
Matching Dependencies with Arbitrary Attribute Values:
Semantics, Query Answering and Integrity Constraints∗

Jaffer Gardezi
University of Ottawa, SITE

Ottawa, Canada
jgard082@uottawa.ca

Leopoldo Bertossi
†

Carleton University, SCS
Ottawa, Canada

bertossi@scs.carleton.ca

Iluju Kiringa
University of Ottawa, SITE

Ottawa, Canada
kiringa@site.uottawa.ca

ABSTRACT
Matching dependencies (MDs) are used to declaratively spec-
ify the identification (or matching) of certain attribute val-
ues in pairs of database tuples when some similarity con-
ditions are satisfied. Their enforcement can be seen as a
natural generalization of entity resolution. In what we call
the pure case of MDs, any value from the underlying data
domain can be used for the value in common that does the
matching. We investigate the semantics and properties of
data cleaning through the enforcement of matching depen-
dencies for the pure case. We characterize the intended clean
instances and also the clean answers to queries as those that
are invariant under the cleaning process. The complexity of
computing clean instances and clean answers to queries is
investigated. Tractable and intractable cases depending on
the MDs are characterized.

1. INTRODUCTION
A database instance can be seen as a model of an external

reality. As such, it may contain several tuples and values in
them that refer to the same external entity. In consequence,
the database may be modeling the same entity in different
forms, as different entities, which most likely is not the in-
tended representation. This problem could be caused by er-
rors in data, by data coming from different sources that use
different formats or semantics, etc. In this case, the database
is considered to contain dirty data, and it must undergo a
cleansing process that goes through two interlinked phases:
detecting tuples (or values therein) that should be matched
or identified, and, of course, doing the actual matching. This
problem is usually called entity resolution, data fusion, dupli-
cate record detection, etc. Cf. [9, 7] for some recent surveys
and [2] for more recent work in the area.

∗Research supported by the NSERC Strategic Network
on Business Intelligence (BIN,ADC05) and NSERC/IBM
CRDPJ/371084-2008.
†Faculty Fellow of the IBM CAS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LID 2011 March 25, 2011, Uppsala, Sweden
Copyright 2011 ACM 978-1-4503-0609-6 ...$10.00.

Quite recently, and generalizing entity resolution, [10, 11]
introduced matching dependencies (MDs), which are declar-
ative specifications of matchings of attribute values that
should hold under certain conditions. MDs help identify
duplicate data and enforce their merging by exploiting se-
mantic knowledge.

Loosely speaking, an MD is a rule defined on a database
which states that, for any pair of tuples from given relations
within the database, if the values of certain attributes of the
tuples are similar, then the values of another set of attributes
should be considered to represent the same object. In con-
sequence, they should take the same values. Here, similarity
of values can mean equality or a domain-dependent similar-
ity relationship, e.g. related to some metric, such as the edit
distance.

Example 1. Consider the following database instance of a
relation P .

Name Phone Address
John Smith 723-9583 10-43 Oak St.
J. Smith (750) 723-9583 43 Oak St. Ap. 10

Similarity of the names in the two tuples (as measured by,
e.g. edit distance) is insufficient to establish that the tuples
refer to the same person. This is because the last name is a
common one, and only the first initial of one of the names is
given. However, similarity of their phone and address values
indicates that the two tuples may be duplicates. This is
expressed by an MD which states that, if two tuples from
P have similar address and phone, then the names should
match. In the notation of MDs, this is expressed by

P [Phone] ≈ P [Phone] ∧ P [Address] ≈ P [Address] →
P [Name] ⇋ P [Name]. 2

The identification in [10, 11] of this new class of dependen-
cies and their declarative formulation have become impor-
tant additions to data cleaning research. In this work we
investigate matching dependencies, starting by introducing
our own refinement of the model-theoretic and dynamic se-
mantics of MDs introduced in [11].

Any method of querying a dirty data source must address
the issue of duplicate detection in order to obtain accurate
answers. Typically, this is done by first cleaning the data by
discarding or combining duplicate tuples and standardizing
formats. The result will be a new database where the entity
conflicts have been resolved. However, the entity resolution
problem may have different solution instances (which we will
simply call solutions), i.e. different clean versions of the
original database. The model-theoretic semantics that we

propose and investigate defines and characterizes the class
of solutions, i.e. of intended clean instances.

After a clean instance has been obtained, it can be queried
as usual. However, the query answers will then depend on
the particular solution at hand. So, it becomes relevant to
characterize those query answers that are invariant under
the different (sensible) ways of cleaning the data, i.e. that
persist across the solutions. This is an interesting problem
per se. However, it becomes crucial if one wants to obtain
semantically clean answers while still querying the original
dirty data source.

This kind of virtual cleaning (and query answering on top
of it) has been investigated in the area of consistent query

answering (CQA) [1], where, instead of MDs, classical in-
tegrity constraints (ICs) are considered, and database in-
stances are repaired in order to restore consistency (cf. [5, 3,
8] for surveys of CQA). Virtual approaches to robust query
answering under entity resolution and enforcement of match-
ing dependencies are certainly unavoidable in virtual data
integration systems.

In this paper we make the following contributions, among
others:

1. We revisit the semantics of MDs introduced in [11],
pointing out sensible and justified modifications of it.
A new semantics for MD satisfaction is then proposed
and formally developed.

