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Abstract

Databases may not satisfy integrity constraints (ICs) for
several reasons. Nevertheless, in most of the cases an im-
portant part of the data is still consistent wrt certain de-
sired ICs, and the database can still give some correct an-
swers to queries wrt those ICs. Consistent query answers
are characterized as ordinary answers obtained from every
minimally repaired and consistent version of the database.
Database repairs can be specified as stable models of dis-
junctive logic programs with program constraints. In this
paper, we optimize repair programs, model computation,
and query evaluation from them. We make repair programs
more compact by eliminating redundant rules and unnec-
essary programs denial constraints. These results facilitate
the application of magic sets techniques to query evalua-
tion in general, and in DLV, a logic programming system
that implements the stable models semantics, in particular.
We also analyze the implementation in DLV of queries with
aggregate functions.

1. Introduction

Integrity constraints play an important role in databases.
They capture the intended meaning (semantics) of the data
in the database. Nevertheless, databases may become in-
consistent with respect to ICs due to several reasons: (a)
In virtual data integration [21] of multiple data sources,
possibly individually consistent wrt local ICs, the system
may become inconsistent wrt global ICs [14]. (b) A stand
alone relational database management system may not have
mechanisms to maintain certain ICs. (c) In legacy systems
data may not satisfy new semantic constraints. (d) User or
informational constraints, which are used, e.g., for semantic
query optimization, but are not necessarily enforced by the
system.

Even though ICs may be violated, in most of the cases
only a small portion of the data is inconsistent wrt them.

In consequence, it becomes sensible and necessary to de-
velop methods for retrieving consistent answers to queries.
The notion of consistent answers to first-order (FO) queries
was initially defined in [1], together with a mechanism for
computing them. Intuitively, a ground tuple t̄ is a consistent
answer to a query Q(x̄) in a database instance DB , if it is
an ordinary answer to Q(x̄) in every minimal repair of DB ,
where a repair is a database instance obtained from DB by
deleting or inserting tuples, that satisfies the ICs, and mini-
mally differs (under set inclusion) from DB .

The mechanism presented in [1] for computeing consis-
tent answers is based on first-order query rewriting. Basi-
cally, given a non-existentially quantified conjunctive query
Q, a new query is generated, such that, when posed to
a database, its usual answers correspond to the consistent
answers to Q wrt the ICs. That method works for a re-
stricted set of ICs, such as functional dependencies, and full
set inclusion dependencies. However, it does not consider
queries or ICs with existential quantifiers, like referential
ICs.

In [2, 4, 5] a more general approach based on logic pro-
grams with stable models semantics [18] was introduced.
There, database repairs are specified as the stable models
of a disjunctive program with program denial constraints1.
The approach works for all universal ICs and FO queries.
In [7] the methodology was extended to handle also acyclic
referential integrity constraints.

Example 1 The database instance {S(a)} is inconsistent
wrt the inclusion dependency ∀x(S(x) → Q(x)). Consis-
tency can be restored minimally by inserting Q(a) or elim-
inating S(a). The repair program contains the following

1Programs constraints are head-free rules; program denial constraints
are program constraints with only positive and built-in atoms in the body.
(Database) denial constraints are ICs, i.e. conditions that have to be satis-
fied by the database relations; that can be written as program denial con-
straints. However the role of a program constraint (denial or not) is to
discard the stable models that violate it. In the following we will use “(de-
nial) constraint” for the database case, and “program (denial) constraint”
for programs.



rules [7]:
1. dom(a).
2. S(a, td).
3. S(x, fa) ∨Q(x, ta)← S(x, t�), Q(x, fa), dom(x).
4. S(x, fa) ∨Q(x, ta)← S(x, t�), not Q(x, td),

dom(x).
5. S(x, t�)← S(x, td), dom(x). (similar for Q)

S(x, t�)← S(x, ta), dom(x). (similar for Q)
6. S(x, t��)← S(x, ta). (similar for Q)

S(x, t��)← S(x, td), not S(x, fa). (similar for Q)
7. ← S(x, ta), S(x, fa). ← Q(x, ta), Q(x, fa).
We can see that the repair programs use annotation con-
stants in an extra argument, actually each atom P (ā) can
receive one of the following constants (with the following
intuitive meaning on the right):

Atom Intuitive meaning
P (ā, td) P (ā) is true in the database.
P (ā, ta) P (ā) is advised to be made true.
P (ā, fa) P (ā) is advised to be made false.
P (ā, t�) P (ā) is true or is made true.
P (ā, t��) P (ā) is true in the repair.

