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Abstract. A database D may be inconsistent wrt a given set IC of in-
tegrity constraints. Consistent Query Answering (CQA) is the problem
of computing from D the answers to a query that are consistent wrt IC .
Consistent answers are invariant under all the repairs of D, i.e. the consis-
tent instances that minimally depart from D. Three classes of repair have
been considered in the literature: those that minimize set-theoretically
the set of tuples in the symmetric difference; those that minimize the
changes of attribute values, and those that minimize the cardinality of
the set of tuples in the symmetric difference. The latter class has not
been systematically investigated. In this paper we obtain algorithmic
and complexity theoretic results for CQA under this cardinality-based
repair semantics. We do this in the usual, static setting, but also in a dy-
namic framework where a consistent database is affected by a sequence of
updates, which may make it inconsistent. We also establish comparative
results with the other two kinds of repairs in the dynamic case.

1 Introduction

The purpose of consistent query answering (CQA) is to compute query answers
that are consistent with certain integrity constraints (ICs) that the database as
a whole may fail to satisfy. Consistent answers have been characterized as those
that are invariant under minimal forms of restoration of the consistency of the
database [1, 5]. A particular and first notion of minimal restoration of consistency
was captured in [1] in terms of database repairs, i.e. consistent database instances
that share the schema with the original database, but differ from the latter by
a minimal set of whole tuples under set inclusion. In this paper we call this
semantics “the S-repair semantics”, for being set oriented. In [5, 15, 1, 7, 3, 9],
complexity bounds for CQA under the S-repair semantics have been reported.

Two other repair semantics naturally arise and have been considered in the lit-
erature. The A-repair semantics is based on changing in a minimal way attribute
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values in database tuples in order to restore consistency. CQA under the A-repair
semantics has also been investigated [29, 14, 4, 12]. The C-repair semantics is
based on repairs of the original database that minimize the cardinality of the set
of tuples by which the instances differ [2]. This semantics has received much less
attention so far.

Example 1. Consider a database schema P (X, Y, Z) with the functional depen-
dency X → Y . The inconsistent instance D = {P (a, b, c), P (a, c, d), P (a, c, e)},
seen as a set of ground atoms, has two S-repairs, D1 = {P (a, b, c)} and D2 =
{P (a, c, d), P (a, c, e)}, because the symmetric set differences with D, Δ(D, D1)
and Δ(D, D2), are minimal under set inclusion. However, only for D2 the car-
dinality |Δ(D, D2)| of the symmetric set difference is minimum; and D2 is the
only C-repair.

The query P (x, y, z) has consistent answers (a, c, d) and (a, c, e) under the C-
repair semantics (they are classic answers in the only C-repair), but none under
the S- repair semantics (the two S-repairs share no classic answers). �

The consistent query answers under C-repairs form a superset of the consistent
answers under S-repairs, because every C-repair is also an S-repair. Actually, in
situations where the S-repair semantics does not give any consistent answers,
the C-repair semantics may return answers. These answers could be further fil-
tered out according to other criteria at a post-processing stage. For example,
in the extreme case where there is only one database tuple in semantic conflict
with a possibly large set of other tuples, the existence of an S-repair contain-
ing the only conflicting tuple would easily lead to an empty set of consistent
answers. The C-repair semantics would not allow such a repair (c.f. Example 3
below).

Furthermore, the C-repair semantics has the interesting property that CQA,
a form of cautious or certain reasoning (declaring true what is true in all re-
pairs), and its brave or possible version (i.e. true in some repair), are mutually
reducible in polynomial time and share the same data complexity. This is estab-
lished in Section 3 by proving first some useful graph-theoretic lemmas about
maximum independent sets that are interesting in themselves, and have a wider
applicability in the context of CQA.

In [2], C-repairs were specified using disjunctive logic programs with sta-
ble model semantics [17] and weak cardinality constraints [6]. In this paper,
applying the graph-theoretic techniques and results mentioned above, we ob-
tain the first non-trivial complexity results for CQA under the C-repair seman-
tics. Our emphasis is on CQA, as opposed to computing or checking specific
repairs.

All the complexity bounds on CQA given so far in the literature, no matter
which repair semantics is chosen, consider the static case: Given a snapshot of
a database, a set of integrity constraints, and a query, the problems are the
computation and verification of consistent answers to the query. In this paper
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we also take into account dynamic aspects of data, studying the complexity of
CQA when the consistency of a database may be affected by update actions.

