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ABSTRACT
In this article we review the main concepts around database repairs
and consistent query answering, with emphasis on tracing back the
origin, motivation, and early developments. We also describe some
research directions that has spun from those main concepts and
the original line of research. We emphasize, in particular, fruitful
and recent connections between repairs and causality in databases.
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1 INTRODUCTION
The notions of database repair and consistent query answering
(CQA) explicitly appeared in a PODS paper in 1999 [3], on databases
that may not satisfy (i.e. may be inconsistent with) a given set of
integrity constraints (ICs). That paper, co-authored with Marcelo
Arenas and Jan Chomicki, has received many citations and has been
the basis for a large body of research, until these days, and even
beyond the data management community. In particular, the notion
of “repair" has become ubiquitous in several areas of computer
science. Most of the lines of research on repairs and CQA are well-
known in the community of theoretical data management, but
possible less known inmore applied communities. The same applies,
more generally, to some newer “conceptual" applications to other
areas of data management and knowledge representation. Without
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attempting to provide a comprehensive review, the goal of this
article is to revisit the early days, and briefly and partially fill the
gap in relation to lesser known directions the original ideas have
taken. There are several early reviews of the area [12, 18, 49]. The
more recent monograph [14] is a rather comprehensive survey of
the “core" of this area up to a certain time point. A recent survey
of the vast area of CQA for conjunctive queries (CQs) under key
constraints can be found in [109].

Since it not possible to introduce, in a such a limited space, formal
definitions that can be found in the original papers, the presentation
will be based on representative examples.

2 THE BEGINNINGS
Right after finishing my PhD in Mathematics, in mathematical logic,
and working at the Catholic University of Chile (PUC), I decided
to do research on applications of logic to computer science, more
specifically, to knowledge representation and data management.
Crucial influences in those days of the late 80s and early 90s were
Ray Reiter and Alberto Mendelzon. The latter gave in 1988 an
inspiring tutorial in Chile on “Logic in Databases". I was lucky to
start collaboration with Ray Reiter in 1990, when I was visiting the
University of Toronto. Not long after that, he started doing research
on the situation calculus [97], in particular on applications to the
specification of database updates and the dynamics of a database
[96].1 So, I joined in, and started working in the area.

Around that time I joined the Department of Computer Science
of the School of Engineering of the PUC. Soon I noticed that there
was very little research going on there. On the other side, the de-
partment was full of students, and most of them of excellent quality.
Given this situation, I developed a tree-tier plan: (a) I started teach-
ing an undergraduate course on logic for computer science, which
included apart from classical logic, models of computation, elements
of complexity, logic programming, and elements of knowledge rep-
resentation. (This was the only course that did expose students
to some computer science.) The course had a sort of a hands-on
workshop associated to it, where students learned about automated
theorem proving with Otter, Prolog, and at some point also answer-
set programming with DLV.2 (b) I started inviting the best students
in that course to do research with me, to motivate them to pursue
graduate studies (in the hope they would come back; Chileans do
come back). (c) I started inviting researchers from abroad to give
tutorials and engage with the local students, to create a research

1It is interesting to observe that mathematical logic has been broadly applied to static
aspects of databases, but very little to their dynamic aspects, which involve updates,
transactions, dynamic constraints, active rules, hypothetical queries, etc.
2Several brilliant students helped me create that applied appendix to the course, most
prominently, Cristian Ferretti and Marcelo Arenas.
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atmosphere around them. Materializing this plan was not with-
out toil; it was a colonizing and also political undertaking in may
ways, but it certainly paid off. A seed of relevant research activity
was sown; and several of the now established computer science
researchers in Chile were exposed to this experience. I want to
believe it did provide some inspiration to them.

In this context, and since I was working on dynamic aspects
of databases, I invited Jan Chomicki to visit the PUC. He was a
prominent researcher in temporal databases. At the same time,
Marcelo Arenas was starting his masters in computer science under
my supervision (we had started doing research together before that,
while he was still an undergraduate student, as I described in the
previous paragraph); and I invited him to join the conversations. In
this way, the three of us ended up staring at a blank board, asking
ourselves about how to take off. As usual in this kind of meetings,
we started wandering in different directions, and at some point we
became interested in comparing databases in relation to consistency,
asking when can one say a database is more consistent than another
database (both for the same schema). As usual again, we did not
attack that question, but we became intrigued by the question about
what an inconsistent database can tell us. Which led to the more
precise question, but still not quite, about what is consistent in
an inconsistent database. This question was further refined into
“what are the consistent answers to a query posed to an inconsistent
database, and how can we obtain them?" Although this question
was still unprecise, it was the real start. We did not ask ourselves if
this was a fashionable line of research, a well-known open problem,
or if someone else was doing something along similar lines. And
we started playing with examples as the one that follows.

Example 2.1. Consider the database instance D below, and the
inclusion dependency

ID : ∀x∀y∀z(Supply(x ,y, z) → Articles(z)), (1)

requiring that the items shipped according to table Supply are all
among the official list of items displayed in table Articles.

Supply Company Receiver Item Articles Item
C1 R1 I1 I1
C2 R2 I2 I2
C2 R1 I3

This instance is inconsistent with respect to (wrt.) ID, i.e. it does
not satisfy ID, usually denoted with D ̸ |= ID. Clearly there is a
problem with the last tuple of table Supply, but the information in
the other tuples of the database seems to be fine. Now, if we pose
the query about the items that are supplied, i.e. the conjunctive
query

Q(z) : ∃x∃ySupply(x ,y, z), (2)
i.e. a projection on the third attribute, we intuitively expected to
obtain as consistent answers only I1 and I2, but how? �

Not long before these conversations, I had invited Jack Minker
to visit the PUC. He gave a tutorial on semantic query optimization,
which is about optimizing query answering by taking advantage
of integrity constraints that are satisfied by the database. This
can be done via query rewriting, by appending to the query at
hand “residues" from the ICs. They impose additional conditions
on the query, narrowing down the search space [46]. We though

we could try out locally enforcing, possibly unsatisfied, ICs on the
query results (rather than on the whole database) through similar
rewritings.