2. Using the new MD semantics, we formally define the
intended solutions for a given, initial instance, D0, that
may not satisfy a given set of MDs. They are called
minimally resolved instances (MRIs) ,and are obtained
through an iteration process that stepwise enforces the
MDs until a stable instance is reached. The resulting
instances minimally differ from D0 wrt the number of
changes of attribute values.

This semantics (and the whole paper) considers the
pure case introduced in [11], in the sense that the val-
ues that can be chosen to match attribute values are
arbitrarily taken from the underlying data domains.
No matching functions are considered, like in [2], where
entire tuples are merged, not individual attribute val-
ues; or [6], where MDs with matching functions are
investigated.

3. We introduce the notion of resolved answers to a query
posed to D0. They are the answers that are invariant
under the MRIs.

4. We investigate the computability and complexity of
computing MRIs and resolved answers, identifying cases
where computing (actually, deciding) resolved answers
is intractable.

This paper is organized as follows. Section 2 presents basic
concepts and notations needed in the rest of the paper. Sec-
tion 3 identifies some problems with the MD semantics, and
refines it to address them. It also introduces the resolved in-
stances and resolved answers to a query. Section 4 considers
the problems of computing resolved instances and resolved
query answers. Section 5 presents some final conclusions.
Some proofs of results can be found in the appendix.

2. PRELIMINARIES

In general terms, we consider a relational schema S that
includes an enumerable infinite domain U . An instance D

of S can be seen as a finite set of ground atoms of the form
R(t̄), where R is a database predicate in S , and t̄ is a tuple of
constants from U . We assume that each database tuple has
an identifier, e.g. an extra attribute that acts as a key for
the relation and is not subject to updates. In the following
it will not be listed, unless necessary, as one of the attributes
of a database predicate. It plays an auxiliary role only, to
keep track of updates on the other attributes. R(D) denotes
the extension of R in D. We sometimes refer to attribute
A of R by R[A]. If the ith attribute of predicate R is A,
for a tuple t = (c1, . . . , cj) ∈ R(D), t[A] denotes the value
ci. The symbol t[Ā] denotes the vector whose entries are the
values of the attributes in the vector Ā. The attributes may
have infinite subdomains that are contained in U . Constants
will be denoted by lower case letters at the beginning of the
alphabet.

A matching dependency [10], involving predicates
R(A1, . . . , An), S(B1, . . . , Bm), is a rule of the form

^

i∈I,j∈J

R[Ai] ≈ij S[Bj] →
^

i∈I′,j∈J′

R[Ai] ⇋ S[Bj]. (1)

Here R and S could be the same predicate. I, I ′ and J, J ′

are fixed subsets of {1, . . . , n} and {1, . . . , m}, resp. We as-
sume that, when Ai, Bj are related via ≈ij or ⇋ in (1),
they share the same (sub)domain, so their values can be
compared by the domain-dependent binary similarity pred-
icate, ≈ij or can be identified, resp. In this paper, we will
assume that there is at most one similarity operator defined
on the domain of any given attribute.

The similarity operators, generically denoted with ≈, are
assumed to have the properties of: (a) Symmetry: If x ≈ y,
then y ≈ x. (b) Equality subsumption: If x = y, then x ≈ y.

The MD in (1) is implicitly universally quantified in front,
and applied to pairs of tuples t1, t2 for R and S, resp. There
are two complimentary ways of interpreting this MD: a static
interpretation and a dynamic one. The expression

V

R[Ai]
≈ij S[Bj] states that the values of the attributes Ai in tu-
ple t1 are similar to those of attributes Bj in tuple t2. In
the static interpretation, the MD is read as an implication,
similar to a functional dependency (FD). It says that, if
V

R[Ai] ≈ij S[Bj] holds, then for each pair Ai and Bj such
that R[Ai] ⇋ S[Bj] appears on the RHS and for the same
tuples t1 and t2, t1[Ai] and t2[Bj] are equal. The dynamic
interpretation of the MD states that if this similarity condi-
tion holds, such pairs of attributes should be updated so that
they become the same for t1 and t2. However, the attribute
values to be used for this matching are left unspecified by
(1). The static interpretation is useful for identifying dirty
data, while the dynamic interpretation specifies a procedure
for cleaning the data.

For abbreviation, we will sometimes write MDs as

R[Ā] ≈ S[B̄] → R[C̄] ⇋ S[Ē], (2)

where Ā, B̄, C̄, and D̄ represent the lists of attributes,
(A1, ..., Ak), (B1, ..., Bk), (C1, ..., Ck′), and (E1, ..., Ek′), re-
spectively. We refer to the pairs of attributes (Ai, Bi) and
(Ci, Ei) as corresponding pairs of attributes of the pairs
(Ā, B̄) and (C̄, Ē), respectively. For an instance D and a
pair of tuples t1 ∈ R(D) and t2 ∈ S(D), t1[Ā] ≈ t2[B̄] indi-
cates that the similarities of the values for all corresponding
pairs of attributes of (Ā, B̄) hold. Similarly, t1[C̄] = t2[Ē]

denotes the equality of the values of all pairs of correspond-
ing attributes of (C̄, Ē).

In the dynamic interpretation, an MD involves an update
operation. This leads to a concept of satisfaction of an MD
by a pair of database instances: an instance D and its up-
dated instance D′.