Example 2. (example 1 continued) The C-repair D2 = {P (a, c, d), P (a, c, e)}
is obviously consistent, however after the execution of the update operation
insert(P (a, f, d)) it becomes inconsistent. In this case, the only C-repair of D2 ∪
{P (a, f, d)} is D2 itself. So, CQA from D2 ∪ {P (a, f, d)} amounts to classic
query answering from D2. However, if we start from the consistent instance
D′ = {P (a, c, d)}, executing the same update operation leads to two C-repairs,
D′ and also {P (a, f, d)}, and now CQA from D′ ∪ {P (a, f, d)} is different from
classic query answering from D′, because two repairs have to be considered. �

Understanding and handling CQA in a dynamic setting is crucial for its applica-
bility. Incremental methods should be developed, since it would be inefficient to
compute a materialized repair of the database or a consistent answer to a query
from scratch after every update.

While we think that the right repair semantics may be application dependent,
being able to compare the possible semantics in terms of complexity may also
shed some light on what may be the repair semantics of choice. This comparison
should consider both static and incremental CQA, because a specific semantics
might be better than others in terms of complexity when the database is affected
by certain updates. In this paper we compare the C-repair semantics with the S-
and A-repair semantics mentioned before, and both in the static and incremental
settings.

In Section 3 we prove that static CQA under C-repairs is PNP(log(n))-hard for
denial constraints and ground atomic queries; which contrasts with the PTIME
result for S-repairs in [9]. On the other side, in Section 4, we prove that incre-
mental CQA, i.e. CQA in the dynamic setting, under the C-repair semantics
is in PTIME for denial constraints and conjunctive queries; and that the same
problem under S-repairs is coNP -hard (in data).

The naive algorithms for incremental CQA under the C-repair semantics
are polynomial in data, but exponential in the size of the update sequence.
In consequence, we also study the parameterized complexity [10, 13] of incre-
mental CQA under the C-repair semantics, being the parameter the size of the
update sequence. We establish that the problem is fixed parameter tractable
(FPT).

For establishing comparisons with the C-repair semantics, we obtain new re-
sults on the static and incremental complexity both under the classic, i.e. S-
repair semantics, and the A-repair semantics. We prove, for the former, that
incremental CQA is coNP-hard; whereas for the latter, static and incremental
CQA become both PNP -hard in data.

We concentrate on relational databases and denial integrity constraints, which
include most of the constraints found in applications where inconsistencies natu-
rally arise, e.g. census-like databases [4], experimental samples databases, biolog-
ical databases, etc. Complexity results refer to data complexity. For complexity
theory we refer to [26]; and to [13] for parameterized complexity. Proofs of the
results in this paper can be found in [22].
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2 Semantics for Consistent Query Answering

A relational database instance D is a finite set of ground atoms R(t̄) (also called
database tuples1), where R is a relation in the schema D, and t̄ is a finite sequence
of constants from the domain U . A database atom is of the form R(t̄), where R
is a predicate in D, and t̄ may contain constants or variables. A database literal
is a database atom or a negation of a database atom. With Δ(D′, D) we denote
the symmetric difference (D′

�D)∪(D�D′) between instances D, D′, conceived
both as sets of ground atoms.

The relational schema D determines a first-order language L(D) based on the
relation names, the elements of U , and extra built-in predicates. In the language
L(D), integrity constraints are sentences, and queries are formulas, usually with
free variables. We assume in this paper that sets IC of ICs are always consistent
in the sense that they are simultaneously satisfiable as first-order sentences.
A database is consistent wrt to a given set of integrity constraints IC if the
sentences in IC are all true in D, denoted D |= IC . An answer to a query Q(x̄),
with free variables x̄, is a tuple t̄ that makes Q true in D when the variables in
x̄ are interpreted as the corresponding values in t̄, denoted D |= Q[t̄].

Definition 1. For a database D, integrity constraints IC , and a partial order
�D,S over databases that depends on the original database D and a repair
semantics S, a repair of D wrt IC under S is an instance D′ such that: (a)
D′ has the same schema and domain as D; (b) D′ |= IC ; and (c) there is no
D′′ satisfying (a) and (b), such that D′′ ≺D,S D′, i.e. D′′ �D,S D′ and not
D′ �D,S D′′. The set of all repairs is denoted with Rep(D, IC , S). �

The class Rep(D, IC , S) depends upon the semantics S, that determines the
partial order � and the way repairs can be obtained, e.g. by allowing both
insertions and deletions of whole database tuples [1], or deletions of them only
[9], or only changes of attribute values [29, 4, 12], etc. (c.f. Definition 2.) We
summarize here the most common repair semantics.

