
The Shapley Value of Tuples in Query Answering

Ester Livshits Leopoldo Bertossi Benny Kimelfeld Moshe Sebag

Various measures have been proposed for quantifying the contribution of a database fact (tuple) f to a query result.
Meliou et al. [8] adopted the quantity of responsibility that is inversely proportional to the minimal number of facts that
should be removed to make f counterfactual (i.e., removing f transitions the query answer from true to false). This
measure, however, is fundamentally designed for non-numerical queries, and it is not clear whether it can incorporate
the numerical contribution of f . Salimi et al. [13] proposed the causal effect: assuming the facts are randomly removed
independently and uniformly, what is the difference in the expected query result between assuming the presence and
the absence of f? In this work, we investigate the application of a well known measure from cooperative game theory
to quantifying the contribution of facts to query results. We believe that the suitability of the measure for this task is
backed by its theoretical justification as well as its massive adoption in a plethora of fields.

The Shapley value was introduced by Lloyd Shapley in a seminal 1952 article [14]. He considered a cooperative
game that is played by a set A of players and is defined by a wealth function v that assigns, to each coalition S ⊆ A,
the wealth v(S). For instance, A might be a set of politicians, and v(S) the number of votes that a poll assigns to the
party that consists of the candidates in S. The question is how to distribute the wealth v(A) among the players, or
from a different perspective, how to quantify the contribution of each player to the overall wealth. Shapley considered
distribution functions that satisfy a few axioms of a good behavior. Quite remarkably, he has established that there is
a single function that satisfies all of them, and this function has become known as the Shapley value.1 The Shapley
value has been applied in various areas and fields beyond cooperative game theory [5–7, 9–11].

In this work, we apply the Shapley value to quantifying the contribution of facts to query results. As in previous
work on quantification of contribution of facts [8, 13], we view the database D as consisting of two types of facts.
Exogenous facts are taken as given without questioning, and are beyond experimentation with counterfactual scenarios.
Endogenous facts are those we may have control over, and we reason about existence and marginal contribution for
these facts. Our focus here is on numerical queries (i.e., queries that map databases to real numbers), and specifically
on Boolean Conjunctive Queries (BCQs)2 and aggregates over CQs. A CQ is an expression of the form q(~x) :-
R1(~t1), . . . , Rn(~tn), where each Ri is a relation symbol, each ~ti is a tuple of variables and constants (the arity of ~ti
should match the number of attributes in Ri), and ~x is a tuple of variables from ~t1, . . . ,~tn. The answers to q on a
database D are the tuples ~c that are obtained by projecting to ~x all homomorphisms from q to D. If ~x has arity zero,
then the query is Boolean, in which case we denote by D |= q the fact that D satisfies q. Here, we view a BCQ as the
numerical query q defined by q(D) = 1 if D |= q and q(D) = 0 if D 6|= q. An aggregate query is a CQ q followed
by an aggregate function that maps q(D) to a real number (e.g., count, sum, max, average). The core computational
problem for a query is then: given a database and an endogenous fact, compute the Shapley value of the fact.

The Shapley value of a fact f in a database D w.r.t. a numerical query α is formally defined as follows:

Shapley(D,α, f) =
∑

E⊆Dn\{f}

|E|! · (|Dn| − |E| − 1)!

|Dn|!

(
α(Dx ∪ E ∪ {f})− α(Dx ∪ E)

)
(1)

where Dn and Dx are the sets of endogenous and exogenous facts in D, respectively. Note that |E|! · (|Dn|− |E|− 1)!
is the number of permutations over Dn such that all facts in E come first, then f , and then all remaining facts. The
Shapley value is essentially a probabilistic expectation. Suppose that we form a database by taking the facts one by
one, randomly and uniformly without replacement; while doing so, we record the change of α due to the addition of f
as the random contribution of f . Then the Shapley value of f is the expectation of the random contribution.

Our main result is a full classification of (i.e., a dichotomy in) the data complexity of the problem of computing
Shapley(D, q, f) for BCQs without self-joins, where a self-join is a pair of distinct atoms over the same relation

1For further reading, we refer the reader to the book by Roth [12].
2Focusing on Boolean queries allows us to keep the presentation considerably simpler while, at the same time, retaining the fundamental

challenges. Our results can be easily extended to to general CQs [1], by considering each query answer separately.

symbol. As we show, the classification criterion is the same as that of query evaluation over tuple-independent prob-
abilistic databases [3]; however, it is not clear whether and/or how we can use their dichotomy to prove ours, in each
of the two directions (tractability and hardness). We first introduce the definition of a hierarchical query. We say that
a BCQ q is hierarchical if for all variables x and x′ in q it holds that Ax ⊆ Ax′ , or Ax′ ⊆ Ax, or Ax ∩Ax′ = ∅, where
Ay is the set of atoms Ri(~ti) of q that contain y (that is, y occurs in ~ti) [2]. We have the following.

Theorem 1 Let q be a Boolean CQ without self joins. If q is hierarchical, then Shapley(D, q, f) can be computed in
polynomial time, given D and f . Otherwise, the problem is FP#P-complete.

Recall that FP#P is the class of functions computable in polynomial time with an oracle to a #P-complete problem
(e.g., counting the number of satisfying assignments of a propositional formula). This complexity class is considered
intractable, and is known to be above the polynomial hierarchy (Toda’s theorem [15]).

For the positive side of Theorem 1, observe that the computation of Shapley(D, q, f) easily reduces to the problem
of counting the sets of size k of endogenous facts that, along with the exogenous facts, satisfy q. More formally, the
reduction is to the problem of computing |Sat(D, q, k)| where Sat(D, q, k) is the set of all subsets E of Dn such that
|E| = k and Dx ∪ E |= q. The reduction is as follows.