Example 2.2. (example 2.1 cont.) ID in (1) is logically equivalent
to the (implicitly universally quantified) clause

¬Supply(x ,y, z) ∨ Articles(z), (3)

whose first, negative disjunct can be canceled (resolved [86]) with
the (positive) query atom Supply(x ,y, z) in (2), leaving the residue
Articles(z) of ID. This residue is appended to the original query,
obtaining a rewritten query:

Q ′(z) : ∃x∃y(Supply(x ,y, z) ∧ Articles(z)). (4)

The new query posed to the original, inconsistent database does
return the intuitively expected answers. �

3 FIRST NOTIONS AND DEVELOPMENTS
The next natural research steps were about clarifying two questions:
(a) The rewriting mechanism was just that, a computational ap-
proach to the original question, but what was the semantics of
consistent answers to a query posed to an inconsistent database.
(b) Assuming that the rewriting-based approach was in agreement
with that semantics, what was its the scope of applicability.

3.1 Repairs and consistent query answering
In relation to question (a) above, the intuition that we were devel-
oping was that the consistent data inside the inconsistent database
are those that are invariant under the process of restoring the con-
sistency of the database. Those consistent data persisted under
update actions on the database that made the database consistent.
Of course, those update actions have to be restricted somehow.
After all, making the database in Example 2.1 empty produces a
consistent instance, but this is an unintended kind of repair process.
Accordingly, the consistency-restoring updates had to be “minimal"
in some way. At the same time we decided to accept only deletions
and insertions of tuples as admissible updates (the rewriting ap-
proach we were considering worked at the tuple, i.e. atomic, level).
This led to the notion of database repair.

Example 3.1. (example 2.1 cont.) A repair of the original in-
stance D is any instance D ′ for the same schema that satisfies
ID, is obtained from D by inserting or deleting tuples, and mini-
mally differs from D, in the sense that the symmetric difference,
D∆D ′ := (DrD ′) ∪ (D ′rD), is minimal under set-inclusion. This
is a reason why these repairs are also known as S-repairs, referring
to set-minimality.

For example, D1 = {Supply(C1,R1, I1), Supply(C2,R2, I2),
Articles(I1),Articles(I2)}, obtained deleting Supply(C2,R1, I3) from
D is a repair, with D∆D1 = {Supply(C2,R1, I3)}. Another repair is
D2 = {Supply(C1,R1, I1), Supply(C2,R2, I2), Supply(C2,R1, I3),
Articles(I1),Articles(I2),Articles(I3)}, obtained inserting Articles(I3)
into D, with D∆D2 = {Articles(I3)}.

Since D∆D1 and D∆D2 are incomparable under set-inclusion,
both are S-repairs. However, D3 = {Supply(C1,R1, I1),Articles(I1),
Articles(I2)}, obtained deleting Supply(C2,R1, I3) and Supply(C2,R2,
I2) from D, is consistent, but not an S-repair: D∆D1 $ D∆D3 =
{Supply(C2,R1, I3), Supply(C2,R2, I2)}.
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Looking at the two obtained repairs, we can see that the data in
D that persist across repairs are the first two tuples in table Supply
and the two tuples in table Articles. �

Next, given a database D, a set of ICs Σ, and a query Q(x̄), one
can define the set of consistent answers to Q wrt. D and Σ, denoted
Cons(Q,D, Σ), as the set of those answers that are obtained from ev-
ery repair when the query is posed to them. So, more formally:
ā ∈ Cons(Q,D, Σ) iff ā ∈ Q(D ′) for every repair D ′ of D wrt. Σ.
(As usual, Q(D) denotes the sets of answer to query Q from D.)

Example 3.2. (example 3.1 cont.) For the query Q(z) in (2),
Q(D1) = {I1, I2}, Q(D2) = {I1, I2, I3}. Then, Cons(Q,D, {ID}) =
{I1, I2}. �

Example 3.3. The following instance D violates the key con-
straint KC : Name→ Salary that requires the employee salary to
functionally depend upon the employee name, i.e. every employee
should have at most one salary.

Employee Name Salary
page 5K
page 8K
smith 3K
stowe 7K

There are two repairs, D1 and D2 obtained by tuple deletions:
Employee Name Salary

page 5K
smith 3K
stowe 7K

Employee Name Salary
page 8K
smith 3K
stowe 7K

They are consistent with KC and minimally depart from D. Now, if
we want the consistent answers to the query about all tuples in the
database, i.e. to Q1(x ,y) : Employee(x ,y)?, we obtain: Cons(Q1,D,
{KC}) = {⟨smith, 3K⟩, ⟨stowe, 7K⟩}. Now, if the query is only
about employee names, i.e. Q2(x) : ∃yEmployee(x ,y)?, we obtain:
Cons(Q2,D, {KC}) = {⟨smith⟩, ⟨stowe⟩, ⟨page⟩} since we find page
as employee in each repair. �

We can see that obtaining consistent answers amounts to posing
a query to a class of possible worlds, in this case, the class of re-
pairs of the original instance. In this sense, the consistent answers
correspond to a form of certain answers [74]. This notion, defined
in model-theoretic terms (through the class of repairs) captures
the initial intuition, but may be impractical for the computation of
consistent answers: We may want to avoid computing all repairs,
materialize them, and posing the same query to each of them, to fi-
nally collect the answers in common. Actually, it is easy to produce
examples of databases that have exponentially many repairs in the
size of the database. To start, we might try out the rewriting-based
approach.

