
Consistent Query Answers in
Virtual Data Integration Systems

Leopoldo Bertossi1 and Loreto Bravo2

Carleton University,
School of Computer Science,

Ottawa, Canada
{bertossi, lbravo}@scs.carleton.ca

Abstract. When data sources are virtually integrated there is no com-
mon and centralized mechanism for maintaining global consistency. In
consequence, it is likely that inconsistencies with respect to certain global
integrity constraints (ICs) will occur. In this chapter we consider the
problem of defining and computing those answers that are consistent wrt
the global ICs when global queries are posed to virtual data integration
systems whose sources are specified following the local-as-view approach.
The solution is based on a specification using logic programs with stable
model semantics of the minimal legal instances of the integration system.
Apart from being useful for computing consistent answers, the specifica-
tion can be used to compute the certain answers to monotone queries,
and minimal answers to non monotone queries.

1 Introduction

There is an increasing number of available information sources, many of them on-
line, like organizational databases, library catalogues, scientific data repositories,
etc., and in different formats and ranging from highly structured, like relational
databases, to semi-structured, like data on the web. Many applications need to
access and combine information from several databases, in consequence, a user
(or application) is confronted to many different data sources.

One possibility for attacking this problem consists in bringing a possibly
huge amount of data -that might be required by the application- into one single,
physical, material site; and then making the application interact with this only
data repository. This process is costly in term of storage, design, and refreshment,
which would be necessary when the original sources are updated. That is, we
have complexities that are similar to those involved in the processes associated
to data warehouses, but with the difference that updating the repository could
be more crucial that in data warehouses, where, most likely, decision support
could be achieved without having completely up-to-date data.

An alternative solution consists in keeping the data in their sources. In this
way, if the application needs answers to a query, it has to interact with the
collection of available sources, first determining and selecting those that contain
the relevant information. Next, queries have to be posed to those sources, on an

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 42–83, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Consistent Query Answers in Virtual Data Integration Systems 43

individual basis; and the different results have to be combined. This can be a
long, tedious, complex and error prone process if performed on an ad hoc basis. It
is better to have a general, robust and uniform implementation that supports this
process on a permanent and regular basis. Ideally, the application will interact
with the data sources via a unique -database like - common interface.

A solution in this line consists in the virtual integration of the data sources
via a mediator [75], that is, a software system that offers a common interface to a
set of autonomous, independent and possibly heterogeneous data sources. Under
this paradigm for data integration, the integration is virtual in the sense that the
data stays in the sources, but the user -who interacts with the mediator- feels like
interacting with a single database. The sources most likely do not cooperate with
each other, and the mediator, except for the possibility of asking queries, has
no control on the individual sources. There is no central control or maintenance
mechanism either. It is also desirable that the set of participating sources is
flexible and open.

It is clear that combining data from different and independent sources offers
many and difficult challenges. If the integrated system is expected to keep some
correspondence with the reality it is modelling, then it should keep some gen-
eral, global semantic constraints satisfied. This is difficult to achieve, because
most likely there will be semantic conflicts between pieces of data coming from
different sources. Since there is no central, global integrity enforcement mecha-
nism, and there is no possibility of doing any kind of global data cleaning, as in
the datawarehouse approach to data integration, semantic problems have to be
solved when the application interacts with the integration system.

More specifically, in this chapter we describe novel techniques to solve incon-
sistencies when queries posed to the integration system are answered. That is,
only those answers to a global query that are consistent with the given global
integrity constraints are returned. Apart from the problem of defining the notion
of consistent answers in this scenario, there is the problem of designing query
plans to consistently answering queries.

The mediator, in order to design query plans, needs to know the correspon-
dence between the global relations offered by the mediator’s interface, which de-
termine an external query language, and the relations in the internal databases.
These descriptions of the contents of the internal data sources can be expressed
in different ways. In this chapter we will mostly concentrate to the local as view
approach to data integration, according to which the sources are described as
views of the global relations.

Global integrity constraints (ICs) will be expressed as first order formulas,
and database instances are seen as first order structures with finite relations. We
say that a database instance D is consistent wrt to a set IC of ICs if D satisfies
IC (what is denoted by D |= IC , as usual). Of course, the set of global integrity
constraints IC will be assumed to be logically consistent, in the sense that at
least one database instance satisfies it.

This chapter is structured as follows. In Section 2 we consider virtual data
integration systems, describing in general terms the main elements and issues; in

44 L. Bertossi and L. Bravo

particular, two alternative ways to specify the data contained in the data sources,
in such a way that the mediator can make use of it. In Section 3 the semantics
of virtual data integration systems with open sources under the local-as-view
approach is given in detail. In Section 5 we briefly review the notion of consistent
answer to a query posed to a single relational database, and some methodologies
for computing them. The notion of consistent answer to a query, but now for an
integration system, is defined in Section 6. With the goal of computing consistent
answers in integration systems, in Section 7 logic programs with stable model
semantics are used to specify the class of minimal instances of open integration
systems under LAV. The results presented there are interesting in themselves,
independently from consistent query answering, because they can be used to
compute (ordinary) answers to both monotonic and non monotonic queries in
integration systems, which extend previous results in the area. Section 8 shows
how to compute consistent answers to queries posed to integration systems. The
specification of minimal instances presented in Section 7 is extended in Section
9 to the case where in addition to open sources also closed and both closed and
open sources are available. That specification is presented here for the first time.
In Section 10, some open research issues are indicated. In Section 11 we finalize
with a discussion of related work.

2 Virtual Data Integration Systems

2.1 Mediators for Data Integration

The main features of a mediator based system are: (a) The interaction with
the system via queries posed to the mediator; (b) Updates via the mediator are
not allowed; (c) Data sources are mutually independent and may participate in
different mediated systems at the same time; (d) Sources are allowed to get in
and out; (e) Data is kept in the local, individual sources, and extracted at the
mediator’s request.

Since the mediator offers a database like interface to the user or application,
it has a global or mediated schema, consisting of a set of names for relations
(virtual tables) and their attributes. This schema is application dependent and
determines a (family of) query language(s), like in a usual relational databases
from the user point of view. However, the “database” corresponding to the global
schema is virtual.

A user poses queries to the mediator in terms of the relations in the global
schema. However, in order to answer those global queries, the mediator needs
to knows the correspondence between the global schema and the local schemas.
This is achieved by means of a set of source descriptions, i.e. descriptions of
what data can be found in the different sources. Having this information, when
the mediator receives a query , it develops a query plan that determines: (a) the
portions of data that are relevant to the query at hand, (b) their locations in the
relevant data sources, (c) how to extract that data from the sources via queries,
and (d) how to combine the answers received into a final answer for the user.

Consistent Query Answers in Virtual Data Integration Systems 45

DB3DB1 DB2 DBn

Wrapper Wrapper Wrapper Wrapper

Global Schema Source Descriptions

Plan Generator

Execution Engine

User Interface
Answers

General Architecture of an Integration System

Fig. 1. Architecture of an Integration System

Figure 1 shows the main elements in the architecture of a mediator for virtual
integration of data sources.

The mediator is responsible of solving problems of redundancy, complemen-
tarity, incompleteness, and consistency of data in the integration system. In this
chapter we will consider this last problem, a very relevant one in this context.
For example, what should the mediator do if it is asked about a person’s ID card
number and it gets two different numbers, each coming from a different source?
The two sources, taken independently and separately, may be consistent, but
taken together, possibly not. Such consistency problems are likely and natural
in virtual data integration. Notice that consistency problems in virtual integra-
tion, unlike the “materialized” approaches to data integration, which offer data
reconciliation solutions, cannot be solved a priori, at the physical data level.

Another element shown in Figure 1 is the wrapper. This is a module that is
responsible for wrapping a data source in such a way that the latter can interact
with the rest of integration system. It provides the mediator with data from a
source as requested by the execution engine. In consequence, it presents a data
source as a convenient database, with the right schema and data, the one that
is understood and used by the mediator. Notice that this presentation schema
may be different from the real one, the internal to the data source. Actually, it
may be the case that the source is not at all internally structured as a database,
but this should be transparent to the mediator. All this may require preliminary
transformations, cleaning, etc., before the data can be exported to the integration
system. There is a wrapper (or more) for each data source. In the following, we

46 L. Bertossi and L. Bravo

will assume that each data source has already a wrapper that presents it as a
relational database.

Example 1. Consider a global schema for a database “containing” information
about music albums: CD(Album,Artist ,Year), Contract(Artist ,Year ,Label),
Songs(Album,Song). Now, a user wants to know the name of the label with
which Norah Jones had a contract during 2002. This is asked issuing the following
query to the global system Q : Ans(L)← Contract(NorahJones, 2002 , L).

Here, predicate Ans will contain the answers, that are to be computed using
the expression on the RHS of this rule. In this case, this is the simple selection
SELECTX=NorahJones,Y =2002 Contract(X, Y, L).

It is a problem that the material data is not in the virtual global relation
Contract , but in the data sources DB1(Album,Artist ,Year), DB2(Album,Artist ,
Year , Label),DB3(Album,Song). In consequence, a query plan is needed in order
to extract and combine the relevant data from the material sources. However,
in order to design such a plan, the mediator needs to know the correspondence
between the virtual global relations and the data sources. �

A key element in the mediator architecture is the set of source descriptions,
i.e. the descriptions of the available sources and their contents (as presented
by the wrapper), which is achieved by establishing the relationships (mappings)
between the global schema and the local schemata. These descriptions are given
by means of a set of logical formulas; similar to the way in which views are
defined in terms of base tables in a relational database, i.e. using queries written
in a query language. Usually those query languages use logical formulas or their
SQL versions.

With respect to how mappings are defined, there are two main approaches
(and combinations of them): (a) Global as View (GAV), under which the relations
in the global schema are described as views of the collection of local relations
[73]; and (b) Local as View (LAV), under which each relation in a local source is
described as a view of the global schema [61]. GLAV denotes a combination of
GAV and LAV [37] where the rules can have more than one atom in the head.
Another approach, called Both as View (BAV), consists on a specification of the
transformation of the local schema into the given global schema, in such a way
that each schema can be seen as defined as in terms of the other schema [65]. In
Section 2.2 we describe and compare the GAV and LAV approaches.

The plan generator gets a user query in terms of global relations and uses
the source descriptions to design a query plan. This is achieved by rewriting the
original query as a set of subqueries that are expressed in terms of the local
relations. The query plan includes prescriptions on how the answers from the
local sources have to be combined. The query rewriting process executed by the
plan generator strongly depends on whether the LAV or the GAV approach is
followed. Still much theoretical and technical research is going on in relation
to query plan generation. The plan is executed by the execution engine. Notice
that it should be the plan generator who takes care of anticipating and solving
potential inconsistencies. It should solve them in advance, when the plan is being
generated. Later in this chapter, we will explore this issue in detail.

Consistent Query Answers in Virtual Data Integration Systems 47

2.2 Description of Data Sources

The global/local schema mappings or, equivalently, the descriptions of the source
contents are expressed through logical formulas that relate the global and local
relations.

Global as View

In this case, the relations in the global schema are described as views over the
tables in the union of the local schemata. This is conceptually very natural,
because views are usually virtual relations defined in terms of material relations
(the tables); and here we have global relations that are virtual and local sources
that are materialized.

Example 2. (example 1 continued) Assume the relation CD is defined as the
view

CD(Album,Artist ,Year)← DB1(Album,Artist ,Year)
CD(Album,Artist ,Year)← DB2(Album,Artist ,Year ,Label).

Relation CD is defined as the union of the projections of DB1 and DB2 on
attributes Album,Artist ,Year , i.e. in relational terms, defined by

CD = ΠAlbum,Artist,Year (DB1) ∪ ΠAlbum,Artist,Year (DB2).

The global relation Songs and Label are defined as follows:

Songs(Album,Song)← DB1(Album,Artist ,Year),DB3(Album,Song).
Contract(Artist ,Year ,Label)← DB2(Album,Artist ,Year ,Label).

The first view is defined as, first, the join of DB1 and DB3 via attribute
Album, and then, a projection on Album,Song . The second view is defined as
the projection of DB2 over Artist ,Year ,Label .

These views have been defined by means of rules. Each rule specifies that in
order to compute the tuples in the relation in the LHS (the head of the rule), one
has to go to the RHS (the body of the rule) and compute whatever is specified
there. The attributes appearing in the head indicate that they are the attributes
of interest, thus the others (in the body) can be projected out at the end. If
there are more that one rule to compute a same relation, we use all of them and
we take the union of the results, as for the relation CD .

Instead of using a rule as above, we could have used relational algebra (or
relational calculus, or SQL2), in the case of the relation Songs,

Songs = ΠAlbum,Song(DB1 ��Album DB3).

The language of rules is more expressive than relational algebra, e.g. recursive
views can be defined using rules, but not with relational algebra [72]. �

Once the global relations have been defined as views, we may start posing
global queries, i.e. queries expressed in terms of the global relations. The problem
is to answer them considering that the global relations do not contain material
data. Under the GAV approach this is simple, all we need to do is rule unfolding.

48 L. Bertossi and L. Bravo

Example 3. (example 2 continued) Consider the following global query about
the music albums released in the year 2003, with their artists and songs

Ans(Album,Artist ,Song)← CD(Album,Artist , 2003),Songs(Album,Song).

