Hypothetical Temporal Reasoning with
History Encoding
(Extended Abstract)

Marcelo Arenas and Leopoldo Bertossi
Pontificia Universidad Catdlica de Chile,
Escuela de Ingenieria,
Departamento de Ciencia de Computacion,
Casilla 306, Santiago 22, Chile.
{marenas,bertossi}@ing.puc.cl

Abstract

In this paper we integrate a history—encoding based methodology
developed by Chomicki for checking dynamic database integrity con-
straints into a situation-calculus based specification of database up-
dates as proposed by Reiter. By doing this, we are able to: (1) Answer
queries about a whole hypothetical evolution of a database, without
having to update the entire database and keep all the information asso-
ciated to the generated states, (2) State and prove dynamic integrity
constraints as static integrity constraints, (3) Transform history de-
pendent preconditions for updates into local preconditions.

Keywords: Situation Calculus, Knowledge Representation, Specifi-
cations of Database Updates, Automated Reasoning, Integrity Con-
straints.

1 Introduction

In [9], as an application of his solution to the frame problem [8], Raymond
Reiter proposed to specify the transaction based updates of database by
means of a particular kind of axioms written in the situation calculus (SC)
[7]. In [1] the implementation and the functionalities of a computational
system for doing automated reasoning from and about these specifications
are reported.

We are motivated by the problem of answering queries about different
states! in the evolution of a database, when the database is virtually updated
by the execution of a sequence of primitive transactions. For example, we
want to consider queries of the form “Has it always been the case that the
database has satisfied a given condition C?”, or “Has there been a state of
the database where a certain condition C has been satisfied?”, or “Has the
salary of some employee decreased along the database evolution?”. Reiter
raised this problem in the context of his specifications of transaction based
database updates [9].

Although there is no explicit time in our situation calculus, for their
similarity with dynamic integrity constraints [9], also called “temporal con-
straints” [3], we call these queries “temporal queries”2. Furthermore, we call
this queries “hypothetical” because we have an initial, physical database at
an initial state Sy and a list T" of primitive transactions A4y, ... , Ay, that vir-
tually update the database, producing new states Si,... ,S,; and we want
to answer a query about the generated sequence of states, without physically
updating the whole database accordingly (and possibly keeping the data for
every intermediate state). We are interested in querying this whole virtual
evolution of the database.

The problem of answering this kind of queries was treated in detail in [12]
and a solution was implemented as reported in [1]. Nevertheless that solution
is based on a kind of minimal progression of the database that depended on
a detailed syntactical processing of the axioms of the specification, and on
the particular syntactical form of them.

In this paper we reconsider this problem and we propose a new solution
that relies on processing the query itself, rather than the underlying axioms.
This is done on the basis of a reformulation of Chomicki’s history encoding
methodology for efficiently checking temporal integrity constraints [3], in
the context of SC specifications of database updates, and, in particular, a
specification in the SC of the evolution of new history encoding auxiliary
relations that are generated from the query.

It turns out that the methodology we develop for answering queries can
be adapted to give a solution to other reasoning problems. Here we show how
to transform dynamic integrity constraints into static integrity constraints,
so that any available methodology for handling static integrity constraints

'In this paper we do no make any distinction between states and situations.

?In some papers, they are called “historical queries”, but this name may cause con-
fusions with work done by the temporal databases community that calls “historical” the
queries about valid time, rather than about transaction time [13], which can be better
associated to the situations of the situation calculus.

can be adapted for the dynamic case. In particular, we can take advantage
of our results on automated proving of static integrity constraints [2] when
dealing with the dynamic case. The other problem we solve consists in
transforming preconditions for action executions that depend on the history
of the database into preconditions that depend on the local, execution state.