Example 3.4. (example 3.3 cont.) The key constraint KC can be
rewritten into a sentence of first-order (FO) predicate logic as

∀x∀y∀z(Employee(x ,y) ∧ Employee(x , z) → y = z),

and in clausal form as

¬Employee(x ,y) ∨ ¬Employee(x , z) ∨ y = z. (5)

Now, if query Q1 is resolved with (5), we obtain a residue to be
appended to the query, obtaining the rewritten query:

Q ′1(x ,y) : Employee(x ,y) ∧ ¬∃z(Employee(x , z) ∧ z , y), (6)

which asks about employees with their salaries for which there
is no other employee with the same name, but a different salary.
This is a query written in a FO language, and then easy to express
and answer from a database. If it is posed to the original instance,
the ordinary, classical answers to this query from D turn out to be
the expected consistent answers to the original query, i.e. those in
Cons(Q1,D, {KC}). Notice that this rewriting amounts to rewriting
the original SQL query:

SELECT Name, Salary
FROM Employee;

into the new SQL query:
SELECT Name, Salary FROM Employee
WHERE NOT EXISTS ( SELECT * FROM Employee E

WHERE E.Name = Name AND E.Salary <> Salary);

which is posed to- and answered from the original instance as usual.
�

3.2 Complexity of CQA and approximation
The correctness and termination of the rewriting approach was
investigated in the Pods’99 paper [3], and positive cases were iden-
tified. (Termination because there could be interacting ICs which
could give rise to a cycle of rewritings.) However, there was no
claim of universal applicability of the FO rewriting approach when
attempted on FO queries and FO ICs. Actually, no long after the
appearance of [3], it became clear that the data complexity of con-
sistent query answering (CQA) was bound to be higher than poly-
nomial time. For example, there are Boolean conjunctive queries
(BCQs) and functional dependencies (FDs), for which deciding if the
query is consistently true, i.e. true in all S-repairs, is coNP-complete
(in data complexity) [48]. For some BCQs and combinations of FDs
and inclusion dependencies, CQA becomes ΠP

2 -complete (again,
in data complexity, as all the complexity results mentioned in this
article) for repairs allowing only tuple deletions [48], and general
S-repairs [25].

These complexity results made it clear that the FO rewriting
approach had limitations, but its scope remained open. Actually,
not long after the emergence of those first complexity results [48,
64], a thorough investigation of the FO rewriting approach and
the data complexity of CQA for CQs under key constraints and
FDs was started by Jef Wijsen and collaborators. This research
program has provided a clear picture of the syntactic cases where FO
rewritings are possible, when queries can be consistently answered
in polynomial time (but may not be FO rewritable), and when
CQA for them becomes intractable (cf. [77, 78, 109] for details and
references).

Algorithmic and complexity research on repairs and CQA took
many interesting directions. Among others, the following prob-
lems have been investigated: Complexity of CQA for aggregate
queries under FDs [5], repair checking [1, 48], counting repairs
[90], enumerating repairs [84], computing a particular repair [85],
etc. Combined complexity results on repair checking and CQA are
reported in [9].

Given the high worst-case complexity of CQA, research has also
been conducted on tractable approximations to CQA [65, 69–71].
This is a promising line of research that will lead to interesting
applications.
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3.3 Answer-set programming approaches
In 1999 I invited Michael Kifer to the PUC in Chile. He had written
a paper on a very nice multi-valued FO logic with annotations
for truth-values structured as a lattice [75]. Since it could be used
to do non-trivial reasoning in the presence of inconsistency, and
again with the participation of Marcelo Arenas, we attempted to
represent in logical terms both repairs and consistent query answers.
This effort gave rise to an elegant representation [4], but it was
not exploited in algorithmic terms. Short after that, when Pablo
Barcelo, student of Engineering at the PUC then, asked me for a
research topic for his masters thesis, I proposed to him to develop
logic programs with annotations that could be used to both model
repairs and do actual computations.3 All this was inspired by the
just-mentioned annotated logic approach and previous results on
the use of logic programming for database repairs [6]. This was a
successful undertaking that took the form of answer-set programs
[33] (or logic programs with stable model semantics [67]) with
annotations [10, 11]. The resulting repair programs are quite simple
and general in terms of the ICs that can be handled. The stable
models of a program turn out to be the repairs of the given instance,
and CQA becomes certain query answering from the program, for
which reasoning can be applied. It is worth mentioning that repairs
programs and the problems related to repairs and CQA have the
same complexity. That is, repair programs have exactly the required
expressive power for the task.

Example 3.5. The following is a denial constraint, i.e. it prohibits
combinations or joins of database atoms:

κ : ¬∃x∃y(S(x) ∧ R(x ,y) ∧ S(y)).
The following database instance D violates κ.

R A B
ι1 a4 a3
ι2 a2 a1
ι3 a3 a3

S A
ι4 a4
ι5 a2
ι6 a3

Here, we are introducing, in an unessential manner, global tuple
identifiers (tids), which will be useful later on to refer to individual
tuples. Those tids will appear in predicates as well, in the first
argument and separated from the rest by a semicolon.

Instance D has three S-repairs: D1 = {R(ι1;a4,a3), R(ι2;a2,a1),
R(ι3;a3,a3), S(ι4;a4), S(ι5;a2)}, D2 = {R(ι2;a2,a1), S(ι4;a4), S(ι5;a2),
S(ι6;a3)}, and D3 = {R(ι1;a4,a3),R(ι2;a2,a1), S(ι5;a2), S(ι6;a3)}.

The repair program contains the atoms in D (with tids) as facts,
and the rules:
S ′(t1;x , d) ∨ R′(t2;x ,y, d) ∨ S ′(t3;y, d) ← S(t1;x),R(t2;x ,y),

S(t3;y).
S ′(t ;x , s) ← S(t ;x), not S ′(t ;x , d).

R′(t ;x ,y, s) ← R(t ;x ,y),
not R′(t ;x ,y, d).

Here, t1, . . . , t are variables. The annotation d is constant denoting
that the tuple is deleted from the original database, and annotation
constant s denotes that the tuple stays in the repair. Here, the first
rule captures in its body (i.e. antecedent) a violation of κ, and the
head (i.e. the consequent) offers all the alternative tuples deletions
that can solve that violation. The last two rules basically represent
3Pablo has different, spicer memories of this first encounter.

inertia: the repairs keep the original tuples that have not been
deleted. Predicates R′ and S ′ are nicknames for R and S , and have
an extra argument to accommodate the annotation.