Since it is expressed in terms of the global schema, the data has to be ob-
tained from the sources, that is, the query has to be rewritten in terms of the
source relations. We do this by unfolding each global relation, replacing it by
its definition in terms of the local relations. We have underlined differently the
goals in the body in order to keep track of the rewriting for each of them.

Ans ′(Album,Artist ,Song)← DB1(Album,Artist , 2003),
DB1(Album,Artist ,Year),DB3(Album,Song).

Ans ′(Album,Artist ,Song)← DB2(Album,Artist , 2003 ,Label),
DB1(Album,Artist ,Year),DB3(Album,Song).

These new queries do get answers directly from the sources; and the final
answer is the union of two answer sets, one for each of the rules. �

If, in addition to the view definitions, there are ICs that have to be and are
satisfied by the system, unfolding is not enough for query answering [17, 19] (see
Section 11 for more details).

Local as View

Under the LAV approach, each table in each local data source is described as
a view (i.e. as a query expression) in terms of the global relations. This may
seem somehow unnatural or unusual from the conceptual point of view, and
from perspective of databases practice, because here the views contain the data,
but not the “base tables”. However, as we will see, this approach has some
advantages.

More precisely, in the general situation we have a collection of material data
sources (think of a collection of material relational tables) S1, . . . , Sn, and a
global schema G for the system that integrates data from S1, . . . , Sn. Tables
in S1, . . . , Sn are seen as views over G, and in consequence, they can be defined
by query expressions over the global schema.

Example 4. Consider the sources S1, S2 that are defined by the view expressions

S1: V1(Album,Artist ,Year)← CD(Album,Artist ,Year),
Contract(Artist ,Year , emi),Year ≥ 1990

S2: V2(Album,Song)← Songs(Album,Song).

Source S1 contains a table whose entries are albums produced after 1990 by
the label EMI with their artists and years. Source S2 contains one table with
songs and their albums.

Those relations that are not defined as views belong to the global schema G,
in this case, we have the relations: CD(Album,Artist ,Year), Songs(Album,Song),
Contract(Artist ,Year ,Label). �

Consistent Query Answers in Virtual Data Integration Systems 49

Notice that from the perspective of S1, there could be other sources contain-
ing information about albums produced by EMI after 1990, and that comple-
mentary information could be exported to the global system. In this sense, the
information in S1 could be considered as “incomplete” wrt what G contains (or
might contain). In other words, S1 contains only a part of the data of the same
kind in the global system. We will elaborate on this later on. Finally, also notice
that in the example, and this is a general situation under LAV, the definition of
each source does not depend on other sources.

Now we want to answer global queries under LAV.

Example 5. (example 4 continued) The following query posed to G asks for the
songs with its album and the year they were released:

Ans(Album,Song ,Year)← CD(Album,Artist ,Year),Songs(Album,Song).

This query is expressed as usual, in terms of global relations only, however,
it is not possible to obtain the answers by a simple and direct computation of
the RHS of the query. Now, there is no direct rule unfolding mechanism for the
relations in the body, because we do not have explicit definitions for them. And
the data resides in the sources, which are now defined as views.

We can see that plan generation to extract information from the sources
becomes more complex under LAV than under GAV. Since a query plan is a
rewriting of the query as a set of queries to the sources and a prescription on
how to combine their answers (what is needed in this example), the following
could be a query plan to answer the original query:

Ans ′(Album,Song ,Year)← V1(Album,Artist ,Year), V2(Album,Song).

The query has been rewritten in terms of the views; and in order to obtain
the final answer, we first extract values for Album,Year from V1; then we extract
the tuples from V2; finally, at the mediator level, we compute the join via Album.

Notice that due to the limited contents of the sources, we only obtain albums
produced by EMI after 1990. �

In LAV we pose a query in terms of certain relations (the global ones), but
we have to answer using the contents of certain views only (the local relations).
In consequence, query plan generation becomes an instance of a more general
and traditional problem in databases, the one of query rewriting using views.

To see this connection more clearly, assume we have a collection of views
V1, . . . , Vn, whose contents have already been computed, and cached or materi-
alized. When a new query Q arrives, instead of computing its answers directly,
we try to use the answers (contents) to (of) V1, . . . , Vn. A problem to consider
consists in determining how much from the real answer do we get by using the
pre-computed views only; and also determining what is the maximum we can get
in terms of the kind of views we have available. The research carried out in query
answering using views [60, 2, 49, 51, 50, 35] and query containment [2, 56, 67, 23]
has become quite relevant to the area of data integration.

50 L. Bertossi and L. Bravo

2.3 Comparison of Paradigms

We have seen that under GAV, rule unfolding makes plan generation simple and
direct. On the other hand, GAV is not flexible to accept new sources or eliminate
sources into/from the system. Actually, adding or deleting sources might imply
modifying the definitions of the global relations.

LAV offers more flexibility to add new sources or delete old ones into/from
the integration system, because a new source is just a new view definition. Other
sources do not need to be considered at this point, because there are no other
sources interfering in the process. Only the plan generator has to be aware of
these changes. On the other side, plan generation is provably more difficult [2,
58, 18, 73].

2.4 Data Integration and Consistency

Notice that, so far, we have not considered any integrity constraints at the global
schema level. Since the data sources are autonomous and possibly updated in-
dependently from the integration system in which they participate and from
other data sources, there is not much we can do wrt to data maintenance at
the global level. However, in virtual data integration, one usually assumes that
certain integrity constraints hold at the global level, and they are used in the
plan generation process [48, 30, 45]. Even more, in some cases the generation of
a query plan is possible because certain integrity constraints (are supposed to)
hold [30].

In general, we cannot be sure that such global integrity constraints hold,
because they are not maintained at the global level. A more natural scenario
is the one where integrity constraints are considered when queries are posed to
the system. In this case, we have the problem -to be addressed in Section 6-
of retrieving information from the global system that is consistent wrt certain
global constraints, but the problem has to be solved at query time, as opposed
to the usual approach in single databases, where all the data in the database is
kept and maintained consistent, independently from potential queries.1 This is
an interesting point of view wrt integrity constraints: they constitute constraints
on the answers to queries rather than on the database states.

Notice that the flexibility to add/remove sources, in particular under
LAV, is likely to introduce extra sources of inconsistencies we have to take
care of.

The global ICs we will consider are first order sentences written in the lan-
guage of the global schema. In particular, they will be universal integrity con-
straints, i.e. sentences of the form ∀x̄ϕ(x̄), where ϕ(x̄) is a quantifier-free formula;
and also referential integrity constraints of the form ∀x̄(P (x̄) → ∃y(Q(x̄′, y)),
where x̄′ ⊆ x̄.

1 Work reported in [11] departs from this practice and considers a more flexible ap-
proach to query answering in databases where databases may be inconsistent, but
only answers to queries are expected to be consistent.

Consistent Query Answers in Virtual Data Integration Systems 51

3 Semantics of Virtual Data Integration Systems

In the rest of this paper, unless otherwise stated, we will concentrate on the LAV
approach (see Section 11 for references on the GAV approach). The semantics of
virtual data integration systems is given in terms of the intended global instances.
This does not mean that such instances are to be computed, but they will allow
us to give a model theoretic semantics to global integrity constraint satisfaction,
to query answers, etc.

A data integration system G under the LAV approach is specified by a set of
view definitions, plus a set of material tables vi corresponding to the views Vi

defined:

G : V1(X̄1)← ϕ1(X̄ ′
1); v1 (1)

· · · · · · · · ·
Vn(X̄n)← ϕn(X̄ ′

n); vn

Here, X̄j ⊆ X̄ ′
j , and each vi is an extension (a material relation) for view Vi,

which in its turn is defined as a conjunctive view.
Until further notice we will assume that the system has all its sources open

(also called sound). This means that the information stored in the sources might
be incomplete. The description in (1) plus the openness assumption will deter-
mine a a set of legal global instances. Now we describe how.2

Let D be a global instance, i.e. its domain contains at least the constants
appearing in the source extensions and the view definitions; and has relations
(and contents) for the global schema. We denote with ϕi(D) the set of tuples
obtained by applying to D the definition of view Vi. This gives an extension for
Vi in (wrt) global instance D, which can be compared with vi. We call a global
instance D legal if the computed extension on D of each view Vi contains the
originally given extension vi:

Legal(G) := { global D | vi � ϕi(D); i = 1, . . . , n},
which captures the incompleteness of the sources, because if a view is applied to
a legal instance, the result will be a superset of the elements in the source. Only
legal instances will determine the semantics of G.
Example 6. Consider the system G1 with global relation R(X, Y) and the fol-
lowing open sources

V1(X, Y)← R(X, Y); v1 = {(a, b), (c, d)}
V2(X, Y)← R(X, Y); v2 = {(a, c), (d, e)}.

The global instance D for which the relation R has the extension RD =
{(a, b), (c, d), (a, c), (d, e)}3 is legal, because: (a) v1⊆ ϕ1(D)= {(a, b), (c, d), (a, c),

2 A similar semantics can be given in the case of the GAV approach [58].
3 In the rest of this chapter we will use a simpler description for an instance of this

kind. We simple write D = {(a, b), (c, d), (a, c), (d, e)}, because there is only one
global relation. If there were another relation, we write D = {R(a, b), R(c, d), ...}.

52 L. Bertossi and L. Bravo

(d, e)}; and (b) v2 ⊆ ϕ2(D) = {(a, b), (c, d), (a, c), (d, e)}. All supersets of D are
also legal global instances; e.g. {(a, b), (c, d), (a, c), (d, e), (c, e)} ∈ Legal(G), but
no subset of D is legal, e.g. {(a, b), (c, d), (a, c)} /∈ Legal(G). �

Example 7. Let D = {a, b, c, . . . } be the underlying domain. Consider the inte-
gration system G2 defined by

V1(X, Z)← P (X, Y), R(Y, Z); v1 = {(a, b)}
V2(X, Y)← P (X, Y); v2 = {(a, c)}.

Each global instance D of the form {P (a, c), P (a, z), R(z, b)}, with z ∈ D is a
legal instance, because v1 ⊆ ϕ1(D) = {(a, b)} and v2 ⊆ ϕ2(D) = {(a, c), (a, z)}.
Any superset of D is also legal, but none of its subsets is. �

Now we can define the intended answers to a global query Q. They are the
certain answers, those that can be obtained from every legal global instance [2]:

CertainG(Q) := {t̄ | t̄ is an answer to Q in D for all D ∈ Legal(G)}.

Example 8. (example 6 continued) Consider the following global query Q posed
to system G1: Ans(X, Y)← R(X, Y). In this case, CertainG1(Q) = {(a, b), (c, d),
(a, c), (d, e)}. �

The algorithms for constructing query plans should be sound and complete
wrt this semantics, more precisely they should be able to produce plans whose
execution will allow us to get all and only the certain answers from a data
integration system; of course, without explicitly computing all the legal instances
and querying them.

4 Query Plans

There are several algorithms for generating query plans. See [62, 51] for survey
of different techniques. In [45] a deductive methodology is presented. Here we
will briefly describe the inverse rules algorithm (IRA) [29, 30]. This algorithm is
conceptually simple, shows the main issues, and will be used later in this chap-
ter in our solution to the problem of consistent query answering in integration
systems.

Our framework is as follows. We are given a global query Q posed in terms
of the global schema, but we need to go to the sources for the data required to
evaluate Q. The problem is how to do this, or more precisely, how to rewrite Q
in terms of the views available, i.e. in terms of the relations in the sources.

We will assume that we have a set of rules describing the source relations as
conjunctive (Select-Project-Join) views of the global schema [1]. We also assume
that the sources are open.

The input to our problem is a global query expressed, e.g. in Datalog (may be
recursive, but without negation). The expected output is a new Datalog program
expressed in terms of the source relations.

Consistent Query Answers in Virtual Data Integration Systems 53

Example 9. Consider the local relations V1, V2 in sources S1, S2, resp., and the
global relations R1, R2, R3. The set of source descriptions contains

S1: V1(X, Z)← R1(X, Y), R2(Y, Z), (2)
S2: V2(X, Y)← R3(X, Y). (3)

The idea behind IRA consists in obtaining, from these descriptions, “inverse
rules” describing the global relations. Let us start from (3). Since V2 is open, it
is contained in the “extension” of the global relation R3. That is, the only way
to get tuples for V2 is by going to pick up tuples from the RHS of (3). In other
terms, we can say that V2 “�” R3, or, equivalently, V2 “⇒” R3. More precisely,
we invert the rule in the description of V2, obtaining

R3(X, Y)← V2(X, Y),

now, a rule describing R3, which we wanted. If there are (not in this case though)
other rules of this kind describing R3 (from other source description rules con-
taining R3 on the RHS), we just take the union.

Now, wrt inverting rule (2), a first attempt could be

R1(X, Y), R2(Y, Z)← V1(X, Z),

but this is a strange rule, with a strange head. There are several problems. If
the head is seen as a conjunction, then we may split it into two rules, namely
R1(X, Y)← V1(X, Z) and R2(Y, Z)← V1(X, Z), but now the two occurrences
of variable Y are independent, and before it was a shared variable that allowed
us to combine tables R1, R2 by means of a join. This connection is lost now.
Another problem has to do with the unrestricted occurrence of Y in the heads;
there are no conditions on Y in the bodies (this kind of rules are considered
unsafe in databases [72]). It should not be the case that any value for Y is
admissible.