2 The Situation Calculus and Database Updates

Characteristic ingredients of a particular language £ of the situation cal-
culus, besides the usual symbols of predicate logic, are: (1) Sorts action,
situation, and indiwidual (this last one for the individuals in the domain;
this sort could be split into subsorts if necessary); (2) Predicate symbols
of the sort (individual,... , individual, situation) to denote fluents. These
are predicates that depend on the state of the world. (3) Operation sym-
bols of the sort (individual,... ,individual) — action for denoting actions
with individuals as parameters (or applied to individuals). (4) A con-
stant, Sp, to denote the initial state; (5) An operation symbol do of sort
(action, situation) — situation, that executes an action at a given state pro-
ducing a successor state. In these languages there are first order variables for
individuals of each sort, so it is possible to quantify over individuals, actions,
and situations. They are usually denoted by VZ, Va, Vs, respectively.

The specification of a dynamically changing world, by means of an ap-
propriate language of the situation calculus, consists in stating the laws of
evolution of the world. This is typically done by specifying: (1) Fixed, state
independent, but domain dependent knowledge about the individuals of the
world; (2) Knowledge about the state of the world at the initial situation Sp
given in terms of formulas that do not mention any state besides Sy; (3) Pre-
conditions for performing the different actions (or making their execution
possible). We introduce a predicate Poss in L of sort (action, situation),
so that Poss(a, s) says that the execution of action a is possible in state s;
(4) The effects of the actions in the fluents. These information is giving by
means of laws that describe what happen with the different fluents when we
execute an action a in a state s.

More precisely, a specification of a dynamically changing world ¥ is
giving by the following set of axioms: (1) A set 3, which includes an in-
duction axiom on states YP[P(Sy) A Y(a, s)(P(s) D P(do(a,s))) D VsP(s)],
and unique name axioms for states: V(a,d’, s, s')[do(a, s) = do(d,s') D a =
a' Ns = ¢, V(a,s)[do(a,s) # Sp]. (2) A set Xyp, of unique name axioms
for axiom: for all different action names A,B : V(z,9)[A(Z) # B(y)], and

for every action A : V(z,Z')[A(z) = A(Z') D z = z']. (3) A set Xg, of
sentences that do not mention any state term other than Sp. (4) A set Xy,
that includes for each action name A, a precondition axiom of the form:

V(Z, s)[Poss(A(Z), s) = wa(Z, s)], (1)

where m4(Z, s) is a SC formula that is simple in s, that is, it contains no
state term other than s, in particular, no do symbol, no quantifications on
states, and no occurrences of the Poss predicate [9]. (5) Successor State
Axioms: For every fluent F(Z,s), an axiom of the form:

Y(a, s)Poss(a, s) D VZ[F(Z,do(a,s)) = Pp(Z,aq,s), (2)

where @ is a formula simple in s, in particular, it does not contain the do
symbol. Provided there is complete knowledge at the initial state, this axiom
completely determines the contents of fluent F' at an arbitrary legal state,
i.e. reached from Sy by a finite sequence of transactions that are possible at
their execution states. (6) Finally, we will be usually interested in reasoning
about states that are accessible from the initial situation by executing a
finite sequence of legal actions. This accessibility relation on states, <,
can be defined from the induction axiom plus the conditions (less-azioms):
-8 < Sy, s <do(a,s') = Poss(a,s') Ns <s.

Example 1. We consider a database of a company, with the following fluent
Emp(z,s) : Person z is an employee of the company when the database is
in state s, and with the following actions: (1) hire(z) : Person z is hired
by the company. (2) fire(z) : Person z is fired by the company. In this
specification there exists the following successor state axiom:

V(a, s)Poss(a, s) D Vz[Emp(z,do(a,s)) =
a = hire(z) V Emp(z, s) A a # fire(z)],
and there are the following action precondition axioms:

V(z, s)[Poss(hire(z), s) = ~Emp(z, s)],
V(z, s)[Poss(fire(z), s) = Emp(z, s)].
O

In the context of these specifications, a temporal query is a SC sentence ¢
in which all the states involved, including quantified states, lie on a finite

state path S() S S1 S e S Sn, with Sz = dO([Al, . ,Ai—I;Ai],,SO)S, for
a sequence of ground actions terms Ay,..., A,, for some n. The query is
true if and only if ¥ = ¢.

