
Tractable Cases of Clean Query Answering under Entity
Resolution via Matching Dependencies⋆

Jaffer Gardezi Leopoldo Bertossi
University of Ottawa, SITE. Carleton University, SCS

Ottawa, Canada Ottawa, Canada
jgard082@uottawa.ca bertossi@scs.carleton.ca

Abstract. Matching Dependencies (MDs) are a recent proposal for declarative
entity resolution. They are rules that specify, given the similarities satisfied by
values in a database, what values should be considered duplicates, and have to
be matched. On the basis of a chase-like procedure for MD enforcement, we
can obtain clean (duplicate-free) instances; possibly several of them. The clean
answers to queries (which we call the resolved answers) are invariant under the
resulting class of instances. Identifying the clean versions of a given instance is
generally an intractable problem. In this paper, we show that for a certain class
of MDs, the characterization of the clean instances is straightforward. This is an
important result, because it leads to tractable cases of resolved query answering.
Further tractable cases are derived by making connections with tractable cases of
CQA.

1 Introduction
For various reasons, such as errors or variations in format, integration of data from
different sources, etc., databases may contain different coexisting representations of the
same external, real world entity. Those “duplicates” can be entire tuples or values within
them. To obtain accurate information, in particular, query answers from the data, those
tuples or values should be merged into a single representation.

Identifying and merging duplicates is a process called entity resolution (ER) [13,
16]. Matching dependencies (MDs) are a recent proposal for declarative duplicate res-
olution [17, 18]. An MD expresses, in the form of a rule, that if the values of certain
attributes in a pair of tuples are similar, then the values of other attributes in those tuples
should be matched (or merged) into a common value.

For example, the MD R1[X1] ≈ R2[X2] → R1[Y1]
.
= R2[Y2] is a symbolic ex-

pression saying that, if an R1-tuple and R2-tuple have similar values for their attributes
X1, X2, then their values for attributes Y1, Y2 should be made equal. This is a dynamic
dependency, in the sense that its satisfaction is checked against a pair of instances: the
first one where the antecedent holds, and the second one where the identification of
values takes place. This semantics of MDs was sketched in [18].

In this paper we use a refinement of that original semantics that was put forth in [23]
(cf. also [24]). It improves wrt the latter in that it disallows changes that are irrelevant to
the duplicate resolution process. Actually, [23] goes on to define the clean versions of

⋆ Research supported by the NSERC Strategic Network on Business Intelligence (BIN ADC05)
and NSERC/IBM CRDPJ/371084-2008.

the original database instance D0 that contains duplicates. They are called the resolved
instances (RIs) of D0 wrt the given set M of matching dependencies. A resolved in-
stance is obtained as the fixed point of a chase-like procedure that starts from D0 and
iteratively applies or enforces the MDs in M . Each step of this chase generates a new
instance by making equal the values that are identified as duplicates by the MDs.

In [23] it was shown that resolved instances always exist, and that they have certain
desirable properties. For example, the set of allowed changes is just restrictive enough to
prevent irrelevant changes, while still guaranteeing existence of resolved instances. The
resolved instances that minimize the overall number of attribute value changes wrt the
original instance are called minimally resolved instances (MRIs). On this basis, given a
query Q posed to a database instance D0 that may contain duplicates, we defined the
resolved answers wrt Σ as the query answers that are true of all the minimally resolved
instances [23].

The concept of resolved query answer has similarities to that of consistent query an-
swer (CQA) in a database that fails to satisfy a set of integrity constraints [3, 7, 8]. The
consistent answers are invariant under the repairs of the original instance. However,
data cleaning and CQA are different problems. For the former, we want to compute a
clean instance, determined by MDs; for the latter, the goal is obtaining semantically
correct query answers. MDs are not (static) ICs. In principle, we could see clean in-
stances as repairs, treating MDs similarly to static FDs. However, the existing repair
semantics do not capture the matchings as dictated by MDs (cf. [23, 24] for a more
detailed discussion).

The motivation for defining the concept of resolved answers to a query is that even
in a database instance containing duplicates, much or most of the data may be duplicate-
free. One can therefore obtain useful information from the instance without having to
perform data cleaning on the instance. This would be convenient if the user does not
want, or cannot afford, to go through a data cleaning process. In other situations the user
may not have write access to the data being queried, or any access to the data sources,
as in virtual data integration systems [25, 9].

In this paper we show that for a certain sets of MDs whose members depend cycli-
cally on each other, it is possible to characterize the form of the minimally resolved
instances for any given instance. In particular, we introduce a recursively defined pred-
icate for identifying the sets of duplicate values within a database instance. This pred-
icate can be combined with a query, opening the ground for tractability via a query
rewriting approach to the problem of retrieving the resolved answers to the query.

We also establish connections between the current problem and consistent query
answering (CQA) to obtain further tractable cases. When the form of a set of MDs is
such that application of one MD cannot affect the application of another MD in the set,
the resolved instances of a given database instance are similar to repairs of the instance
wrt a set of functional dependencies (FDs). This allows us to apply results on CQA
under FDs [15, 21, 30].

This paper is organized as follows. In Section 2 we introduce basic concepts and
notation of MDs. In Section 3, we define the important concepts used in this paper,
in particular, (minimally) resolved instances and resolved answers to queries. Section
4 contains the main result of this paper, which is a characterization of the minimally

2

resolved instances for certain sets of MDs with cyclic dependency graphs. Section 5
makes some connections with CQA. Section 6 concludes the paper and discusses related
and future work. The missing and not already formally published proofs can be found
all in [22].