A better approach is as follows: V1(X, Z)← R1(X, Y), R2(Y, Z) is equiva-
lent to V1(X, Z)← ∃Y (R1(X, Y)∧R2(Y, Z)) (a join followed by a projection).
Inverting, we obtain ∃Y (R1(X, Y)∧R2(Y, Z))← V1(X, Z). This rule has an im-
plicit universal quantification on X, Z, then each value for Y possibly depends
on the values for X, Z, i.e. Y is a function of X, Z. To capture this dependence,
we replace Y by a function symbol f(X, Z) (a so-called “Skolem function”),
obtaining

R1(X, f(X, Z)) ∧R2(f(X, Z), Z) ← V1(X, Z).

As before, we split the conjunction, obtaining the rules R1(X, f(X, Z)) ←
V1(X, Z) and R2(f(X, Z), Z)← V1(X, Z). In this way, we obtain the following
set V−1 of inverse rules

R1(X, f(X, Z))← V1(X, Z)
R2(f(X, Z), Z)← V1(X, Z)

R3(X, Y)← V2(X, Y),

which can be used to compute answers to global queries.

54 L. Bertossi and L. Bravo

Notice that we may need other symbolic functions, for dependencies between
variables in the same or other rules. More precisely, we introduce one function
symbol for each variable in the body of a view definition that is not in the head;
and that function appears evaluated in the variables in the head.

Now, assume the following global query Q is posed to the integration system

Ans(X, Z)← R1(X, Y), R2(Y, Z), R4(X)
R4(X)← R3(X, Y)
R4(X)← R7(X)
R7(X)← R1(X, Y), R6(X, Y).

We can see that the goal R6 cannot be computed, because there is no defi-
nition for it in V−1. Then, R7 cannot be evaluated either; and the rule defining
it can be deleted. For the same reason, the third rule in the query cannot be
evaluated; and can be deleted. In this way we obtain a pruned query Q−:

Ans(X, Z)← R1(X, Y), R2(Y, Z), R4(X)
R4(X)← R3(X, Y).

In consequence, the final query produced by the plan generator, using the
IRA, is Q− ∪ V−1. This is a sort of Datalog program, but with functions.

This is all and the best we have to answer the original query. With the new
query program we can compute some answers to Q, but actually, “the most” we
can. The plan can be evaluated, e.g. bottom-up, from concrete source contents
[72]. The final answer may contain some tuples with the function symbol f in
them; but they are eventually deleted.

We will illustrate this process with a different query. Assume that the source
contents are v1 = {(a, b), (a, a), (c, a), (b, a)} and v2 = {(a, c), (a, a), (c, d),
(b, b)}; and the query is now Q′:

Ans(X)← R1(X, Y), R2(Y, Z), R4(X)
Ans(X)← R2(X, Y)
R4(X)← R3(X, Y)
R4(X)← R1(X, a).

We have the same set V−1 of inverse rules as above, they are the same for all
the queries. So, first we prune the query rules that cannot be evaluated from the
inverse rules. We delete the last rule in the query, because it does not contribute
to R4 (a cannot be an f -value). We obtain the final query consisting of the
rules in V−1 plus the first three rules in Q′. It can be evaluated bottom-up. The
mediator will use the inverse rules applied to the sources, which requires sending
one query to each source, and will obtain

R1 = {(a, f(a, b)), (a, f(a, a)), (c, f(c, a)), (b, f(b, a))}
R2 = {(f(a, b), b), (f(a, a), a), (f(c, a), a), (f(b, a), a)}
R3 = {(a, c), (a, a), (c, d), (b, b)}.

Consistent Query Answers in Virtual Data Integration Systems 55

Using the third rule of Q′, we obtain R4 = {a, c, b}. Now we can evaluate
the first rule in Q′, whose body becomes ΠX(R1 �� R2) ∩ R4 = {a, c, b} ∩
{a, c, b} = {a, c, b}. Then, a, c, b ∈ Ans. From the second rule in Q′ we obtain
f(a, b), f(a, a), f(c, a), f(b, a) ∈ Ans, but these tuples are not considered, because
all the tuples containing function symbols are eliminated from the final answer
set. So, finally Ans = {a, c, b}. �

Given a Datalog query, the query plan obtained for it is a new Datalog
program, but may contain function symbols (strictly speaking, for this reason,
it is not a Datalog program). If the original query does not contain recursion,
neither does the final query. The query plan: (a) does not contain negation, (b)
can be evaluated in a bottom-up manner and always has a unique fix point, (c)
can be constructed in polynomial time in the size of the original query and the
source descriptions.

The plan obtained is the best we can get under the circumstances, i.e. given
the query, the sources and their descriptions. More precisely, for a Datalog query
Q and a set of sources defined as conjunctive views, the query plan generated
with the IRA is maximally contained [2] in the original query Q [30]. In other
words, there is no other query plan that retrieves a set of answers to Q that is
a proper superset of answers to Q produced by IRA.

It is possible to prove [2] that for conjunctive views and Datalog queries (and
open sources), a maximally contained query plan computes all the certain an-
swers. In consequence, the inverse rules algorithm returns all the certain answers
to Datalog queries [30].

We have seen in this section and also in Section 2.2 for the GAV approach,
that the query plan prescribes how to rewrite the original, global, conjunctive
query as a new query expressed in terms of the source relations. The new query
is also a first order or Datalog query. However, for more complex queries, the
“rewriting” may need to be expressed in more expressive languages, e.g. dis-
junctive logic programs with stable model semantics, as in Section 7, in order to
capture a higher data complexity of query answering (see [22] for a discussion
about what should qualify as a query rewriting).

Now, if in addition to the source descriptions, we have a set IC of global
integrity constraints; it is quite likely that they are not going to be satisfied
by (all) the legal instances. In consequence, instead of retrieving the certain
answers to a global query, we might be interested in retrieving those answers
that are consistent wrt IC . This notion is still to be formalized (see Section
6), but having done that, we would expect that the query plans generated by
the mediator should incorporate new elements, responsible for enforcing the
satisfaction of the ICs at the query answer level.

In order to formally define what is a consistent answer to a query to the
integration system, we will appeal to some notions and techniques introduced,
in the context of single, stand alone relational databases, to characterize and
compute answers to queries that are consistent wrt to integrity constraints that
the database may fail to satisfy. We review some of those relevant notions and
techniques in Section 5.

56 L. Bertossi and L. Bravo

5 Consistent Query Answering for Single Databases

Assume we have a single relational database instance D and a set of integrity
constraints (ICs) that D may fail to satisfy. This inconsistent database can still
give us “correct” answers to queries, because not all the data in it participates
in the violation of the ICs. It becomes necessary to define in precise terms what
is the “correct” or “consistent” information in the database; and in particular,
which are the “correct answers” to a query. Having done this, it is necessary to
develop mechanisms for retrieving such consistent answers; but without changing
the database, restoring its consistency. See [11] for an extended discussion about
why this is a natural and important problem. Here we briefly review some notions
and techniques that have been given to attack these problems.

Given a relational database instance D, a query Q, and a set IC of ICs, we
say that a tuple t̄ is a consistent answer to Q in D wrt IC whenever t̄ is an
answer to Q in every repair of D, where a repair of instance D is a database
instance D′, over the same schema and domain, that satisfies IC , and differs
from D by a minimal set of changes (insertions/deletions of whole tuples) wrt
to set inclusion [3].

Intuitively speaking, consistent answers are invariant under minimal ways of
restoring consistency. Repairs are just an auxiliary concept, used to characterize
the consistent answers, but we we are not interested in repairs per se. Actually we
may try to avoid to (explicitly and completely) compute them whenever possible,
because this is an expensive process. In consequence, the ideal situation is the
one in which we are able to compute the consistent answers to Q by posing a
-hopefully- simple new query Q′ to the inconsistent instance D, in such a way
that the standard answers to Q′ are precisely the consistent answers to Q. In
some cases it is possible to generate a new first order query Q′ with that property,
however in other situations, the query Q′ has to be written in some extension of
Datalog, possibly as disjunctive normal programs [41, 27].

Example 10. Consider the database instance D = {P (a), P (b), R(a), R(c)} and
the integrity constraint IC : ∀x(¬P (x) ∨ ¬R(x)), stating that tables P and R
do not intersect. The instance is inconsistent wrt to IC . The two repairs of
D are D1 = {P (a), P (b), R(c)}, D2 = {P (b), R(a), R(c)}. The query Q(x) :
Ans(x) ← P (x) has b as only consistent answer, because P becomes true only
of b in both repairs. The query Q′ consisting of the rules Ans(x) ← P (x) and
Ans(x) ← R(x), has a, b, c as consistent answers, what shows that data is not
cleaned from inconsistencies: the problematic tuple a is still recovered. �

In [11], an alternative repair based semantic was used in the presence of
referential integrity constraints. There, if a tuple is inconsistent (participates in
a violation), the possible ways to repair are deleting the inconsistent tuple or
adding a tuple with null values in the existentially quantified attributes of the
constraint.

In order to compute the consistent answers to queries, two main approaches
have been introduced. One of them is first order (FO) query rewriting (if the
original query is first order) [3, 25, 13]; and the other consists in specification of

Consistent Query Answers in Virtual Data Integration Systems 57

database repairs using disjunctive logic programs with stable model semantics
[4, 47, 7]. The later approach is more general, but more expensive than FO query
rewriting. Despite their higher data complexity, disjunctive programs have to be
applied, also to some first order queries, because in some cases, for complexity
reasons, there is no FO rewriting [26, 20, 38].

5.1 Query Rewriting

Example 11. (example 10 continued) Consider again query Q. Notice that a
tuple t̄ is an answer to the query and at the same time consistent wrt to IC if it
is not in R. In consequence, instead of posing the original query to the original
database, we pose the new query (P (x) ∧ ¬R(x)), which gives us the expected
answer, b, in D.

The extra condition ¬R(x) imposed on the original query is the so-called
residue of the literal P (x) wrt the IC . Notice that this residue can be obtained
by resolution between the query literal and the IC . We write T 1(Q) = (P (x) ∧
¬R(x)). In principle, the new literal appended may have residues of its own
wrt IC . We do not have any in this case, but if we had, we would append
its residues, obtaining T 2(Q), etc. Here, the iteration stopped and we write
Tω(Q) = (P (x) ∧ ¬R(x)). See [3, 25] for details. �

The FO query rewriting based methodology introduced in [3] via the T opera-
tor has some limitations [3, 25]. It cannot be applied to existential or disjunctive
queries, like query Q′ in Example 10, and only universal integrity constraints
can be involved.

5.2 Logic Programming

The second approach consists in representing in a compact form the collection
of all database repairs. This is like axiomatizing a class of models, namely as the
intended models of a disjunctive logic program under the stable model seman-
tics [41]. That is, the repairs correspond to certain distinguished models of the
program, namely, to its stable models.

Once the specification has been given, in order to obtain consistent answers
to a, say, FO query Q, the latter is transformed into a query written as logic
program, which is a standard process [64, 1]; and then, this query program is
“run” together with the program that specifies the repairs. This evaluation can
be implemented on top of DLV, for example; a logic programming system that
computes according to the stable models semantics [31, 59]. We illustrate the
methodology presented in [6] by means of an example. In order to capture the
repair process, the program uses annotation constants, whose intended semantics
is shown in Table 1.

Example 12. (example 10 continued) The repair program Π(r, IC) consists of:

1. Facts: P (a, td), P (b, td), R(a, td), R(c, td).

Whatever was true (false) or becomes true (false), gets annotated with t� (f�):

58 L. Bertossi and L. Bravo

Table 1. Semantic of Annotation Constants

Annotation Atom The tuple P (ā) is...
td P (ā, td) a fact of the database
fd P (ā, fd) a fact not in the database
ta P (ā, ta) advised to be made true
fa P (ā, fa) advised to be made false
t� P (ā, t�) true or becomes true
f� P (ā, f�) false or becomes false
t�� P (ā, t��) true in the repair
f�� P (ā, f��) false in the repair

2. P (X, t�)← P (X, td)
P (X, t�)← P (X, ta)
P (X, f�)← not P (X, td)
P (X, f�)← P (X, fa) ... the same for R ...

3. P (X, fa) ∨ R(X, fa) ← P (X, t�), R(X, t�)

One rule per IC; that says how to repair the IC, in this case, if x belongs both
to P and R, either delete the tuple from P or from R. Passing to annotations
t� and f� allows to keep repairing the DB wrt to all the ICs until the whole
process stabilizes.

Repairs must be coherent: we use denial constraints at the program level, to
prune the models that do not satisfy them

4. ← P (X, ta), P (X, fa)
← R(X, ta), R(X, fa)

Finally, annotations constants t�� and f�� are used to read off the literals that
are inside (outside) a repair, i.e. they are used to interpret the stable models of
the program as database repairs.

5. P (X, t��)← P (X, ta)
P (X, t��)← P (X, td), not P (X, fa)
P (X, f��)← P (X, fa)
P (X, f��)← not P (X, td), not P (X, ta). ... etc.

The program has two stable models (and two repairs):

{P (a, td), P (a, t�), P (a, t��), P (b, td), P (b, t�), P (b, t��), R(a, td), R(a, fa),
R(a, f�), R(a, f��), R(c, td), R(c, t�), R(c, t��)} ≡ {P (a), P (b), Q(c)}.

