by the constraints
to an interval [cl, cu] and that the local fix t′ takes for attribute A a value strictly
smaller than cu and strictly greater than cl. Without lost of generality we will
assume that the value of attribute A in t is bigger than cu. Let t′′ be a tuple with
the same values as t′ except that the attribute A is set to cu. t′′ will have the
same values in the hard attributes as t and also S(t, t′) = S(t, t′′) since the value
of A in t′′ is still in the interval. We also have that ∆({t}, {t′′}) ≤ ∆({t}, {t′}).
This implies that t′ is not a local fix and we have reached a contradiction.

For the second part of the proposition, the proof of the first part can be
easily extended to prove that the values in D′ will correspond to a border of a
constraint in IC, because the LS-fixes are combination of local fixes. �

Proof of Theorem 1: Hilbert’s 10th problem on existence of integer solutions
to diophantine equations can be reduced to our problem. Given a diophantine
equation, it is possible to construct a database D and a set of ICs IC such that



the existence of an LS-fix for D wrt IC implies the existence of a solution to the
equation, and viceversa. �

Proof of Proposition 2: First for the skeptical semantics. Given a database
instance D, consider the instance (D,no) for CQA(False, IC,Sk), corresponding
to the question “Is there an LS-fix of D wrt IC that does not satisfy False?” has
answer Yes iff the class of LS-fixes of D is empty. For the majority semantics, for
the instance (D,no) for CQA(True, IC,Maj ), corresponding to the question “Is
it not the case that the majority of the LS-fixes satisfy True?”, we get answer
yes iff the set of LS-fixes is empty. �

Proof of Theorem 2: (a) First of all, we notice that a linear denial with implicit
equalities, i.e. occurrences of a same variable in two different database atoms,
e.g. ∀X,Y,Z¬(R(X,Y ), Q(Y,Z), Z > 3), can be replaced by its explicit version
with explicit equalities, e.g. ∀X,Y,Z,W¬(R(X,Y ), Q(W,Z), Y = W,Z > 3).

Let n be the number of tuples in the database, and l be the number of
attributes which participate in IC. They are those that appear in built-in predi-
cates in the explicit versions of the ICs that do not belong to a key or are equal
to a key (because they are not allowed to change). For example, given the denial
¬(P (X,Y ), Q(X,Z), Y > 2), since its explicit version is ¬(P (X,Y ), Q(W,Z), Y >
2,X = W ), the number l is 1 (for Y ) if X is a key for P or Q, and 3 if X is not
a key (for Y,X,W ).

If there exist an LS-fix D′ with ∆(D,D′) ≤ k, then no value in a flexible
attribute in D′ differs from its corresponding value (through the key value) in D
by more than

√
k. In consequence, the size of an LS-fix may not differ from the

original instance by more than l × n× bin(k)/2, where bin(k) is the size of the
binary representation of k. Thus, the size of an LS-fix is polynomially bounded
by the size of D and k. Since we can determine in polynomial time if D′ satisfies
the ICs and if the distance is smaller than k, we obtain the result.

(b) Membership: According to Proposition 1, there is an LS-fix at a square
distance ≤ k iff there is an instance D′ with the same key values that satisfies
IC at a square distance ≤ k. We use Proposition 2.

Hardness: We can reduce Vertex Cover (VC) to DFP(IC0) for a fixed set of
denials IC0. Given an instance (V, E), k for VC, consider a database D with a
relation E(X,Y ) and key {X,Y } for the edges of the graph, and a relation for the
vertices V (X,Chosen), where X is the key and attribute Chosen, the only flexi-
ble attribute, is initially set to 0. The constraint IC : ∀X,Y,C1, C2¬(E(X,Y ) ∧
V (X,C1) ∧ V (Y,C2) ∧ C1 < 1 ∧ C2 < 1) expresses that for any edge, at least
one of the incident vertices is be covered. A vertex cover of size k exists iff there
exists an LS-fix of D wrt IC at a distance ≤ k. The encoding is polynomial in
the size of the original graph. �

Proof of Theorem 3: (a) For hardness, linear denials are good enough. We
reduce the graph 3-colorability problem to NE (IC0), for a fixed set IC0 of ICs.
Let G = (V, E) be an undirected graph with set of vertexes V and set of edges
E . Consider the following database schema, instance D, and set IC0 of ICs:



1. Relation V ertex(Id ,Red ,Green,Blue) with key Id and domain N for the
last three attributes, actually the only three flexible attributes in the database;
they can be subject to changes. For each v ∈ V we have the tuple (v, 0, 0, 0) in
Vertex (and nothing else).

2. Relation Edge(id1, id2); and for each e = (v1, v2) ∈ E , there are the tuples
(v1, v2), (v2, v1) in Edge. This relation is not subject to any fix.

3. Relation Tester(Red ,Green,Blue), with extension (1, 0, 0), (0, 1, 0), (0, 0, 1).
This relation is not subject to any fix.

4. Integrity constraints:
∀ixyz¬(Vertex (i, x, y, z), x < 1, y < 1, z < 1); ∀ixyz¬(Vertex (i, x, y, z), x > 1)
(the same for y, z); ∀ixyz¬(Vertex (i, x, y, z), x = 1, y = 1, z = 1); ∀ixyz¬(Vertex (
i, x, y, z), x = 1, y = 1); etc.
∀ijxyz¬(Vertex (i, x, y, z),Vertex (j, x, y, z),Edge(i, j),Tester(x, y, z).

The graph is 3-colorable iff the database has an LS-fix wrt IC0. The reduction
is polynomial in the size of the graph. If there is an LS-fix of the generated
instance, then the graph is 3-colorable. If the graph is colorable, then there is a
consistent instance with the same key values as the original instance; then, by
Proposition 1, there is an LS-fix.

For membership, it suffices to prove that if an LS-fix exists, then its square
distance to D is polynomially bounded by the size of D, considering both the
number of tuples and the values taken by the flexible attributes.

We will show that if an LS-fix D′ exists, then all the values in its flexible
attributes are bounded above by the maximum of n1 + n + 1 and n2 + n + 1,
where n is the number of tuples in the database, n1 is the maximum absolute
value in a flexible attribute in D, and n2 is the maximum absolute value of a
constant appearing in the ICs.