2 Preliminaries

We consider a relational schema S that includes an enumerable, possibly infinite do-
main U , and a finite set R of database predicates. Elements of U are represented by
lower case letters near the beginning of the alphabet. S determines a first-order (FO)
language L(S). An instance D for S is a finite set of ground atoms of the form R(ā),
with R ∈ R, say of arity n, and ā ∈ Un. R(D) denotes the extension of R in D.
Every predicate R ∈ S has a set of attribute, denoted attr(R). As usual, we sometimes
refer to attribute A of R by R[A]. We assume that all the attributes of a predicate are
different, and that we can identify attributes with positions in predicates, e.g. R[i], with
1 ≤ i ≤ n. If the ith attribute of predicate R is A, for a tuple t = (c1, . . . , cn) ∈ R(D),
tDR [A] (usually, simply tR[A] or t[A] if the instance is understood) denotes the value
ci. For a sequence Ā of attributes in attr(R), t[Ā] denotes the tuple whose entries are
the values of the attributes in Ā. For a tuple t in a relation instance with attribute A,
the pair (t, A) is called a value position (usually simply, position). In that case, t[A] is
the value taken by that position (for the given instance). Attributes have and may share
subdomains of U .

In the rest of this section, we summarize some of the assumptions, definitions, no-
tation, and results from [23], that we will need.

We will assume that every relation in an instance has an auxiliary attribute, a surro-
gate key, holding values that act as tuple identifiers. Tuple identifiers are never created,
destroyed or changed. They do not appear in MDs, and are used to identify different
versions of the same original tuple that result from the matching process. We usually
leave them implicit; and “tuple identifier attributes” are commonly left out when speci-
fying a database schema. However, when explicitly represented, they will be the “first”
attribute of the relation. For example, if R ∈ R is n-ary, R(t, c1, . . . , cn) is a tuple with
id t, and is usually written as R(t, c̄). We usually use the same symbol for a tuple’s
identifier as for the tuple itself. Tuple identifiers are unique over the entire instance.1

Two instances over the same schema that share the same tuple identifiers are said to
be correlated. In this case it is possible to unambiguously compare their tuples, and as
a result, also the instances.

As expected, some of the attribute domains, say A, have a built-in binary similar-
ity relation ≈A. That is, ≈A ⊆ Dom(A) × Dom(A). It is assumed to be reflexive
and symmetric. Such a relation can be extended to finite lists of attributes (or domains
therefor), componentwise. For single attributes or lists of them, the similarity relation
is generically denoted with ≈.

A matching dependency (MD) [17], involving predicate R, is an expression (or
rule), m, of the form

m : R[Ā] ≈ R[Ā] → R[B̄]
.
= R[B̄], (1)

1 An alternative to the use of tuple ids could be the dynamic mappings introduced in [28].

3

with Ā = (A1, ..., Ak) and B̄ = (B1, ..., Bk′) lists of attributes from attr(R).2 We
assume the attributes in Ā are all different, similarly for B̄. The set of attributes on
the left-hand-side (LHS) of the arrow in m is denoted with LHS (m). Similarly for the
right-hand-side (RHS). The condition on the LHS of (1) means that, for a pair of tuples
t1, t2 in (an instance of) R, t1[Ai] ≈i t2[Ai], 1 ≤ i ≤ k. Similarly, the expression on
the RHS means t1[Bi]

.
= t2[Bi], 1 ≤ i ≤ k′. Here, .

= means that the values should
be updated to the same value. Accordingly, the intended semantics of (1) is that, for an
instance D, if any pair of tuples t1, t2 ∈ R(D) satisfy the similarity conditions on the
LHS, then for the same tuples (or tuple ids), the attributes on the RHS have to take the
same values [18], possibly through updates that may lead to a new version of D.

Attributes that appear to the right of the arrow in an element of a set M of MDs
are called changeable attributes. We assume that all sets M of MDs are in standard
form, i.e. for no two different MDs m1,m2 ∈ M , LHS (m1) = LHS (m2). All sets of
MDs can be put in this form. MDs in a set M can interact in the sense that a matching
enforced by one of them may create new similarities that lead to the enforcement of
another MD in M . This intuition is captured through the MD-graph.

Definition 1. [24] Let M be a set of MDs in standard form. The MD-graph of M ,
denoted MDG(M), is a directed graph with a vertex m for each m ∈ M , and an edge
from m to m′ iff RHS (m)∩LHS (m′) ̸= ∅.3 If MDG(M) contains edges, M is called
interacting. Otherwise, it is called non-interacting (NI). �

3 Matching Dependencies and Resolved Answers
Updates as prescribed by an MD m are not arbitrary. The updates based on m have
to be justified by m, as captured through the notion of modifiable value position in an
instance. Values in modifiable positions are the only ones that are allowed to change
under a legal update. The notion of modifiable position depends on the syntax of the
MDs, but also on the instance at hand on which updates that identify values are to be
applied, because the tuple t in a position (t, A) belongs to that instance. We give an ex-
ample illustrating some issues involved in the definition of modifiability (cf. Definition
2 below).