{P (a, td), P (a, fa), P (a, f�), P (a, f��), P (b, td), P (b, t�), P (b, t��),
R(a, td), R(a, t�), R(a, t��), R(c, td), R(c, t�), R(c, t��)} ≡ {P (b), Q(a), Q(c)}.

Consistent Query Answers in Virtual Data Integration Systems 59

If we want the consistent answers to the query (P (x̄) ∧ R(x̄)), for example,
we run the repair program Π(r, IC) together with query program Ans(X) ←
P (X, t��), Q(X, t��), obtaining the answer Ans = ∅, as expected. With the
query Ans(X) ← P (X, t��), Q(X, f��), we obtain the answer Ans = {b}. Fi-
nally, we can pose the disjunctive query Q′ we had in Example 10 by means
of the two rules Ans(X) ← P (X, t��) and Ans(X) ← R(X, t��), obtaining
Ans = {a, b, c}. �

This approach can be used for Datalog∨,¬ queries and universal constraints.
The extension for referential constraints can be found in [11]. We have success-
fully experimented with consistent query answering (CQA) based on specifica-
tion of database repairs using the DLV system [31].

6 Semantics of CQA in Integration Systems

In this section we will assume that we are working under the LAV approach.
Actually, this scenario is more challenging than GAV and inconsistency issues
are more relevant due to the flexibility to insert/delete sources into/from the
system.

Let us first consider an example that will help us motivate our notions of
consistency of an integration system and consistent query answering.

Example 13. (example 8 continued) We found for query Q: R(X, Y), that
CertainG1(Q) = {(a, b), (c, d), (a, c), (d, e)}. Now assume that we have global
functional dependency FD : X → Y . It is not satisfied by D = {(a, b), (c, d), (a, c),
(d, e)}, nor by its supersets, i.e. no legal instance satisfies it. Since the tuples
(a, b), (a, c) participate in the violation of FD , only (c, d), (d, e) should be con-
sistent answers to the query.

Notice that the local functional dependencies V1 : X → Y , V2 : X → Y
are satisfied by the sources. �

A virtual integration system does not have data at the global level. In spite
of this, we would like to be able to characterize such a system as consistent or
not, but we would like to do this on the basis of the data at hand, the one that
is forced to be in the system, avoiding problems of consistency caused by data
that is only potentially contained in the integration system. In this direction we
concentrate on the minimal instances. We will see that this shift of semantics
does not have an impact on query answering for relevant classes of queries in
comparison to the semantics based on the whole class of legal instances.

Definition 1. [10] (a) A minimal global instance of an integration system G is a
legal instance that does not properly contain any other legal instance. We denote
by Mininst(G) the set of minimal instances of G.
(b) We say G is consistent wrt a set of global ICs IC if for every D ∈ Mininst(G)
it holds D |= IC . �

60 L. Bertossi and L. Bravo

Example 14. (example 13 continued) System G1 has only D = {(a, b), (c, d), (a, c),
(d, e)} as minimal instance. There FD does not hold; in consequence, G1 is in-
consistent. �

The minimal instances will play a special role in our treatment of inconsistent
integration systems. Since we have a well defined subclass of legal instances, it
is natural to consider those answers to queries that hold for all the instances in
the class.

Definition 2. [10] The minimal answers to a global query Q posed to an in-
tegration system G are those answers that can be obtained from every minimal
instance. We denote them by MinimalG(Q). �

Example 15. (example 14 continued) For the query Q : Ans(X, Y) ← R(X, Y),
we have MinimalG1(Q) = {(a, b), (c, d), (a, c), (d, e)}, which can be obtained by
querying the only minimal instance. In this case the minimal answers coincide
with the certain answers.

Now consider the query Q′ : Ans(X, Y)← ¬R(X, Y). On the basis of the un-
derlying domain, we have (a, e) ∈ MinimalG1(Q

′), because the minimal instance
does not contain the tuple (a, e). However, (a, e) /∈ CertainG1(Q

′), because there
are -non minimal- legal instances that contain the tuple (a, e). �

What was shown in the previous example holds in general,namelyCertainG(Q)
� MinimalG(Q); and for monotone queries [1] they coincide; but for queries with
negation, possibly not.

As in the case of a single database, consistent answers will be the answers
that are invariant under the repairs of the system. We make these intuitions
precise.

Definition 3. [10] Let G be an integration system and IC a set of global ICs.

(a) A repair of G wrt to IC is a global instance that satisfies IC , and minimally
differs from a minimal instance (wrt to inclusion of sets of tuples). We denote
by RepairsIC (G) the set of repairs of G wrt IC .
(b) A ground tuple t̄ is a consistent answer to a global query Q wrt IC if for
every D ∈ RepairsIC (G), it holds D |= Q[t̄], i.e. t̄ is an answer to Q in D. We
denote by ConsisIC

G (Q) set of consistent answers to Q. �

Example 16. (example 14 continued) Consider system G1 with the global FD : X
→ Y . Since D = {(a, b), (c, d), (a, c), (d, e)} is the only minimal instance, and
it does not satisfy FD , the system has two repairs wrt FD , namely D1 =
{(a, b), (c, d), (d, e)} and D2 = {(c, d), (a, c), (d, e)}.

Now, for the query Q : Ans(X, Y) ← R(X, Y), we have ConsisFD
G1

(Q) =
{(c, d), (d, e)}, as expected. For the existential query Q′′(X) :Ans(X)← R(X, Y),
we have ConsisFD

G1
(Q′′) = {a, c, d}. This shows that the value a is not lost

through the repair process and is still recovered as a consistent answer. �

Consistent Query Answers in Virtual Data Integration Systems 61

This example shows that repairs may not be legal instances. The two repairs
in it are not. This flexibility is necessary to make the system repairable. Re-
member that the repairs are just an auxiliary notion that we use to define the
consistent answers to queries.

Here we are considering repairs that treat deletions and insertions of tuples
symmetrically. Other approaches may privilege certain kinds of changes, e.g. in
[20] insertions are preferred to deletions in the presence of referential ICs, with
the purpose of giving a better account of the openness (or incompleteness) of the
sources (see Section 11 for a more detailed discussion of alternative approaches).
However, adapting our specifications and methodologies for query answering to
this kind of special repairs is rather straightforward.

Also notice that an alternative definition of consistent answer in terms of
being true in all consistent legal instances does not always work, because, in
the presence of functional dependencies, most likely there won’t be any consis-
tent legal instances (see Example 13). Nevertheless, this alternative direction is
studied in [57].

Except for strange cases -that we will exclude- where the set of ICs is non
generic [11], i.e. it entails by itself (independently from the data) that a ground
literal belong (or does not belong) to the database, the consistent answers are real
answers. More precisely, for generic ICs, we have ConsisIC

G (Q) � MinimalG(Q)
[10]. If G is consistent wrt IC, then ConsisIC

G (Q) = MinimalG(Q). The problem
with non generic ICs is that they force specific data items, which may have not
been in the original instance, to belong (not to belong) to every (any) repair,
something that can be easily achieved without appealing to ICs. This situation
is illustrated in the following example.

Example 17. (example 16 continued) Assume that, in addition to the functional
dependency, IC also contains the non generic constraint ∀x∀y(x = a ∧ y =
e → R(x, y)), saying that tuple (a, e) belongs to R. In this case, there is only
one repair for G1, namely D3 = {(a, e), (c, d), (d, e)}. Now, ConsisIC

G1
(Q) =

{(a, e), (c, d), (d, e)} �⊆ MinimalG1(Q). �

Having defined what a consistent answer is, we need to find mechanisms for
computing them.

7 Logic Programming Specification of Minimal Instances

In this section we will show how to specify the minimal instances of a virtual
integration system under LAV using logic programs with stable model semantics
[41, 42]. This specification is -as we will see- interesting and useful in itself, but
in Section 8 it will also be used as the basis for computing consistent answers to
queries.

62 L. Bertossi and L. Bravo

7.1 The Simple Specification

We will start by giving a preliminary version of the specification program. This
version is simpler to explain than the general, definitive one, and already contains
the key ideas.

Example 18. (example 7 continued) It is easy to verify that the class of minimal
instances for the system is Mininst(G) = {{P (a, c), P (a, z), R(z, b)} | z ∈ D}.
Now, the set V−1 of inverse rules is

P (X, f(X, Z))← V1(X, Z)
R(f(X, Z), Z)← V1(X, Z)

P (X, Y)← V2(X, Y).

Inspired by these inverse rules, we give the following specification program
Π(G2):

– Facts: dom(a), dom(b), dom(c), . . . , V1(a, b), V2(a, c).
– P (X, Y)← V1(X, Z), FY

1 (X, Z, Y),
R(Y, Z)← V1(X, Z), FY

1 (X, Z, Y),
P (X, Y)← V2(X, Y).

– FY
1 (X, Z, Y)← V1(X, Z), dom(Y), choice((X, Z), (Y)).

Here, dom(x) is a domain predicate with elements in D, FY
1 is a predi-

cate corresponding to view V1 and the existential variable Y in its definition;
and choice((X, Z), (Y)) is the choice operator introduced in [39], which non-
determin-istically chooses a unique value for Y for each combination of values
in (X, Z). In this way, the functional dependency X, Z → Y is enforced; and
inclusion of redundant tuples in the global instances is (partly) avoided.

A program with choice Π can be always transformed into a normal program,
SV(Π) [39] with stable model semantics [40]. The so-called choice models of the
original program Π are in one-to-one correspondence with the stable models of
its stable version SV(Π).

In our example, the stable models of SV (Π(G2)) are

Ma = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), R(a, b), P (a, a)};
Mb = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), R(b, b), P (a, b)};
Mc = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), R(c, b)}; etc.

Here we show only their relevant parts, skipping domain atoms, and atoms
containing the F1 predicate. In this example we find a one-to-one correspondence
between the models of Π(G2) and the minimal instances of G2. �

More generally, the preliminary version of the specification contains the fol-
lowing elements:

1. Facts: dom(a) for every constant a ∈ D, and Vi(ā) whenever ā ∈ vi for a
source extension vi in G.

Consistent Query Answers in Virtual Data Integration Systems 63

2. For every view (source) predicate Vi with definition Vi(X̄) ← P1(X̄1), . . . ,
Pn(X̄n), the rule

Pj(X̄j)← Vi(X̄),
∧

Xl∈(X̄j\X̄)

FXl
i (X̄, Xl).

3. For every predicate FXl
i (X̄, Xl) introduced in 2., the rule

FXl
i (X̄, Xl)← Vi(X̄), dom(Xl), choice((X̄), (Xl)).

It can be proved [16] that

Mininst(G) ⊆ class of stable models of SV(Π(G)) ⊆ Legal(G). (4)

Queries expressed as logic programs can be answered by running them to-
gether with Π(G) under the cautious stable model semantics (that sanctions as
true what is true of all stable models). As a consequence of (4) we obtain that for
monotone queries Q the answers obtained using Π(G) coincide with CertainG(Q)
and MinimalG(Q).

The inclusions in (4) suggest that equality may not be achieved. The following
example shows that that is the case.

Example 19. Let D = {a, b, c, . . . } be the underlying domain. The system G3 is
defined by

V1(X)← P (X, Y); v1 = {a}
V2(X, Y)← P (X, Y); v2 = {(a, c)}.

Here we have Mininst(G3) = {{P (a, c)}}, however, the legal global instances
corresponding to stable models of Π(G3) are of the form {{P (a, c), P (a, z)} | z ∈
D}, that is, we obtain from the program more legal instances (or stable models)
than the minimal instances. The reason is that V2, being open, forces P (a, c) to be
in all legal instances, what makes the same condition on V1 being automatically
satisfied, i.e. no other values for Y are needed. Nevertheless, the choice operator,
as used above, may still choose, and it does, other values z ∈ D.

As mentioned before, the simple version of the specification program for this
system -even not being sound as a specification of the class of minimal instances-
can be used to correctly compute minimal and certain answers to monotone
queries. For instance, consider the following monotonic queries containing com-
parisons

Ans ← P (X, Y), Y �= c (5)
Ans(Y)← P (a, Y), Y �= c. (6)

The boolean query (5) has answer false in the class {{P (a, c), P (a, z)} | z ∈
D}, because it is not true of all the instances in it. Query (6) has empty answer
in the same class. In the minimal instance {P (a, c)}, the queries have answer
false, and ∅, respectively. We can see that these queries are correctly answered. �

64 L. Bertossi and L. Bravo

At this point we could compare what can be obtained using the simple spec-
ification of minimal instances and what could we obtain by trying to use the
inverse rules algorithm. Notice that the latter algorithm does not consider com-
parisons other than equalities [30]. The inverse rules can be seen as defining a
sort of generic, symbolic instance, which is obtained by propagating the source
contents through the inverses rules (from the bodies to the heads in them) and
the function symbols.

For example, the set V−1 of inverse rules for the system in Example 19 consists
of P (X, f(X)) ← V1(X) and P (X, Y) ← V2(X, Y). If we propagate the values
in the sources, we obtain a “generic instance” containing f -values, namely

Df = {P (a, c), P (a, f(a))}, (7)

that represents a family of legal instances, each of which can be obtained by
interpreting f on the underlying domain D. Basically, this class coincides with
the class we obtained using the program above (and then it represents a superset
of the minimal instances, but a subset of the legal instances). A difference is that
with the specification program we obtain the instances explicitly.