Definition 1. [11] Let D, D′ be instances of schema S with
predicates R and S, such that, for each tuple t in D, there
is a unique tuple t′ in D′ with the same identifier as t, and
viceversa. The pair (D, D′) satisfies the MD m in (2), de-
noted (D, D′) �F m, iff, for every pair of tuples tR ∈ R(D)
and tS ∈ S(D), if tR and tS satisfy tR[Ā] ≈ tS[B̄], then for
the corresponding tuples t′R and t′S in R(D′), S(D′), resp.,
it holds: (a) t′R[C̄] = t′S[Ē], and (b) t′R[Ā] ≈ t′S[B̄]. 2

Intuitively, D′ in Definition 1 is an instance obtained from
D by enforcing m on instance D. For a set M of MDs,
and a pair of instances (D, D′), (D, D′) �F M means that
(D, D′) �F m, for every m ∈ M .

An instance D′ is stable [11] for a set M of MDs if (D′, D′)
�F M . Stability of an instance is a static concept analogous
to satisfaction by the instance D′ of a set of FDs. Sta-
ble instances correspond to the intuitive notion of a clean
database, in the sense that all the expected value identi-
fications already take place in it. Although not explicitly
developed in [11], for an instance D, if (D, D′) �F M for a
stable instance D′, then D′ is expected to be reachable as a
fix-point of an iteration of value identification updates that
starts from D and is based on M .

3. MD SEMANTICS REVISITED
Condition (b) in Definition 1 is used to avoid that the iden-

tification updates destroy the original similarities. Unfortu-
nately, enforcing this strong requirement sometimes leads to
counterintuitive results.

Example 2. Consider the following instance D with string-
valued attributes, and MDs:

R(D) A B C

a c g

a c ksp

S(D) E F

h c

msp c

R[A] ≈ R[A] → R[C] ⇋ R[C] (3)

R[C] ≈ S[E] → R[B] ⇋ S[F] (4)

For two strings s1 and s2, s1 ≈ s2 if the edit distance d

between s1 and s2 satisfies d ≤ 1. To produce an instance
D′ satisfying (D, D′) �F M , the strings g and ksp must be
changed to some common string s′.

Because of the similarities h ≈ g and ksp ≈ msp, s′ must
be similar to the E attribute values of the tuples in S, by
condition (b) of Definition 1 and MD (4). Clearly, there is
no s′ that is similar to both h and msp. Therefore, at least
one of h and msp must be modified to some new value in
D′. 2

Another problem with the semantics of MDs is that it allows
duplicate resolution in instances that are already resolved.
Intuitively, there is no reason to change the values in an in-
stance that is stable for a set of MDs M , because there is no
reason to believe, on the basis of M , that these values are in

error. However, even if an instance D satisfies (D, D) �F M ,
it is always possible, by choosing different common values,
to produce a different instance D′ such that (D, D′) �F M .
This is illustrated in the next example.

Example 3. Let D be the instance below and the MD
R[A] ≈ R[A] → R[B] ⇋ R[B].

R(D) A B

a c

a c

Although D is stable, (D, D′) �F m is true for any D′ where
the B attribute values of the two tuples are the same. 2

3.1 MD satisfaction
We now propose a new semantics for MD satisfaction that

disallows unjustified attribute modifications. We keep con-
dition (a) of Definition 1, while replacing condition (b) with
a restriction on the possible updates that can be made.

Definition 2. Let D be an instance of schema S , R ∈ S ,
tR ∈ R(D), C an attribute of R, and M a set of MDs.
Value tR[C] is modifiable if there exist S ∈ S , tS ∈ S(D),
an m ∈ M of the form R[Ā] ≈ S[B̄] → R[C̄] ⇋ S[Ē], and
a corresponding pair (C, E) of (C̄, Ē), such that one of the
following holds: 1. tR[Ā] ≈ tS[B̄], but tR[C] 6= tS[E]. 2.
tR[Ā] ≈ tS[B̄] and tS[E] is modifiable. 2

Example 4. Consider an instance D with two relations R

and S with two MDs defined on it:

R(D) A B

t0 a0 b

t1 a1 b

t2 a2 b

S(D) C E

t3 a3 c

t4 a4 c

t5 a5 c

m1 : R[A] ≈ R[A] → R[B] ⇋ R[B],

m2 : R[A] ≈ S[C] → R[B] ⇋ S[E],

m3 : S[C] ≈ S[C] → S[E] ⇋ S[E].

The following similarities hold on the distinct constants of
R and S: ai ≈ a(i+1)mod6, 0 ≤ i ≤ 5. The values t2[B]
and t3[E] are modifiable by condition 1 of Definition 2, m2,
a2 ≈ a3, and t2[B] 6= t3[E]. For the same reason, t0[B] and
t5[E] are modifiable.

Value t1[B] is modifiable by condition 2 of Definition 2,
m1, a1 ≈ a2, and the fact that t2[B] is modifiable. Similarly,
t4[E] is modifiable. 2

Definition 3. Let D, D′ be instances for S with the same
tuple ids, and M a set of MDs. (D, D′) satisfies M , denoted
(D, D′) � M , iff:
1. For any pair of tuples tR ∈ R(D), tS ∈ S(D), if there
exists an MD in M of the form R[Ā] ≈ S[B̄] → R[C̄] ⇋

S[Ē] and tR[Ā] ≈ tS[B̄], then for the corresponding tuples
t′R ∈ R(D′) and t′S ∈ S(D′), it holds t′R[C̄] = t′S[Ē].
2. For any tuple tR ∈ R(D) and any attribute G of R, if
tR[G] is not modifiable, then t′R[G] = tR[G]. 2

Condition 2. captures a natural default condition of per-
sistence of values: Only those that have to be changed are
changed. As before, we define stable instance for M to mean
(D, D) � M . Except where otherwise noted, these are the
notions of satisfaction and stability that will be used in the
rest of this paper.