Rules 1 and 2 capture the domain constants and database
facts respectively. Rules 3 and 4 establish the form of re-
pairing the database according to the inclusion dependency;
i.e. by making Q(x) true (which receives constant ta) or
S(x) false (which receives constant fa). Rules 5 capture
the atoms that become true in the program (which are an-
notated with t�). Rules 6 capture the atoms that become
true in the repairs (which are annotated with t��). Rules
7 are program denial constraints, which ensure that models
containing atoms with both ta, fa constants will not be gen-
erated (an atom cannot become true and false at the same
time).
This program has two stable model, one corresponding to
inserting Q(a), the other eliminating S(a). �

In this paper we describe optimizations to the logic
approach presented in [7], which are classified into two
groups: structure and evaluation of repair programs. The
former involves changing the program (while keeping the
same models): elimination of redundant rules, predicates,
and annotations constants. The latter is related to the com-
putation of consistent query answers using repair programs.
As we will see later, usually only a subset of the program
and the database facts is needed to compute answers to a
specific query. We explore the use of magic sets (MS) tech-
niques [6] to capture this subset. So, we focalize on a part
of the program and data instead of the whole set of rules
and facts. In particular, with MS only a relevant subset of
the database will be used for query evaluation.

Structural optimizations allow to get simplified repair
programs, that are easier to evaluate by reasoning systems.

The second set of optimizations make query answering
more efficient. In general consistent query answering over
inconsistent databases is an expensive computational task,
actually in the worst case, ΠP

2 -complete in data complexity
[8, 10], i.e. of the same data complexity as evaluation of
general disjunctive logic programs under stable model se-
mantics [12]. Even though it is possible to identify classes
of ICs and queries for which complexity is lower than this,
e.g. the limited but polynomial time approach in [1], poly-
nomial classes for CQA identified in [10, 17]; and head-
cycle free programs identified in [5], speeding up query
evaluation over large data sets becomes relevant.

Optimizations on the process of retrieving consistent an-
swers have been studied and introduced before in the con-
text of data integration [14], where techniques to efficiently
compute and store database repairs are described. Never-
theless, our goal in this paper is not the computation of re-
pairs, but the optimization of the programs and the efficient
computation of consistent answers.

In this paper we also describe how to write repair pro-
grams to be used to compute consistent answers to scalar
aggregate queries, which were introduced in [3] using a
range semantics, i.e. the answer to a query is an optimal
interval that contains the value of the aggregate query in
every possible repair. Here we use logic programs instead
of conflict graph representations [3]. We show how to ex-
ploit the capabilities of the DLV system, the state-of-the-art
implementation of disjunctive logic programming [22], to
compute aggregate functions (min, max, count, times, sum)
over stable models [16].

This paper is structured as follows: in section 2 we recall
basic concepts on databases and repair programs. In section
3 structural optimizations on repair programs are presented.
In section 4 a magic sets methodology for disjunctive repair
programs with program denial constraints is described. We
also specify how to use DLV with magic sets for this kind of
programs. In section 5 the specification of repair programs
to compute consistent answers to scalar aggregate queries is
presented. Section 6 presents some final conclusions.

2. Preliminaries

A relational database schema is denoted by Σ = (U ,R∪
B) where U is the possibly infinite database domain,R is a
set of database predicates, and B is a set of built-in pred-
icates. Database instances of a relational schema are fi-
nite collections DB of ground atoms P (c1, ..., cn), where
P is a database predicate, and c1, ..., cn are constants in the
database domain U . Extensions for built-in predicates are
fixed in every database instance. There is also a fixed set
of integrity constraints (IC ) that are expected to be satis-
fied by any database instance, but this may not be the case.
We consider universal integrity constraints, and referential



integrity constraints (RICs) [7].
A universal integrity constraint (UIC) is a any first-order

(FO) sentence that is logically equivalent to a sentence of
the form

∀̄(
m∧

i=1

Pi(x̄i) →
n∨

j=1

Qj(ȳj) ∨ ϕ), (1)

where ∀̄ is a prefix of universal quantifiers, Pi, Qj ∈ R,
and ϕ is a formula containing built-in atoms from B only.
A referential integrity constraint is a sentence of the form

∀x̄ (P (x̄)→ ∃ȳ Q(x̄′, ȳ)), (2)

where x̄′ ⊆ x̄ and P,Q ∈ R.

Example 2 For schema {S(X,Y ), Q(X,Y ), P (X,Y )}
UICs are the functional dependency (FD) S : X → Y , ex-
pressed in FO logic by ∀ x y (S(x, y) ∧ S(x, z)→ y = z);
and the full inclusion dependency (IND) Q[X,Y ] ⊆ S[X,
Y ], expressed by ∀ x y (Q(x, y) → S(x, y)). The inclu-
sion dependency P [X] ⊆ S[X] can be expressed as a RIC:
∀ x y (P (x y)→ ∃ z S(x, z)). Here x̄ = (x , y), x̄′ = (x ),
and ȳ = (z ). �

A database instance DB is consistent if it satisfies the
given set IC of ICs. Otherwise, it is inconsistent wrt IC .
The semantics of constraint satisfaction defined in [7] is as
follows: a UIC of the form (1) is satisfied if every ground
tuple P (ā) ∈ DB with ā ∈ (U − {null}) the UIC holds. A
RIC of the form (2) is satisfied if for all P (ā) ∈ DB, with
ā ∈ (U−{null}), there exists a tuple b̄ of constants in U for
which Q(ā′, b̄) ∈ DB. In other words, UICs are satisfied if
they hold for tuples with non-null values, and RICs are clas-
sically satisfied when universally quantified variables in (2)
take values different from null, and existentially quantified
variables take any value.