If we attempt to use “instance” (7) to evaluate the queries (5) and (6) (this
is the idea behind the IRA for conjunctive, built-in free queries in [30]), we
obtain, assuming that f(a) is different from c because they are syntactically
different, that the answer to (5) is Ans = true, whereas query (6) gets the
answer Ans = {f(a)}, which, after elimination of the f -value, becomes Ans = ∅.

The problem with this methodology for query answering based on generic
instances with functional values we just attempted, is that it does not capture
the minimal instances, actually the only minimal instance {P (a, c)} is missed by
the assumption that f(a) �= c. In order to make this approach work, we would
have to consider alternative values for function f . Our explicit approach based
on the choice operator achieves this, and can be naturally extended -as we will
do in Section 7.2- in such a way that not only monotonic queries, but also non
monotonic queries containing negation, can be handled correctly (the latter, wrt
the minimal answer semantics).

Example 20. (example 19 continued) Assume G3 is extended with the source
definition V3(X, Y) ← R(X, Y); v3 = {(a, c)}. Then, the minimal instance is
{{P (a, c), R(a, c)}}, and the instances obtained from the program are {{P (a, c),
P (a, z), R(a, c)} | z ∈ D}. Now the query

Ans ← P (X, Y), not R(X, Y) (8)

has answer false both in the minimal instance and in the class of the instances
obtained from the specification program. In the later case, in the sense that the
query is not true in all the models of the program. That is, also in this case the
simple specification is giving us the right minimal answers.

On the other side, the same query evaluated in the new IRA-induced, generic
instance Df = {P (a, c), P (a, f(a)), R(a, c)} has answer true if the functional
term is assumed to be different from c. �

Consistent Query Answers in Virtual Data Integration Systems 65

This example shows that even for some non monotonic queries, the simple
specification program returns the correct minimal answers. It is an interesting
open problem to characterize the class of system descriptions and non monotonic
queries for which the simple specification returns the correct minimal answers
(however, see [16] for some results in this direction). On the other side, a naive
application of the IRA to a query containing negation, as (8), does not give the
correct answer.

It is a natural question as to whether the program with Skolem functions
introduced by IRA (as in [30]) could be used, instead of the functional predicates,
for specifying the repairs, pruning at the end the ground functional terms when
queries are answered. In [16] it is shown -and this applies to both the simple and
refined version of the specification program- that doing so does not necessarily
capture the repairs of the system. The intuitive reason behind is that using the
function symbols may prevent us from detecting violations to the ICs by the
minimal instances. Actually, as Examples 19 and 20 already show, keeping the
functional symbols may fail to properly capture the minimal instances, which is
a problem when queries with negations or comparisons are to be answered.

In this work, when we answer non monotone queries, we are interested in the
minimal answers. Actually, the consistent answers as defined here are a subset of
the minimal answers (see Section 6). Wrt to the certain answers to non monotone
queries, we can see that negated sub-queries can always be made false by adding
extra data to the legal instances of an integration system with open sources. We
believe that the notion of minimal answer to a non monotone query posed to an
open system is the natural notion to use4, instead of the notion of certain answer.

7.2 The Refined Specification

If we want Π(G) to specify only the minimal instances, then the program has to
be refined. The new version Π(G) detects in which cases it is necessary to use the
function predicates. This is achieved by means of a stronger condition, addVi

(X̄),
in the choice rules, i.e. FXl

i (X̄, Xl) ← addVi
(X̄), dom(Xl), choice((X̄), (Xl)),

where addVi(X̄) is true only when the openness of Vi is not satisfied through
other views; and this can be further specified by means of extra rules. The general
refined version is described and analyzed in detail in [16]. For it, the class of
stable models of the program provably coincides with the minimal instances. In
consequence, the program can be used to compute minimal answers to arbitrary
queries and certain answers to monotone queries.

The refined version of the program uses annotation constants to be placed
in an extra argument added to the global relations. Their intended semantics is
given in Table 2. Annotation td is used to read off the atoms in the minimal
instances. The others are annotations that are used to compute intermediate
atoms. We illustrate the refined version by means of an example.

4 Assuming, as we have done in this chapter, that the sources are defined as conjunctive
views or disjunctions thereof. In particular, they are defined without negation.

66 L. Bertossi and L. Bravo

Table 2. Semantic of Annotation Constants for Minimal Models

annotation atom the tuple P (ā) is ...
td P (ā, td) an atom of the minimal legal instances
o P (ā,o) an obligatory atom in all the minimal legal instances
vi P (ā,vi) an optional atom introduced to satisfy the openness of

view Vi

nvi P (ā,nvi) an optional atom introduced to satisfy the openness of a
view other than Vi

Example 21. (example 19 continued) The refined program Π(G3) is:

dom(a), dom(c), ..., V1(a), V2(a, c). (9)
P (X, Y,v1)← addV1(X), FY

1 (X, Y). (10)
addV1(X)← V1(X), not auxV1(X). (11)
auxV1(X)← varV1,Z(X, Z). (12)

varV1,Z(X, Z)← P (X, Z,nv1). (13)
FY

1 (X, Y)← addV1(X), dom(Y), choice((X), (Y)). (14)
P (X, Y,o)← V2(X, Y). (15)

P (X, Y,nv1)← P (X, Y,o). (16)
P (X, Y, td)← P (X, Y,v1). (17)
P (X, Y, td)← P (X, Y,o). (18)

Rules (10) to (13) ensure that if there is an atom in source V1, e.g. V1(ā), and
if an atom of the form P (ā, Y) was not added by view V2, then it is added by rule
(10) with a Y value given by the functional predicate FY

1 (ā, Y). This function
predicate is calculated by rule (14). Rule (15) enforces the satisfaction of the
openness of V2 by adding obligatory atoms to predicate P , and rule (16) stores
this atoms with the annotation nv1 implying that they were added by a view
different from V1. The last two rules gather with annotation td the elements that
were generated by both views. Those are the atoms in the minimal instances.

The only stable model of this program is {dom(a), dom(c), . . . , V1(a), V2(a, c),
P (a, c, td), P (a, c,o), P (a, c, nv1), auxV1(a)}, which corresponds to the only
minimal legal instance {P (a, c)}. �

We have obtained an answer set programming specification of the minimal
instances of an open integration system under LAV. From it, the minimal answers
to complex queries, e.g. non stratified Datalog queries [1], can be computed using
the cautions or skeptical answer set semantics that sanctions as true what is
true of all stable models. Notice that the refined version (and also the simple
version) of the specification program Π(G) is a non stratified program, whose
data complexity [1] is likely to be higher than polynomial [27]. As with the simple
program, the refined program can be used to compute the certain answers to
monotone queries.

Consistent Query Answers in Virtual Data Integration Systems 67

It is interesting to observe that the specification Π(G) we just gave can be
seen as a considerable extension of the original IRA algorithm since it can be
used to obtain the certain answers to monotone queries involving comparisons
(see Example 19), and the minimal answers to non-monotone queries.

There are several issues and possible extensions that are discussed in detail
in [16]. We briefly mention some of them here. First, we do not need to make any
assumption about the underlying domain for the logic programming based spec-
ifications of minimal instances to work properly. All we need is that it -possibly
properly- contains the active domains of the sources and the constants that may
appear in the view definitions. However, if the program is to be run with a
system like DLV, we need to have a finite number of elements in the domain.
We can always simulate the potential infiniteness of the underlying domain by
means of a sufficiently large finite domain [16]. This can be achieved by introduc-
ing fresh constants. This subject related to a finite vs. infinite underlying domain
certainly deserves further investigation. Any case, computing with infinite sta-
ble models has started to receive attention from the answer set programming
community [14].

A possible extension, also discussed in [16], consists in having views defined
by disjunctions of conjunctive queries. Inspiration for the specification programs
can be found in the extension of the IRA to the case of disjunctive sources [29].

We will use the specification of minimal instances as a basis for the compu-
tation of consistent answers (see Section 8). In Section 9, the specification is ex-
tended to the case where also closed sources participate in the integration system.

8 Computing Consistent Answers in Integration Systems

We will see two methodologies for consistently answering queries posed to virtual
integration systems under LAV. The first one, in Section 8.1, is based on first-
order query rewriting. The second one, to be presented in Section 8.2, is much
more general, and provides a solution based on the specification of the repairs
of the minimal instances of an open integration systems. Both methodologies
eventually rely on the specification of minimal instanced presented in Section 7.

8.1 Query Rewriting for CQA

In this section we will describe a methodology, first presented in [10], that pro-
vides a partial solution to the problem of CQA under the LAV approach. It builds
upon the query rewriting approach to CQA for single relational databases de-
scribed in Section 5.1. The limitations of that approach are inherited by the
solution for the case of integration of data sources. In consequence, this solution
applies to queries Q that are conjunctions of literals, but without projection (or
existential quantification); and global integrity constraints that are universal. In
consequence, referential ICs are excluded.

The high level description of the rewriting based algorithm for CQA in in-
tegration system is as follows: Given as input a set IC of global integrity con-
straints, and global query Q that is a conjunction of literals, we do the following

68 L. Bertossi and L. Bravo

Meta−Algorithm (19)

1. Rewrite Q(X̄) into the first-order query Tω(Q(X̄)) using IC .5

2. Transform Tω(Q(X̄)) into a recursion-free Datalog¬ query program Π(Tω

(Q)) (this is straightforward [64]).
3. Find a query plan, Plan(Π(Tω(Q))) to answer the query Π(Tω(Q)) posed

to the global system.
4. Evaluate the query plan on the view extensions of G to compute the answer

set.

A problem with this algorithm is that the program Π(Tω(Q)) may contain
negation, that is introduced at the first step. We give some examples.

Example 22. Consider the integration system

V1(X, Y)← P (X, Y); v1 = {(a, d)}
V2(X, Z)← P (X, Y), R(Y, Z); v2 = {(a, b), (b, c)}.

The minimal instances are of the form Duv ={P (a, u), R(u, b), P (b, v), R(v, c),
P (a, d)}, with u, v ∈ D. Now consider the global IC IC : ∀x∀y(¬P (x, y) ∨
¬R(x, y)). The system is inconsistent, because the minimal instances obtained
with u = c, v = a, i.e. Dca = {P (a, c), R(c, b), P (b, a), R(a, c), P (a, d)} is incon-
sistent. The same happens with Dbb. The other minimal instances are consistent.
Then, the repairs are all the Du,v above, except for the last two combinations,
which in their turn contribute with the repairs D1

ca = {R(c, b), P (b, a), R(a, c),
P (a, d)}, D2

ca = {P (a, c), R(c, b), P (b, a), P (a, d)}, D1
bb= {P (a, b), R(b, b), R(b, c),

P (a, d)} D2
bb = {P (a, b), P (b, b), R(b, c), P (a, d)}. Now, consider the query Q :

P (X, Y)?. The only answer to this query in common to all repairs is {P (a, d)},
then this is the only consistent answer.

On the rewriting side, if we want the consistent answers to the same query
relative to IC , we rewrite the query as follows T (Q) : (P (X, Y) ∧ ¬R(X, Y))
(see Example 11), which produces the following query program that contains
negation: Ans(X, Y)← P (X, Y), not R(X, Y). �

Example 23. (example 6 continued) FD can be written in the form

∀x∀y∀z(¬R(x, y) ∨ ¬R(x, z) ∨ y = z). (20)

If the query Q : R(X, Y)? is posed to the system, we have to find the residues
of R(X, Y) wrt (20), and we obtain after the first step the rewritten query

Tω(Q(X, Y)) : R(X, Y) ∧ ¬∃Z(R(X, Z) ∧ Z �= Y). (21)

5 We are assuming here that T ω(Q(X̄)) produces a finite formula. Conditions for this
to happen in terms of Q and IC are studied in [3, 25]. However, those conditions are
satisfied by the most common universal ICs found in database practice.

Consistent Query Answers in Virtual Data Integration Systems 69

Query (21) is translated into the following Datalog¬ program Π(Tω(Q(X, Y))):

Ans(X, Y)← R(X, Y), not S(X, Y) (22)
S(X, Y)← R(X, Z), dom(Y), Y �= Z (23)

dom(a), dom(b), dom(c), dom(d), dom(e), ... (24)

The domain extends the active domain [1] that contains the constants in the
sources and those that may appear in the view definitions. This is a form of mate-
rialization of a domain closure assumption, however we are not necessarily closing
wrt the active domain, but wrt a superset of it that contains fresh constants. This
allows us to correctly compute certain answers (see [16] for a detailed discussion
of this issue). The introduction of the dom predicate in programs is a general
way to make the rules safe [72]. Despite these considerations, in this example,
the domain predicate is not necessary, because (21) is logically equivalent to

Tω(Q(X, Y)) : R(X, Y) ∧ ¬∃Z(R(X, Y) ∧ R(X, Z) ∧ Z �= Y).

In consequence, program Π(Tω(Q(X, Y))) can be written as the set of safe
rules Ans(X, Y) ← R(X, Y), not S(X, Y) and S(X, Y) ← R(X, Y), R(X, Z),
Y �=Z.