Definition 2. (a) S-repair semantics [1]: D′ �D,S D′′ iff Δ(D′, D) ⊆ Δ(D′′, D).
(b) C-repair semantics : D′ �D,C D′′ iff |Δ(D′, D)| ≤ |Δ(D′′, D)|.
(c) A-repair semantics : D′ �D,A D′′ iff f(D, D′) ≤ f(D, D′′), where f is a fixed
numerical aggregation function over differences of attribute values. �

More details about the A-repair semantics can be found in Section 4.3. Particular
cases of A-repairs can be found in [14, 12], where the aggregation function to be
minimized is the number of all attribute changes; and in [4], where the function is
the overall quadratic difference obtained from the changes in numerical attributes
between the original database and the repair. S-repairs and C-repairs are “tuple-
based”, in the sense that consistency is restored by inserting and/or deleting
whole database tuples; whereas A-repairs are obtained by changing attributes
values in existing tuples only.
1 We also use the term tuple to refer to a finite sequence t̄ = (c1, . . . , cn) of constants

of the database domain U , but a database tuple is a ground atomic sentence with
predicate in D (excluding built-ins predicates, like comparisons).
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In Example 1, attribute-based repairs could be {P (a, c, c), P (a, c, d), P (a, c, e)},
suggesting that we made a mistake in the second argument of the first tuple, but
also {P (a, b, c), P (a, b, d), P (a, b, e)}. If the aggregate function in Definition 2(c)
is the number of changes in attribute values, the former would be a repair, but not
the latter. A-repairs may not be S- or C-repairs if the changes of attribute values
have to be simulated via deletions followed by insertions.

Definition 3. Let D be a database, IC a set of ICs, and Q(x̄) a query. (a) A
ground tuple t̄ is a consistent answer to Q wrt IC under semantics S if for every
D′ ∈ Rep(D, IC , S), D′ |= Q[t̄]. (b) Cqa(Q, D, IC , S) is the set of consistent
answers to Q in D wrt IC under semantics S. If Q is a sentence (a boolean
query), Cqa(Q, D, IC , S) := {yes} when D′ |= Q for every D′ ∈ Rep(D, IC , S),
and Cqa(Q, D, IC , S) := {no}, otherwise. (c) CQA(Q, IC , S) := {(D, t̄) | t̄ ∈
Cqa(Q, D, IC , S)} is the decision problem of consistent query answering. �

Denial constraints are integrity constraints expressed by L(D)-sentences of the
form ∀x̄¬(A1 ∧ . . . ∧ Am ∧ γ), where each Ai is a database atom and γ is a
conjunction of comparison atoms. In particular, functional dependencies (FDs),
e.g. ∀x∀y∀z¬(R(x, y) ∧ R(x, z) ∧ y �= z), are denial constraints. For denial ICs,
tuple-based repairs are obtained by tuple deletions only [9].

3 Complexity of CQA Under the C-Repair Semantics

As a consequence of the specification of C-repairs as the stable models of dis-
junctive logic programs with non-prioritized weak constraints [2] and the results
in [6], we obtain that an upper bound on the data complexity of CQA under the
C-repair semantics is the class ΔP

3(log(n)).
In [3], conflict graphs were first introduced to study the complexity of CQA for

aggregate queries wrt FDs under the S-repair semantics. They have as vertices
the database tuples; and edges connect two tuples that simultaneously violate
a FD. There is a one-to-one correspondence between S-repairs of the database
and the set-theoretically maximal independent sets in the conflict graph. Sim-
ilarly, there is a one-to-one correspondence between C-repairs and maximum
independent sets in the same graph (but now they are maximum in cardinality).

Conflict graphs for databases wrt general denial constraints become conflict
hypergraphs [9] that have as vertices the database tuples, and as hyperedges the
(set theoretically minimal) collections of tuples that simultaneously violate one
of the denial constraints. The size of the hypergraph (including vertices and
hyperedges) is polynomial in the size of the database, because we have a fixed
set of denial constraints. The correspondence for conflict graphs between repairs
and independent sets −maximum or maximal depending on the semantics− still
holds for hypergraphs, where an independent set in an hypergraph is a set of
vertices that does not contain any hyperedges [9].