3 Answering Queries

Chomicki [3] considered the problem of checking temporal constraints stated
in past first order temporal logic. These are constraints that talk about, and
relate, different states of the database. There we find a sequence of trans-
actions that are physically executed, and in order to minimize the cost of
checking, one progressively updates new defined relations, or auxiliary views,
7o', that correspond to the temporal subformulas, o’s, in the constraint.
These views encode part of the database evolution up to a current database
state. They are defined and updated in such a way that they store the
historical information that is relevant to give an answer to the query about
the satisfaction of the integrity constraint once the final (current) state is
reached. Then a new, non temporal, but local and static query can be posed
at the final state.

In [9], Reiter showed how to evaluate a query ¢(s) in a state resulting
from the execution of a sequence of actions Ai,...,A,, when @(s) is a
formula that is simple in s. Using the methodology described in the previous
paragraph, we will show in this section how to evaluate a more general
syntactical form of queries, that is, queries that include quantifications over
states. Thus, in this section we will show how to answer certain kind of
temporal queries.

Definition 1 ¢(Z,s) is a s-bounded formula iff
1. p(z,s) is a formula simple in s.
2. o(Z,s) = (T, s), where (T, s) is a formula s-bounded.

3. o(Z,s) = Y(z,s) x0(Z,s), where x € {A\,V,D,=}, ¥(z,s) and 6(z, s)
are formulas s-bounded.

4. o(z,8) = (Qz)Y(Z,z,s), where Q@ € {V,3}, ¥(Z,z,s) is a formula

s-bounded and x is a no state variable.

5. ¢o(Z,s) = Ia,s")(So < ' < sAs=do(a,s") Np(Z,s)), where Y(Z,s")
is a formula s'-bounded.

SWe use the notation do([A1, ... ,Ai—1, As], So) for abbreviating
dO(Ai, dO(Ai_h dO(. .. ,do(Al, So) ..)))

6. p(T,s) = 3s'(So < & < sAY(z,s') AVS"(s" < " < s D 0O(z,s"))),
where ¥(Z,s') is a formula s'-bounded and 6(Z,s") is a formula s"-
bounded.

Although the formulas defined above may seem to form a strange class of
SC formulas, they are an interesting generalization of the formulas simple.
They can represent common temporal queries like “Has it always been the
case that the database has satisfied a given condition ¢?” and “Has there
been a state of the database where a certain condition ¢ is true?”:

Vs'(So < s < 5D p(s)) =

-3s'(Sp < 8’ < sA=p(s') AVs"(s' < §" < s D True)),
3s'(Sp < 8" < sAp(s)) =

3s'(Sp < 8" < sAp(s') AVs"(s' < 8" < sD True)).

3)

(4)

Now, we want to evaluate s-bounded queries. Our starting point consists
of a SC specification Y and a s-bounded sentence ¢ to be evaluated at the
final state S = S;, = do(T, Sp), that results from the virtual update of the
database. So, ¢ refers to the states between Sy and S. What we want
to obtain is a new SC specification X, that extends X, and a sentence
bts[p(S)], such that the answer to the original query coincides with the
answer obtained from the evaluation of bts[¢(S)] wrt X4:. The new sentence
refers only to the state S, and X5 contains a specification of the dynamics of
new, history encoding, auxiliary relations. We will define first the operator
bts and next Y.

Definition 2 1. bis[p(Z, s)] = ¢(Z,s), If ¢(Z,s) is a simple formula in
s.

2. bts[-p(z,s)] = ~bts[p(Z, s)].
3. bis[p(T, 8)*xvY(T, s)] = bts[p(T, s)]*bts[v(T, s)], where x € {A,V,D,=}.

4. bts[(Qz)p(Z,s)] = (Qz)bts[p(Z, s)], where Q € {V,3} and z is a no
state variable.