At step 3. of algorithm (19), we need a query plan to answer the query
expressed by (22)-(24). As we can see, the query contains negation and compar-
isons. �

Algorithms like IRA are designed to deal with negation-free queries without
comparisons [30]. On the other side, Π(Tω(Q)) does not contain recursion but
contains negation. In consequence, an algorithm like IRA, if it is going to be
applied in this context, has to be extended in order to handle queries that are,
e.g. non recursive Datalog programs with negation and comparisons.

Some very limited extensions of the IRA algorithm have been proposed in or-
der to include negation [10, 74, 35]. However, we can use our specification of the
minimal instances (see Section 7) as a general query plan mechanism for eventu-
ally computing consistent answers to queries. In Algorithm (19) that specification
can be used in the third step. All one needs to do is combine the query obtained
after the second step (with its predicates expanded with a new, final argument
with the annotation td in it) with the specification of the minimal instances.
The combined program is run under the cautions stable model semantics.

Example 24. (example 22 continued) The query Ans(X, Y) ← P (X, Y),
not R(X, Y) has to be combined with the specification of the minimal in-
stances of the integration system, which is essentially the same as the one given
in Example 18. If we want or need6 to use the refined version of the specifi-
cation of minimal instances, then the query has to be first transformed into
Ans(X, Y)← P (X, Y, td), not R(X, Y, td). �

6 In this example this is not necessary, because the simple program correctly specifies
the class of minimal instances. In [16] sufficient conditions are identified for this to
happen.

70 L. Bertossi and L. Bravo

8.2 CQA from Specifications of Repairs

A more general methodology that the one presented in Section 8.1 is based on
a logic programming specifications of the repairs of the minimal instances of
an integration system. First results were presented in [15], and full details can
be found in [16]. This methodology works for queries expressed in extensions
of Datalog, in particular, for first-order queries; and universal ICs combined
with acyclic sets of referential ICs. In the rest of this section, we will assume
that sources are open, and defined as conjunctive views over the global schema.
However the solution can be extended to combinations of closed and open sources
(see Section 9), and views defined as disjunctions of conjunctive queries [16].

Figure 2 describes the methodology in general terms. In order to compute the
consistent answer to a global query, the query is expressed as a query program,
which is run in combination with other programs that specifies, in two layers, the
minimal instances of the integration systems, first, and then, the repairs of the
minimal instances. Of course, the same specification program can be used with
different queries. The specification of minimal instances is the one presented in
Section 7.

Mappings

Global Relations

Answer Set
Programming(ASP)

specification of a set of
Legal Global Instances

ASP specification of the
repairs

Global ICs

Query
Query Program

(Datalog)

Sources

DLV
Run under skeptical

answer set
semantics

Consistent Answers to
Query

Fig. 2. Computing Consistent Answers

What we have so far is a specification of minimal instances of an open in-
tegration system, but they may not satisfy certain global ICs. In consequence,
we may consider specifying their repairs wrt those ICs. For this we can apply
the ideas and techniques developed to specify repairs of single databases (Sec-
tion 5). Actually, we can combine into a repair program, Π(G, IC), the program
that specifies the minimal instances with a program that specifies the repairs of
each minimal instance. This is because a minimal instance can be seen as (or
is) a single database instance. Instead of a full treatment (see [16]), we give an
example.

Consistent Query Answers in Virtual Data Integration Systems 71

Example 25. (example 21 continued) Consider system G3, but now with the
global integrity constraint Sym: ∀x∀y(P (x, y)→ P (y, x)). Since Mininst(G3) =
{{P (a, c)}}, an the only instance does not satisfy Sym, the system is inconsis-
tent.

The repair program, Π(G3,Sym), consists of two layers. The first one is ex-
actly program Π(G3) in Example 21 that specifies the minimal instances; and
the second layer is the following subprogram that repairs the minimal instances;
it builds on the atoms annotated with td in the first layer:

P (X, Y, t�)← P (X, Y, ta), dom(X), dom(Y).
P (X, Y, t�)← P (X, Y, td), dom(X), dom(Y).
P (X, Y, f�)← dom(X), dom(Y), not P (X, Y, td).
P (X, Y, f�)← P (X, Y, fa), dom(X), dom(Y).

P (X, Y, fa) ∨ P (Y, X, ta)← P (X, Y, t�), P (Y, X, f�), dom(X), dom(Y).
P (X, Y, t��)← P (X, Y, ta), dom(X), dom(Y).
P (X, Y, t��)← P (X, Y, td), dom(X), dom(Y), not P (X, Y, fa).
P (X, Y, f��)← P (X, Y, fa), dom(X), dom(Y).
P (X, Y, f��)← dom(X), dom(Y), not P (X, Y, td),

not P (X, Y, ta).
← P (X, Y, ta), P (X, Y, fa).

The stable models of this program are:

M1 = {dom(a), dom(c), . . . , V1(a), V2(a, c), P (a, c,nv1), P (a, c,v2),
P (a, c, td), P (a, c, t�), auxV1(a), P (a, a, f�), P (c, a, f�), P (c, c, f�),
P (a, a, f��), P (c, a, ta), P (c, c, f��), P (a, c, t��), P (c, a, t�),
P (c, a, t��)}.

M2 = {dom(a), dom(c), . . . , V1(a), V2(a, c), P (a, c,nv1), P (a, c,v2),
P (a, c, td), P (a, c, t�), auxV1(a), P (a, a, f�), P (c, a, f�), P (a, c, f�),
P (c, c, f�), P (a, a, f��), P (c, a, f��), P (a, c, f��), P (c, c, f��),
P (a, c, fa)}.

By reading the literals annotated with t��, we see that the first model corre-
sponds to the repair {P (a, c), P (c, a)}; the second one, to the empty repair. �

Repair programs can be given for specifying the repairs of any open integra-
tion system under the LAV approach with conjunctive view definitions; and for
any set of ICs containing universal and acyclic referential integrity constraints
[15, 16].

The restriction to sets of ICs that do not contain cycles in its referential
ICs has to do with limitations of the logic programming based approach to the
specification of repairs of single relational databases as presented in Section 5.
Fundamental, theoretical reasons behind these limitations, that are inherited by
our repair programs for integration systems, are studied in depth in [26, 20, 38].

72 L. Bertossi and L. Bravo

With the repair programs, we can now compute consistent answers to global
queries. Let Q(x̄) be a query posed to an integration system G. The methodology
is as follows. First the query gets its literals annotated with t��, f��, e.g. if the
query is first order, say Q(· · ·P (ū) · · · ¬R(v̄) · · ·), we pass to Q′ := Q(· · ·P (ū,
t��) · · · R(v̄, f��) · · ·). Next, a query program Π(Q′) with an Ans(X̄) predicate is
produced from Q (this is standard [64]). Finally, the programΠ := Π(Q′) ∪Π(G,
IC) is run under the stable model semantics; and the ground atoms Ans(t̄) ∈⋂{S | S is a stable model of Π} are collected in the answer set to be returned
to the user.

Example 26. (example 25 continued) Consider G3 and the global query Q :
P (X, Y)? From it we generate Q′ : P (X, Y, t��), which in its turn is trans-
formed into the query program Π(Q′) : Ans(X, Y) ← P (X, Y, t��). Next, we
form Π = Π(G3,Sym) ∪Π(Q′), with Π(G3,Sym) as in Example 25.

Now, the models of program Π are those of Π(G3,Sym) but extended with
ground Ans atoms, namely they are:M1 =M1 ∪ {Ans(a, c), Ans(c, a)};M2 =
M2 ∪∅. Since there are no Ans atoms in common, then query has no consistent
answers (as expected). �

Example 27. (example 16 continued) The program that computes the consistent
answers to query Q(X, Y) : R(X, Y)? from system G1 wrt FD is:

Subprogram for minimal instances:

dom(a). dom(b). dom(c). dom(d). dom(e). . . . V1(a, b). V1(c, d). V2(c, a). V2(e, d).

R(X, Y, td)← V1(X, Y).
R(Y, X, td)← V2(X, Y).

Repair subprogram:

R(X, Y, t�)← R(X, Y, ta), dom(X), dom(Y).
R(X, Y, t�)← R(X, Y, td), dom(X), dom(Y).
R(X, Y, f�)← dom(X), dom(Y), not R(X, Y, td).
R(X, Y, f�)← R(X, Y, fa), dom(X), dom(Y).

R(X, Y, fa) ∨R(X, Z, fa)← R(X, Y, t�), R(X, Z, t�), Y �= Z,

dom(X), dom(Y), dom(Z).
R(X, Y, t��)← R(X, Y, ta), dom(X), dom(Y).
R(X, Y, t��)← R(X, Y, td), dom(X), dom(Y), not R(X, Y, fa).

← R(X, Y, fa), R(X, Y, ta).

Query subprogram:

Ans(X, Y)← R(X, Y, t��).

Consistent Query Answers in Virtual Data Integration Systems 73

The Ans atom in common to the two stable models are Ans(c, d), Ans(d, e),
then the set of consistent answers to the query is {(c, d), (d, e)}.

Here we have used the simple version of the program that specifies the min-
imal instances. In this case the specification is sound, i.e. it does not compute
any model that does not correspond to a minimal instance. Classes of system
descriptions for which the simple specification has a sound behavior wrt the class
of minimal instances are studied in [16]. The example here falls into one of those
classes. �

The specifications we have presented are sound and complete for CQA for sets
of ICs consisting of universal integrity constraints and acyclic sets of referential
integrity constraints [16]. Views can be defined by disjunctions of conjunctive
formulas; and queries can be arbitrary Datalog¬ queries.

9 Specification of Minimal Instances: Mixed Case

So far we have assumed that all the sources are open. Now we will consider the
mixed case, where some of the sources may be closed or closed and open (clopen).
In consequence, a virtual data integration system will have a description like the
one in (1), but each source will have a label indicating if it is open, closed or
clopen [43]. Intuitively speaking, a closed source contains a superset of the data
of its kind in the system, and the clopen source contains exactly all the data of
its kind in the system.

More precisely, if a material source relation v, defined as the view V (X̄)←
ϕ

V
(X̄) of the global system, has been defined as a closed (clopen) source, then

in any legal instance D, it must hold v ⊇ ϕ
V
(D) (resp. v = ϕ

V
(D)).

In this section we will describe how to modify the program that specifies the
minimal instances presented in Section 7 when some of the sources are declared
closed or clopen.

Example 28. For the domain D = {a, b, c, . . . }, consider the integration system
G4:

V1(X, Z)← P (X, Y), R(Y, Z); v1 = {(a, b)} open (25)
V2(X, Y)← P (X, Y); v2 = {(a, c)} clopen (26)

In Example 18 we had the same sources and definitions, but then they were
all declared open; and we had Mininst(G2) = {{P (a, c), P (a, z), R(z, b)} | z ∈
D}. Now, the label on the second sources forces relation P to be {(a, c)}. In
consequence, we obtain Mininst(G4) = {{P (a, c), R(c, b)}}. �

It is clear that the closed and clopen labels will impose additional restrictions
on the legal instances we had for the purely open case, when all sources are open.
In particular, these labels will never force to add new tuples to the legal instances.
Actually, if a source is declared closed, then that source will contribute with the
empty set of tuples to the minimal instances of the integration system.

74 L. Bertossi and L. Bravo

With open, closed and clopen sources, the sets of legal and minimal instances
will always be subsets of the same sets for the case where the same sources are
all declared open. In order to obtain the minimal instances in the mixed case, all
we have to do is filter out some of the minimal instances obtained in the purely
open case, namely those that violate the closedness condition for some of the
sources. This can be captured at the logic program specification level by means
of a program denial constraint, which has the effect of discarding some of the
stable models.

In the mixed case, the program Πmix(G) that specifies the minimal in-
stances consists of the program Π(G) we had for the open case in Section
7 (as if all the sources were open) plus a denial constraint of the form ←
P1(X̄1), . . . , Pn(X̄n), not V (X̄), for each closed (or clopen) source v with view
definition V (X̄) ← P1(X̄1), . . . , Pn(X̄n). That is, the open sources contribute
with rules to the program, the clopen sources both with rules and program
constraints, and the closed sources with program constraints only.

With these modifications, the obtain the same correspondence between the
stable models of the program Πmix(G) and the minimal instances of the mixed
integration system G.
Example 29. (example 28 continued) The program Πmix(G4) that specifies the
minimal instances of system G4 is:

dom(a). dom(b). dom(c). . . . V1(a, b). V2(a, c).

P (X, Y)← V1(X, Z), FY
1 (X, Z, Y)

R(Y, Z)← V1(X, Z), FY
1 (X, Z, Y)

P (X, Y)← V2(X, Y)
FY

1 (X, Z, Y)← V1(X, Z), dom(Y), choice((X, Z), (Y))
← P (X, Y), not V2(X, Y).

This program, excluding the last denial, coincides with program Π(G2) in
Example 18, where the same sources and definitions are considered, but all the
sources are open only. With the denial constraint, that enforces the closeness of
source V2, the only stable model of Πmix(G4) is {dom(a), . . . , V1(a, b), V2(a, c),
P (a, c), FY

1 (a, b, c), R(c, b)}, which corresponds to the only minimal instance
{{P (a, c), R(c, b)}}. �

Notice that the solution we have reached via logic programs is similar in spirit
to the solution presented in [43], where the mixed case is treated. There tableaux
with constraints are used to compactly represent the legal instances and obtain
certain answers. The tableaux capture the open part, and the constraints, as in
our solution, the closed part.