Notice that, unless an IC forces a particular tuple not to belong to the
database,2 every tuple in the original database belongs to some S-repair, but

2 We do not consider in this work such non generic ICs [5].
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not necessarily to a C-repair (c.f. Example 1, where the tuple P (a, b, c) does not
belong to the only C-repair).

In consequence, testing membership of vertices to some maximum indepen-
dent set becomes a relevant for C-repairs. The complexity of this problem will
determine the complexity of CQA under the C-repair semantics. For this purpose
we will use some graph-theoretic constructions and lemmas about maximum in-
dependent sets, whose proofs use a self-reducibility property of independent sets
that can be expressed as follows: For any graph G and vertex v, every maximum
independent set that contains v (meaning maximum among the independent sets
that contain v) consists of vertex v together with a maximum independent set
of the graph G′ that is obtained from G by deleting all vertices adjacent to v.

To keep the presentation simpler, we concentrate mostly on conflicts graphs
and FDs. However, the results obtained carry over to denial constraints and their
hypergraphs. Notice, as a motivation for the next lemmas, that a ground atomic
query is consistently true when it belongs, as a database tuple, i.e. as a vertex
in the conflict graph, to all the maximum independent sets of the conflict graph.

Lemma 1. Consider a graph G and a vertex v in it. (a) For the graph G′

obtained by adding a new vertex v′ that is connected only to the neighbors of
v, the following properties are equivalent: 1. There is a maximum independent
set of G containing v. 2. v belongs to every maximum independent set of G′. 3.
The sizes of maximum independent sets in G and G′ differ by one.
(b) There is a graph G′ extending G that can be constructed in logarithmic
space, such that v belongs to all maximum independent sets of G iff v belongs
to some maximum independent set of G′. �

From this lemma and the membership to FPNP(log(n)) of computing the size of
a maximum clique in a graph [21], we obtain

Lemma 2. The problems of deciding for a vertex in a graph if it belongs to
some maximum independent set and if it belongs to all maximum independent
sets are both in PNP(log(n)). �

Theorem 1. For functional dependencies and ground atomic queries, CQA un-
der the C-repair semantics belongs to PNP(log(n)). �

Considering the maximum independent sets, i.e. C-repairs, as a collection of
possible worlds, the previous lemma shows a close connection between the certain
C-repair semantics (true in every repair), that is the basis for CQA, and the
possible C-repair semantics (true in some repair). CQA under these semantics
and functional dependencies are polynomially reducible to each other; actually
also for negations of ground atomic queries.

Lemma 3. The following problems are mutually LOGSPACE -reducible to each
other: (1) Certain positive: Given a vertex v and a graph G, decide if v belongs
to every maximum independent set of G. (2) Certain negative: Given a vertex
v and a graph G, decide if all the maximum independent sets of G do not
contain v. (3) Possible negative: Given a vertex v and a graph G, decide if
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there is a maximum independent set of G that does not contain v. (4) Possible
positive: Given a vertex v and a graph G, decide if v belongs to at least one
maximum independent set of G. �

Since the negation ¬R(t̄) of a ground atomic query R(t̄) is consistently true wrt
the C-repair semantics iff the vertex corresponding to R(t̄) in the conflict graph
does not belong to any maximum independent set, using Lemma 3 we can extend
Theorem 1 to conjunctions of literals.3 Actually, since Lemmas 1, 2 and 3 still
hold for hypergraphs, we obtain

Theorem 2. For denial constraints and queries that are conjunctions of literals,
CQA under the C-repair semantics belongs to PNP(log(n)). �

Now we will represent the maximum independent sets of a graph as C-repairs of
an inconsistent database wrt a denial constraint. This is interesting, because con-
flict graphs for databases wrt denial constraints are, as indicate before, actually
conflict hypergraphs.

Lemma 4. There is a fixed database schema D and a denial constraint ϕ in
L(D), such that for every graph G, there is an instance D over D, whose C-
repairs wrt ϕ are in one-to-one correspondence with the maximum independent
sets of G. Furthermore, D can be built in polynomial time in the size of G. �

From Lemma 4 and the PNP(log(n))-completeness of determining the size of a
maximum clique [21], we obtain

Theorem 3. Determining the size of a C-repair for denial constraints is com-
plete for FPNP(log(n)). �

t

b

Ik

Ik+1

G1

G2

Fig. 1. The block Bk(G, t)

In order to obtain hardness for CQA
under the C-repair semantics, we need

to construct the block graph Bk(G, t)
(c.f. Figure 1), consisting of two copies
G1, G2 of G, and two internally discon-
nected subgraphs Ik, Ik+1, with k and
k + 1 vertices, resp. Every vertex in G
(G′) is connected to every vertex in Ik

(resp. Ik+1).