Example 5. Consider again example 4. The set of all D′

such that (D, D′) � M is the set of all instances obtained
from D by changing all values of R[B] and S[E] to a com-
mon value, and leaving all other values unchanged. This is
because the values of R[B] and S[E] are the only modifiable
values, and these values must be equal by condition 1. of
Definition 3 and the given similarities. 2

Condition 2. in Definition 3 on the set of updatable values
does not prevent us from obtaining instances D′ that enforce
the MD, as the following theorem establishes.

Theorem 1. For any instance D and set of MDs M , there
exists a D′ such that (D, D′) � M . Moreover, for any at-
tribute value that is changed from D to D′, the new value
can be chosen arbitrarily, as long as it is consistent with
(D, D′) � M . 2

The new semantics introduced in Definition 3 solves the
problems mentioned at the beginning of this section. No-
tice that it does not require additional changes to preserve
similarities (if the original ones were broken). Furthermore,
modifications of instances, unless required by the enforce-
ment of matchings as specified by the MDs, are not allowed.
Also notice that the instance D′ in Theorem 1 is not guaran-
teed to be stable. We address this issue in the next section.

Moreover, as can be seen from the proof of Theorem 1,
the new restriction imposed by Definition 3 is as strong as
possible in the following sense: Any definition of MD satis-
faction that includes condition 1. must allow the modifica-
tion of the modifiable attributes (according to Definition 2).
Otherwise, it is not possible to ensure, for arbitrary D, the
existence of an instance D′ with (D, D′) � M .

3.2 Resolved instances
According to the MD semantics in [11], although not ex-

plicitly stated there, a clean version D′ of an instance D is
an instance D′ satisfying the conditions (D, D′) |= M and
(D′, D′) |= M . Due to the natural restrictions on updates
captured by the new semantics (cf. Definition 3), the ex-
istence of such a D′ is not guaranteed. Essentially, this is
because D′ is the result of a series of updates. The MDs are
applied to the original instance D to produce a new instance,
which may have new pairs of similar values, forcing another
application of the MDs, which in their turn produces another
instance, and so on, until a stable instance D′ is reached.
The pair (D, D′) may not satisfy M . However, we will be
interested in those instances D′ just mentioned. The idea is
to relax the condition (D, D′) � M , and obtain a stable D′

after an iterative process of MD enforcement, which at each
step, say k, makes sure that (Dk−1, Dk) |= M .

Definition 4. Let D be a database instance and M a set
of MDs. A resolved instance for D wrt M is an instance
D′, such that there is a finite (possibly empty) sequence of
instances D1, D2, ...Dn with: (D, D1) � M , (D1, D2) � M ,...
(Dn−1, Dn) � M , (Dn, D′) � M , and (D′, D′) � M . 2

Notice that, by Definition 3, for an instance D satisfying
(D, D) |= M , it holds (D, D′) |= M if and only if D′ = D.
In this case, the only possible set of intermediate instances
is the empty set and D is the only resolved instance. Thus,
a resolved instance cannot be obtained by making changes
to an instance that is already resolved.

Theorem 2. Given an instance D and a set M of MDs,
there always exists a resolved instance for D with respect to
M . 2

Example 6. Consider the following instance D of a rela-
tion R and set M of MDs:

R(D) A B C

a b d

a c e

a b e

R[A] ≈ R[A] → R[B] ⇋ R[B],

R[B] ≈ R[B] → R[C] ⇋ R[C].

All pairs of distinct constants in R are dissimilar. Two re-
solved instances D1 and D2 of R are shown.

R(D1) A B C

a b d

a b d

a b d

R(D2) A B C

a b e

a b e

a b e

Notice that (D, D1) 6|= M , because the value of the C at-
tribute of the second tuple is not modifiable in D. This
shows that some resolved instances cannot be obtained in a
single update step, with updated instances as in Definition
4. 2

The notion of resolved instance is one step towards the char-
acterization of the intended clean instances. However, it still
leaves room for refinement. Actually, the resolved instances
that are of most interest for us are those that are somehow
closest to the original instance. This consideration leads to
the concept of minimal resolved instance, which uses as a
measure of change the number of values that were modified
to obtain the clean database. In Example 6, instance D2 is
a minimal resolved instance, whereas D1 is not.

Definition 5. Let D be an instance.
(a) TD := {(t, A) | t is the id of a tuple in D and A is an
attribute of the tuple}.
(b) fD : TD → U is given by: fD(t, A) := the value for A

in the tuple in D with id t.
(c) For an instance D′ with the same tuple ids as D:

SD,D′ := {(t, A) ∈ TD | fD(t, A) 6= fD′(t,A)}. 2

Intuitively, SD,D′ is the set of all “positions” within the in-
stance such that the value at that position was changed in
going from D to D′.

Definition 6. Let D be an instance and M a set of MDs.
A minimally resolved instance (MRI) of D wrt M is a re-
solved instance D′ such that |SD,D′ | is minimum, i.e. there
is no resolved instance D′′ with |SD,D′′ | < |SD,D′ |. We de-
note by Res(D, M) the set of minimal resolved instances of
D wrt the set M of MDs. 2

Example 7. Consider the instance below and the MD R[A] ≈
S[C] → R[B] ⇋ S[D].