Example 1. Consider m : R[A] ≈ R[A] → R[B]
.
= R[B] on schema R[A,B], and the

instance R(D) shown below.

R(D) A B
t1 a1 c1
t2 a2 c1
t3 a3 c3
t4 b1 c3
t5 b2 c3

Assume the only non-trivial similarities
are a1 ≈ a2 ≈ a3 and b1 ≈ b2. One might
be tempted to declare positions (ti, B) and
(tj , B) as modifiable whenever ti[A] ≈
tj [A] holds in D. In this case, (t4, B) and
(t5, B) would be classified as modifiable.

2 We consider this class to simplify the presentation. However, the results in this paper also
apply to the more general case of MDs of the form R1[Ā] ≈ R2[B̄] → R1[C̄]

.
= R2[D̄], with

the corresponding attributes in Ā, B̄ (and in C̄, D̄) sharing domains, in particular, similarity
relations [22].

3 That is, they share at least one corresponding pair of attributes.

4

However, the values in those positions should not be allowed to change, since t4[B] =
t5[B] and no duplicate resolution is needed. Consequently, we might consider adding
the requirement that ti[B] ̸= tj [B], which would make (t2, B) and (t3, B) modifiable,
but (t1, B) non-modifiable.

This is problematic, because a legal update would in general lead to t1[B] ̸= t2[B]
in the new instance (unless the update value for (t2, B) and (t3, B) is chosen to be c1).
This would go against the intended meaning of the MD, which tells us that (t1, B),
(t2, B), and (t3, B) represent the same entity. As a consequence, t1[B] = t2[B] =
t3[B] should hold in the updated instance. �

Example 1 shows that defining modifiability of a value position4 in terms of just a pair
of tuples does not lead to an appropriate restriction on updates. The definition below
uses recursion to take larger groups of positions into account.

Definition 2. Let D be an instance, M a set of MDs, and P be a set of positions (t, G),
where t is a tuple of D and G is an attribute of t. (a) For a tuple t1 ∈ R(D) and C
an attribute of R, the position (t1, C) is modifiable wrt P if there exist t2 ∈ R(D), an
m ∈ M of the form R[Ā] ≈ R[Ā] → R[B̄]

.
= R[B̄], and an attribute B of B̄, such

that (t2, B) ∈ P and one of the following holds:

1. t1[Ā] ≈ t2[Ā], but t1[B] ̸= t2[B].
2. t1[Ā] ≈ t2[Ā] and (t2, B) is modifiable wrt P r {(t2, B)}.

(b) The position (t1, B) is modifiable if it is modifiable wrt V r {(t1, B)}, where V is
the set of all positions (t, G) with t a tuple of D and G an attribute of t. �

This definition 2 is recursive. The base case occurs when either case 1. applies (with any
P) or when there is no tuple/attribute pair in P that can satisfy part (a). Notice that the
recursion must eventually terminate, since the latter condition must be satisfied when
P is empty, and each recursive call reduces the size of P .

Example 2. (example 1 continued) Since a2 ≈ a3 and c1 ̸= c3, (t2, B) and (t3, B)
are modifiable (base case). Since a1 ≈ a2 and (t2, B) is modifiable, with case 2. of
Definition 2, we obtain that (t1, B) is also modifiable.

For (t5, B) to be modifiable, it must be modifiable wrt {(ti, B) | 1 ≤ i ≤ 4}, and
via t4. According to case 2. of Definition 2, this requires (t4, B) to be modifiable wrt
{(ti, B) | 1 ≤ i ≤ 3}. However, this is not the case since there is no ti, 1 ≤ i ≤ 3, such
that t4[A] ≈ ti[A]. Therefore (t5, B) is not modifiable. A symmetric argument shows
that (t4, B) is not modifiable either.

Notice that the recursive nature of Definition 2 requires defining modifiability in
terms of a set of value positions (the set P in the definition). This set allows us to
keep track of positions that have already been “tried”. For example, to determine the
modifiability of (t5, B), we must determine whether or not (t4, B) is modifiable. How-
ever, since we have already eliminated (t5, B) from consideration when deciding about
(t4, B), we avoid an infinite loop. �

4 Not to be confused with the notion of changeable attribute.

5

Definition 3. [23] Let D, D′ be correlated instances, and M a set of MDs. (D,D′)
satisfies M , denoted (D,D′) � M , iff: 1. For any pair of tuples t1, t2 ∈ R(D), if there
exists an m ∈ M of the form R[Ā] ≈ R[Ā] → R[B̄]

.
= R[B̄] and t1[Ā] ≈ t2[Ā], then

for the corresponding tuples (i.e. with same ids) t′1, t
′
2 ∈ R(D′), it holds t′1[B̄] = t′2[B̄].

2. For any tuple t ∈ R(D) and any attribute G of R, if (t, G) is a non-modifiable
position, then t′R[G] = tR[G]. �

Intuitively, D′ in Definition 3 is a new version of D that is produced after a single
update. Since the update involves matching values (i.e. making them equal), it may pro-
duce “duplicate” tuples, i.e. that only differ in their tuple ids. They could possibly be
merged into a single tuple in the a data cleaning process. However, we keep the two
versions. In particular, D and D′ have the same number of tuples. Keeping or eliminat-
ing duplicates will not make any important difference in the sense that, given that tuple
ids are never updated, two duplicates will evolve in exactly the same way as subsequent
updates are performed. Duplicate tuples will never be subsequently “unmerged”.