The set of denial ICs put in disjunctive form gives us a representation for
all the ways we have to restore the consistency of the database. So, we have a
constraint of the form ϕ1 ∧ϕ2 · · ·ϕm, where each ϕi is a disjunction of negated
database atoms and inequalities, e.g. something like ¬P (X,Y,Z)∨¬R(X1, Y1)∨
X ≤ c1 ∨ Y ≤ c2 ∨ Z �= Y1. Since fixes can be obtained by changing values of
non key attributes, each tuple in a fix is determined by a set of constraints, each
of which is a disjunction of atoms of the form Xiθicm or Xi �= Yj , where θi is
an inequality of the form ≤,≥, <,>. E.g. from ¬P (X,Y,Z)∨¬R(X1, Y1)∨X ≤
c1 ∨ Y ≤ c2 ∨ Z �= Y1 we get X ≤ c1 ∨ Y ≤ c2 ∨ Z �= Y1, which for a specific
tuple becomes Y ≤ c2 ∨ Z �= Y1 if X is part of the key and its specific value for
the tuple at hand does not satisfy X ≤ c1 (otherwise we drop the constraint for
that tuple). In any case, every tuple in a fix can take values in a space S that
is the intersection of the half-spaces defined by inequalities of the form Xiθicm
minus the set of points determined by the non-equalities Xi �= Yj .

If there is a set of values that satisfies the resulting constraints, i.e. if there
is an instance with the same key values that satisfies the ICs, then we can
find an LS-fix at the right distance: if the difference between any value and
max(c1, · · · , cl) is more than n+1 (the most we need to be sure the inequalities
Xi �= Yj are satisfied), then we systematically change values by 1, making them
closer to the borders of the half-spaces, but still keeping the points within S.
(b) coNP -hardness follows from Proposition 2 and part (a). �



Proof of Theorem 4: We reduce 3-SAT’s complement to LS-fix checking for
a fixed schema and set of denials IC. We have a table Lit(l, l̄) storing comple-
mentary literals (only), e.g. (p,¬p) if p is one of the variables in the instance for
SAT. Also a table Cl storing tuples of the form (ϕ, l, k), where ϕ is a clause (we
assume all the clauses have exactly 3 literals, which can be simulated by adding
extra literals with unchangeable value 0 if necessary), l is a literal in the clause,
and k takes value 0 or 1 (the truth value of l in ϕ). The first two arguments
are the key of C. Finally, we have a table Aux (K,N), with key K and flexible
numerical attribute N , and a table Num(N) with a hard numerical attribute N .

Given an instance Φ = ϕ1∧· · ·∧ϕm for 3-SAT, we produce an initial extension
D for the relations in the obvious manner, assigning arbitrary truth values to
the literals, but making sure that the same literal takes the same truth value in
every clause, and complementary literals take complementary truth values. Aux
contains (0, 0) as its only tuple; and Num contains (s+1), where s is the number
of different propositional variables in Φ.

Consider now the following set of denials:
(a) ¬(Cl(ϕ,L,U), U > 1); ¬(Cl(ϕ,L,U), U < 0) (possible truth values).
(b) ¬(Cl(ϕ,L,U), Cl(ψ,L, V ), U �= V ) (same value for a literal everywhere).
(c) ¬(Cl(ϕ,L,U), Cl(ψ,L′, V ),Lit(L,L′), U = V ) (complementary literals).
(d) ¬(Cl(ϕ,L,U),Cl(ϕ,L′, V ),Cl(ϕ,L′′,W ), U = V = W = 0, L �= L′, ...,
Aux (K,N), N = 0) (each clause becomes true).
(e) ¬(Num(Z),Aux (K,N), N �= 0, N �= Z) (possible values).

It holds that the formula is unsatisfiable iff the instance D′ that coincides
with D except for Aux that now has the only tuple (0, s + 1) is an LS-fix of D
wrt IC. Thus, checking D′ for LS-fix is enough to check unsatisfiability.

For membership to coNP , for an initial instance D, instances D′ in the com-
plement of Fix (IC) have witnesses D′′ that can be checked in polynomial time,
namely instances D′′ that have the same key values as D, satisfy the ICs, but
∆(D,D′′) < ∆(D,D′).
(b) For CQA, let IC and a query Q be given. The complement of CQA is in
NPcoNP : Given an instance D, non deterministically choose an instance D′ with
D′ �|= Q and D′ a fix of D. The latter test can be done in coNP (by part (a)).
But NPcoNP = NPΣP

1 = ΣP
2 . In consequence, CQA belongs to coΣP

2 = ΠP
2 . �

Proof of Theorem 5: The reduction can be established with a fixed set IC0

of ICs. Given an undirected graph G = (V, E), consider a database with rela-
tions V (X,Z), E(U,W ), where X is a key and Z is the only flexible attribute
and takes values in {0, 1} (which can be enforced by means of the linear denials
∀X∀Z¬(V (X,Z), Z > 1), ∀X∀Z¬(V (X,Z), Z < 0) in IC0). Intuitively, Z indi-
cates with 1 if the vertex X is in the cover, and with 0 otherwise. Attributes
U, V are vertices and then, non numerical.

In the original database D we have the tuples V (e, 0), with e ∈ V; and also
the tuples E(e1, e2) for (e1, e2) ∈ E . Given the linear constraint

∀X1Z1X2Z2¬(V (X1, Z1), V (X2, Z2), E(X1,X2), Z1 = 0, Z2 = 0)

in IC0, the LS-fixes of the database are in one-to-one correspondence with the
vertex covers of minimal cardinality.



For the query Q(k) : q(sum(Z)), sum(Z) < k, with q(sum(Z)) ← V (X,Z),
the instance (D, yes) for consistent query answering under brave semantics has
answer No, (i.e. Q(k) is false in all LS-fixes) only for every k smaller than the
minimum cardinality c of a vertex cover. �

Proof of Proposition 3: By reduction from the MAXSNP -hard problem B-
Minimum Vertex Cover (BMVC), which asks to find a minimum vertex cover in
a graph whose nodes have a bounded degree [17, chap. 10]. We start by encoding
the graph as in the proof of Theorem 5. We also use the same initial database D.
Every LS-fix D′ of D corresponds to a minimum vertex cover V ′ for G and vice
versa, and it holds |V ′| = ∆(D,D′). This gives us an L-reduction from BMVC
to DFP [22]. �

Lemma A.2. Given a database D and a set of consistent local denials IC, there
will always exist an LS-fix D′ of D wrt IC. �
Proof: As shown in proof of Lemma A.1 for every flexible attribute in F it is
possible to define, using the integrity constraints in IC, an interval [cl, cu] such
that if the value of attribute A is in that interval there is no constraint ic ∈ IC
with a built-in involving A such that I(D, ic, t) �= ∅. Let D′′ be a database
constructed in the following way: for every tuple t ∈ D such that the value of a
flexible attribute does not belong to its interval, replace its value by any value
in the interval. Clearly D′ will be a fix but will not necessarily be an LS-fix. By
Proposition 1 we know there exists an LS-fix D′ for D wrt IC. �
Definition 11. Given a databaseD and a set of ICs IC, a local fix t′ for a tuple t
does not generate new violations if

⋃
ic∈IC(

⋃
l∈D′ I(D′, ic, l) �

⋃
l∈D I(D, ic, l)) =

∅ for D′ = (D � {t}) ∪ {t′}. �

Lemma A.3. For a set IC of local denials, if t′ is a local fix of a tuple t, then
t′ does not generate new violations5 in database D wrt IC. Furthermore, this
holds also for t′ a “relaxed” local fix where the distance to t is not necessarily
minimal �
Proof: Tuple t′ can only differ from t in the value of flexible attributes. Let us
assume that one of the modified values was for an attribute A. Since we have
local constraints, attribute A can only be in the constraints related either to <
and ≤ or to > and ≥, but not both. Without lost of generality, we will assume
that the constraint is written as in equation 1 and that A is related only to
> and ≥. Since t′ is a local fix, S(t, t′) is not empty and there is a set ICt of
constraints for which t′ solves the inconsistency in which t′ was involved. There
is an interval [cl,+∞) for A that can be obtained by the limits given in ICt that
show the values of A that would force the satisfaction of the constraints in ICt

that have attribute A in an inequality. This shows that the value of attribute A
in t′ is bigger than the value of A in t.

For D′ = (D�{t})∪{t′} we need to prove that
⋃

ic∈IC(
⋃

l∈D′ I(D′, ic, l) �⋃
l∈D I(D, ic, l)) = ∅. By contradiction let us assume that for a constraint

ic ∈ IC there exists a violation set I such that I ∈ ⋃
l∈D′ I(D′, ic, l) and

I �∈ ⋃
l∈D I(D, ic, l). There are two cases to consider:

5 c.f. Definition 11



– (I, ic) ∈ S(t, t′). Then I ∈ I(D, ic, t), but since we wanted an I �∈ ⋃
l∈D I(D,

ic, l) this is not possible.
– (I, ic) �∈ S(t, t′). Then we have two possibilities I �∈ I(D, ic, t) or ((I�{t})∪
{t′}) �|= ic.
• Let us consider first that I �∈ I(D, ic, t). We have that I ∈ ⋃

l∈D′ I(D′,
ic, l) and since t′ is the only difference between D and D′ we have I ∈
I(D′, ic, t′). Since all the constraints can only have attribute A with >
or ≥ we now that in particular ic does. Since I �∈ I(D, ic, t) we know
that A satisfied the condition in ic and since we know that t′ has a bigger
value than in t, it is not possible to generate an inconsistency in D′. We
have reached a contradiction.
• Let us consider ((I � {t}) ∪ {t′}) �|= ic. Then I ∈ I(D′, ic, t′). From our

assumption I �∈ ⋃
l∈D I(D, ic, l).This is the same situation analyzed in

previous item.
In all the cases we have reached contradiction and therefore the proposition is
proved. Since we never used the property of minimal distance between t′ and t,
the second part of the Lemma is also proved. �

Proposition A.2. For local denials it always exists an LS-fix for a database
D; and for every LS-fix D′, D′ �D is a set of local fixes. Furthermore, for each
violation set (I, ic), there is a tuple t ∈ I and a local fix t′ for t, such that
(I, ic) ∈ S(t, t′). �
Proof: Since each attribute A can only be associated to < or > built-ins, but
not both, it is clear that set of local denials is always consistent. By Lemma A.2,
there always exists an LS-fix D′. Now we need to prove that D′ �D is a set of
local fixes. By contradiction assume that t′ ∈ (D′ � D) is not a local fix of the
tuple t. This can happen in the following situations:

– t was consistent. From Lemma A.3 we know that no new inconsistencies can
be added by the modifications done to the other tuples and therefore t is not
related to any inconsistency. Then D� = D′ � {t′} ∪ {t} is also consistent
and ∆(D,D�) < ∆(D,D′). But D′ is an LS-fix so this is not possible.

– t is involved at least in one violation set. If S(t, t′) = ∅ then t′ is not solving
any violation set and therefore D� = D′ � {t′} ∪ {t} is also consistent and
∆(D,D�) < ∆(D,D′). But D′ is an LS-fix so this is not possible. Now, if
S(t, t′) �= ∅, from Lemma A.2, considering D = {t} and IC = {ic|(I, ic) ∈
S(t, t′)}, there exists an LS-fix D′ of D, i.e. there exists a local fix t′′ such
that S(t, t′′) = S(t, t′). Since t′′ is a local fix we know that ∆({t}, {t′′}) ≤
∆({t}, {t′}). They cannot be equal that would imply that t′ is a local fix
and it is not. Then D� = D′ � {t′} ∪ {t} is also consistent and ∆(D,D�) <
∆(D,D′). Again, this is not possible because D′ is an LS-fix

The second part of the proposition can be proved using Lemma A.2 and consid-
ering a database D = I and a set of constraints IC = {ic}. �

Proof of Proposition 4: Membership follows from Theorem 2(b). For hardness,
we can do the same reduction as in Theorem 2(b), because the ICs used there
are local denials. �

Proposition A.3. For a database D and a set of local denial constraints IC:



1. For a set of local fixes {t1, . . . tn} of a tuple t there always exists a local fix
t� such that S(t, t�) =

⋃n
i=1 S(t, ti).

2. For local fixes t′, t′′ and t′′′ of a tuple t with S(t, t′′′) = S(t, t′) ∪ S(t, t′′), it
holds that ∆({t}, {t′′′}) ≤ ∆({t}, {t′}) +∆({t}, {t′′}). �

Proof: First we prove item (1). Let ICt = {ic|I(D, ic, t) �= ∅ and ICS(t, t′) =
{ic|(I, ic) ∈ S(t, t′)}. From Lemma A.2, considering D = {t} and IC any subset
of ICt, there always exists an LS-fix D′ of D. This LS-fix is a local fix of tuple t
with ICS(t, t′) = IC. Since we can find a local fix for any IC ⊆ St then clearly
the lemma can be satisfied.