5. bts[I(a,s")(So < & < sAs = do(a,s) NY(Z,s"))] = Rua(Z,s), where
¥(Z,s") is a formula simple in s' and R, is a new fluent name.

6. bts[3s'(So < 8" < sAY(T,s")AVs"(s < 8" < 5D 6(z,5")))] = Ra(Z, 9),
where ¥(Z,s") is a formula simple in s', 0(z,s") is a formula simple
in 8" and R, is a new fluent name.

By bottom-—up transformation of a s-bounded formula ¢, we can always
obtain such a formula bts[p]. Notice that this is a SC formula that is simple
in the state s, it talks about the isolated state, s. Now we have to specify
the dynamics of the new fluents by means of successor state axioms. Let
©(Z, s) be of the form I(a,s")(Sy < s’ < s As = do(a,s") ANY(Z,s")). This
formula is true at a state s, with predecessor state s', iff 1) was true at s'.
Then, for R,(Z, s) we have the following successor state axiom:

V(a, s)Poss(a,s) D VZ[Ry(Z,do(a,s)) = ¢Y(z, s)]. (5)

Additionally, we also specify VZ[— Ry (Z, So)]-

Let ¢(Z,s) be of the form 3s'(Sy < ' < s AY(F,s') AVs"(s' < " <
s D 0(z,s"))). This formula is true at a state s, with predecessor state
s1, iff ¢ was true at s; and 6 is still true at s, or 8 became true at s and
1) became true at s;. This is equivalent to saying that ¢ V 9 is true at
s1 and 0 is true at s. Then, for Ry(Z,s) it holds for every legal action a:
VZ[Ro(Z,do(a,s)) = bts[0(Z,do(a,s))] A (Ra(Z,s) V bts[p(Z,s)])]. This is
not a successor state axiom (of the form (2)), because there is a do(a, s)
term in bts[6(z,do(a, s))] on the right hand side. But we can get rid of it
applying Reiter’s regression operator R, that takes a formula, instantiated
at a successor state of the form do(A4, s), into a formula instantiated at the
previous state, s. For doing this, R uses the successor state axioms of the
tables appearing in bts[6(Z, do(a, s))] [8, 9]. So, we obtain:

V(a, s)Poss(a, s) D VZ[Ry(Z,do(a, s)) =
R[bts[0(z, do(a, 5))]] A (Ra(Z, 8) V bts[y(z,s)])]. (6)
Notice that the application of the regression operator leaves the right hand
side of the equivalence above as a simple formula in s. Also notice that when
« is a s-bounded sentence, then the SC formula R,(s) becomes a situation
dependent propositional predicate. Finally, we also specify VZ[-R,(Z, So)]-

The new specification Yp;; contains for each new fluent R, the previous
axiom and (6).

Example 2. Assume that the original specification 3 contains the following
successor state axiom for the table P(z, s):

V(a, s)Poss(a, s) D Vz[P(z,do(a, s)) = a = A(z) V (P(z,s) A a # B(z)))].
We want to evaluate the query:

351(So < 81 < sATs2(Sp < 82 < $1AQ(x, 52))AVs3(s1 < 83 < s D P(x,s))).

If 8 is 352(So < s2 < s1AQ(z, s)), then we introduce a new fluent Rg. Using
(4), we have the following definition for this fluent:

Ve [-Rg(x,So)], V(a,s)Poss(a,s) D Vz[Rg(z,do(a,s)) = Rg(x,s)VQ(x,s)).

Introducing Rg in the query, we obtain 3s1(Sp < s1 < sARg(x, s1)AVs3(s1 <
s3 < 8D P(z,s))). If this formula is a(z, s), for the new table R, we have:

Y(a,s)Poss(a,s) D Vz[Ry(z,do(a, s)) =
R[P(z,do(a, s))] A (Ra(z,s) V Rg(zx, s))].