R A B

a1 b1

S C D

c1 d1

Assuming that a1 ≈ c1, this instance has two minimal re-
solved instances, namely

R A B

a1 d1

S C D

c1 d1

R A B

a1 b1

S C D

c1 b1 2

Considering that MDs concentrate on changes of attribute
values, we consider that this notion of minimality is appro-
priate. The comparisons have to be made at the attribute
value level. In CQA a few other notions of minimality and
comparison of instances have been investigated [3].

The requirement of Definition 6 that the number of changes
be minimized in an MRI can be relaxed to allow MRIs whose
change is within some percentage of the minimum without
affecting any of the results presented here. This might be
a more appropriate definition in certain duplicate resolution
settings.

In this subsection, we defined the MRIs, which we use
as our model of a clean database instance. This leads to
the definition of resolved answers to a query in the next
subsection. Intuitively, these are the answers that are true
in all MRIs. This is analogous to CQA, where a consis-
tent answer to a query is defined as being true in (obtained
from) all minimal repairs of a database that violates a set
of integrity constraints [1]. Indeed, instead of applying the
dynamic semantics of MDs to this context, we could have
taken a more traditional approach, in which the MDs are in-
terpreted as integrity constraints and the consistent answers
are computed relative to these constraints. However, such
an approach is not appropriate in this context, as the next
example shows.

Example 8. Consider the following instance of a relation
R and MDs:

R A B

a b

a d

R[A] = R[A] → R[B] ⇋ R[B]

where all pairs of distinct constants in R are unequal. Sup-
pose we viewed the MDs as functional dependencies to be
satisfied by R, replacing ⇋ with =. Consider the repairs
(in the sense of CQA) that would be obtained via attribute
modification [13, 14, 4, 12, 3], and minimality as in Defi-
nition 6. It follows immediately from Definition 6 that all
MRIs are repairs. In the context of duplicate resolution, the
appropriate way to repair R would be to set the values in
the B column to a common value. However, one way of re-
pairing the instance would be to change one of the values in
the A column to b. In failing to restrict the allowed updates,
an approach that defines MDs as traditional integrity con-
straints will lead to undesirable repairs and will not provide
an appropriate semantics for the certain answers. 2

3.3 Resolved answers
Let Q(x̄) be a query expressed in the first-order language

L(S) associated to schema S . Now we are in position to
characterize the admissible answers to Q from D, as those
that are invariant under the matching resolution process.

Definition 7. A tuple of constants ā is a resolved answer

to Q(x̄) wrt the set M of MDs, denoted D |=M Q[ā], iff
D′ |= Q[ā], for every D′ ∈ Res(D, M). We denote with
ResAn(D,Q, M) the set of resolved answers to Q from D

wrt M . 2

m1 m2 m3

Figure 1: An MD-Graph

Example 9. (example 7 continued) The set of resolved an-
swers to the query Q1(x, y) : R(x, y) is empty since there are
no tuples that are in the instance of R in all minimal resolved
instances. On the other hand, the set of resolved answers to
the query Q2(x) : ∃y(R(x, y) ∧ (y = b1 ∨ y = d1) is {a1}. 2

In Section 4 we will study the complexity of the problem
of computing the resolved answers, which we now formally
introduce.

Definition 8. Given a schema S , a query Q(x̄) ∈ L(S),
and a set M of MDs, the Resolved Answer Problem (RAP)
is the problem of deciding membership of the set

RAQ,M := {(D, ā) | ā is a resolved answer to Q from

instance D wrt M}.

If Q is a boolean query, it is the problem of determining
whether Q is true in all minimal resolved instances of D. 2

4. COMPUTING RESOLVED INSTANCES
AND ANSWERS

In this section, we consider the complexity of the RAQ,M

problem introduced in the previous section. For this goal it
is useful to associate a graph to the set of MDs. We need a
few notions before introducing it.

Definition 9. A set M of MDs is in standard form if no
two MDs in M have the same expression to the left of the
arrow. 2

Notice that any set of MDs can be put in standard form
by replacing subsets of MDs of the form {R[Ā] ≈ S[B̄] →
R[C̄1] ⇋ S[Ē1], . . . , R[Ā] ≈ S[B̄] → R[C̄n] ⇋ S[Ēn]} by the
single MD R[Ā] ≈ S[B̄] → R[C̄] ⇋ S[Ē], where the set of
corresponding pairs of attributes of (C̄, Ē) is the union of
those of (C̄1, Ē1), ...(C̄n, Ēn). From now on, we will assume
that all sets of MDs are in standard form.

For an MD m, LHS(m) and RHS(m) denote the sets of
attributes that appear to the left side and to right side of
the arrow, respectively.

Definition 10. Let M be a set of MDs in standard form.
The MD-graph of M , denoted MDG(M), is a directed graph
with a vertex labeled m for each m ∈ M , and with an edge
from m1 to m2 iff RHS(m1)

T

LHS(m2) 6= ∅. 2

Example 10. Consider the set of MDs: m1 : R[A] ≈
S[B] → R[C] ⇋ S[D]. m2 : R[C] ≈ S[D] → R[A] ⇋ S[B].
m3 : S[E] ≈ S[B] → T [F] ⇋ T [F]. It has the MD-graph
shown in Figure 1. 2

A set of MDs whose MD-graph contains edges is called in-

teracting. Otherwise, it is non-interacting.
We will use the following notions to discuss the tractability

of computing resolved answers.