Now we will prove item (2). If the flexible attributes that where modified
in t′ and t′′ are disjoint, then t′′′ when combining the modifications I’ll get
∆({t}, {t′′′}) = ∆({t}, {t′}) +∆({t}, {t′′}). Now, we will consider the case were
t′ and t′′ have at least one flexible attribute, say A that is modified by both local
fixes. In this case t′′′ will have a value in A that solves the inconsistencies solved
by and t′ and t′′. This value will in fact correspond to the value of A in t′ or t′′ and
therefore we will have that ∆({t}, {t′′′}) < ∆({t}, {t′})+∆({t}, {t′′}). Let M be
the set of attributes that are modified both by t′ and t′′, we can express the rela-
tion as follows: ∆({t}, {t′′′}) =

∑
A∈F (πA(t)−πA(t′′′))2 =

∑
A∈F (πA(t)−πA(t′))2

+
∑

A∈F (πA(t)− πA(t′′))2 −∑
A∈MMin{(πA(t)− πA(t′))2, (πA(t)− πA(t′′))2} �

Proposition A.4. If an optimal cover C for the instance (U,S) of MWSCP
has more than one S(t, t′) for a tuple t, then there exists another optimal cover
C′ for (U,S) with the same total weight as C but with only one t′ such that
S(t, t′) ∈ C. Furthermore, D(C) is an LS-fix of D wrt IC with ∆(D,D(C)) equal
to the total weight of the cover C. �
Proof: To prove the first part, let us assume that S(t, t′), S(t, t′′) ∈ C. From
Proposition A.3 there exists an S(t, t′′′) ∈ S such that S(t, t′′′) = S(t, t′) ∪
S(t, t′′), i.e such that it covers the same elements as S(t, t′) and S(t, t′′). ¿From
Proposition A.3 ∆({t}, {t′′′}) ≤ ∆({t}, {t′}) + ∆({t}, {t′′}) and therefore that
weight of S(t, t′′′) is smaller or equal than the sum of the weight of the original
two sets. If∆({t}, {t′′′}) < ∆({t}, {t′})+∆({t}, {t′′}) we would have that C is not
an optimal solution so this is not possible. Then ∆({t}, {t′′′}) = ∆({t}, {t′}) +
∆({t}, {t′′}). Then, if we define C′ = (C� {S(t, t′), S(t, t′′)})∪{S(t, t′′′)} we will
cover all the elements and we will have the same optimal weight.

Now we need to prove that given D(C) is an LS-fix. D(C) is obtained by first
calculating C′ and therefore we have an optimal cover with at most one S(t, t′)
for each tuple t. Then D(C) is obtained by replacing t by t′ for each S(t, t′) ∈ C.
It is direct that D(C) has the same schema as D and that it satisfies the key
constraints. Now, since C′ covers all the elements, all the inconsistencies in D
are solved in D(C). From Lemma A.3 the local fixes t′ do not add new violations
and therefore D(C) |= IC and D(C) is a fix. We are only missing to prove that
D(C) minimizes the distance from D. Clearly ∆(D,D(C)) =

∑
t∈D ∆({t}, {t′})

=
∑

S(t,t′)∈C′ wS(t,t′) =
∑

S(t,t′)∈C wS(t,t′) = w. So, since the optimal solution
minimizes w, ∆(D,D(C)) is minimum and D(C) is an LS-fix. �
Proof of Proposition 5: From Propositions A.3 and A.4. �
Proof of Proposition 6: To prove it it is enough to construct this optimal
cover. Let C = {S(t, t′)|t′ ∈ (D′ �D). By definition C′ = C and D(C) = D′. We



need to prove that C is an optimal cover. Since D′ is consistent, all the violation
sets were solved and therefore C is a cover. Also, since ∆(D,D′) = ∆(D,D(C)) =
w and ∆(D,D′) is minimum, C minimizes the weight and therefore is an optimal
cover. �
Proof of Proposition 7: We have to establish that the transformation of
DFOP into MWSCP given above is an L-reduction [22]. So, it remains to verify
that the reduction can be done in polynomial time in the size of instance D for
DFP(IC), i.e. that G can be computed in polynomial time in n, the number of
tuples in D. Notice that if mi the number of database atoms in ici ∈ IC, and
m the maximum value of mi there are at most nmi hyper-edges associated to
ici ∈ IC, each of them having between 1 to m tuples. We can check that the
number of sets S(t, t′) and their weights are polynomially bounded by the size
of D. There is one S(t, t′) for each local fix. Each tuple may have no more than
|F| × |IC| local fixes, where F is the set of flexible attributes.

The weight of each S(t, t′) is polynomially bounded by the maximum absolute
value in an attribute in the database and the maximum absolute value of a
constant appearing in IC (by an argument similar to the one given in the proof
of Proposition 2).

With respect to D(C), the number of sets in S is polynomially bounded by
the size of D, and since C ⊆ S, C is also polynomially bounded by the size of D.
To generate C′ it is necessary to search through S. Finally, in order to replace t
in D for each tuple t′ such that S(t, t′) ∈ C we need to search through D. �

Proof of Proposition 8: Using the same arguments as in the proof of Proposi-
tion A.4 we have that since Ĉ is a cover then D(Ĉ) is a fix of D wrt IC. We need
to prove that ∆(D,D(Ĉ)) ≤ log(N) × ∆(D,D′). We know that ∆(D,D(Ĉ)) =∑

t∈D ∆({t}, {t′}). =
∑

S(t,t′)∈Ĉ� wS(t,t′). As described in definition 10, Ĉ� is ob-

tained from Ĉ by replacing, for each t, all the sets S(t, ti) ∈ Ĉ by a unique set
S(t, t�) such that S(t, t�) =

⋃
i S(t, ti). Since we are using euclidian distance to

calculate the local fixes, ∆({t}, {t�}) ≤∑
i∆({t}, {ti}). Then,

∆(D,D(Ĉ)) =
∑

S(t,t′)∈Ĉ� wS(t,t′) ≤
∑

S(t,t′)∈C wS(t,t′) = ŵ.

Thus, ∆(D,D(Ĉ)) ≤ ŵ ≤ log(N)×wo = log(N)×∆(D,D′), for every LS-fix D′

of D. �

Proof of Theorem 7: Based on the tractability results in [13], it suffices to
show that the LS-fixes for a database D are in one-to-one and polynomial time
correspondence with the repairs using tuple deletions [2, 9] for a database D′

wrt a set of key dependencies.
Since we have 1ADs, the violation sets will have a single element, then, for

an inconsistent tuple t wrt a constraint ic ∈ IC, it holds I(D, ic, t) = {t}. Since
all the violation sets are independent, in order to compute an LS-fix for D, we
have to generate independently all the local fixes t′ for all inconsistent tuples t
such that ({t}, ic) ∈ S(t, t′), with ic ∈ IC; and then combine them in all possible
ways.