This repair-program has three stable models, with repair D1
corresponding to the modelM1 = {R′(ι1;a4,a3, s),R′(ι2;a2,a1, s),
R′(ι3;a3,a3, s), S ′(ι4;a4, s), S ′(ι5;a2, s), S ′(ι6;a3, d)}∪D, in the sense
that D1 is read off fromM1 by keeping only the tuples annotated
with s. �

This is a simple example, but hopefully conveys the gist. If there
are interacting ICs, i.e. that repair actions for one of themmay affect
satisfaction of another one, it is necessary to use a couple of extra
annotations to capture a transition process (cf. the cited papers and
[14] for more examples). The important points to keep in mind
are: (a) there is a one-to-one correspondence between S-repairs
and stable models; (b) the minimality of repairs is captured by the
minimality of stable models; and (c) doing CQA becomes reasoning
with the repair program. In [43] it is reported on ConsEx, a system
for CQA based on repair programs that run on top of the answer-set
programming system DLV [82]. ConsEx, for “consistency extractor",
uses magic-sets for query optimization.

Repair programs have been used beyond the strict domain of
CQA, as we will see in Section 7. Other independent approaches to
repairs and CQA using answer-set programs are found in [6, 55, 68].
As a final remark, it is worth mentioning that repair programs
as those in Example 3.5 for DCs can be transformed into non-
disjunctive, unstratified programs [43]; and repair programs in
general can be transformed into theories written in second-order
(SO) predicate logic, and in some cases, via elimination of SO quan-
tifiers, into FO theories [13]. This is achieved by taking advantage
of a compilation of logic programs with stable model semantics
into circumscriptive theories [61].

4 OTHER KINDS OF REPAIRS
As we saw in Example 2.1, inconsistencies wrt. inclusion depen-
dencies can be solved by inserting or deleting tuples. However, we
might want to accept just deletions, as done in [48]. Even more,
we may not want to restrict ourselves to repairs based on minimal
sets of insertions and/or deletions of tuples. In fact, other kinds
of repairs have been proposed and investigated. In this direction,
different repair semantics differ at least in two aspects: (a) the ad-
missible repair actions; and (b) the minimality criterion, i.e. what
are the consistent instances that are the “closest" to the original
one. Several abstract repair semantics based on optimality criteria
have been introduced and investigated in [103], with complexity
results reported in [57].

Repairs based on changes of attribute values, a.k.a. “attribute-
based repairs", have also been investigated and applied. For this,
values for these updates can be taken from the data domain [63, 108].
Special mention deserve attribute-based repairs of databases with
numerical values, numerical queries, and subject to numerical con-
straints [12, 20, 62]. That scenario opens completely new research
challenges. In the rest of this section we give some more details on
a few specific repairs semantics.
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4.1 Cardinality-repairs
Cardinality-repairs, a.k.a. C-repairs, were first considered in [6].
They are S-repairs, as in Section 3.1, that also minimize the number
of tuples deleted or inserted, i.e. |D∆D ′ |. In Example 3.1, D1 and
D2 are also C-repairs, because both delete a single tuple.

E(a)

B(a)
C(a)

A(a)

D(a)

Figure 1: Conflict hyper-graph

Example 4.1. Consider D = {A(a),B(a),C(a),D(a),E(a)}, and
the set of DCs

Σ = {¬∃x(B(x)∧E(x)), ¬∃x(B(x)∧C(x)∧D(x)), ¬∃x(A(x)∧C(x))}.
One can build the so-called conflict hyper-graph [5, 48], whose
nodes are the database tuples, and hyper-edges connect tuples
that simultaneously violate a DC, as shown in Figure 1. Among
the S-repairs, which are maximal independent sets in the hyper-
graph, we find D1 = {B(a),C(a)}, D2 = {C(a),D(a),E(a)}, D3 =
{A(a),B(a),D(a)}, D4 = {E(a),D(a),A(a)}. They are all subset-
maximal consistent subinstances of D. However, only D2, D3 and
D4 are also C-repairs, but not D1. �

C-repairs and CQA under them were investigated in detail in
[87, 88], where complexity results were obtained. This is interest-
ing in its own right, but the complexity bound turned out to be
useful to investigate the complexity of causality in databases (cf.
Section 7). The complexity of computational problems related to
C-repairs tends to be higher than for S-repairs. However, C-repairs
seem to behave better than S-repairs under updates of the orig-
inal database [87]. (By the way, the investigation of repairs and
CQA under updates has received little attention; [87] just started
to scratch the surface in this direction.) C-repairs were further
investigated in [1]. As shown in [6, 15], repair-programs can be
produced for the specification of C-repairs and CQA under them.
Those programs use weak program-constraints [82] to capture the
numerical minimization.

Example 4.2. (example 3.5 cont.) The models of the repair pro-
gram corresponding to C-repairs can be obtained by adding to the
program the following weak program constraints (WCs):

⇐ R(t , x̄),R′(t , x̄ , d),

⇐ S(t , x̄), S ′(t , x̄ , d).
They can be violated by the models (meaning that the rule body

becomes true), but the number of violations (value combinations
in the rule body) has to be kept to a minimum. The non-minimally
violating models are discarded.4 With theseWCs we are minimizing
the number of deleted tuples. �

4In contrast, a hard program constraint, i.e. of the form← Body(x̄ ), would eliminate
all the models where the body becomes true.

4.2 Null-based repairs: tuple level
Example 4.3. (example 2.1 cont.) Let us modify the table Articles

in Example 2.1 as follows:
Articles Item Cost

I1 50
I2 30

and the inclusion dependency as follows:

ID′ : ∀x∀y∀z(Supply(x ,y, z) → ∃v Articles(z,v)), (7)

This is a more general case of inclusion dependency that the one
in (1). Both are usually called tuple-generating dependencies (tgds).
In this case, D ̸ |= ID′ due to the absence of value I3 in the table
Articles.