This definition of MD satisfaction departs from [18], which requires that updates
preserve similarities. Similarity preservation may force undesirable changes [23]. The
existence of the updated instance D′ for D is guaranteed [23]. Furthermore, wrt [18],
our definition does not allow unnecessary changes from D to D′. Definitions 2 and 3
imply that only values of changeable attributes are subject to updates.

Definition 3 allows us to define a clean instance wrt M as the result of a chase-like
procedure, each step being satisfaction preserving.

Definition 4. [23] (a) A resolved instance (RI) for D wrt M is an instance D′, such
that there are instances D1, D2, ...Dn with: (D,D1) � M , (D1, D2) � M ,..., (Dn−1,
Dn) � M , (Dn, D

′) � M , and (D′, D′) � M . We say D′ is stable. (b) D′ is a mini-
mally resolved instance (MRI) for D wrt M if it is a resolved instance and it minimizes
the overall number of attribute value changes wrt D. (c) MRI (D,M) denotes the class
of MRIs of D wrt M . �

Example 3. Consider the MD R[A] ≈ R[A] → R[B]
.
= R[B] on predicate R, and

the instance D. It has several resolved instances, among them, four that minimize the
number of value changes. One of them is D1. A resolved instance that is not minimal
in this sense is D2.

R(D) A B
t1 a1 c1
t2 a1 c2
t3 b1 c3
t4 b1 c4

R(D1) A B
t1 a1 c1
t2 a1 c1
t3 b1 c3
t4 b1 c3

R(D2) A B
t1 a1 c1
t2 a1 c1
t3 b1 c1
t4 b1 c1 �

In this work, as in [23, 24], we are investigating what we could call “the pure case”
of MD-based entity resolution. It adheres to the original semantics outlined in [18],
which does not specify how the matchings are to be done, but only which values must
be made equal. That is, the MDs have implicit existential quantifiers (for the values
in common). The semantics we just introduced formally captures this pure case. We
find situations like this in other areas of data management, e.g. with referential in-
tegrity constraints, tuple-generating dependencies in general [1], schema mappings in

6

data exchange [5], etc. A “non-pure” case, that uses matching functions to realize the
matchings as prescribed by MDs, is investigated in [11, 12, 4]. Since there is always an
RI [23], there is always an MRI for an instance D wrt M .

The resolved answers to a query are certain for the class of MRIs for D wrt M .

Definition 5. [23] Let Q(x̄) be a query expressed in the first-order language L(S) as-
sociated to schema S of an instance D. A tuple of constants ā from U is a resolved
answer to Q(x̄) wrt the set M of MDs, denoted D |=M Q[ā], iff D′ |= Q[ā], for every
D′ ∈ MRI (D,M). We denote with ResAn(D,Q,M) the set of resolved answers to
Q from D wrt M . �

Example 4. (example 1 cont.) Since the only MRI for the original instance D is R(D′) =
{⟨t1, a1, c1⟩, ⟨t2, a2, c1⟩, ⟨t3, a3, c1⟩, ⟨t4, b1, c3⟩, ⟨t5, b2, c3⟩}, the resolved answers to
the query Q(x, y) : R(x, y) are {⟨a1, c1⟩, ⟨a2, c1⟩, ⟨a3, c1⟩, ⟨b1, c3⟩, ⟨b2, c3⟩}. �

For a query Q and set of MDs M , the resolved answer problem is the problem of
deciding, given a tuple ā and instance D, whether or not ā ∈ ResAn(D,Q,M). More
precisely, it is defined by

RAQ,M := {(D, ā) | ā ∈ ResAn(D,Q,M)}. (2)

4 Hit-Simple-Cyclic Sets of MDs
In general, the resolved answer decision problem is NP-hard.

Theorem 1. [23] The resolved answer decision problem can be intractable for join-
free conjunctive queries and pairs of interacting MDs. More precisely, for the the query
Q(x, z) : ∃yR(x, y, z), and the following set M of MDs

m1 : R[A] ≈ R[A] → R[B]
.
= R[B]

m2 : R[B] ≈ R[B] → R[C]
.
= R[C]

the resolved answer (decision) problem is NP-hard (in data). �

Generally, intractability of the resolved answer problem arises when choices of update
values made during one update in the chase sequence can affect subsequent updates.
For the case in Theorem 1, when the instance is updated according to m1, the choice
of update values for values in the B column affects subsequent updates made to the
values in the C column according to m2. The resolved answer problem is tractable for
non-interacting sets of MDs, because there is no dependence of updates on previous
updates.

In this section, we define a class of sets of MDs, called hit-simple-cyclic (HSC) sets,
for which the resolved answer problem is tractable for an important class of conjunctive
queries. Specifically, we introduce a recursively-defined predicate that can be used to
identify the sets of values that must be updated to obtain an MRI and the possible values
to which they can be updated. For HSC sets, the interaction of the MDs does not lead
to intractability, as it is the case for the set of MDs in Theorem 1. This is because
the stability requirement of Definition 4 imposes a simple form on MRIs, making it
unnecessary to consider the many possible chase sequences.