Those local fixes can be found by considering all the candidate fixes (not
necessarily LS-minimal) that can obtained by combining all the possible limits



for each attribute provided by the ICs (c.f. Proposition A.1); and then checking
which of them satisfy IC, and finally choosing those that minimize ∆({t}, {t′}).
There are at most 2|F| possible candidate fixes, where F is the set of flexible
attributes.

Let us now define a database D′ consisting of the consistent tuples in D
together with all the local fixes of the inconsistent tuples. By construction, D
and D′ share the same keys. Since each inconsistent tuple in D may have more
than one local fix, D′ may become inconsistent wrt its key constraints. Each
repair for D′, obtained by tuple deletions, will choose one local fix for each
inconsistent tuple t of D, and therefore will determine an LS-fix of D wrt IC. �

Proof of Proposition 9: The NP -complete PARTITION problem [14] can
be reduced to this case for a fixed set of 1ADs. Let a A be a finite set, whose
elements a have integer sizes s(a). We need to determine if there exists a subset
S of A, such that

∑
a∈S s(a) = n := (

∑
a∈A s(a))/2.

We use two tables: Set(Element ,Weight), with key {Element ,Weight}, con-
taining the tuples (a, s(a)) for a ∈ A; and Selection(Element ,X, Y ), with key
Element , flexible numerical attributes X,Y (the partition of A) taking values
0 or 1 (which can be specified with 1ADs), and initially containing the tuples
(a, 0, 0) for a ∈ A. Finally, we have the 1AD ∀E,X, Y ¬(Selection(E,X, Y ),X <
1, Y < 1).

There is a one-to-one correspondence between LS-repairs of the original
database and partitions X,Y of A (collecting the elements with value 1 in ei-
ther X or Y ). Then, there is a partition with the desired property iff the query
Q : (Set(E,W ),Selection(E,X, Y ),X = 1, sum(W ) = n) has answer yes under
the brave semantics. The query used in this proof is acyclic and belongs to the
class CTree . �

For the proof of Theorem 8 we need some preliminaries. Let us define a function
F , with domain G ×S, where G = 〈V, E〉 is a graph and S is a subset of vertexes
of graph G, and range non-negative integers. The function is defined as the
summation over all the vertices v ∈ S, of cubes of the number of edges connecting
v to vertexes in the complement of S.

Definition 12. Given a graph G = 〈V, E〉 and subset of its vertexes S ∈ V
– F l(S, v) = |T (S, v)|3 where T (S, v) =

{{v′|v′ ∈ (V � S) ∧ (v, v′) ∈ E), v ∈ S
∅, v �∈ S

– F (G, S) =
∑

v∈S F
l(S, v) �

Lemma A.4. Given a fixed regular undirected graph G = (V, E) of degree 3, the
maximal value of F (G, S) on all possible sets S ⊆ V is (33×|I|) for I a maximal
independent set. �
Proof: Let us first assume that S is an independent set, not necessarily maximal.
In this case the answer to F (G, S) will be 33 × |S|, because each element v ∈ S
is connected to three vertices in V � S. Then, among independent sets, the
maximum value for F (G, S) is 33 ×m, where m is the maximum cardinality of
an independent set.



Let G[S] = G(S, ES) where ES are all the edges (v, v′) ∈ E such that v, v′ ∈ S.
Now, if S is not an independent set, there exists a maximum independent set
IS of G[S]. Every v ∈ (V � S) is adjacent to at least one vertex in IS , otherwise
IS ∪ {v}, would be an independent set contained in S and with more vertices
than IS , contradicting our choice of IS . Now let us define Fext(S, v) = (F l(S, v)+∑

(v,v′)∈E F
l(S, v′)). Since every edge v′ ∈ (S � IS) is adjacent to IS , it is easy

to see that:
F (G, S) ≤

∑
v∈I

Fext(S, v) (3)

We want to prove that F (G, S) ≤ F (G, IS). This, combined with equation
(3) shows that it is enough to prove that

∑
v∈IS

Fext(S, v) ≤ F (G, IS). Since
F (G, IS) =

∑
v∈IS

F l(IS , v), we need to prove
∑

v∈IS
Fext(S, v) ≤

∑
v∈IS

F l(IS , v)
and then, it would be sufficient to prove that Fext(S, v) ≤ F l(IS , v) is true for
every v ∈ IS . For v ∈ IS and S ′ = (S � IS), we have the following cases:

1. If v is adjacent to one vertex in S ′ then Fext(S, v) ≤ 23 +23 and F l(IS , v) =
33 and therefore Fext(S, v) ≤ (F l(IS , v)− 11).

2. If v is adjacent to two vertexes in S ′ in analogous way to item (1) we get
Fext(S, v) ≤ (F l(IS , v)− 10).

3. If v is adjacent to three vertexes in S ′ in analogous way to item (1) we get
Fext(S, v) ≤ (F l(IS , v)− 3).

Then, we have proved that Fext(S, v) ≤ F l(IS , v) and therefore that F (G, S) ≤
F (G, IS). We also know that, since IS is an independent set, that F (G, S) ≤
F (G, IS) ≤ 33 ×m. �

Proof of Theorem 8: (a) For sum: By reduction from a variation of Indepen-
dent Set, for graphs whose vertices have all the same degree. It remains NP -hard
as a special case of Independence Set for Cubic Planar Graphs [15]. Given an
undirected graph G = (V, E) with degree 3, and a minimum bound k for the size
of the maximal independent set, we create a relation Vertex (V,C1, C2), where
the key V is a vertex and C1, C2 are flexible and may take values 0 or 1, but
are all equal to 0 in the initial instance D. This relation is subject to the denial
IC : ∀V,C1, C2¬(Vertex (V,C1, C2), C1 < 1, C2 < 1). D is inconsistent wrt this
constraint and in any of its LS-fix each vertex v will have associated a tuples
Vertex (v, 1, 0) or Vertex (v, 0, 1) but not both. Each LS-fix of the database de-
fines a partition of V into two subsets: S with (v, 1, 0) and S′ with (v, 0, 1), where
clearly S∪S′ = V and S∩S′ = ∅. Let us define a second relation Edge(V1, V2,W ),
with hard attributes only, that contains the tuples (v1, v2, 1) for (v1, v2) ∈ E or
(v2, v1) ∈ E . Every vertex v appears in each argument in exactly 3 tuples.