In this case, we may consider two repairs, one just deletes the
third tuple from table Supply, and another repair inserts the tuple
⟨I3,NULL⟩ into Articles. �

The constant NULL may not have a preassign semantics, and
different ones could be considered. However, a natural one is that
for the single null in SQL databases. For example, it cannot be used
to satisfy joins, to make true comparison atoms, or as values for
key attributes, etc. To keep everything in a predicate logic-based
setting, the semantics of SQL nulls can be “logically reconstructed",
as done in [24] and [25, sec. 4]. (A deeper investigation of the
logical foundations of SQL nulls can be found in [71] and references
therein.) Other forms of nulls, e.g. multiple, labeled nulls, can be
used for the same problem [92].

This repair semantics shown in Example 4.3 was applied in [25]
to peer data-exchange systems, where there may be inter-peer map-
pings of the form (7). Peers exchange data at query-answering time
using those mappings, but need to keep their local data consis-
tent. Hence the need for local, peer-level repairs. Those repairs
can be specified using repair programs when the local tgds are
acyclic. (There have been other applications of repairs in peer-data-
exchange systems, e.g. [42].)

4.3 Null-based repairs: attribute level
A particularly interesting and natural class of attribute-based re-
pairs relies on changes of attribute values, but only by a null value
that behaves as in SQL databases. This kind of repairs is particularly
appropriate for DCs.

Example 4.4. (example 3.5 cont.) With the same database D and
DC κ : ¬∃x∃y(S(x) ∧ R(x ,y) ∧ S(y)), repairs can be obtained by
“minimally" changing attribute values by a special constant NULL.
Since it behaves as in SQL, it cannot be used to satisfy a join. Here
we have two attribute-based repairs via NULL replacement; in each
of them NULL is preventing the satisfaction of a join in κ:
R A B
ι1 a4 a3
ι2 a2 a1
ι3 a3 a3

S A
ι4 a4
ι5 a2
ι6 NULL

R A B
ι1 a4 NULL
ι2 a2 a1
ι3 a3 NULL

S A
ι4 a4
ι5 a2
ι6 a3

The one on the left-hand side is characterized by the set of changes
{ι6[1]}, meaning that the value in the first attribute (or position) of
the tuple with tuple ID ι6 is changed intoNULL (the tids use position
0). Similarly, the repair on the right-hand side is characterized by
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the set of changes {ι1[2], ι3[2]}. Both sets of changes are minimal
under set inclusion. �

This kind of repairs were used in [24] to hide a sensitive view
contents in a database. This is achieved by virtually repairing the
database wrt. an IC that specifies that the view has to be empty.
Those repairs were also used to define causality for query answers
at the attribute level [15] (cf. Section 7). Corresponding repair-
programs can be found in [15].

5 VIRTUAL DATA INTEGRATION
In a virtual data integration system, there are independent data
sources that are brought together through a mediator, which, with-
out materializing data imported from the sources and without be-
ing a database, offers a database-like interface, with its own global
schema. The mediated schema may be different from those for the
sources, which may not even share the same schema. The mediator
receives queries from a user and answers them by sending queries
back to the sources, collecting the results, integrating them into a
query answer.

mediator

data sources

Crucial components of this architecture are the mappings that
establish the correspondences between the global schema and the
local schemata. This is usually done through view definitions, ac-
cording to two main paradigms: (a) Global-as-view (GAV), under
which predicates at the global level are defined as views over the
source relations; and (b) Local-as-view (LAV), under which the local
relations (predicates) are defined as views over the global schema.
For example, the picture below shows a case of GAV, where the
global predicate S is defined as a view over local predicates P andQ .
It also shows a case of LAV, where the local predicate R is defined
as a view over global predicates T and S . (One usually goes for
only one of the two approaches, but we use the picture to illustrate
both.)

S

P Q R

T

mediator

GAV LAV

The semantics of a virtual integration system is given through a
collection of admissible global instances [81], i.e. a possible-world
semantics. Of course, being a virtual approach, we avoid material-
izing those global instances.

Example 5.1. The two universities in Ottawa want to virtually
integrate their databases, the sources, that are as follows:

Sources: Carleton U. Ottawa U.
CUstds Number Name OUstds Number Name

101 john 103 claire
102 mary 104 peter

SpecCU Number Field SpecOU Number Field
101 alg 103 db
102 ai

We are assuming the tables at the top have the student number
as a key, and this constraint is satisfied, but this is not relevant for
the moment. The mediator has a single, global relation schema:

Stds(Number,Name,Univ, Field).

Under GAV, this predicate is defined as a view in terms of source
predicates. We use two Datalog rules that define the view:

Stds(x ,y, ‘cu’, z) ← CUstds(x ,y), SpecCU (x , z). (8)
Stds(x ,y, ‘ou’, z) ← OUstds(x ,y), SpecOU (x , z). (9)

A query posed to the mediator, in a language associated to its global
schema, could be about “names of students who study the same
field at both universities":

Ans(x) ← Stds(z,x , ‘cu’,u), Stds(w,x , ‘ou’,u),

which can be answered from the sources via unfolding of (8) and
(9).

Under LAV, we could define, for example, the first table of Car-
leton U. as a view over the global Stds:

CUstds(x ,y) ← Stds(x ,y, ‘cu’, z). �

Now, what do we do if we want to impose ICs on the global
schema? There is no material instance on which to check or enforce
those global ICs, and still we would like to see them satisfied, but
when and where? The only sensible answer seems to be at the level
of global query answering. This is a perfect, if not unavoidable,
scenario for CQA.

Example 5.2. (example 5.1 cont.) Let us assume that we have
now the following table for Ottawa U.