Consistent Query Answers in Virtual Data Integration Systems 75

10 Ongoing and Future Work

There are still many relevant open issues in this line of research. Consistency
issues have barely investigated in the context of virtual data integration systems.
Other research results obtained by other authors in this direction are described
in Section 11.

The solution to the problem of certain and consistent query answering in
virtual data integration system under the LAV approach presented in Sections
7 and 8.2, resp. are quite general, and conceptually clear, however many imple-
mentation issues are still open. They have to be addressed in order to use those
solutions in real database applications.

A first step would be to implement certain and consistent query answering
for the most common queries and constraints found in database practice. Ad
hoc mechanisms could be derived from the logic programming specifications. In
this direction, [13] shows how to derive, for some classes of queries, first order
rewritings from the logic programs that specify repairs of single databases. Of
course, by complexity reasons, this is not always possible [11].

In more general terms, the research should be focused on the specialization,
optimization, and evaluation of the logic programs we have presented. Special-
ization has to do with deriving program for particular classes of queries and
constrains from the general ones, that are better behaved in terms of evaluation.
Optimization has to do with producing equivalent programs that can be more
easily evaluated, in particular, the interaction of the logic programming system
with the underlying databases has to be optimized. Some optimizations for CQA
in single databases are introduced in [7, 13].

Evaluation issues are also extremely relevant. They have to do with split-
ting the program, caching intermediate results, reusing previous computations,
localizing computations to the relevant parts of the data sources. Answering a
particular query may not require a full computation of the repairs, but only
partial computation could suffice. It becomes important to detect which are the
relevant portions of data [32].

Query evaluation is a crucial point. Current implementations of answer set
programming are not oriented to the problem of query answering as found in
databases, where open queries are usually posed and a set of answers is returned
to the user. Instead, the emphasis in answer set programming has been placed
on computation of (some) models, and answering ground queries. Actually, the
evaluation methodology in such systems is, in general terms, based on massive
grounding of the program, full computation of stable models, and recollection
of atoms in the intersection of all of them. Grounding is already a problem
if the program is to be grounded on the full active domain of the databases,
because the ground program generated can be huge. See [31, 59] for a discussion
of implementation details.

Query evaluation methodologies that are directed by the query seem to be
necessary for applications in databases, in particular, the development and im-
plementation of “magic sets” methods [1] for disjunctive logic programs under

76 L. Bertossi and L. Bravo

the stable model semantics is a promising area of research. Recent research has
started addressing this problem [46].

Most of the research around query answering in virtual data integration sys-
tems starts from a fixed class of mappings that describe the contents of the
sources. Given a class, the semantics and query answering mechanisms are pro-
vided. However, in spite of the fact that design issues of data integration systems
have been studied [8, 9, 71], the analysis of the impact of particular forms of de-
sign on the syntax of the mappings and on query answering has been largely
neglected. In particular, if would be interesting to investigate how the integra-
tion system is to be designed if certain restrictions on the mappings are to be
satisfied. Determining what is a good design for a virtual data integration in
terms of the query answering features of the system is something that deserves
further investigation.

11 Related Work

Here we will mention only those papers that more or less explicitly consider
consistency issues in virtual data integration systems. Other important papers
on virtual data integration have been cited in the main body of this paper,
including those that assume that certain integrity constraints hold when query
plans are derived.

An early approach to virtual data integration is presented in [68]. There, op-
erations on the relations and attributes in the sources are defined, e.g. meet, join,
aggregate, add. These operators applied to a set of source databases generate
a global virtual database schema. In this way, mappings are derived and ex-
press the global relations as results of a set of operations on the source relations.
When a query is posed, it is translated to the sources relations by considering
the operators in the inverse order in which they where applied.

In [69], a model is presented where the integration system is considered to
have a real global database, and the sources are views obtained by applying
projections and selections to this global database. In this framework, the pos-
sibility of having inconsistencies in the instances is considered. Inconsistency is
reflected in the fact that it can be impossible for the sources to be views of this
single global database instance. For example. Consider the global schema with
a binary relation R with attributes A, B. Let source I have elements {a}, and
source II, elements {b}, and the respective views V1 = ΠA(R), V2 = ΠA(R). In
this case, there is an instance inconsistency, because even though both sources
are views of the single global database and they have the same view definitions,
their elements are different. In order to handle this situation, the notion of ap-
proximate answer is introduced, actually a lower bound and an upper bound
are given, corresponding, respectively, to the intersection and union of all the
possible answers of the rewriting of the query using the views. No complexity
analysis is provided. Global integrity constraints are not considered.

In [19], the use of integrity constraints in a data integration system
under the GAV approach for clopen and open sources is studied. In the

Consistent Query Answers in Virtual Data Integration Systems 77

clopen7 case, the authors argue that the integration system can be seen as a
single database, and therefore, the query answering process in the presence of
ICs can be done appealing to the concept of repair [3] and CQA mechanisms for
single databases [3, 47, 6]. If the sources are open and there are no ICs, queries
can be answered by unfolding. If there are ICs, the semantic is given by the
set of legal instances that satisfy both the open mappings and the integrity con-
straints. Their legal instances can be seen as repairs (in our sense) of the retrieved
global database that is obtained by propagating the source elements through the
mapping. Repairs admit only tuple insertions. Since [19] considers as legal those
databases that satisfy the ICs, it holds that their “certain answers” correspond
to our consistent answers. If there are no legal instances (in their sense), the
integration system is said to be “inconsistent”. In this case, tuple deletions are
also needed in order to achieve consistency.

In [17] the same semantics as in [19] is consider, for GAV and open sources.
There they present an algorithm for rewriting a conjunctive query [1] in order to
retrieve the “certain answers” (our consistent answers). This algorithm handles
foreign key constraints and assumes that the key constraints are preserved by
the mapping, i.e. that the retrieved global instance will not violate the key
constraints. For these integrity constraints there will always be legal instances
(in their sense), and therefore the integration system is consistent. The rewritten
query can be unfolded with the mapping in order to calculate their “certain
answers”. In [19] an implementation of this method is presented. The complexity
of the rewriting is polynomial wrt data complexity.

According to the semantic considered in [17, 19], if a key constraint is not
satisfied, then there is no legal instance. This is why in [57] the loosely-sound
semantic (in opposition to the previous strictly-sound semantic) is introduced.
Now, a database is legal if it is satisfies the integrity constraints and if there is
no other database that is better. A database is better than another if the portion
of the former that is contained in the retrieved global database is greater that
the one of the latter. In this way, we have that the inconsistencies wrt foreign
key constraints are solved by adding tuples to the retrieved global database, and
those wrt key constraints, by deleting a minimal number of tuples from it. The
global instances in this case correspond to a subclass of the repairs introduced
in [10] for integration systems.

In order to compute the legal instances for the loosely-sound semantic, a
Datalog¬ program under cautious stable model semantics is used. This program
calculates a maximal superset of the retrieved global database that satisfies the
key constraints. In order to retrieve the certain answers, the query is transformed
as defined in [17] and added to that program. This approach works for global
relations defined by Datalog queries (and then, GAV is followed). The complexity
of retrieving the “certain answers” becomes co-NP-complete.

7 In several papers, instead of open, clopen and closed, the terms sound, exact and
complete are used, resp.

78 L. Bertossi and L. Bravo

Still under the GAV approach, the results in [57] were extended in [21], con-
sidering key constraints and inclusion dependencies, and also queries that are
expressed as unions of conjunctive queries. For the strictly-sound semantics two
cases are analyzed. In the first case, where only inclusion dependencies (IDs) are
considered, the integration system cannot be “inconsistent”; so there is at least
one legal database. The rewriting of a query becomes the mapping rules plus the
query that is successively unfolded by rules that represent the inclusion depen-
dencies. The second case considers the combination of key dependencies (KDs)
and non-key-conflicting IDs (NKC), i.e. IDs where the target (global) relation
has no key dependencies or where the target attributes are not a strict superset
of the key of the target relation. The rewriting of a query is the same as in the
first case plus some rules that enforce that if a global relation violates a KD,
then all the tuples are an answer to the query.

For the loosely-sound semantics, the rewriting in [21] is expressed with the
same Datalog¬ program presented in [57]. In order to repair wrt the IDs, this
program is coupled with the query rewriting for the case of only IDs and strictly-
sound semantics. The data complexity under the strictly-sound semantics for
NKC integration systems is PTIME. For loosely-sound semantics, it becomes
coNP-complete.

In [32] logic programs for consistent query answering in virtual integration
systems are presented. The GAV approach is followed and the global relations
can be defined using stratified Datalog¬ queries. The ICs considered are universal
integrity constraints and the queries are expressed in non-recursive Datalog¬.
The specification program is a disjunctive Datalog¬ program consisting of three
hierarchically evaluated modules. The first one uses the mapping and the data
sources to compute the “retrieved global database” (as in [19]). The second one
enforces the satisfaction of the integrity constraints through repair rules; and
the third one corresponds to the query. The structure of each of them depends
on the mappings, ICs and query, respectively.

The source of complexity for the program in [32] comes from the second
module. In consequence, optimizations are introduced. The optimization process
consists of three steps: pruning the rules that are not relevant for computing the
answers to the query, next determining and computing the set of facts that need
to be repaired, and finally, recombining the repairs in order to compute the
answers. The second step decomposes the facts in two sets, those that might be
repaired and those that for sure are not going to be repaired. The recombination
process presents the repairs in a compact way in order to query them as a
relational database. For this, an extra attribute marking each fact is added to
each relation. This attribute is a string of zeros and ones. A one (zero) in position
i means that the fact is (not) in the repair i. The facts for which no repairs are
calculated in the second step are marked with ‘111 . . . 11’. The query needs to be
reformulated in order to pose it directly to the marked database. Experiments
show that the optimizations significantly improve the performance of the naive
and direct techniques.

Consistent Query Answers in Virtual Data Integration Systems 79

It seems that the optimizations presented in [32] can be adapted to the logic
programs we have presented for CQA.

Finally, we will just mention that there seem to be interesting connections
between the area of consistently querying virtual data integration systems and
other areas, like querying incomplete databases [66, 44], merging inconsistent
theories [63, 5], semantic reconciliation of data [54], schema mapping [71, 28, 70],
data exchange [33, 34], and query answering in peer-to-peer systems [55, 52, 53,
36, 12, 24].

Acknowledgements: This chapter reports on research funded by DIPUC, CON-
ICYT, FONDECYT, Carleton University Start-Up Grant 9364-01, NSERC Grant
250279-02, CoLogNet. L. Bertossi is Faculty Fellow of the IBM Center for Ad-
vanced Studies, Toronto Lab. We are grateful to Jan Chomicki, Alvaro Cortes,
Claudio Gutierrez, Alberto Mendelzon, Pablo Barcelo, Alon Halevy, Enrico Fran-
coni, Andrei Lopatenko, Ariel Fuxman, and Giuseppe De Giacomo for collabo-
ration, useful conversations and remarks. Comments received from anonymous
referees are highly appreciated.

References

1. Abiteboul, S.; Hull, R. and Vianu, V. Foundations of Databases. Addison-Wesley,
1995.

2. Abiteboul, A. and Duschka, O. Complexity of Answering Queries Using Material-
ized Views. In Proc. ACM Symposium on Principles of Database Systems (PODS
98), 1998, pp. 254-263.

3. Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query Answers in Inconsis-
tent Databases. In Proc. 18th ACM Symposium on Principles of Database Systems
(PODS 99), 1999, pp. 68–79.

4. Arenas, M., Bertossi, L. and Chomicki, L. Answer Sets for Consistent Query
Answering in Inconsistent Databases. Theory and Practice of Logic Programming,
2003, 3(4-5): 393-424.

5. Baral, C., Kraus, S., Minker, J. and Subrahmanian, V. S. Combining Knowledge
Bases Consisting of First-Order Theories.Computational Intelligence,1992, 8:45-71.

6. Barcelo, P. and Bertossi, L. Logic Programs for Querying Inconsistent Databases.
In Proc. International Symposium on Practical Aspects of Declarative Languages
(PADL 03), Springer LNCS 2562, 2003, pp. 208–222.

7. Barcelo, P., Bertossi, L. and Bravo, L. Characterizing and Computing Semantically
Correct Answers from Databases with Annotated Logic and Answer Sets. Chapter
in book Semantics of Databases, Springer LNCS 2582, 2003, pp. 1–27.

8. Batini, C., Lenzerini, M. and Navathe, S.B. A Comparative Analysis of Method-
ologies for Database Schema Integration. ACM Computing Surveys, 1986, 18(4):
323-364.

9. Bergamaschi, S., Castano, S., Vincini, M., and Beneventano, D. Semantic Inte-
gration of Heterogeneous Information Sources. Data and Knowledge Engineering,
2001, 36(3):215-249.

10. Bertossi, L., Chomicki, J., Cortes, A. and Gutierrez, C. Consistent Answers from
Integrated Data Sources. In Flexible Query Answering Systems, Springer LNAI
2522, 2002, pp. 71–85.

80 L. Bertossi and L. Bravo

11. Bertossi, L. and Chomicki, J. Query Answering in Inconsistent Databases. Chapter
in book Logics for Emerging Applications of Databases, J. Chomicki, G. Saake and
R. van der Meyden (eds.), Springer, 2003.