Lemma 5. Given a graph G and
a number k, a graph Bk(G, t) can be
computed in polynomial time in the
size of G, where t is a distinguished
vertex in it that belongs to all its max-
imum independent sets iff the cardinal-
ity of a maximum independent set of G
is equal to k. �

3 This can also be obtained, less directly, from the closure of PNP(log(n)) under
complement.
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Lemma 6. Deciding if a vertex belongs to all maximum independent sets of a
graph is PNP(log(n))-hard. �

This result can be proved by reduction from the following PNP(log(n))-complete
decision problem [21]: Given a graph G and an integer k, is the size of a maximum
clique in G equivalent to 0 mod k? G is reduced to a graph G′ that is built by
combining a number of versions of the block construction in Figure 1. Now,
the graph G′ used in Lemma 6 can be represented according to Lemma 4 as a
database consistency problem, and in this way we obtain

Theorem 4. For denial constraints, CQA under the C-repair semantics for
queries that are conjunctions of ground literals is PNP(log(n))-complete. �

This theorem still holds for ground atomic queries, which is interesting, because
for this kind of queries and denial constraints CQA under the S-repair semantics
is in PTIME [9].

4 Incremental Complexity of CQA

Assume that we have a consistent database instance D wrt to IC . D may be-
come inconsistent after the execution of an update sequence U composed of
operations of the forms insert(R(t̄)), delete(R(t̄)), meaning insert/delete tuple
R(t̄) into/from D, or change(R(t̄), A, a), for changing value of attribute A in
R(t̄) to a, with a ∈ U . We are interested in whether we can find consistent query
answers from the possibly inconsistently updated database U(D) more efficiently
by taking into account the previous consistent database state.

Definition 4. For a consistent database D wrt IC , and a sequence U of update
operations U1, . . . , Um, incremental consistent query answering for query Q is
CQA for Q wrt IC from instance U(D), that results from applying U to D. �

Update sequences U will be atomic, in the sense that they are completely exe-
cuted or not. This allows us to concentrate on “minimized” versions of update
sequences, e.g. containing only insertions and/or attribute changes when dealing
with denial constraints, because deletions do not cause any violations. We are
still interested in data complexity, i.e. wrt the size |D| of the original database.
In particular, m is fixed, and usually small wrt |D|.

A notion of incremental complexity has been introduced in [23], and also in [20]
under the name of dynamic complexity. There, the instance that is updated can
be arbitrary, and the question is about the complexity for the updated version
when information about the previous instance can be used. In our case, we are
assuming that the initial database is consistent. As opposed to [23, 20], where
new incremental or dynamic complexity classes are introduced, we appeal to
those classic complexity classes found at a low level in the polynomial hierarchy.

4.1 Incremental Complexity: C-Repair Semantics

In contrast to static CQA for the C-repair semantics, it holds
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Theorem 5. For the C-repair semantics, first-order boolean queries, denial con-
straints, and update sequences U of fixed length m applied to D, incremental
CQA is in PTIME in |D|. �

The proof of this theorem provides an upper bound of of O(m · nm), that is
polynomial in the size n of the initial database, but exponential in m, which
makes the problem tractable in data, but with the size of the update sequence
in the exponent. We are interested in determining if queries can be consistently
answered in time O(f(m)×nc), for a constant c and a function f(m) depending
only on m. In this way we isolate the complexity introduced by U .

The area of parameterized complexity studies this kind of problems [19, 25].
A decision problem with inputs of the form (I, p), where p is a distinguished
parameter of the input, is fixed parameter tractable, and by definition belongs to
the class FPT [10], if it can be solved in time O(f(|p|) · |I|c), where c and the
hidden constant do not depend on |p| or |I| and f does not depend on |I|.

Definition 5. Given a query Q, ICs IC , and a ground tuple t̄, parameterized
incremental CQA is the decision problem CQAp(Q, IC ) := {(D, U, t̄) | D is an
instance, U an update sequence , t̄ is consistent answer to Q in U(D)}, whose
parameter is U , and consistency of answers refers to C-repairs of U(D). �

We keep Q and IC fixed in the problem definition because, except for the pa-
rameter U , we are interested in data complexity.