7

Definition 6. A set M of MDs is simple-cycle (SC) if its MD graph MDG(M) is (just)
a cycle, and in all MDs m ∈ M , at most one attribute in LHS (m) is changeable. �

Example 5. For schema R[A,C, F,G], consider the following set M of MDs:

m1 : R[A] ≈ R[A] → R[C,F,G]
.
= R[C,F,G],

m2 : R[C] ≈ R[C] → R[A,F,G]
.
= R[A,F,G].

MDG(M) is a cycle, because attributes in RHS (m2) appear in LHS (m1), and vice-
versa. Furthermore, M is SC, because LHS (m1) and LHS (m2) are singletons. �

SC sets of MDs can be easily found in practical applications. For them, it is easy to
characterize the form taken by an MRI.

Example 6. Consider the instance D and a SC set of MDs below, where the only simi-
larities are: ai ≈ aj , bi ≈ bj , di ≈ dj , ei ≈ ej , with i, j ∈ {1, 2}.

R(D) A B
1 a1 d1
2 a2 e2
3 b1 e1
4 b2 d2

m1 : R[A] ≈ R[A] → R[B]
.
= R[B],

m2 : R[B] ≈ R[B] → R[A]
.
= R[A].

If the MDs are applied twice,
successively, starting from D, a
possible result is:

R(D) A B
1 a1 d1
2 a2 e2
3 b1 e1
4 b2 d2

→

R(D1) A B
1 b2 d1
2 a2 d1
3 a2 e1
4 b2 e1

→

R(D2) A B
1 a2 e1
2 a2 d1
3 b2 d1
4 b2 e1

It should be clear that, in any sequence of instances D1, D2, . . ., obtained from D by
applying the MDs, the updated instances must have the following pairs of equal values
or matchings (shown through the tuple ids) in Table 1. In any stable instance, the pairs
of values in the above tables must be equal. Given the alternating behavior, this can only
be the case if all values in A are equal, and similarly for B, which can be achieved with
a single update, choosing any value as the common value for each of A and B.

Di i odd A B

tuple (id) pairs (1, 4), (2, 3) (1, 2), (3, 4)
Di i even A B

tuple (id) pairs (1, 2), (3, 4) (1, 4), (2, 3)

Table 1. Table of matchings

In particular, an MRI requires the common value for each attribute to be set to a most
common value in the original instance. For D there are 16 MRIs. �

Example 7. (example 5 cont.) The relation R subject to the given M , has two “keys”,
R[A] and R[C]. A relation like this may appear in a database about people: R[A]
could be used for the person’s name, R[C] the address, and R[F] and R[G] for non-
distinguishing information, e.g. gender and age. �

We now define an extension of the class of SC sets of MDs.

8

Definition 7. A set M of MDs is hit-simple-cyclic iff the following hold: (a) In all
MDs m ∈ M , at most one attribute in LHS (m) is changeable. (b) Each vertex v1 in
MDG(M) is on at least one cycle, or there is a vertex v2 on a cycle with at least two
vertices such that there is an edge from v1 to v2. �

Notice that SC sets are also HSC sets. An example of the MD graph of an HSC set of
MDs is shown in Figure 1.

Fig. 1. The MD-graph of an HSC set of MDs

As the previous examples suggest, it is possible to provide a full characterization of the
MRIs for an instance subject to an HSC set of MDs, which we do next. For this result,
we need a few definitions and notations.

For an SC set M and m ∈ M , if a pair of tuples satisfies the similarity condition
of any MD in M , then the values of the attributes in RHS (m) must be merged for
these tuples. Thus, in Example 6, a pair of tuples satisfying either R[A] ≈ R[A] or
R[B] ≈ R[B] have both their R[A] and R[B] attributes updated to the same value.
More generally, for an HSC set M of MDs, and m ∈ M , there is only a subset of
the MDs such that, if a pair of tuples satisfies the similarity condition of an MD in the
subset, then the values of the attributes in RHS (m) must be merged for the pair of
tuples. We now formally define this subset.

Definition 8. Let M be a set of MDs, and m ∈ M . (a) The previous set of m, denoted
PS(m), is the set of all MDs m′ ∈ M with a path in MDG(M) from m′ to m. (b) The
previous set PS(M) of a set M of MDs is

∪
m∈M PS(m). �

When applying a set of MDs to an instance, consistency among updates must be en-
forced. This generally requires computing the transitive closure of similarity relations.
For example, suppose both m1 and m2 have the conjunct R[A]

.
= R[A]. If t1 and t2

satisfy the condition of m1, and t2 and t3 satisfy the condition of m2, then t1[A] and
t3[A] must be updated to the same value, since updating them to different values would
require t2[A] to be updated to two different values at once. We formally define this
transitive closure relation.

Definition 9. Consider an instance D, and set of MDs M = {m1,m2, . . . ,mn}. (a)
For MD m : R[Ā] ≈ R[Ā] → R[B̄]

.
= R[B̄], Tm is the reflexive, symmetric, transitive

closure of the binary relation that relates pairs of tuples t1 and t2 in D satisfying t1[A] ≈
t2[A]. (b) For a subset M ′ of M , TM ′ is the reflexive, symmetric, transitive closure of
{Tm |m ∈ M ′}. �

9

In the case of HSC sets of MDs, the MRIs for a given instance can be characterized
simply using the T relation. This result is stated formally below.