Definition 11. Let D be a database instance and M a set
of MDs. A triple (t, A, v), with (t, A) ∈ TD, is a certain

triple if fD′(t,A) = v in all MRIs D′ of D. 2

Definition 12. A set of MDs M defined on a database
schema S is hard if it is an NP-hard problem to determine,
given an instance D with schema S and set of certain triples
P , whether P is the set of all certain triples. The set M is
easy if this can be determined in polynomial time. 2

RAP is intractable for hard sets of MDs even for some
very simple queries. The following result is straightforward.

Definition 13. For a query Q and set of MDs M defined
on a schema S, RASetQ,M is the problem of determining,
given an instance D with schema S and a set P of answers
to Q, whether P is the set of all resolved answers to Q on
D. 2

Theorem 3. Let M be a hard set of MDs defined on a
schema S. Then there exists a single-atom conjunctive query
Q on S for which RASetQ,M is NP-hard. 2

It is straightforward to verify that all sets of non-interacting
MDs are easy. We now turn to the simplest case of inter-
acting MDs: A set M of two MDs such that MDG(M) has
a single directed edge from one vertex to the other. For the
complexity results of this section, we make the assumption
that, for all similarity operators, there exists an infinite set
of pairwise dissimilar elements.

Definition 14. An ordered pair (m1, m2) of MDs is a lin-
ear pair of MDs if the MD graph of {m1, m2} has a single
edge, and this edge is from m1 to m2. 2

For a pair of database instances D and D′, (D, D′) |= M

implies that certain groups of values in D must be set to a
common value in D′. Since all similarity operators subsume
equality, these values are similar in D′. We call similarities
of D′ which hold in D or which are implied by (D, D′) |=
M intended similarities. Other new similarities can also
arise in the updated instance D′, which we call accidental

similarities. These similarities result from the particular
choice of update value, and do not occur in all D′ satisfying
(D, D′) |= M .

Example 11. Consider the two-attribute relation R given
below, and the MD R[A] = R[A] → R[B] ⇋ R[B].

R A B

t1: a c

t2: a e

t3: b d

t4: b f

One possible updated instance is

R A B

t1: a d

t2: a d

t3: b d

t4: b d

Among the B attribute values, the intended similarities are
t1[B] = t2[B] and t3[B] = t4[B], and the accidental simi-
larities are t1[B] = t3[B], t1[B] = t4[B], t2[B] = t3[B], and
t2[B] = t4[B]. 2

In the case of interacting MDs, accidental similarities are
a source of intractability for the computation of resolved
answers. This is because accidental similarities produced by
the application of one MD affect the application of other
MDs, leading to a dependence on the choices of common
values.

Theorem 4. The following set of MDs is hard:

R[A] ≈ R[A] → R[B] ⇋ R[B]

R[B] ≈ R[B] → R[C] ⇋ R[C] 2

Linear pairs of MDs nonetheless can sometimes be easy in
spite of the occurrence of accidental similarities. This hap-
pens when the interaction between the MDs is more re-
stricted in the sense that accidental similarities generated
by one MD cannot affect the application of the other MD.
For example, the set of MDs

R[A] ≈ R[A] → R[B] ⇋ R[B]

R[A] ≈ R[A] ∧ R[B] ≈ R[B] → R[C] ⇋ R[C]

is easy. Intuitively, the conjunct R[A] ≈ R[A] in the second
MD“filters out” the accidental similarities among the values
of attributes in the B column, allowing only the intended
similarities to be passed on to the C column by the second
MD. More generally, the following can be proved.

Theorem 5. Any pair (m1, m2) of linear MDs of the form

m1 : R[Ā] ≈1 S[B̄] → R[C̄] ⇋ S[Ē]

m2 : R[Ā] ≈1 S[B̄] ∧ R[F̄] ≈2 S[Ḡ] → R[H̄] ⇋ S[Ī]

is easy. 2

5. CONCLUSIONS
In this paper we have proposed a revised semantics for

matching dependency (MD) satisfaction wrt the one origi-
nally proposed in [11]. The main outcomes from that seman-
tics are the notions of minimally resolved instance (MRI)
and resolved answers (RAs) to queries. The former capture
the intended, clean instances obtained after enforcing the
MDs on a given instance. The latter are query answers that
persist across all the MRIs, and can be considered as robust
and semantically correct answers.

We investigated the new semantics, the MRIs and the
RAs. We considered the existence of MRIs and derived some
preliminary results on the complexity of computing the RAs.
In our ongoing and future work, we are deriving syntactic
criteria on MDs for identifying what we called easy and hard
sets of MDs. We are also developing query rewriting meth-
ods for obtaining the RAs in the easy cases.

In this paper we have not considered cases where the
matchings of attribute values, whenever prescribed by the
MDs’ conditions, are made according to matching functions
[6]. This element adds an entirely new dimension to the
semantics and the problems investigated here. It certainly
deserves investigation.

6. REFERENCES

[1] M. Arenas, L. Bertossi, and J. Chomicki. Consistent
query answers in inconsistent databases. In Proc.

PODS, pages 68–79, 1999.