OUstds Number Name
103 claire
104 peter
101 sue

It satisfies its local key constraint. However, if we want to impose
the global FD: Stds : Number → Name, there will be problems with
the student number 101, that is shared by the two universities, but
for different students. Themediator, whomay be aware of the global
IC, could only check the sources through queries (often of a limited
kind), but it cannot update the sources. So, something along the
lines of CQA has to be done. For example, the global query about stu-
dents numbers and names, i.e. Q(x ,y) : ∃u∃zStds(x ,y,u, z), could
be consistently answered via the rewriting into Q ′(x ,y):
∃u∃zStds(x ,y,u, z) ∧ ¬∃y′u ′z′(Stds(x ,y′,u ′, z′) ∧ y , y′ ∧ u , u ′),
where we are using the fact that the local key constraints are satis-
fied (and the mediator knows). �

Repairs and CQA under virtual data integration were investi-
gated in several papers [19, 32, 37–39]. The example above is simple
and can be handled via a FO rewriting. In other cases, more expres-
sive rewriting languages are needed, such as that of answer-set
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programs that specify the virtual repairs of the already virtual
global admissible instances [19].

6 DATA CLEANING
The notion of repair naturally appears in data cleaning and data
quality assessment. After all, consistency is one of the dimensions
of data quality, together with completeness, accuracy, freshness,
etc. Instead of ICs, one can use formalized contexts to express data
quality concerns; and in this way the context acts as semantic
information on the database at hand. If the quality restrictions are
not satisfied, then one can, possibly virtually, repair the database.
The quality data is, as before, persistent under the repairs, and can
be extracted as quality answers to queries (the natural generalization
of the notion of consistent answer). This is exactly the approach
developed in [22, 23].

Conditional functional dependencies (CFDs) were introduced in
[58] as extensions of FDs, in order to capture common data quality
concerns for which FDs alone are not expressive enough. Consider,
for example, a database D containing the following table (taken
from [58]):

CC AC Phone Name Street City Zip
44 131 1234567 mike mayfield NYC EH4 8LE
44 131 3456789 rick crichton NYC EH4 8LE
01 908 3456789 joe mtn ave NYC 07974

The two following FDs

[CC,AC, Phone] → [Street,City,Zip]

[CC,AC] → [City]

are satisfied byD. They are “global" ICs that may not capture natural
data quality requirements, e.g. as related to specific data values.
Instead, the CFD

[CC = 44,Zip] → [Street],

expressing a FD of Street upon Zip when the country code is 44, is
not satisfied anymore, and data cleaning may be necessary. CQA
and database repairs for CFDs have been investigated in [76, 111].
Cf. [60, 98] for more connections between data quality and database
repairs.

The original paper on repairs and CQA was not meant to be a
contribution to data cleaning, but rather a scientific undertaking
that would lead to model and compute what are the consistent
data in an inconsistent database. Nevertheless, repairs still found a
way into data cleaning, and have been used in many classical data
cleaning problems [28, 31, 111], in particular, in entity resolution
(deduplication, record-matching) with entity-linking dependencies
[28, 34, 35], and the combination of entity resolution and repairs
wrt. classical ICs [59, 66].

In general terms, the notion of repair has been relevant to data
cleaning in that it enabled the characterization of what is a good
and legal solution to a data cleaning problem, as represented by
a new, clean instance or a class thereof. Maybe working with all
admissible repairs is too complex, but one can think of choosing
one or some of them, and also of weakening the notion of certain
answer behind CQA, by considering what is true in most repairs,
or introducing probability distributions, etc. Recent application of
repairs to data cleaning with probabilistic elements can be found
in [52, 98].

7 A CAUSALITY CONNECTION
In data management, we need to understand and compute why
certain results are obtained or not, e.g. query answers or violations
of semantic conditions. A database system could provide some
explanations. The notion of causality can be used in this direction.

A notion of causality-based explanation for a query result was
introduced in [91], as follows. Given a relational instance D and a
Boolean conjunctive query (BCQ) Q, a tuple τ ∈ D is a counterfac-
tual cause for Q if D |= Q and D r {τ } ̸|= Q. Next, a tuple τ ∈ D
is an actual cause for Q if there is a contingency set Γ ⊆ D, such that
τ is a counterfactual cause for Q in D r Γ. This notion is based on
[72]. The strength of an actual cause is commonly captured by the
notion of responsibility: The responsibility of an actual cause τ for
Q is defined by ρQD (τ ) := 1

|Γ | + 1 , where |Γ | is the smallest size of a
contingency set for τ (and 0, otherwise). High responsibility tuples
provide more interesting explanations [47].

Example 7.1. (example 3.5 cont.) Consider the same database D.
Let us ignore the tids in this example. The query

Q : ∃x∃y(S(x) ∧ R(x ,y) ∧ S(y))
is satisfied by D: D |= Q. Tuple S(a3) is one of the causes for Q to
be true in D, actually a counterfactual cause: If S(a3) is removed
from D, Q is no longer true. Its responsibility is 1

1+ | ∅ | = 1.
Tuple R(a4,a3) is an actual cause for Q with contingency set

{R(a3,a3)}: IfR(a3,a3) is removed fromD,Q is still true, but further
removing R(a4,a3) makes Q false. Its responsibility is 1

1+1 =
1
2

(its smallest contingency sets have size 1). Similarly, R(a3,a3) and
S(a4) are actual causes, with responsibility 1

2 . �

There are several computational problems related to causality
in databases, among them: (a) Computing causes, and deciding if
a tuple is a cause; (b) computing responsibilities; (c) computing
most responsible actual causes (MRAC); (d) deciding if a tuple has
responsibility above a threshold. By now there is a relatively clear
picture of the complexity of these problems for CQs and unions
thereof (UCQs). Some of these complexity and algorithmic results
were obtained in [26] through connections of causality to database
repairs and to consistency-based diagnosis [95].