Theorem 6. For functional dependencies and queries that are conjunctions of
literals, parameterized incremental CQA is in FPT . �

The vertex cover problem, of deciding if graph G has a vertex cover (VC) of
size no bigger than k, belongs to the class FPT , i.e. there is a polynomial time
parameterized algorithm VC (G, k) for it [10]; actually one that runs in time
O(1.2852k + k · n), being n the size of G [8].

The algorithm whose existence is claimed in Theorem 6 is as follows: Let G be
the conflict graph associated to the database obtained after the insertion of m
tuples. By binary search, calling each time VC (G, ), it is possible to determine
the size of a minimum VC for G. This gives us the minimum number of tuples
that have to be removed in order to restore consistency; and can be done in time
O(log(m) · (1.2852m + m · n)), where n is the size of the original database. In
order to determine if a tuple R(t̄) belongs to every maximum independent set,
i.e. if it is consistently true, compute the size of a minimum VC for G � {R(t̄)}.
The two numbers are the same iff the answer is yes . The total time is still
O(log(m) ·(1.2852m+m ·n))), which is linear in the size of the original database.
The same algorithm applies if, in addition to tuple insertions, we also have
changes of attribute values in the update part; of course, still under the C-repair
semantics.

Theorem 6 uses the membership to FPT of the VC problem, which we apply to
conflict graphs for functional dependencies. However, the result can be extended
to denials constraints and their conflict hypergraphs. In our case, the maximum
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size of an hyperedge is the maximum number of database atoms in a denial
constraint, which is determined by the fixed database schema. If this number is
d, then we are in the presence of the so-called d-hitting set problem, consisting
in finding the size of a minimum hitting set for an hypergraph with hyperedges
bounded in size by d. This problem is in FPT [24].

Theorem 7. For denial constrains and queries that are conjunctions of literals,
parameterized incremental CQA is in FPT . �

Using the reductions in Section 3, this result can be extended to incremental
CQA under the possible C-repair semantics.

4.2 Incremental Complexity: S-Repair Semantics

Incremental CQA for non-quantified conjunctive queries under denial constraints
belongs to PTIME , which can be established by applying the algorithm in [9]
for the static case to U(D).

However, for quantified conjunctive queries the situation may change. Actu-
ally, by reduction from static CQA for conjunctive queries and denial ICs under
the S-repair semantics, which is coNP -hard [9], we obtain

Theorem 8. Under the S-repair semantics, incremental CQA for conjunctive
queries and denial constraints is coNP -hard. �

We can see that, for denial constraints, static CQA under the C-repair semantics
seems to be harder than under the S-repair semantics (PNP(log(n))- vs. coNP -
hard). On the other side, incremental CQA under the S-repair semantics seems to
harder than under the C-repair semantics (coNP -hard vs. PTIME). The reason
is that for the C-repair semantics the cost of a repair cannot exceed the size
of the update, whereas for the S-repair semantics the cost of a repair may be
unbounded wrt the size of an update.

Example 3. Consider a schema R(·), S(·) with the denial constraint ∀x∀y¬
(R(x)∧S(y)); and the consistent database D = {R(1), . . . , R(n)}, with an empty
table for S. After the update U = insert(S(0)), the database becomes incon-
sistent, and the S-repairs are {R(1), . . . , R(n)} and {S(0)}. However, only the
former is a C-repair, and is at a distance 1 from the original instance, i.e. as the
size of the update. However, the second S-repair is at a distance n. �

4.3 Incremental Complexity: A-Repair Semantics

Before addressing the problem of incremental complexity, we give a complexity
lower bound for the weighted version of static CQA for the A-repair semantics.
In this case, we have a numerical weight function w defined on triples of the
form (R(t̄), A,newValue), where R(t̄) is a database tuple stored in the database,
A is an attribute of R, and newValue is a new value for A in R(t̄). The weighted
A-repair semantics (wA-repair semantics) is just a particular case of Definition
2(c), where the distance is given by an aggregation function g applied to the set
of numbers {w(R(t̄), A,newValue) | R(t̄) ∈ D}.
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Typically, g is the sum, and the weights are w(R(t̄), A,newValue) = 1 if
R(t̄)[A] is different from newValue, and 0 otherwise, where R(t̄)[A] is the pro-
jection of database tuple R(t̄) on attribute A, i.e. just the number of changes is
counted [14]. In [4], g is still the sum, but w is given by w(R(t̄), A,newValue) =
αA ·(R(t̄)[A] − newValue)2, where αA is a coefficient introduced to capture the
relative importance of attribute A or scale factors. In these cases, w does not
depend on D. However, if the weight function w depended on the size of D, w
should become part of the input for the decision problem of CQA.