Shapley(D, q, f) =
∑

E⊆(Dn\{f})

|E|!(|Dn| − |E| − 1)!

|Dn|!

(
q(Dx ∪ E ∪ {f})− q(Dx ∪ E)

)
=

∑
E⊆(Dn\{f})

|E|!(|Dn| − |E| − 1)!

|Dn|!

(
q(Dx ∪ E ∪ {f})

)
−

∑
E⊆(Dn\{f})

|E|!(|Dn| − |E| − 1)!

|Dn|!

(
q(Dx ∪ E)

)

=

|Dn|−1∑
k=0

k!(|Dn| − k − 1)!

|Dn|!
× |Sat(D′, q, k)|

−
|Dn|−1∑

k=0

k!(|Dn| − k − 1)!

|Dn|!
× |Sat(D \ {f}, q, k)|

In the last expression, D′ is the same as D, except that f is viewed as exogenous instead of endogenous. Hence,
whenever |Sat(D, q, k)| can be computed in polynomial time, the Shapley value can also be computed in polynomial
time. And, indeed, |Sat(D, q, k)| is computable in polynomial time for hierarchical queries q. As expected for a
hierarchical query, our algorithm is a recursive procedure that acts differently in three different cases: (a) q has no
variables (only constants), (b) there is a variable x (called a root variable) that occurs in all atoms of q, or (c) q
consists of two (or more) sub-queries that do not share any variables. Since q is hierarchical, at least one of these cases
always apply [4]. The algorithm is fairly straightforward, except for case (b) where there is a root variable, and then
we combine the recursive call with dynamic programming.

For the negative side of the theorem, membership in FP#P is straightforward, so we omit the discussion on
that. Similarly to Dalvi and Suciu [3], our proof of hardness consists of two steps. First, we prove the FP#P-
hardness of computing Shapley(D, qRST, f), where qRST() :- R(x), S(x, y), T (y). Second, we reduce the compu-
tation of Shapley(D, qRST, f) to the problem of computing Shapley(D, q, f) for any non-hierarchical BCQ q with-
out self-joins. We focus on the first step, which is the most intricate part of the proof. To prove that computing
Shapley(D, qRST, f) is FP#P-complete, we construct a (Turing) reduction from the problem of computing the num-
ber |IS(g)| of independent sets of a given bipartite graph g. Given an input bipartite graph g = (V,E) for which we
wish to compute |IS(g)|, we construct n + 1 different input instances (Dj , f), for j = 1, . . . , n + 1, of the problem
of computing Shapley(Dj , qRST, f), where n = |V |. Each instance provides us with an equation over the numbers
|IS(g, k)| of independent sets of size k in g for k = 0, . . . , n. We then show that the set of equations constitutes a
non-singular matrix that, in turn, allows us to extract the |IS(g, k)| in polynomial time (e.g., via Gaussian elimination).
This is enough, since |IS(g)| =

∑n
k=0 |IS(g, k)|.

As mentioned above, the Shapley value is a probabilistic expectation. The linearity of expectation allows us to
extend our dichotomy to arbitrary summations (including counting) over CQs without self-joins. In fact, the hardness
side of Theorem 1 generalizes to all aggregates over CQs. The only exception is when α is a constant numerical query.
The general conclusion is that computing the exact Shapley value is notoriously hard, but the picture is far more
optimistic if approximation is allowed under strong guarantees of error boundedness. For non-hierarchical queries
(and, in fact, all unions of CQs), the Shapley value is approximable (i.e., has a multiplicative Fully Polynomial-Time
Approximation Scheme) via Monte Carlo sampling. This approximation result also generalizes to an FPRAS for
summations over CQs.

References
[1] S. Cohen, W. Nutt, and Y. Sagiv. Deciding equivalences among conjunctive aggregate queries. J. ACM, 54(2):5,

2007.

[2] N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt. Commun. ACM, 52(7):86–94,
2009.

[3] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In VLDB, pages 864–875.
Morgan Kaufmann, 2004.

[4] N. N. Dalvi and D. Suciu. The dichotomy of probabilistic inference for unions of conjunctive queries. J. ACM,
59(6):30:1–30:87, 2012.

[5] F. Gul. Bargaining foundations of shapley value. Econometrica: Journal of the Econometric Society, pages
81–95, 1989.

[6] Z. Liao, X. Zhu, and J. Shi. Case study on initial allocation of shanghai carbon emission trading based on shapley
value. Journal of Cleaner Production, 103:338–344, 2015.

[7] R. T. Ma, D. M. Chiu, J. Lui, V. Misra, and D. Rubenstein. Internet economics: The use of shapley value for isp
settlement. IEEE/ACM Transactions on Networking (TON), 18(3):775–787, 2010.

[8] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The complexity of causality and responsibility for query
answers and non-answers. PVLDB, 4(1):34–45, 2010.

[9] R. Narayanam and Y. Narahari. A shapley value-based approach to discover influential nodes in social networks.
IEEE Transactions on Automation Science and Engineering, 8(1):130–147, 2011.

[10] T. Nenova. The value of corporate voting rights and control: A cross-country analysis. Journal of financial
economics, 68(3):325–351, 2003.

[11] L. Petrosjan and G. Zaccour. Time-consistent shapley value allocation of pollution cost reduction. Journal of
economic dynamics and control, 27(3):381–398, 2003.

[12] A. E. Roth. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press, 1988.

[13] B. Salimi, L. E. Bertossi, D. Suciu, and G. V. den Broeck. Quantifying causal effects on query answering in
databases. In TAPP, 2016.

[14] L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory
of Games II, pages 307–317. Princeton University Press, Princeton, 1953.

[15] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877, 1991.