Proposition 1. [22] For a set of MDs M and attribute A, let MA be the set of all
m ∈ M such that A ∈ RHS (m). For M HSC and D an instance, each MRI for D wrt
M is obtained by setting, for each attribute A and each equivalence class E of TPS(MA),
the value of all t[A], t ∈ E, to one of the most frequent values for t[A], t ∈ E. �

Example 8. (example 6 cont.) We represent tuples by their ids. We have:

Tm1 = {(1, 2), (3, 4), (2, 1), (4, 3)} ∪ {(i, i) | 1 ≤ i ≤ 4},
Tm2 = {(1, 4), (2, 3), (4, 1), (3, 2)} ∪ {(i, i) | 1 ≤ i ≤ 4},
T{m1,m2} = {(i, j) | 1 ≤ i, j ≤ 4},
TPS(MA) = TPS(m2) = T{m1,m2}, TPS(MB) = TPS(m1) = T{m1,m2}.

The (single) equivalence class of TPS(MA) (TPS(MB)) is {(i, A) | 1 ≤ i ≤ 4}
({(i, B) | 1 ≤ i ≤ 4}). From Proposition 1, the 16 MRIs are obtained by setting
all R[A] and R[B] attribute values to one of the four existing (and, actually, equally
frequent) values for them. �

It is possible to prove using Proposition 1 that, for HSC sets, the resolved answer prob-
lem is efficiently solvable for join-free conjunctive queries like the one in Theorem 1. In
fact, it is shown in [22] that for HSC sets and a significant class of conjunctive queries
with restricted joins, the resolved answer problem is solvable in polynomial time using
a query rewriting technique.

Definition 10. Let Q be a conjunctive query without built-ins, and M a set of MDs.
Q is an unchangeable join conjunctive query if there are no existentially quantified
variables in a join in Q in the position of a changeable attribute. UJCQ denotes this
class of queries. �

Example 9. For schema S = {R[A,B]}, let M consist of the single MD R[A] ≈
R[A] → R[B]

.
= R[B]. Attribute B is changeable, and A is unchangeable. The

query Q1(x, z) : ∃y(R(x, y) ∧ R(z, y)) is not in UJCQ , because the bound and
repeated variable y is for the changeable attribute B. However, the query Q2(y) :
∃x∃z(R(x, y) ∧ R(x, z)) is in UJCQ : the only bound, repeated variable is x which
is for the unchangeable attribute A. If variables x and y are swapped in the first atom of
Q2, the query is not UJCQ. �

Theorem 2. [22] For a HSC (or non-interacting) set of MDs M and a UJCQ query Q,
there is an effective rewriting Q′ that is efficiently evaluable and returns the resolved
answers to Q. �

The rewritten queries of the theorem are expressed in FO logic with an embedded re-
cursively defined predicate that expresses the transitive closure of Definition 9 (e.g. in
Datalog) plus a the count aggregation operator (of number of different attribute values).
They can be evaluated in quadratic time in data [22].

10

5 A CQA Connection

MDs can be seen as a new form of integrity constraint (IC), with a dynamic semantics.
An instance D violates an MD m if there are unresolved duplicates, i.e. tuples t1 and
t2 in D that satisfy the similarity conditions of m, but differ in value on some pairs
of attributes that are expected to be matched according to m. The instances that are
consistent with a set of MDs M (or self-consistent from the point of view of the dynamic
semantics) are resolved instances of themselves with respect to M . Among classical
ICs, the closest analogues of MDs are functional dependencies (FDs).

Now, given a database instance D and a set of ICs Σ, possibly not satisfied by D,
consistent query answering (CQA) is the problem of characterizing and computing the
answers to queries Q that are true in all repairs of D, i.e. the instances D′ that are con-
sistent with Σ and minimally differ from D [3]. Minimal difference between instances
can be defined in different ways. Most of the research in CQA has concentrated on
the case of the set-theoretic symmetric difference of instances, as sets of tuples, which
in the case of repairs is made minimal under set inclusion, as originally introduced in
[3]. Also the minimization of the cardinality of this set-difference has been investigated
[27, 2]. Other forms of minimization measure the differences in terms of changes of
attribute values between D and D′ (as opposed to entire tuples) [20, 29, 19, 10], e.g.
the number of attribute updates can be used for comparison. Cf. [7, 14, 8] for CQA.

Because of their practical importance, much work on CQA has been done for the
case where Σ is a set of functional dependencies (FDs), and in particular for sets, K, of
key constraints (KCs) [15, 21, 30], with the distance being the set-theoretic symmetric
difference under set inclusion. In this case, on which we concentrate in the rest of this
section, a repair D′ of an instance D becomes a maximal subset of D that satisfies K,
i.e. D′ ⊆ D, D′ |= K, and there is no D′′ with D′ $ D′′ ⊆ D, with D′′ |= K [15].

Accordingly, for a FO query Q(x̄) and a set of KCs K, ā is a consistent answer
from D to Q(x̄) wrt K when D′ |= Q[ā], for every repair D′ of D. For fixed Q(x̄)
and K, the consistent query answering problem is about deciding membership in the set
CQAQ,K = {(D, ā) | ā is a consistent answer from D to Q wrt K}.

Notice that this notion of minimality involved in repairs wrt FDs is tuple and set-
inclusion oriented, whereas the one that is implicitly related to MDs and MRIs via the
matchings (cf. Definition 4) is attribute and cardinality oriented.5 However, the connec-
tion can still be established.