Theorem 9. Static CQA for ground atomic queries and denial constraints un-
der the wA-repair semantics is PNP -hard. �

In order to obtain a hardness result in the incremental case and for denial con-
straints (for which we are assuming update sequences do not contain tuple dele-
tions), we can use the kind of A-repairs introduced in [4].

Theorem 10. Incremental CQA for atomic queries and denial constraints un-
der the wA-repair semantics is PNP -hard. �

These results still hold for tuple insertions as update actions, the fixed weight
function that assigns value 1 to every change, and the sum as aggregation func-
tion. In case we have numerical values as in [4] or a bounded domain, we can
obtain as in [4, theorem 4(b)] that the problems in Theorems 9 and 10 belong
both to ΠP

2 .
Under the A-repair semantics, if the update sequence consist of change ac-

tions, then we can obtain polynomial time incremental CQA under the additional
condition that the set of attribute values than can be used to restore consistency
is bounded in size, independently from the database (or its active domain).
Such an assumption can be justified in several applications, like in census-like
databases that are corrected according to inequality-free denial constraints that
force the new values to be taken at the border of a database independent re-
gion [4]; and also in applications where denial constraints, this time containing
inequalities, force the attribute values to be taken in a finite, pre-specified set.
The proof is similar to the one of Theorem 5, and the polynomial bound now
also depends on the size of the set of candidate values.

Theorem 11. For a database independent and bounded domain of attribute
values, incremental CQA under the A-repair semantics, for first-order boolean
queries, denial constraints, and update sequences containing only change actions
is in PTIME in the size of the original database. �

Now, we present a lower bound for CQA under the A-repair semantics for first-
order ICs and tuple deletions, which now may affect their satisfaction.

Lemma 7. For any planar graph G with vertices of degree at most 4, there exists
a regular graph G′ of degree 4 that is 4-colorable, such that G′ is 3-colorable iff
G is 3-colorable. G′ can be built in polynomial time in |G|. �

Notice that graph G, due to its planarity, is 4-colorable. The graph G′, is an
extension of graph G that may not be planar, but preserves 4-Colorability. We use
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the construction in Lemma 7 as follows: Given any planar graph G of degree 4,
construct graph G′ as in the lemma, which is regular of degree 4 and 4-colorable.
Its 4-colorability is encoded as a database problem with a fixed set of first-order
constraints. Since G′ is 4-colorable, the database is consistent. Furthermore, G′

uses all the 4 colors in the official table of colors, as specified by the ICs. In the
update part, deleting one of the colors leaves us with the problem of coloring
G′ with only three colors (under an A-repair semantics only changes of colors
are allowed to restore consistency), which is possible iff the original graph G is
3-colorable. Deciding about the latter problem is NP -complete [16]. We obtain

Theorem 12. For ground atomic queries, first-order ICs, and update sequences
consisting of tuple deletions, incremental CQA under the A-repair semantics is
coNP -hard. �

To obtain this result it is good enough to use the sum as the aggregation
function and the weight function that assigns 1 to each change. Clearly, this
lower bound also applies to update sequences containing any combination of
insert , delete, change.

5 Conclusions

The dynamic scenario for consistent query answering that considers possible
updates on a database had not been considered before in the literature. Doing
incremental CQA on the basis of the original database and the sequence of
updates is an important and natural problem. Developing algorithms that take
into account previously obtained consistent answers that are possible cached
and the updates at hand is a crucial problem for making CQA scale up for real
database applications. Much research is still needed in this direction.

In this paper we have concentrated mostly on complexity bounds for this
problem under different semantics. When we started obtaining results for incre-
mental CQA under repairs that differ from the original instance by a minimum
number of tuples, i.e. C-repairs, we realized that this semantics had not been
sufficiently explored in the literature in the static version of CQA, and that a
full comparison was not possible. In the first part of this paper we studied the
complexity of CQA for the C-repair semantics and denial constraints. In doing
so, we developed graph-theoretic techniques for polynomially reducing each of
the certain and possible (or cautious and brave) C-repair semantics for CQA
to the other. A similar result does not hold for the S-repair semantics, con-
junctive queries, and denial constraints: CQA (under the certain semantics) is
coNP -complete [9], but is in PTIME for the possible semantics.