Consider the ground aggregate conjunctive query Q:
q(sum(W0))← Vertex (V1, C11, C12), C11 = 1,

Edge(V1, V2,W0), Vertex (V2, C21, C22), C21 = 0,
Edge(V1, V3,W1), Vertex (V3, C31, C32), C31 = 0,
Edge(V1, V4,W2), Vertex (V4, C41, C42), C41 = 0.

The query Q, computes the sum of cubes of the number of vertexes of S′

adjacent to vertices in S, i.e. it calculates the function from graph to nonnegative



numbers corresponding to F (G, S) from Definition 12 with Q(D′) = F (G, S) for
D′ ∈ Fix(D, IC ) and S = {v|Vertex (v, 1, 0) ∈ D′}.

We are interested in the minimum and maximum value for Q in Fix(D, IC ),
i.e. the min-max answer introduced in [3]. Since the function is nonnegative and
since its value is zero for S = ∅ and S = V we have that its minimum value is
zero. We are only missing to find its maximum value.

¿From Lemma 4 we have that the answer to query Q is at most 33× |I| with
I a maximum independent set. In consequence, the min-max answer for Q is
(0, 33 ×m), with m the cardinality of the maximum independent set; and then
there is an independent set of size at least k iff min−max answer to Q ≥ k×33.
(b) For count distinct: By reduction from MAXSAT. Assume that an instance
for MAXSAT is given, consisting of a set U of propositional variables, a collection
C of clauses over U and a positive integer k. The question is whether at least k
clauses can be satisfied simultaneously, which will get answer yes exactly when
a question of the form countd ≤ (k − 1), with countd defined by an aggregate
query over a database instance (both of them to be constructed below), gets
answer no under the min-max semantics.

Define a relation Var(u, c1, c2), with (hard) first key attribute, and the second
and third flexible (the denial below and the minimality condition will make them
take values 0 or 1). The initial database has a tuple (u, 0, 0) for every u ∈ U .
Another relation Clause(u, c, s), has no flexible attributes and contains for every
occurrence of variable u ∈ U in a clause c ∈ C a tuple (u, c, s) with s an
assignment for u satisfying clause c. The IC is ∀u, c1, c2¬(Var(u, c1, c2), c1 <
1, c2 < 1). The acyclic query is

q(countd(c))← Var(u, c1, c2),Clause(u, c, s), c1 = s,

where countd denotes the “count distinct” aggregate function. Its answer tells
us how many clauses are satisfied in a given LS-fix. The max value taken on a
LS-fix, i.e. the min-max answer, will be the max number of clauses which may
be satisfied for MAXSAT.
(c) For average: By reduction from 3SAT . We use the same table Var(u, c1, c2)
and IC as in (a). Now, we encode clauses as tuples in a fixed relation
Clause(val , var1 , val1 , var2 , val2 , var3 , val3 ), where var1 , var2 , var3 are the vari-
ables in the clause (in any order), val1 , val2 , val3 all possible combinations of
truth assignments to variables (at most 8 combinations per clause). And val is
the corresponding truth value for the clause (0 or 1). Now, consider the acyclic
query

q(avg(val))← Clause(val , var1 , val1 , var2 , val2 , var3 , val3 ),
Var(var1 , val1 , val ′1 ),Var(var2 , val2 , val ′2 ),Var(var3 , val3 , val ′3 ).

Then value of q is maximum in a LS-fix, taking value 1, i.e. the min-max answer
to q is 1, iff the formula satisfiable. �

Proof of of Theorem 9: First we reduce CQA under range semantics for
aggregate queries with sum to RWAE2 , a restricted weighted version of the
problem of solving algebraic equations over GF [2], the field with two elements.



Next, we prove that such an algebraic problem can be solved within constant
approximation factor.
(A). Reduction to RWAE2 . In order to define polynomial equations, we need
variables. We introduce a set V of variables XR

k,i, taking values in GF [2], for
every tuple ti in an LS-fix corresponding to a tuple t (a ground database atom
in the database) with key k in a relation R in the original database, i.e. ti
belongs to some LS-fix and ti t share the key values k. For example if the tuple
t is consistent or admits only one local fix (one attribute can be changed and in
only one way), only one variable is introduced due to t. Denote with bag(t) the
set of variables introduced due to a same initial tuple t.

Consider a conjunctive query

Q(sum(z)) : −R1(x), · · · , Rm(x).

Throughout the a proof ψ is the body of the query as a conjunction of atoms,
m is the number of database predicates in ψ, n is the number of tuples in the
database, k is the maximal number of attribute comparisons in the ICs (and the
maximal number of fixes of a given tuple).

We may consider all the possible assignments β from database atoms in
the query to grounds tuples in fixes that satisfy ψ. The number of assignments
is polynomial in the size of the database, actually ≤ nm. Notice that the the
number of LS-fixes of a database may be exponential, but the number of local
fixes of each original tuple is restricted by the number of attributes of the tuple.
So, the number of all possible LS-fixes of tuples is polynomial in the size of the
original database (even linear). Here we are using the fact that we have 1ADs.

Now we build a system E of weighted algebraic equations. Each such assign-
ment β is associated with a combination of tuples tR1

k1,i1
, · · · , tRm

km,im
satisfying ψ.

For each combination put the following equation Eβ over GF [2] into E :
selected︷ ︸︸ ︷

XR1
k1,i1
· · · ·XRm

km,im
·
∏
i�=i1

(1−XR1
k1,i) · · · · ·

∏
i�=im

(1−XRm

km,i)

︸ ︷︷ ︸
non−selected

= 1. (4)

The first product in (4), before the first
∏

, contains the variables corresponding
to the tuples selected by β. The rest of the product contains variables for the
those tuples that were not selected, i.e. if t1 appears in the first product, with
t1 ∈ bag(t), and t2 ∈ bag(t), with t1 �= t2, then the variable X2 corresponding
to t2 appears as (1 −X2) in the second part of the product. This captures the
restriction that no two different tuples from the same bag can be used (because
the share the key values). For each combination β of tuples in LS-fixes there is
no more then one equation, which in turn has a polynomial number of factors.

Equation (4) gets weight w(Eβ) that is equal to the value of aggregation
attribute z in β.