For certain classes of conjunctive queries and ICs consisting of a single KC per re-
lation, CQA is tractable. This is the case for the Cforest class of conjunctive queries [21],
for which there is a FO rewriting methodology for computing the consistent answers.
Cforest excludes repeated relations (self-joins), and allows joins only between non-key
and key attributes. Similar results were subsequently proved for a larger class of queries
that includes some queries with repeated relations and joins between non-key attributes
[30]. The following result allows us to take advantage of tractability results for CQA in
our MD setting.

5 Cf. [23] for a discussion of the differences between FDs and MDs seen as ICs, and their repair
processes.

11

Proposition 2. [22] Let D be a database instance for a single predicate R whose set of
attributes is Ā ∪ B̄, with Ā ∩ B̄ = ∅; and m the MD R[Ā] = R[Ā] → R[B̄]

.
= R[B̄].

There is a polynomial time reduction from RAQ,{m} (cf. (2)) to CQAQ,{κ}, where κ

is the key constraint R : Ā → B̄. �

This result can be easily generalized to several relations with one such MD defined on
each. The reduction takes an instance D for RAQ,{m} and produces an instance D′ for
CQAQ,{κ}. The schema of D′ is the same as for D, but the extension of the relation
is changed wrt D via counting. Definitions for those aggregations can be inserted into
query Q, producing a rewriting Q ′. Thus, we obtain:

Theorem 3. [22] Let S be a schema with R = {R1[Ā1, B̄1], . . . , Rn[Ān, B̄n]} and
K the set of KCs κi : Ri[Āi] → Ri[B̄i]. Let Q be a FO query for which there
is a polynomial-time computable FO rewriting Q′ for computing the consistent an-
swers to Q. Then there is a polynomial-time computable FO query Q′′ extended with
aggregation6 for computing the resolved answers to Q from D wrt the set of MDs
mi : Ri[Āi] = Ri[Āi] → Ri[B̄i]

.
= Ri[B̄i]. �

The aggregation in Q′′ in Theorem 3 arises from the generic transformation of the in-
stance that is used in the reduction involved in Proposition 2, but here becomes implicit
in the query.

This theorem can be applied to decide/compute resolved answers in those cases
where a FO rewriting for CQA (aka. consistent rewriting) has been identified.

Example 10. The query Q : ∃x∃y∃z∃w(R(x, y, w)∧S(y, w, z)) is in the class Cforest
for relational predicates R[A,B,C] and S[C,E, F] and KCs A → BC and CE → F .
By Theorem 3 and the results in [21], there is a polynomial-time computable FO query
with counting that returns the resolved answers to Q wrt the MDs R[A] = R[A] →
R[B,C]

.
= R[B,C] and S[C,E] = S[C,E] → S[F]

.
= S[F], namely,

Q′′ : ∃x∃y∃z∃w[R′(x, y, w) ∧ S(y, w, z) ∧ ∀y′∀w′(R′(x, y′, w′) → ∃z′S(y′, w′, z′)),

where R′(x, y, w) := ∃w′{R(x, y, w′) ∧ ∀y′[Count{w′′ | R(x, y′, w′′)} ≤
Count{w′′ | R(x, y, w′′)}]} ∧

∃y′{R(x, y′, w) ∧ ∀v[Count{y′′ | R(x, y′′, v)} ≤ Count{y′′ | R(x, y′′, w)}]}.
Here, Count{x | E(x)}, for E a first-order expression and x a variable, denotes

the number of distinct values of x that satisfy E in the database instance at hand. This
“resolved rewriting” wrt the MDs is obtained from the consistent rewriting Q′ for Q
wrt the FDs, by replacing R by R′ as indicted above, i.e. using

Q′ : ∃x∃y∃z∃w[R(x, y, w) ∧ S(y, w, z) ∧ ∀y′∀w′(R(x, y′, w′) → ∃z′S(y′, w′, z′)),

S in Q′ could also be replaced by a similar S′ to obtain Q′′. However, in this ex-
ample it is not necessary, because the key values are not changed when the MDs are
applied, so the join condition is not affected (the join is on the key values for S, but on
the non-key values for R).

6 This is a proper extension of FO query languages [26, Chapter 8].

12

Notice that Q is not in UJCQ because variable y is existentially quantified, partici-
pates in a join, and occurs at the position of the changeable attribute R[B] (cf. Definition
10). Therefore, Theorem 2 cannot be used to obtain a query rewriting in this case. �

The example shows that via the CQA connection we obtain rewritable and tractable
cases of resolved answering that are different from those provided by Theorem 2.

In this paper we have concentrated on tractable cases of resolved query answering.
However, the CQA connection can also be exploited to obtain intractability results,
which we briefly illustrate.

Theorem 4. [22] Consider the relational predicate R[A,B,C], the MD m : R[A] =
R[A] → R[B,C]

.
= R[B,C], and the query Q : ∃x∃y∃y′∃z(R(x, y, c) ∧R(z, y′, d) ∧

y = y′). RAQ,{m} is coNP -complete (in data). �

This result can be obtained through a reduction and a result in [15, Thm. 3.3]. Notice
that the query in Theorem 4 is not UJCQ .

6 Conclusions
Matching dependencies first appeared in [17], and their semantics is given in [18]. The
original semantics was refined in [11, 12], including the use of matching functions for
matching two attribute values. An alternative refinement of the semantics, which is the
one used in this paper, is given in [23, 24]. Cf. [22] for a thorough complexity analysis,
as well as the derivation of a query rewriting algorithm for the resolved answer problem.