The complexity of CQA in a P2P setting was studied in [18], including a form
a cardinality-based repairs. However, a different semantics is used, which makes
it difficult to compare results. Actually, in that setting it is possible that repairs
do not exist, whereas in our case, since S-repairs always exist [1], also C-repairs
exist. The complexity result for CQA in [18], that seems to be shared by C- and
S-repairs, is obtained on the basis of the complexity of checking the existence of
repairs (a problem that in our case is trivial).
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The C-repair semantics can be generalized considering weights on tuples. Un-
der denial constraints, this means that it may be more costly to remove certain
tuples than others to restore consistency. More precisely, database tuples R(t̄)
have associated numerical costs w(R(t̄)), that become part of the input for the
CQA decision problem. Now, the partial order between instances is given by
D1 �D,wC D2 iff |D�D1|w ≤ |D�D2|w, where, for a set of database tuples S,
|S|w is the sum of the weights of the elements of S. It can be proved that CQA
for ground atomic queries wrt denial constraints under this semantics belongs
to PNP [22, proposition 5].

Furthermore, it possible to reduce CQA under the C-repair semantics to CQA
under least-squares A-repairs semantics that minimizes the sum of the quadratic
differences between numerical values [4], which is a particular case of the general
semantics studied in Section 4.3.

Theorem 13. Given a database schema D, a set IC of denial constraints in
L(D), and a ground atomic query Q ∈ L(D), there are a schema D′ with some
fixable numerical attributes, a set IC ′ of ICs in L(D′), and a query Q′ ∈ L(D′),
such that: For every database D over D, there is a database D′ over D′ that can
be computed from D in LOGSPACE (in data) for which it holds: Q is consistently
true wrt IC in D under the C-repairs semantics iff Q′ is consistently true wrt to
IC ′ in D′ under the least-squares A-repair semantics. �

This result also applies to other numerical A-repair semantics as discussed in [4],
and is about data complexity. For fixed D, IC , Q, D, also fixed D′, IC ′, Q′ can be
obtained in LOGSPACE from D, IC , Q. Theorem 13, together with Theorem 4,
allows us to obtain a simple proof of the PNP(log n)-hardness of the least-squares
repair semantics. In [4], PNP -hardness is obtained for the latter as a better lower
bound, but the proof is more complex. This theorem can be extended to the
weighted C-repair semantics if integer numerical weights are used.

Our results show that the incremental complexity is lower than the static one
in several useful cases, but sometimes the complexity cannot be lowered. It is a
subject of ongoing work the development of concrete and explicit algorithms for
incremental CQA.

We obtained the first results about fixed parameter tractability for incremen-
tal CQA, where the input, for a fixed database schema, can be seen as formed
by the original database and the update sequence, whose length is the relevant
parameter. This problem requires additional investigation. In particular, the pa-
rameterized complexity of incremental CQA under the S- and A-repair semantics
has to be investigated, and a more complete picture still has to emerge.

It would be interesting to examine the area of CQA in general from the point of
view of parameterized complexity, including the static case. Natural candidates
to be a parameter in the classic, static setting could be: (a) the number of
inconsistencies in the database, (b) the degree of inconsistency, i.e. the maximum
number of violations per database tuple, (c) complexity of inconsistency, i.e. the
length of the longest path in the conflict graph or hypergraph. These parameters
may be practically significant, since in many applications, like census application
[4], inconsistencies are “local”.
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We considered a version of incremental CQA that assumes that the database is
already consistent before updates are executed, a situation that could have been
achieved because no previous updates violated the given semantic constraints or
a repaired version was chosen before the new updates were executed.

We are currently investigating the dynamic case of CQA in the frameworks of
dynamic complexity [20, 28] and incremental complexity as introduced in [23]. In
this case we start with a database D that is not necessarily consistent on which a
sequence of basic update operations U1, U2, ..., Um is executed. A clever algorithm
for CQA may create or update intermediate data structures at each atomic
update step, to help obtain answers at subsequent steps. We are interested in the
complexity of CQA after a sequence of updates, when the data structures created
by the query answering algorithm at previous states are themselves updatable
and accessible.
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