12. Bertossi, L. and Bravo, L. Query Answering in Peer-to-Peer Data Exchange Sys-
tems. arXiv.org paper cs.DB/0401015. To appear in Proc. International Workshop
on Peer-to-Peer Computing & DataBases (P2P&DB 04), Springer LNCS.

13. Bertossi, L. and Bravo, L. In preparation.
14. Bonatti, P. Reasoning with Infinite Stable Models. Artificial Intelligence, 2004,

156(1):75-111.
15. Bravo, L. and Bertossi, L. Logic Programs for Consistently Querying Data Inte-

gration Systems. In Proc. International Joint Conference on Artificial Intelligence
(IJCAI 03), Morgan Kaufmann, 2003, pp. 10–15.

16. Bravo, L. and Bertossi, L. Disjunctive Deductive Databases for Computing Certain
and Consistent Answers to Queries from Mediated Data Integration Systems. To
appear in Journal of Applied Logic (extended version of [15])

17. Cali, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. Data Integration Un-
der Integrity Constraints. In Proc. Conference on Advanced Information Systems
Engineering (CAISE 02), Springer LNCS 2348, 2002, pp. 262–279.

18. Cali, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. On the Expressive
Power of Data Integration Systems. In Proc. of the International Conference on
Conceptual Modeling (ER 02), Springer LNCS 2503, 2002, pp. 338–350.

19. Cali, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. On the Role of Integrity
Constraints in Data Integration. IEEE Data Engineering Bulletin, 2002, 25(3):
39-45.

20. Cali, A., Lembo, D. and Rosati, R. On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In Proc. of the ACM
Symposium on Principles of Database Systems (PODS 03), ACM Press, 2003, pp.
260-271.

21. Cali, A., Lembo, D. and Rosati, R. Query Rewriting and Answering under Con-
straints in Data Integration Systems. In Proc. of the International Joint Conference
on Artificial Intellience (IJCAI 03), Morgan Kaufmann, 2003, pp. 16-21.

22. Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. Y. What is Query
Rewriting? In Proc. of the International Workshop on Knowledge Representation
meets Databases (KRDB 00), CEUR Electronic Workshop Proceedings, 2000, pp.
17-27.

23. Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. Y. View-based Query
Containment. In Proc. of the ACM Symposium on Principles of Database Systems
(PODS 03), ACM Press, 2003, pp. 56–67.

24. Calvanese, D., De Giacomo, G., Lenzerini, M. and Rosati, R. Logical Foundations
of Peer-To-Peer Data Integration. In Proc. of the ACM Symposium on Principles
of Database Systems (PODS 04), ACM Press, 2004, pp. 241-251.

25. Celle, A. and Bertossi, L. Querying Inconsistent Databases: Algorithms and Imple-
mentation. In Computational Logic - CL 2000, Stream: International Conference
on Rules and Objects in Databases (DOOD 00), Springer LNAI 1861, 2000, pp.
942-956.

26. Chomicki, J. and Marcinkowski, J. Minimal-Change Integrity Maintenance Using
Tuple Deletions. arXiv.org paper cs.DB/0212004. To appear in Information and
Computation.

27. Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. Complexity And Expressive
Power Of Logic Programming. ACM Computer Surveys, 2001, 33(3):374-425.

Consistent Query Answers in Virtual Data Integration Systems 81

28. Doan, A., Domingos, P. and Halevy, A. Learning to Match the Schemas of Data
Sources: A Multistrategy Approach. Machine Learning, 2003, 50(3): 279-301.

29. Duschka, O. Query Planning and Optimization in Information Integration. PhD
Thesis, Stanford University, December 1997.

30. Duschka, O., Genesereth, M. and Levy, A. Recursive Query Plans for Data Inte-
gration. Journal of Logic Programming, 2000, 43(1):49-73.

31. Eiter, T., Faber, W.; Leone, N. and Pfeifer, G. Declarative Problem-Solving in
DLV. Chapter in book Logic-Based Artificial Intelligence, J. Minker (ed.), Kluwer,
2000, pp. 79-103.

32. Eiter, T., Fink, M., Greco, G. and Lembo, D. Efficient Evaluation of Logic Pro-
grams for Querying Data Integration Systems. In Proc. International Conference
on Logic Programming (ICLP 03), Springer LNCS 2916, 2003, pp. 163-177.

33. Fagin, R., Kolaitis, P., Miller, R. and Popa, L. Data Exchange: Semantics and
Query Answering. In Proc. Int. Conf on Database Theory (ICDT 03), Springer
LNCS 2572, 2003, pp. 207-224.

34. Fagin, R., Kolaitis, P. and Popa, L. Data Exchange: Getting to the Core. In Proc. of
the ACM Symposium on Principles of Database Systems (PODS 03), ACM Press,
2003, pp. 90-101.

35. Flesca, S. and Greco, S. Rewriting Queries Using Views. Transactions on Knowl-
edge and Data Engineering, 2001, 13(6): 980-995.

36. Franconi, E., Kuper, G., Lopatenko, L., Serafini, L. A Robust Logical and Com-
putational Characterisation of Peer-to-Peer Database Systems. In Proc. Interna-
tional Workshop on Databases, Information Systems and Peer-to-Peer Computing
(DBISP2P 03), Springer LNCS 2944, 2004, pp. 64-76.

37. Friedman, M., Levy, A. and Millstein, T. Navigational Plans for Data Integration.
In Proc. National Conference on Artificial Intelligence (AAAI 99), AAAI Press,
1999, pp. 67-73.

38. Fuxman, A. and Miller, R.J. Towards Inconsistency Management in Data Integra-
tion Systems. In Proceedings of the IJCAI-03 Workshop on Information Integration
on the Web.

39. Giannotti, F., Pedreschi, D., Sacca, D. and Zaniolo, C. Non-Determinism in De-
ductive Databases. In Proc. International Conference on Deductive and Object-
Oriented Databases (DOOD 91), Springer LNCS 566, 1991, pp. 129–146.

40. Gelfond, M. and Lifschitz, V. The Stable Model Semantics for Logic Program-
ming. In Logic Programming, Proceedings of the Fifth International Conference
and Symposium (ICLP/SLP 88), MIT Press, 1988, pp. 1070-1080.

41. Gelfond, M. and Lifschitz, V. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 1991, 9:365–385.

42. Gelfond, M. and Leone, N. Logic Programming and Knowledge Representation -
The A-Prolog Perspective. Artificial Intelligence, 2002, 138(1-2):3-38.

43. Grahne, G. and Mendelzon, A. Tableau Techniques for Querying Information
Sources through Global Schemas. In Proc. of the International Conference on
Database Theory (ICDT 99), Springer LNCS 1540, 1999, pp. 332–347.

44. Grahne, G. Information Integration and Incomplete Information. IEEE Computer
Society Bulletin on Data Engineering, September 2002, pp. 46-52.

45. Grant, J. and Minker, M. A Logic-based Approach to Data Integration. Theory
and Practice of Logic Programming, 2002, 2(3):323-368.

46. Greco, S. Binding Propagation Techniques for the Optimization of Bound Dis-
junctive Queries. IEEE Transactions on Knowledge and Data Engineering, 2003,
15(2):368-385.

82 L. Bertossi and L. Bravo

47. Greco, G., Greco, S. and Zumpano, E. A Logical Framework for Querying and
Repairing Inconsistent Databases. IEEE Transactions on Knowledge and Data
Engineering, 2003, 15(6):1389-1408.

48. Gryz, J. Query Rewriting Using Views in the Presence of Functional and Inclusion
Dependencies. Information Systems, 1999, 24(7):597–612.

49. Gupta, A. and Singh Mumick, I. (eds.) Materialized Views: Techniques, Imple-
mentations, and Applications. MIT Press, 1999.

50. Halevy, A.Y. Theory of Answering Queries Using Views. SIGMOD Record, 2000,
29(4) 40-47.

51. Halevy, A.Y. Answering Queries Using Views: A Survey. VLDB Journal, 2001,
10(4): 270-294.

52. Halevy, A., Ives, Z., Suciu, D. and Tatarinov, I. Schema Mediation in Peer Data
Management Systems. In Proc. of the International Conference on Data Engineer-
ing (ICDE 03), IEEE Computer Society, 2003, pp. 505-518.

53. Halevy, A.Y. Corpus-Based Knowledge Representation. In Proc. International
Joint Conference on Artificial Intelligence (IJCAI 03), Morgan Kaufmann, 2003,
pp. 1567-1572.

54. Hull, R. Managing Semantic Heterogeneity in Databases: A Theoretical Perspec-
tive. In Proc. of the ACM Symposium on Principles of Database Systems (PODS
97), ACM Press, 1997, pp. 51-61.

55. Kementsietsidis, A., Arenas, M. and Miller, R.J. Mapping Data in Peer-to-Peer
Systems: Semantics and Algorithmic Issues. In Proc. of the ACM International
Conference on Management of Data (SIGMOD 03), ACM Press, 2003, pp. 325-
336.

56. Kolaitis, Ph. and Vardi, M. Conjunctive-Query Containment and Constraint Sat-
isfaction. J. Computer and Systems Sciences, 2000, 61(2): 302-332.

57. Lembo, D., Lenzerini, M. and Rosati, R. Source Inconsistency and Incompleteness
in Data Integration. In Proc. International Workshop Knowledge Representation
meets Databases (KRDB 02), CEUR Electronic Workshop Proceedings, 2002.

58. Lenzerini, M. Data Integration: A Theoretical Perspective. In Proc. ACM Sym-
posium on Principles of Database Systems (PODS 02), ACM Press, 2002, pp.
233-246.

59. Leone, N. et al. The DLV System for Konwledge Representation and Reasoning.
arXiv.org paper cs.LO/0211004. To appear in ACM Transactions on Computa-
tional Logic.

60. Levy, A.Y., Mendelzon, A., Sagiv, Y. and Srivastava, D. Answering Queries Using
Views. In Proceedings of the ACM Symposium on Principles of Database Systems
(PODS 95), ACM Press, 1995, pp. 95-104.

61. Levy, A., Rajaraman, A. and Ordille, J. Querying Heterogeneous Information
Sources using Source Descriptions. In Proc. International Conference on Very
Large Databases (VLDB 96), Morgan Kaufmann, 1996, pp. 251–262.

62. Levy, A. Logic-Based Techniques in Data Integration. Chapter in Logic Based
Artificial Intelligence, J. Minker (ed.), Kluwer Publishers, 2000.

63. Lin, J. and Mendelzon, A. Merging Databases under Constraints. International
Journal of Cooperative Information Systems, 1996, 7(1):55-76.

64. Lloyd, J.W. Foundations of Logic Programming. Second ed., Springer-Verlag, 1987.
65. McBrien, P. and Poulovassilis, A. Data Integration by Bi-Directional Schema

Transformation Rules. In Proc. International Conference on Data Engineering
(ICDE 03), IEEE Computer Society, 2003, pp. 227–238.

Consistent Query Answers in Virtual Data Integration Systems 83

66. Meyden, R.v.d. Logical Approaches to Incomplete Information: A Survey. Chapter
in Logics for Databases and Information Systems, J.Chomicki and G. Saake (eds.),
Kluwer, 1998, pp. 307-356.

67. Millstein, T., Halevy, A. and Friedman, M. Query Containment for Data Integra-
tion Systems. Journal of Computer and Systems Sciences, 2003, 66(1): 20-39.

68. Motro A. Superviews: Virtual Integration of Multiple Databases. IEEE Transac-
tions on Software Engineering, 1987, 13(7):785–798.

69. Motro A. Multiplex: A Formal Model for Multidatabases and Its Implementation.
In Proc. International Workshop on Next Generation Information Technology and
Systems, Springer LNCS 1649, 1999, pp. 138–158.

70. Pottinger, R., and Bernstein, Ph. Creating a Mediated Schema Based on Initial
Correspondences. IEEE Data Engineering Bulletin, 2002, 25(3): 26-31.

71. Rahm, E. and Bernstein, Ph.A. A Survey of Approaches to Automatic Schema
Matching. VLDB Journal, 2001, 10:334-350.

72. Ullman, J.D. Principles of Database and Knowledge-Base Systems. Computer
Science Press, 1988.

73. Ullman, J.D. Information Integration Using Logical Views. Theoretical Computer
Science, 2000, 239(2): 189-210.

74. Wei, F. and Lausen, G. Containment of Conjunctive Queries with Safe Negation.
In Proc. International Conference of Database Theory (ICDT 03), Springer LNCS
2572, 2003, pp. 346-360

75. Wiederhold, G. and Genesereth, M. The Conceptual Basis for Mediation Services.
IEEE Expert, 1997, 12(5): 38-47.

	Introduction
	Virtual Data Integration Systems
	Mediators for Data Integration
	Description of Data Sources
	Comparison of Paradigms
	Data Integration and Consistency

	Semantics of Virtual Data Integration Systems
	Query Plans
	Consistent Query Answering for Single Databases
	Query Rewriting
	Logic Programming

	Semantics of CQA in Integration Systems
	Logic Programming Specification of Minimal Instances
	The Simple Specification
	The Refined Specification

	Computing Consistent Answers in Integration Systems
	Query Rewriting for CQA
	CQA from Specifications of Repairs

	Specification of Minimal Instances: Mixed Case
	Ongoing and Future Work
	Related Work