Consider a BCQ: Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm (x̄m )), and assume
that Q is true in D. It turns out that the causes for Q to be true
in D and their contingency sets can be obtained from database
repairs. In fact, the negation of the query, ¬Q, is logically equiv-
alent to a DC κ(Q) : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm (x̄m )); and Q holds in
D iff D is inconsistent wrt. κ(Q). The S-repairs of D wrt. κ(Q)
are associated to causes and their minimal contingency sets; and
C-repairs are associated to causes, minimum contingency sets, and
maximum responsibilities: A database tuple τ is an actual cause
with subset-minimal contingency set Γ iff D r (Γ ∪ {τ }) is an
S-repair, in which case its responsibility is 1

1+ |Γ | . Furthermore,
τ is an actual cause with minimum-cardinality contingency set Γ
iff D r (Γ ∪ {τ }) is a C-repair, in which case, τ is an MRAC. (Con-
versely, repairs can be obtained from causes and their contingency
sets.) [26].

Computing/deciding actual causes can be done in polynomial
time in data for CQs and UCQs [26, 91]. The definition of causality
we just gave can be applied to any monotone query, e.g. to Datalog
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queries. It turns out that for them, cause computation can be NP-
complete, a result that can be obtained via a connection between
causality and Datalog abduction [27].

Returning to causes for CQs and their responsibilities, we can
take advantage of the connection to C-repairs. It turns out that most
computational problems related to repairs, in particular, C-repairs,
are provably hard (in data complexity) [87], and the bounds can be
applied to causality problems. For example, we can obtain that: (a)
deciding if a tuple has responsibility above a certain threshold is NP-
complete for UCQs (responsibility decision problem); (b) computing
ρD(τ ) is FPNP(log(n))-complete for BCQs (this is the functional, non-
decision, version of (a)); (c) deciding if a tuple is a most responsible
cause is PNP(log(n))-complete for BCQs [26].

Since ASPs can be used to specify, compute and query S- and
C-repairs, another interesting consequence of the causality/repair
connection is the possibility of using repair programs as a basis for
causality-related specifications and computations [15].

Example 7.2. (examples 3.5 and 7.1 cont.) Consider the same
database D and the DC:

κ(Q) : ¬∃x∃y(S(x) ∧ R(x ,y) ∧ S(y)),
associated to the BCQ Q for which we are finding causes. The
repair program is an in Example 3.5, and its three stable models
(or answer sets) are in correspondence with the S-repairs. Now,
cause and responsibility computation becomes query answering
on extended repair-programs, as we will show next.

First, causes (and tuples in general) will be represented by their
tids. So, if we want to compute causes, we add the query rules to
the repair program:

Ans(t) ← R′(t ,x ,y, d)

Ans(t) ← S ′(t ,x , d)

The causes become those tuples (with tid) ι that make the auxiliary
answer predicate Ans true wrt. the repair program plus the query
rules, i.e. Π |=brave Ans(ι), where |=brave indicates a “brave" conse-
quence of the program, in the sense that Ans(ι) becomes true in
some model of Π.

In order to compute responsibilities, we need to specify and
compute contingency sets associated to causes. We introduce a new
predicate, CauCon(t , t ′), standing for “t is actual cause, and t ′ is
a member of the former’s contingency set", which is specified as
follows: For each pair of predicates Pi , Pj in κ(Q), add the rule:

CauCon(t , t ′) ← P ′i (t , x̄i , d), P
′
j (t
′, x̄ j , d), t , t ′,

which is indicating that t ′ is deleted together with t . More specifi-
cally, in this example:

CauCon(t , t ′) ← S ′(t ,x , d),R′(t ′,u,v, d),

CauCon(t , t ′) ← S ′(t ,x , d), S ′(t ′,u, d), t ,t ′,

CauCon(t , t ′) ← R′(t ,x ,y, d), S ′(t ′,u, d),

CauCon(t , t ′) ← R′(t ,x ,y, d),R′(t ′,u,v, d), t ,t ′.

For example, frommodelM2, corresponding to repairD2, we obtain:
CauCon(ι1, ι3) and CauCon(ι3, ι1), corresponding to the difference
D r D2 = {R(a4,a3),R(a3,a3)}

Full contingency sets and responsibilities can be specified and
computedwith extensions of ASPwith numerical and set-aggregation,

e.g. with DLV-Complex [40, 41, 56], collecting all individual contin-
gency elements for each cause and nothing more:

preCon(t , {t ′}) ← CauCon(t , t ′),

preCon(t , #union(C, {t ′′})) ← CauCon(t , t ′′), preCon(t ,C),

not #member(t ′′,C),

Con(t ,C) ← preCon(t ,C), not aux(t ,C),

aux(t ,C) ← CauCon(t , t ′), #member(t ′,C).

In order to compute a cause’s responsibilities, all we need is the
rule: preresp(t ,n) ← #count{t ′ : CauCon(t , t ′)} = n. To obtain
the responsibility for a cause ι, we pose the following query to the
extended program, say Πe : Πe |=brave preresp(ι,x)?, and we keep
the minimum valuem returned for x (we may get different answers
from different models), then ρQD (ι) =

1
1+m .

If we want maximum responsibility causes, we can concentrate
on C-repairs, which, as we saw in Example 4.2, can be obtained
by adding weak programs constraint to the extended program we
have so far. �

It is worth mention that the expressive power and data com-
plexity of ASPs with WCs [51, 82] is exactly what is required for
maximum-responsibility computation [26].

7.1 Attribute-Level causes
One can naturally define causes at the attribute level, rather than
tuple level, by appealing to attribute-based repairs of the kind in-
troduced in Section 4.3. We illustrate the idea with an example (a
detailed treatment can be found in [15]).