Replacing R[P(z,do(a, s))] by the right hand side of the successor state
axiom for P, we obtain:

Y(a, s)Poss(a, s) D Vz[Ry(z,do(a, s)) =
(a = A(z) V P(z,s) Na # B(z)) A (Ra(z,s) V Rg(z,s))] (7)

Additionally, it is necessary to add the axiom: Vz[-R,(z,Sp)]. The new
specification Y.j;, consists of 3 plus the specifications of the new fluents R,
and Rg. |

Now we want to answer a SC temporal query % posed to a virtual tra-
jectory of the database from Sy to S, = do(T,Sy) (as before): ¥ = ¢?
If ¢ is a formula s-bounded, then we can answer this query by asking:
Yuts = bts[yp(do(T, Sp))]- The following theorem formalizes this idea:

Theorem 1 Suppose that 1(s) is a formula s-bounded, and that the state
variable s is the only free variable of ¥(s). Suppose that Ai,... , A, is a
legal sequence of ground terms of sort action. Then:

by ‘: ¢(d0([A17 s 7An]a SO)) Zﬁ Ebts ‘: th[’lp(dO([Al, s ,An]a SO))]

Notice that bts[y] is instantiated at the final state do(T,S)), and this is
the only state mentioned in the formula. So, we can see that we have
transformed our problem of answering a temporal query wrt to a virtually
updated database into the temporal projection problem of Al [4], that is, the
problem of querying a future state obtained by the execution of an actions
sequence. To solve this problem we may apply some existing techniques for
Reiter like specifications, e.g. Reiter’s query regression [9], minimal rolling
forward of the database based on information that is relevant to the query
[1, 12], or even full progression of the database [6]. All these methodologies
are supported by our reasoner SCDBR [1].

Example 3. We want to know if there is someone who has always been
working in the company (see example 1), in all states generated by the
execution of the sequences of actions T = [hire(Sue), fire(John)] from the
initial situation. So, we are asking whether

Y | JxVs(Sy < s < do(T, Sp) D Emp(z, s)).

It is easy to see that this sentence is equivalent to the following do(T, Sy)-
bounded sentence:

Jz(Emp(z,do(T, So)) AVs(Sy < s < do(T, Sp) DO Emp(z, s)).
Applying our methodology and (3) we obtain the new SC query:
dz(Emp(z, s) A Ry(z, s)),
and the original specification extended to Xy by adding: Vz[R,(z, Sp)] and:
V(a, s)Poss(a, s) D Vz[Ry(z,do(a, s)) = Emp(z,s) A Ry(z, s)].

Then we ask if Xy = Jz(Emp(z,do(T, So)) A Ra(z,do(T, Sp))). Running
the regression procedure in SCDBR, that applies twice the regression opera-
tor on the right hand side to the successor state axiom of Emp, and simplifies
the resulting steps by means of the unique axioms for actions, we obtain the
following query to be posed to the initial database:

dz((z = Sue V Emp(z, So)) Az # John A Emp(z,So) A Ra(z, So)).

4 Dynamic Integrity Constraints are Static

A Static Integrity Constraint is a formula ¢(s), simple in the state variable
s and without further free variables, such that[9, 5]:

3 Vs (S0 < 5D g(s)).

A Dynamic (or temporal) Integrity Constraint is a SC sentence 1 of the form
Vs1 Vs, (C(So, 81, y8n) D ¢(81,...,5n)), that should be entailed by 3.
Here, C(So, $1,--- ,85) is a formula that imposes a linear order constraint
on the states Sg, s1,... , s, in terms of the accessibility predicate <*.

*Dynamic integrity constraints are usually of this form, but the results we will present
in this paper still hold if we admit more involved quantifications on several states, related
by the accessibility relation.

We can use our methodology to transform dynamic integrity constraints
into static integrity constraints. Actually, Chomicki’s work [3] has to do
with checking dynamic integrity constraints statically. In our case, with our
reformulation of Chomicki’s methodology in terms of a specification of the
dynamics of the history encoding relations, we can rewrite dynamic integrity
constraints as SC sentences expressing static integrity constraints, which
can be proven as such from the (extended) specification of the database
dynamics. In particular, we can use the methodology for proving static
integrity constraints by automated induction presented in [2], and possibly
others, like [11].