[2] O. Benjelloun, H. Garcia-Molina, D. Menestrina,
Q. Su, S. Euijong Whang, and J. Widom. Swoosh: A
generic approach to entity resolution. VLDB Journal,
18(1):255–276, 2009.

[3] L. Bertossi. Consistent query answering in databases.
ACM Sigmod Record, 35(2):68–76, 2006.

[4] L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko.
The complexity and approximation of fixing numerical
attributes in databases under integrity constraints.
Information Systems, 33(4):407–434, 2008.

[5] L. Bertossi and J. Chomicki. Query answering in
inconsistent databases. In Logics for Emerging

Applications of Databases, pages 43–83. Springer,
2003.

[6] L. Bertossi, S. Kolahi, and L. Lakshmanan. Data
cleaning and query answering with matching
dependencies and matching functions. In Proc. ICDT,
2011.

[7] J. Bleiholder and F. Naumann. Data fusion. ACM

Computing Surveys, 41(1):1–41, 2008.

[8] J. Chomicki. Consistent query answering: Five easy
pieces. In Proc. ICDT, pages 1–17, 2007.

[9] A. Elmagarmid, P. Ipeirotis, and V. Verykios.
Duplicate record detection: A survey. IEEE

Transactions on Knowledge and Data Engineering,
19(1):1–16, 2007.

[10] W. Fan. Dependencies revisited for improving data
quality. In Proc. PODS, pages 159–170, 2008.

[11] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about
record matching rules. In Proc. VLDB, pages 407–418,
2009.

[12] S. Flesca, F. Furfaro, and F. Parisi. Querying and
repairing inconsistent numerical databases. ACM

Trans. Database Syst., 2010, 35(2).

[13] E. Franconi, A. Laureti Palma, N. Leone, S. Perri, and
F. Scarcello. Census data repair: A challenging
application of disjunctive logic programming. In Proc.

LPAR, Springer LNCS 2250, 2001, pages 561–578.

[14] J. Wijsen. Database repairing using updates. ACM

Transactions on Database Systems, 30(3):722–768,
2005.

APPENDIX

A. AUXILIARY RESULTS AND PROOFS
Proof of Theorem 1: Consider an undirected graph G

whose vertices are labelled by pairs (t, A), where t is a tu-
ple identifier and A is an attribute of t. There is an edge
between two vertices (s,A) and (t, B) iff s and t satisfy the
similarity condition of some MD m ∈ M such that A and B

are matched by m.
Update D as follows. Choose a vertex (t1, A) such that

there is another vertex (t2, B) connected to (t1, A) by an
edge and t1[A] and t2[B] must be made equal to satisfy the
equalities in condition 1. of Definition 3. For convenience
in this proof, we say that t2 is unequal to t1 for such a pair
of tuples t1 and t2. Perform a breadth first search (BFS)
on G starting with (t1, A) as level 0. During the search, if a
tuple is discovered at level i + 1 that is unequal to an adja-
cent tuple at level i, the value of the attribute in the former
tuple is modified so that it matches that of the latter tuple.
When the BFS has completed, another vertex with an adja-

cent unequal tuple is chosen and another BFS is performed.
This continues until no such vertices remain. It is clear that
the resulting updated instance D′ satisfies condition 1. of
Definition 3.

We now show by induction on the levels of the breadth first
searches that for all vertices (t,A) visited, t[A] is modifiable.
This is true in the base case, by choice of the starting vertex.
Suppose it is true for all levels up to and including the ith

level. By definition of the graph G and condition 2. of
Definition 2, the statement is true for all vertices at the
(i+1)th level. This proves the first statement of the theorem.

To prove the second statement, we show that, to satisfy
condition 1. of Definition 3, the attribute values represented
by each vertex in each connected component of G must be
changed to a common value in the new instance. The state-
ment then follows from the fact that the update algorithm
can be modified so that the attribute value for the initial
vertex in each BFS is updated to some arbitrary value at
the start (since it is modifiable). By condition 1. of Defini-
tion 3, the pairs of values that must be equal in the updated
instance D′ correspond to those vertices that are connected
by an edge in G. This fact and transitivity of equality imply
that all attribute values in a connected component must be
updated to a common value. 2

Proof of Theorem 2: We give an algorithm to compute a
resolved instance, and use a monotonicity property to show
that it always terminates. For attribute domain d in D,
consider the set Sd of pairs (t, A) such that attribute A of
the tuple with identifier t has domain d. Let {S1, S2, ...Sn}
be a partition of Sd into sets such that all tuple/attribute
pairs in a set have the same value in D. Define the level of
(t, A) to mean |Sj | where (t,A) ∈ Sj .