In this way we have an instance of the RWAE2 . It requires to find the maxi-
mum weight for a subsystem of E that can be (simultaneously) satisfied in GF [2],
where the weight of the subsystem is the sum of the weights of the individual



equations. Of course, this problem also has a version as a decision problem, so
as CQA under range semantics.
Claim: The maximal weight of a satisfied subsystem of E is the same as the
maximal value of Q(sumz) over all possible LS-fixes of D.
(≥) Assume that query Q takes a maximum value over all possible LS-fixes of
D on an LS-fix D′. Under 1ADs a database LS-fix D′ is a set union of local
fixes, with one local fix selected for every original tuple. Consider an assignment
A defined on V that maps variables corresponding a selected local fix to 1 and
all other variables to 0.

Consider all sets of local fixes which simultaneously satisfy ψ. If local fixes
t1, · · · , tm satisfy ψ, then there exist exactly one equation e for that given set
of local fixes. The equation e will be satisfied since variables corresponding to
selected local fixes have value 1, and “non-selected” variables have value 0. So,
for every set of local fixes satisfying the query body, there would be a satisfied
equation with weight equal to the value of aggregated attribute. It means, that
a solution to the algebraic equation problem is bigger or equal to the maximal
query answer (min-max answer).
(≤) Consider an assignment A which is a solution of algebraic equation problem.
It maps elements of V to {0, 1} in such a way that the weight of satisfied equations
of E is maximum over all possible assignment for V.

First we prove that if there exists a bag B such that more then one of its
variables is mapped to 1, then there exist an assignment A′ with the same weight
of satisfied equations of E as A, but B contains no more then one variable mapped
to 1.

Assume that for a bag B more then two variables (let us say Xi,Xj) are
mapped to 1. It means that every equation which contains variables from B will
be unsatisfied, since it contains either (1 − Xi) or (1 − Xj) as factors in the
equation. If we change a value of one of the variables (say Xi) to 0, then no
satisfied equation become unsatisfied, since satisfied equations do not contain
Xi. No unsatisfied equation becomes satisfied, because due to the assumption of
maximality of the weight of the satisfied subset of E for A.

In a second step, we prove that if A is a maximal assignment and there
exist a bag B such that all of its variables are mapped to 0, then there exist
an assignment A′, which satisfies the same subset of E as A, but at least one
variable from that B is mapped to 1.

If all variables from a bag B are mapped to 0, then all equations which
contain variables from B are unsatisfied. If we change a value of one variable
to 1, then no satisfied equation becomes unsatisfied since all satisfied equations
do not contain variables from B. No unsatisfied equation becomes satisfied due
to maximality assumption of the weight of satisfied equation for A. Taking step
by step all bags from V, for given a maximum assignment A, we produce an
assignment A′, which has exactly one variable from each bag mapped to 1.

Now, construct a database D′ which is a set of local fixes corresponding to
variables mapped to 1. It is obviously a LS-fix, and w(E(A)) ≤ Q(D′).
(B). A deterministic approximation algorithm for RWAE2. The construction
and approximation factor obtained are similar those in the approximation of



MAXSAT. C.f. [25, 22]. In two steps, first a randomized algorithm is produced,
that is next de-randomized.
(B1). Randomized approximation algorithm. Assume that from each bag we
select one variable with probability 1/k, where k is the number of variables in
the bag. We map selected variable to 1 and all other variables in the bag to 0.
For each equation e, random variable We denotes the weight contributed by e
to the total weight W . Thus, W =

∑
e∈E We and E[We] = we ·Pr[e is satisfied],

where E is a mathematical expectation and Pr is a probability.
If the query contains m predicates, then each equation contains no more than

m variables from different bags (never two different variables from the same bag),
then E(We) ≥ k−mwe. Now, by linearity of expectation,

E[W ] =
∑
e∈E

E[We] ≥ k−m
∑
e∈E

we ≥ k−m ·OPT.

(B2). De-randomization via conditional expectation. We first establish
Claim: The RWAE2 problem is self-reducible [25, Chap. A.5].

In fact, assumeA′ is a partial assignment from V, such that variablesX1, · · · ,Xi

are mapped to {0, 1}. Let Es be the set of equations satisfied by A′ with total
weight W [Es], and Eu is the set of equations which cannot be satisfied under
A′. Let E′′ be a set of equations from E � (Es ∪ Eu), such that variables from
X1, · · · ,Xi are replaced by their values. By additivity of the weight function
and the independence of the variables, the maximal weight of satisfied equations
under an assignment which extends A′ is W [Es]+maxW [E′′], where W [E′′] is a
solution of the RWAE2 problem restricted to E′′. It is good enough to consider
the self-reducibility trees T such only one variable from each bag gets value 1
along any path in the tree. This establishes our claim.

Assume that a self-reducibility tree T is given, with each node in it cor-
responding to a step of the self-reduction. Each node v of T is labelled with
X1 = a1, · · · ,Xi = ai, a partial assignment of values to variables X1, · · · ,Xi ∈ V
associated to the step for v of the self-reduction. Since this is a partial assignment,
some of the equations in E become immediately satisfied, other unsatisfied, and
some other undetermined. The latter become a set of equations E′ associated
to v on variables V � {X1, . . . , Xi}, obtained from E by giving to the variables
X1, . . . , Xi their values a1, . . . , ai. By construction, these equations inherit the
weight of the corresponding equations in E .

For example, if the set of equations consists of: (1), yp(1 − x) = 1, (2)
2xz(1 − y) = 1, (3) 3xw(1 − y) = 1, with variables x, y, z, p, w, and the partial
assignment, at some step of self-reduction for v is x = 1, y = 0, w = 1, then
equation (1) becomes unsatisfiable, (2) is not satisfied but possibly satisfiable
with an appropriate value for z; and (3) satisfied. So, E′ contains equation (2),
but with x, y replaced by their values 1, 0, resp.

The conditional expectation of any node v in T can be computed via its sets of
equations E′ we just described. Clearly, the expected weight of satisfied equations
of E′ under a random assignment of values in GF [2] to V \ X1, · · · ,Xi can be
computed in the polynomial time. Adding to this the weight of the equations
in E already satisfied by the partial assignment X1 = a1, · · · ,Xi = ai gives the
conditional expectation.



Then we compute in polynomial time a path from the root to a leaf, such
that the conditional expectation of each node on this path is ≥ E[W ]. This can
be done as in the construction in [25, Theorem 16.4].

In consequence, we can find a deterministic approximate solution to the
RWAE2 problem in polynomial time. It approximates the optimum solution
with a factor greater then k−m. It means that we can approximate the maximal
value of aggregate conjunctive query within a factor k−m, which depends on
integrity constraints and a query, but not depend on the size of the database.
This ends the proof.