Let 9 be a dynamic integrity constraint expressed in the SC. As integrity
constraint, it is expected to be true at every particular legal state s of the
database. Nevertheless, for being 1 dynamic, we can find quantifications
on previous states, and then, it does not talk about the current state only.
In general, we will think a dynamic integrity constraint as a sentence talking
about several states, but that has to be satisfied locally, at every legal state.
On the basis of this assumption, we generate from ¢ a new SC constraint
Vs(So < s D T(1,s)), where the operator T (1, s) is defined as follows:

Definition 3 1. T'(p,8) = ¢, if ¢ is an atomic formula.
2. T(_'QD: 5) = _'T(QD: 5)'
3. T(p*1,8) =T(p,8)*xT(1,s), where x € {A,V,D,=}.

4. T((Qz)p,s) = (Qz)T(p,s), where Q € {V,3} and z is a no state
variable.

5. T(Vs'p,s) =Vs'(s' < sDT(p,s)).
6. T(3s'p,s) =3s'(s' <sANT(p,3s)).

Intuitively, T'(1, s) is obtained from 1 by relativising all the quantifications
over states to < s. This new formula satisfies the following property:

Lemma 1 If ¥ is a dynamic integrity constraint in a specification X, then:
YE¢ iff 2EVs(So<sDT(p,9)).

If T(p, s) is a formula s-bounded, then is possible to transform the original
dynamic integrity constraint into a new static integrity constraint using the
operator bts: Vs(So < s D bts[T(¢p,s)]), the correctness of this methodology
is ensure by the following theorem:

10

Theorem 2 Suppose that ¥ is a dynamic integrity constraint in a specifi-
cation X. If T(¢, s) is a formula s-bounded, then:

SEY iff Zus EVs(So < s D bts[T(,s)]).

Example 4. Consider a specification ¥ of a DB of employees with a salary
table Sal(e,m,s), where e is the employee, m is the salary, and s is the
situational argument. Let ¥ be the usual dynamic integrity constraint telling
that an employee’s salary cannot decrease:

V(s',s")(Sy <s' <" D
Y(e,m',m")((Sal(e,m’,s") A Sal(e,m”,s")) Dm' <m")) (8)

This sentence must hold at every legal current state s of the DB, that is, as
a sentence, it must be entailed by 3. Now consider a new formula equivalent

to T'(1, s):
V(s 8")(Sy <s' <s"<sD
V(e,m',m")((Sal(e,m',s') A Sal(e,m",s")) D m' <m'"))

Sentence (8) holds in every legal state if and only if from ¥ follows Vs(Sy <
s DT(v,s)). Now, T(v, s) is equivalent to the following formula s-bounded:

V(e,m',m")((3s'(So < s' < s A Sal(e,m’,s")) A Sal(e,m",s)) Dm' <m') A
Vs"(So < 8" < sDV(e,m',m")((3s'(Sy < s < 5" A
Sal(e,m',s")) A Sal(e,m",s")) Dm' <m")).(9)

If a(e,m', s) is 3s'(Sp < &' < s A Sal(e,m',s")), we create a new fluent R,
with definition:

V(e,m')[=Ra(e,m', So)],
V(a, s) Poss(a, s) D V(e,m')[Ra(e,m',do(a,s)) = Ra(e,m',s) V Sal(e,m/, s)].

Introducing R, in (9) we obtain

V(e,m',m")((Ra(e,m',s) A Sal(e,m",s)) D m' <m") A
Vs"(So < s" < s D V(e,m',m")((Ra(e,m',s") A Sal(e,m,s")) D m' <m')).(10)
If B is the temporal subformula
Vs"(So < s" < sDV(e,m' m")((Rale,m',s") A Sal(e,m,s")) Dm' <m")),

11

we create a table Rg with specification: Rg(So),

V(a,s)Poss(a,s) D Rg(do(a,s)) =
Rg(s) AV(e,m',m")((Ra(e,m,s) A Sal(e,m",s)) D m' <m").