The algorithm first applies all MDs in M to D by setting
equal pairs of unequal values according to the MDs. Specifi-
cally, consider a connected component C of the graph in the
proof of Theorem 1. If the values of t[A] for all pairs (t, A)
in C are not all the same, then their values are modified to
a common value which is that of the pair with the highest
level. This update is allowed by Theorem 1. In the case
of a tie, the common value is chosen as the largest of the
values according to some total ordering of the values from
the domain that occur in the instance. It is easily verified
that this operation increases the sum over all the levels of
the elements of Sd, where d is the domain of the attributes
of the pairs in C. These updates produce an instance D1

such that (D, D1) � M .
The MDs of M are then applied to the instance D1 to

obtain a new instance D2 such that (D1, D2) � M and so
on, until a stable instance is reached. For each new instance,
the sum over all domains d of the levels of the (t, A) ∈ Sd is
greater than for the previous instance. Since this quantity
is bounded above, the algorithm terminates with a resolved
instance. 2

Proof of Theorem 4: The proof is by reduction from
MONOTONE 3-SAT. Given an instance F of MONOTONE
3-SAT with clauses c1, c2,...cn, construct an instance of R

with tuples t1, t2,...t3n. The sets {t1, t2, t3}, {t4, t5, t6},...
are called 3-blocks. For 0 ≤ i < n, t3i+1[A] = t3i+2[A] =
t3i+3[A] = ki and for 0 ≤ i < n, the ki are pairwise dissimi-
lar. We refer to a clause as a positive (negative) clause if it
contains only positive (negative) literals. If ci is a positive
clause, then t3(i−1)+1[C] = t3(i−1)+2[C] = t3(i−1)+3[C] = a,

and if ci is a negative clause (contains only negative liter-
als), then t3(i−1)+1[C] = t3(i−1)+2[C] = t3(i−1)+3[C] = b.
The values in the B column consist of a set S of pairwise
dissimilar values, one for each variable in F . The values of
t3(i−1)+1[B], t3(i−1)+2[B], and t3(i−1)+3[B] are the values in
S corresponding to the variables in ci.

In a resolved instance, the B attribute values of all tuples
in a 3-block must be equal (because of the first MD). Mini-
mal change in the B column is achieved by choosing as the
common value any of the original B attribute values in the
3-block. We will show that there is a resolved instance with
this choice of values for the B column and with no change
to the values in the C column iff F is satisfiable. This is
the only MRI when F is satisfiable. Thus, it is NP-hard
to determine which values can change in an MRI, implying
that the set of MDs is hard.

In a satisfying assignment to F , there is a literal for each
clause in F that is made true by the assignment. For each
3-block in F , choose as the common B attribute value the
value corresponding to the true literal for a satisfying assign-
ment. Since the assignment is consistent, the values chosen
for the 3-blocks corresponding to positive clauses are dissim-
ilar to those corresponding to negative clauses. This implies
that the second (and final) update will set to a common
value exactly those sets of values in the C column that had
a common value in the original instance. Choosing the orig-
inal values as the update values, there is no change in the C

column.
Conversely, suppose there is no satisfying assignment to

F . Then, if a variable is chosen from each clause, there
must be a negative and positive clause such that the same
variable was chosen from them (otherwise F could be made
true by setting the variables chosen from positive clauses
true and setting those chosen from negative clauses false).
This implies that, when update values are chosen so as to
achieve minimal change in the B column in the first update,
the second update must set to a common value sets of values
in the C column that were originally distinct. Specifically,
pairs of 3-blocks whose C attribute values were originally
distinct must have their C attribute values set to a common
value. 2

For the next proof, we need an auxiliary definition and
result.

Definition 15. Let m be the MD R[Ā] ≈ S[B̄] → R[C̄] ⇋

S[Ē]. The transitive closure, T≈, of ≈ is the transitive clo-
sure of the binary relation on tuples t1[Ā] ≈ t2[B̄], where
t1 ∈ R and t2 ∈ S. 2

Lemma 1. Let D be an instance and let m be the MD in
Definition 15. An instance D′ obtained by changing modi-
fiable attribute values of D satisfies (D, D′) � m iff for each
equivalence class of T≈, there is a constant vector v̄ such
that, for all tuples t in the equivalence class,

t
′[C̄] = v̄ if t ∈ R(D)

t
′[Ē] = v̄ if t ∈ S(D)

where t′ is the tuple in D′ with the same identifier as t.

Proof:Suppose (D, D′) � m. By Definition 3, for each pair
of tuples t1 ∈ R(D) and t2 ∈ S(D) such that t1[Ā] ≈ t2[B̄],

t
′
1[C̄] = t

′
2[Ē]

Therefore, if T≈(t̄1, t̄2) is true, then t′1 and t′2 must be in
the transitive closure of the binary relation expressed by
t′1[C̄] = t′2[Ē]. But the transitive closure of this relation is
the relation itself (because of the transitivity of equality).
Therefore, t′1[C̄] = t′2[Ē]. The converse is trivial. 2

Proof of Theorem 5: We prove the specific case in which
the MDs have the form

m1 : R[Ā] ≈1 S[B̄] → R[C] ⇋ S[E]

m2 : R[Ā] ≈1 S[B̄] ∧ R[C] ≈2 S[E] → R[H] ⇋ S[I]

A resolved instance is obtained after two updates. The pairs
of tuples t1 ∈ R and t2 ∈ S such that the equality t1[C] =
t2[E] is imposed by the first update are those that satisfy
T≈1(t1, t2), by lemma 1. The second update does not affect
the values of the attributes R[C] and S[E], and the pairs of
tuples t1 ∈ R and t2 ∈ S such that t1[H] and t2[I] are made
equal are simply those that satisfy T≈1(t1, t2). Furthermore,
the relation T≈1(t1, t2) subsumes the transitive closure of
t1[Ā] ≈1 t2[B̄] ∧ t1[C̄] ≈2 t2[Ē] before the first update, and
so the net effect of the two updates on the values of R[H] and
S[I] is to impose t1[H] = t2[I] on pairs of tuples satisfying
T≈1(t1, t2). Since T≈1(t1, t2) is computable in polynomial
time, the result follows. 2