For example, the query with sum used in the proof of the NP-hardness in
Theorem 8 has m = 4, k = 2, then it can be approximated within the factor 2−4.
�

A.2 An Example for Theorem 1

Consider the diophantine equation

2x3y2 + 3xy + 105 = x2y3 + y2. (5)

Each term t in it will be represented by a relation R(t) with 8 attributes taking
values in N: three, X1,X2,X3, for the maximum exponent of x, three, Y1, Y2, Y3,
for the maximum exponent of y, one, C, for the constant terms, plus a last one,
K, for a key. Value 0 for a non-key attribute indicates that the term appears in t,
otherwise it gets value 1. We introduce as many tuples in R(t) as the coefficient
of the term; they differ only in the key value. We will see that only the 0 values
will be subject to fixes. These are the relations and their ICs:

R(2x3y2) X1 X2 X3 Y1 Y2 Y3 C K
0 0 0 1 0 0 1 1
0 0 0 1 0 0 1 2

For this table we have the following set, IC(2x3y2), of ICs:
∀x1 · · ·x8¬(R(2x3y2)(x1, . . . , x8)∧ x1 �= x2), ∀x1 · · ·x8¬(R(2x3y2)(x1, . . . , x8)∧
x2 �= x3),
∀x1 · · ·x8¬(R(2x3y2)(x1, . . . , x8)∧ x5 �= x6), ∀x1 · · ·x8¬(R(2x3y2)(x1, . . . , x8)∧
x4 �= 1),
∀x1 · · ·x16¬(R(2x3y2)(x1, . . . , x8) ∧R(2x3y2)(x9, · · · , x16) ∧ x1 �= x9)
∀x1 · · ·x16¬(R(2x3y2)(x1, . . . , x8) ∧R(2x3y2)(x9, · · · , x16) ∧ x5 �= x13).

R(3xy) X1 X2 X3 Y1 Y2 Y3 C K
1 1 0 1 1 0 1 3
1 1 0 1 1 0 1 4
1 1 0 1 1 0 1 5

IC(3xy):
∀x1 · · ·x16¬(R(3xy)(x1, . . . , x8) ∧R(3xy)(x9, . . . , x16) ∧ x3 �= x11),
∀x1 · · ·x16¬(R(3xy)(x1, . . . , x8) ∧R(3xy)(x9, · · · , x16) ∧ x6 �= x14),
∀x1 · · ·x8¬(R(3xy)(x1, . . . , x8)∧ x1 �= 1), ∀x1 · · ·x8¬(R(3xy)(x1, . . . , x8)∧ x2 �=



1),
∀x1 · · ·x8¬(R(3xy)(x1, . . . , x8) ∧ x4 �= 1),
∀x1 · · ·x8¬(R(3xy)(x1, . . . , x8) ∧ x5 �= 1).

R(105) X1 X2 X3 Y1 Y2 Y3 C K
1 1 1 1 1 1 105 6

IC(105):
∀x1 · · ·x8¬(R(105)(x1, . . . , x8) ∧ x1 �= 1), ∀x1 · · ·x8¬(R(105)(x1, . . . , x8) ∧

x2 �= 1),
∀x1 · · ·x8¬(R(105)(x1, . . . , x8) ∧ x3 �= 1), ∀x1 · · ·x8¬(R(105)(x1, . . . , x8) ∧ x4 �=
1),
∀x1 · · ·x8¬(R(105)(x1, . . . , x8) ∧ x5 �= 1), ∀x1 · · ·x8¬(R(105)(x1, . . . , x8) ∧ x6 �=
1),
∀x1 · · ·x6¬(105(x1, · · · , x6) ∧ x7 �= 105).

Similar tables R(x2y3) and R(y2) and corresponding sets of ICs are generated
for the terms on the RHS of (5).

Next we need ICs that are responsible for making equal all xs and ys in all
terms of the equation:
∀x1 · · ·x16¬(R(2x3y2)(x1, . . . , x8) ∧R(3xy)(x9, · · · , x16) ∧ x1 �= x11),
∀x1 · · ·x16¬(R(2x3y2)(x1, . . . , x8) ∧R(3xy)(x9, . . . , x16) ∧ x5 �= x13)
∀x1 · · ·x16¬(R(2x3y2)(x1, . . . , x8) ∧R(x2y3)(x9, · · · , x16) ∧ x1 �= x10)
∀x1 · · ·x16¬(R(2x3y2)(x1, . . . , x8) ∧R(x2y3)(x9, . . . , x16) ∧ x5 �= x12)
∀x1 · · ·x16¬(R(2x3y2)(x1, . . . , x8) ∧R(y2)(x9, . . . , x16) ∧ x5 �= x13).

Now we construct a single table R(equ) that represents equation (5) by ap-
pending the previous tables:

R(equ) X1 X2 X3 Y1 Y2 Y3 C K
0 0 0 1 0 0 1 1
0 0 0 1 0 0 1 2
1 1 0 1 1 0 1 3
1 1 0 1 1 0 1 4
1 1 0 1 1 0 1 5
1 1 1 1 1 1 105 6
1 0 0 0 0 0 1 7
1 1 1 1 0 0 1 8

We need ICs stating the correspondence between the terms in the tables R(t)
and table R(equ):
∀x1 · · ·x16¬(R(equ)(x1, . . . , x8) ∧R(2x3y2)(x9, . . . , x16) ∧ x8 = x16 ∧ x1 �= x9),
∀x1 · · ·x16¬(R(equ)(x1, . . . , x8) ∧R(2x3y2)(x9, . . . , x16) ∧ x8 = x16 ∧ x2 �= x10),
· · · · · · · · ·
∀x1 · · ·x16¬(R(equ)(x1, . . . , x6) ∧R(y2)(x7 · · ·x16) ∧ x8 = x16 ∧ x7 �= x15).

Finally, we have one aggregate constraint that is responsible for making equal
the LHS and RHS of equation (5):
sumR(equ)(x1 · x2 · x3 · x4 · x5 · x6 · x7 : x6 < 7) = sumR(equ)(x1 · x2 · x3 · x4 ·
x5 · x6 · x7 : x6 > 6).



If the database has an LS-fix, then there is an integer solution to the dio-
phantine equation. If the equation has a solution s, then there is an instance
R(equ)′ corresponding to s that satisfies the ICs. By Proposition 1, there is an
LS-fix of the database.

The reduction could be done with the table R(equ) alone, making all the ICs
above to refer to this table, but the presentation would be harder to follow.