Introducing Rg in (10), we obtain:
V(e,m',m")((Ra(e,m’, s) A Sal(e,m", s)) D m' < m") A Rg(s).

Thus, the original dynamic integrity constraint holds in every state if and
only if the specification Yy, consisting of 3 plus the specifications of the
new fluents R, and Rg, entails the following static integrity constraint:

Vs(Sp < s D [V(e,m',m")((Ra(e, m’, s)ASal(e,m",s)) D m' <m")ARg(s)]).

5 History Dependent Transactions

As we saw in section 2, the formalism for specifying DB updates contains
preconditions for action executions that depend on the current state of the
database, only. Many concepts and algorithms that have originated from
this formalism are based on this kind of local action precondition axioms.
Nevertheless, there are natural scenarios in which the conditions for exe-
cuting an action should depend on a longer history of the database. For
example, in a voters database we might have the following action precondi-
tion axiom:

V(z, s)[Poss(vote(z), s) =
In(Age(z,n,s) An > 18) AVs'(Sy < s’ < s D =InJail(z,s'))]

That is, can vote if is not younger than 18, and he (she) has never been in
jail. This is a history dependent transaction. We can use the machinery de-
veloped so far for transforming these kind of transactions into local transac-
tions. We start from a database specification X with an action precondition
axiom for the primitive transaction A of the form: V(z, s)[Poss(A(Z), s) =
Y(Z, s)], where ¥(Z, s) is not necessarily simple in s, but has all the states
mentioned in it, quantified or not, lying between Sy and s. If ¢ is a for-
mula s-bounded, then we can generate a new specification X}, from Xy,
in its turn obtained from bts[¢)(Z,s)] as before, but with the original ac-
tion precondition axiom replaced by the new action precondition axiom:
Y(z, s)[Poss(A(Z), s) = bts[1(Z, s)]], which is of the form (1). As before, the
new specification contains successor state axioms for the auxiliary tables
introduced by the construction of bts[¢(z, s)].

12

Theorem 3 Let X be a SC specification containing a history dependent ac-
tion precondition aziom for action A and let X, be the new SC specification
containing successor state axioms for the auziliary relations and the old ac-
tion precondition azxioms replaced by the new local one. If <pis and Possps
are the possibility predicate and accessibility relation defined on the basis of
the new action precondition azxiom, then it holds:

1. For every ground state term S, and ground action term of the form
A(e), ¥ = Sy < S D Poss(A(€), S) if and only if X, = So <pts S D
Possys(A(€), S)-

2. For every ground state term S, ¥ |= Sy < S if and only if ¥, =
SO <bts S.

The proposition says that at every accessible state, action A is possible in
the old sense if and only if it is possible in the new sense and that both
specifications define the same accessible states.

Example 5. We can apply the methodology to the voters example. In
the original action precondition axiom for wote(z), Vs'(Sp < s’ < s D
—InJail(z,s')) is a formula s-bounded. So, we generate a new specifica-
tion X, , extending ¥, except for the fact that it has: (1) A new table
R, (z, s) that contains, at state s, the people z that have not been in jail be-
fore state s, whose specification consists of Vz[R, (z, So)], V(a, s) Poss(a, s) D
Vz[Ry(z,do(a, s)) = Rua(z,s) A —InJail(z,s)]. (2) The original action pre-
condition axiom for action A was replaced by:

V(z, s)[Poss(vote(x), s) =
dn(Age(z,n,s) An > 18) A ~Indail(z, s) A Ry(z, s)]-

6 Conclusions

Among the contributions in this paper we find the following: (1) An ex-
tension of Chomicki’s methodology to the case in which there is a specifi-
cation of the evolution of the database; and so (2) The possibility of doing
hypothetical reasoning along a virtual evolution of the database (Chomicki
concentrates on physical updates of the database) and this with user defined
primitive transactions; (3) A solution to the problem of answering temporal
queries in the context of Reiter’s specifications of database updates, and
this solution works both in a progressive as in a regressive way; (4) A trans-
formation mechanism of dynamic integrity constraints into static integrity

13

constraints, in a context like Reiter’s, where both kind of constraints are ex-
pected to be logical consequences of the specification; and (5) A mechanism
for transforming history dependent preconditions for action executions into
preconditions to be evaluated at the execution state.

It is matter of our current research an extension of the methodology of
this paper that includes metric time as in [3]. This is done by considering
actions parameterized with explicit time[10].

Acknowledgments: This research has been partially supported by a FONDE-
CYT Grant (# 1971304). Part of this work has been done during the second
author’s sabbatical at the TU Berlin. He is grateful to Ralf Kutsche and the CIS
group for their support and hospitality; and to the GK “Distributed Information
Systems”, the DAAD and the DIPUC for their financial support. We are grateful
to Javier Pinto for his generous support.

References

[1] L. Bertossi, M. Arenas, and C. Ferretti. SCDBR: An Automated Reasoner
for Specifications of Database Updates. Journal of Intelligent Information
Systems, 10.

[2] L. Bertossi, J. Pinto, P. Saez, D. Kapur, and M. Subramaniam. Automating
Proofs of Integrity Constraints in the Situation Calculus. In Foundations of In-
telligent Systems. Proc. Ninth International Symposium on Methodologies for
Intelligent Systems (ISMIS’96), Zakopane, Poland, pages 212—222. Springer,
LNAT 1079, 1996.

[3] J. Chomicki. Efficient Checking of Temporal Integrity Constraints Us-
ing Bounded History Encoding. ACM Transactions on Database Systems,
20(2):149-186, June 1995.

[4] S. Hanks and D. McDermott. Default Reasoning, Nonmonotonic Logics, and
the Frame Problem. In Proc. National Conference on Artificail Intelligence,
pages 328-333, 1986.

[5] F. Lin and R. Reiter. State Constraints Revisited. Journal of Logic and
Computation, 4(5):655-678, 1994. Special Issue on Action and Processes.

[6] F. Lin and R. Reiter. How to Progress a Database. Artificial Intelligence,
92(1-2):131-167, 1997.

[7] J. McCarthy and P. Hayes. Some Philosophical Problems from the Stand-
point of Artificial Intelligence. In B. Meltzer and D. Michie, editors, Machine
Intelligence, volume 4, pages 463-502, Edinburgh, Scotland, 1969. Edinburgh
University Press.

[8] R. Reiter. The Frame Problem in the Situation Calculus: a Simple Solution
(Sometimes) and a Completeness Result for Goal Regression. In V. Lifschitz,

14

[10]

[11]

[12]

[13]

editor, Artificial Intelligence and Mathematical Theory of Computation: Pa-
pers in Honor of John McCarthy, pages 359-380. Academic Press, 1991.

R. Reiter. On Specifying Database Updates. Journal of Logic Programming,
25(1):53-91, 1995.

R. Reiter. Natural Actions, Concurrency and Continuous Time in the Sit-
uation Calculus. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifth International Conference(KR’96), Cambridge, Mas-
sachussetts, U.S.A., November 1996.

T. Sheard and D. Stemple. Automatic Verification of Database Transaction
Safety. ACM Transactions on Database Systems, 14(3):322-368, 1989.

B. Siu and L. Bertossi. Answering Historical Queries in Databases (Extended
Abstract). In Proc. XVI International Conference of the Chilean Computer
Science Society (SCCC’96), M. V. Zelkowitz and P. Straub (eds.), pages 5666,
1996.

R. Snodgrass and I. Ahn. Temporal Databases. IEEE Computer,
September:35-42, 1986.

15