This paper builds on the MD-based approach to duplicate resolution introduced in
[23]. The latter paper introduced the framework used in this paper, and proved that the
resolved answer problem is intractable in some cases. In this paper, we presented a case
for which minimally resolved instances can be identified in polynomial time. From this,
it follows that the resolved answers can be efficiently retrieved from a dirty database in
this case [22]. We also derived other tractable cases using results from CQA.

We used minimal resolved instances (MRIs) as our model of a clean database. An-
other possibility is to use arbitrary, not necessarily minimal, resolved instances (RIs).
This has the advantage of being more flexible in that it takes into account all possible
ways of repairing the database. In some cases, the RIs can be characterized by express-
ing the chase rules in Datalog. Such a direct approach is difficult in the case of MRIs,
because of the global nature of the minimality constraint.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[2] F. Afrati and P. Kolaitis. Repair checking in inconsistent databases: Algorithms and com-

plexity. Proc. ICDT, 2009, ACM Press, pp. 31-41.
[3] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent

databases. Proc. PODS, 1999, ACM Press, pp. 68-79.
[4] Z. Bahmani, L. Bertossi, S. Kolahi and L. Lakshmanan. Declarative entity resolution via

matching dependencies and answer set programs. Proc. KR, 2012, AAAI Press, pp. 380-
390.

[5] P. Barcelo. Logical foundations of relational data exchange. SIGMOD Record, 2009,
38(1):49-58.

13

[6] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. Euijong Whang, and J. Widom.
Swoosh: A generic approach to entity resolution. VLDB Journal, 2009, 18(1):255-276.

[7] L. Bertossi. Consistent query answering in databases. ACM Sigmod Record, 2006,
35(2):68-76.

[8] L. Bertossi. Database Repairing and Consistent Query Answering, Morgan & Claypool,
Synthesis Lectures on Data Management, 2011.

[9] L. Bertossi and L. Bravo. Consistent query answers in virtual data integration systems. In
Inconsistency Tolerance, Springer LNCS 3300, 2004, pp. 42-83.

[10] L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko. The complexity and approximation
of fixing numerical attributes in databases under integrity constraints. Information Systems,
2008, 33(4):407-434.

[11] L. Bertossi, S. Kolahi, and L. Lakshmanan. Data cleaning and query answering with match-
ing dependencies and matching functions. Proc. ICDT, 2011, ACM Press.

[12] L. Bertossi, S. Kolahi and L. Lakshmanan. Data cleaning and query answering with
matching dependencies and matching functions. Theory of Computing Systems, DOI:
10.1007/s00224-012-9402-7, 2012.

[13] J. Bleiholder and F. Naumann. Data fusion. ACM Computing Surveys, 2008, 41(1):1-41.
[14] J. Chomicki. Consistent query answering: Five easy pieces. Proc. ICDT, 2007, Springer

LNCS 4353, pp. 1-17.
[15] J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance using tuple dele-

tions. Information and Computation, 2005, 197(1/2):90-121.
[16] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detection: A survey. IEEE

Trans. Knowledge and Data Eng., 2007, 19(1):1-16.
[17] W. Fan. Dependencies revisited for improving data quality. Proc. PODS, 2008, ACM Press,

pp. 159-170.
[18] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules. Proc. VLDB,

2009, pp. 407-418.
[19] S. Flesca, F. Furfaro, and F. Parisi. Querying and repairing inconsistent numerical

databases. ACM Trans. Database Syst., 2010, 35(2).
[20] E. Franconi, A. Laureti Palma, N. Leone, S. Perri, and F. Scarcello. Census data repair: A

challenging application of disjunctive logic programming. Proc. LPAR, 2001, pp. 561-578.
[21] A. Fuxman and R. Miller. First-order query rewriting for inconsistent databases. J. Com-

puter and System Sciences, 2007, 73(4):610-635.
[22] J. Gardezi, L. Bertossi. Query answering under matching dependencies for data cleaning:

Complexity and algorithms. arXiv:1112.5908v1.
[23] J. Gardezi, L. Bertossi, and I. Kiringa. Matching dependencies with arbitrary attribute

values: semantics, query answering and integrity constraints. Proc. Int. WS on Logic in
Databases (LID’11), ACM Press, 2011, pp. 23-30.

[24] J. Gardezi, L. Bertossi, and I. Kiringa. Matching dependencies: semantics, query answering
and integrity constraints. Frontiers of Computer Science, Springer, 2012, 6(3):278-292.

[25] M. Lenzerini. Data integration: a theoretical perspective. Proc. PODS 2002, pp. 233-246.
[26] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[27] A. Lopatenko and L. Bertossi. Complexity of consistent query answering in databases

under cardinality-based and incremental repair semantics. Proc. ICDT, 2007, Springer
LNCS 4353, pp. 179-193.

[28] V. Vianu.Dynamic functional dependencies and database aging.J.ACM, 1987, 34(1):28-59.
[29] J. Wijsen. Database repairing using updates. ACM Trans. Database Systems, 2005,

30(3):722-768.
[30] J. Wijsen. On the first-order expressibility of computing certain answers to conjunctive

queries over uncertain databases. Proc. PODS, 2010, ACM Press, pp. 179-190.

14