Example 7.3. (example 4.4 cont.) Consider the same instance
with its attribute-based repairs wrt. the DC κ, whose associated
conjunctive query is: Q : ∃x∃y(S(x) ∧ R(x ,y) ∧ S(y)). It holds D |=
Q. The sets of changes {ι6[1]} and {ι1[2], ι3[2]} associated to the
two minimal repairs allow us to define ι6[1], the first attribute value
of the sixth tuple as a counterfactual cause for Q. Similarly, ι1[2]
becomes an actual cause with contingency set Γ = {ι3[2]}, and the
other way around. �

Repair programs for attribute-based repairs can be used as a basis
to specify and compute attribute-level causes and their associated
responsibilities [15].

7.2 Causality under integrity constraints
The problem of defining and investigating causes for database
queries under ICs was addressed in [27]. In this scenario it is as-
sumed that a given set Σ of ICs has to be satisfied. So, we start
assuming that D |= Σ. Next, for τ to be actual cause for an answer
ā to a monotone query Q(ā), the associated contingency set Γ has to
satisfy: (a)D r Γ |= Σ; (b)D r Γ |= Q(ā); (c)D r (Γ ∪ {τ }) |= Σ;
and (d) D r (Γ ∪ {τ }) ̸|= Q(ā). The responsibility of a cause τ un-
der Σ, denoted ρQ,ΣD , is defined as before.

Example 7.4. Consider the database instance D below

Dep DName TStaff
ι1 Computing John
ι2 Philosophy Patrick
ι3 Math Kevin

Course CName TStaff DName
ι4 COM08 John Computing
ι5 Math01 Kevin Math
ι6 HIST02 Patrick Philosophy
ι7 Math08 Eli Math
ι8 COM01 John Computing
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Let us first consider the query:
(A) Q(x) : ∃y∃z(Dep(y,x) ∧ Course(z, x, y)).

John is an answer, denoted ⟨John⟩ ∈ Q(D); and the causes are:
(a) ι1, counterfactual; (b) ι4, with single minimal contingency set
Γ1 = {ι8}; (c) ι8, with single minimal contingency set Γ2 = {ι4}.
Then, ρQ(John)D (ι1) = 1, and ρQ(John)D (ι4) = ρ

Q(John)
D (ι8) =

1
2 .

Now, let us consider an inclusion dependency:5

ψ : ∀x∀y (Dep(x ,y) → ∃u Course(u,y,x)),

which is satisfied by D.
Underψ , ι4 and ι8 are not actual causes anymore, and ι1 is still

a counterfactual cause, i.e. ρQ(John),ψD (ι1) = 1, and ρQ(John),ψD (ι4) =

ρ
Q(John),ψ
D (ι8) = 0.
Consider now the query about the first conjunct in (A):
(B) Q1(x) : ∃y Dep(y,x).

John is still an answer, i.e. ⟨John⟩ ∈ Q1(D). Underψ , we obtain
for Q1 the same causes with the same minimal contingency sets as
for Q, which is logically equivalent to Q1 underψ : Q ≡ψ Q1.

And now the query about the second conjunct in (A):
(C) Q2(x) : ∃y∃zCourse(z,x ,y).

It holds ⟨John⟩ ∈ Q2(D). Without consideringψ , ι4 and ι8 are the
only actual causes, with contingency sets Γ1 = {ι8} and Γ2 = {ι4},
resp., that is: ρQ(John)D (ι1) = 0, and ρQ(John)D (ι4) = ρ

Q(John)
D (ι8) =

1
2 .

Now underψ , ι4 and ι8 are still actual causes, but we lose their
previous contingency sets. Now, the smallest contingency sets are:
Γ3 = {ι8, ι1} for ι4; and Γ4 = {ι4, ι1} for ι8. With them, the respon-
sibilities decrease: ρQ2(John),ψ

D (ι4) = ρ
Q2(John),ψ
D (ι8) =

1
3 . We can

see that ι1 is still not an actual cause, but affects the responsibility
of the actual causes. �

We can see that causes and responsibilities are affected by ICs.
However, both are preserved under logical equivalence of queries
under ICs. More interestingly, without ICs, deciding causality for
CQs is tractable, but their presence may make the complexity grow:
There are a CQ Q and an inclusion dependency ψ , for which de-
ciding causality is NP-complete [27]. Finally, ASPs for computation
of causes and responsibilities under ICs can be produced [15].

There is still much to investigate around the connection between
database repairs and causality in databases. In a different direction,
an alternative notion to that of responsibility was introduced and
investigated in [102].

8 OTHER DIRECTIONS
Far from pretending to give a full account of the many other direc-
tions in which repairs and CQA have been investigated, we mention
just a few of them.

Repairs have been defined and investigated for data warehouses
and multidimensional databases [8, 21, 44, 45, 110]; also in spatial
databases [93, 99], and temporal databases [50, 93]. In data exchange,
the data sent to a target instance may collide with the local target
constraints, and repairs may be considered [106]. Notions found in
data exchange, such as universal solutions, now applied to repairs,
can be found in [105], together with a deep investigation of data
complexity of CQA, and some undecidability results (for the latter,
5Tuple deletions do not affect the satisfaction of monotone ICs, such as DCs. Causes
and inclusion dependencies were considered without a formalization in [101].

see also [7]). Repairs of databases using probabilistic elements and
repairs of probabilistic databases [104] have been investigated in
[2, 69, 83].

An active area of research is that of formal ontologies, and, in
particular, ontology-based data access (OBDA) [94]. In OBDA it is
not unlikely that the combination of data, rules and constraints
produces inconsistencies. In that case, repairs of- and consistent
query answering (CQA) on the inconsistent ontology have to be
considered. There are different ways of doing this, in terms of the
ontological language (e.g. some Description Logic or a Datalog±
program class), the kind of repairs considered, and the way CQA is
done [29, 30, 53, 54, 79, 80, 89, 100, 107].

As a final note, let me say that it has been fascinating to see how
the area has evolved since its inception in 1999. We can see that
research on repairs and CQA is still going strong after twenty years.
As to the problem we first started thinking about in those early
days, that of measuring the degree of inconsistency of a database,
it turns out that database repairs can be used as a basis for such
a task. We have taken the first steps in that direction [16, 17], but
that is a different story.
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