When inconsistencies arise in a DB , consistency can be
restored by deleting and/or inserting tuples. In this way,
a repair is a new database instance with the same schema
as DB that satisfies ICs and differs minimally, under set
inclusion, from the DB [1].

Database repairs can be specified as stable models (SM)
of disjunctive logic programs [18]. The idea behind is that,
given an inconsistent database instance DB and a set of ICs
IC , a disjunctive repair program Π(DB , IC ) is constructed,
such that there is one to one correspondence between the
stable models of Π(DB , IC ) and the repairs of DB [4, 5].
Disjunctive rules express the options for insertions or dele-
tions of tuples needed to restore consistency.

As mentioned before, repair programs use annotation
constants, whose role is to enable the definition of atoms
that become true in the repairs (database facts or new inser-
tions of atoms) or false (deletion) in order to satisfy the ICs.

Annotations are performed as follows: first ground atoms
P (c̄) from the database receive an extra argument td, so
P (ā, td) becomes a fact in Π(DB , IC ). Then, for each IC
a disjunctive rule is constructed in such a way that the body
of the rule captures the violation condition for the IC; and
the head describes how to restore consistency by deleting
or inserting the corresponding tuples. These endorsements
are seized by the ta, fa annotations. For instance, atom
P (ā, ta) establishes the insertion of P (ā), and P (ā, fa), its
deletion. As an illustration, for the inclusion dependency
∀x(S(x)→ Q(x)), the disjunctive program rule:

S(x, fa) ∨Q(x, ta)← S(x, td), not Q(x, td), (3)

states that if tuple S(x, td) is a program fact, but Q(x, td) is
not. Then, consistency is restored by deleting S(x), which
receives constant fa in the head of the rule, or by inserting
Q(x), which receives the ta constant.

The t� constant is introduced to keep repairing the
database if there is interaction of ICs; which becomes sig-
nificant in cases where the insertion of a tuple may generate
a new IC violation, e.g. if due to a different IC, S(c, ta) is
generated but Q(c) is not in the database, the constraint is
violated again. The aftermath is that the program rule (3)
has to be changed to:

S(x, fa) ∨Q(x, ta)← S(x, t�), not Q(x, td), (4)

where the atom S(x, t�) becomes true if either S(x, td) or
S(x, ta) are true.

Finally, atoms with constant t�� are the ones that become
true in the repairs; so that annotation is used to read off the
atoms in the repairs. The following program was introduced
in [5, 7].

Definition 1 [5, 7] The repair program Π(DB , IC ) for
database instance DB and ICs IC has the following rules:
1. Database constants rules: dom(a) for each constant a ∈
(U − {null}).
2. Program facts rules: P (ā, td) for each atom P (ā) ∈
DB.
3. For every global universal IC of form (1) the set of
clauses:∨n

i=1 Pi(x̄i, fa) ∨∨m
j=1 Qj(ȳj , ta) ← ∧n

i=1 Pi(x̄i, t
�),∧

Qj∈Q′ Qj(ȳj , fa),
∧

Qk∈Q′′ not Qk(ȳk, td), dom(x̄), ϕ̄,

for every set Q′ and set Q′′ such that Q′ ∪ Q′′ =
⋃m

i=1 Qi

and Q′ ∩ Q′′ = ∅, where x̄ is the tuple of all variables
appearing in database atoms in the rule. ϕ̄ is a conjunction
of built-ins equivalent to the negation of ϕ.
4. For every referential IC of form (2) the clauses:
P (x̄, fa) ∨Q(x̄′,null , ta)← P (x̄, t�), not aux(x̄′),

not Q(x̄′,null , td), dom(x̄).

aux(x̄′)← Q(x̄′, y, td), not Q(x̄′, y, fa), dom(x̄′, y).

aux(x̄′)← Q(x̄′, y, ta), dom(x̄′, y).



5. For each predicate P ∈ R, annotation clauses:
P (x̄, t�)← P (x̄, td), dom(x̄).
P (x̄, t�)← P (x̄, ta), dom(x̄).
6. For every predicate P ∈ R, interpretation clauses:
P (x̄, t��) ← P (x̄, ta).
P (x̄, t��) ← P (x̄, td), not P (x̄, fa).
7. For every predicate P ∈ R, the program denial con-
straint: ← P (x̄, ta), P (x̄, fa). �

Database repairs are retrieved from the stable models of
Π(DB , IC ): for each stable modelM of Π(DB , IC ) a re-
pair is generated by selecting the atoms with t�� constant in
M.

Example 3 (example 1 cont.) Π(DB, IC ) has the follow-
ing SM: M1 = {dom(a), S(a, td), S(a, t�), S(a, t��),
Q(a, ta), Q(a, t�), Q(a, t��)};M2 = {dom(a), S(a, td),
S(a, t�), S(a, fa)}.
Thus, consistency is recovered by inserting Q(a) (i.e.
Q(a, t��) ∈ M1) or deleting S(a) (i.e. S(a, fa) ∈ M2).
The repairs are {S(a), Q(a)} and {}. �

In [5] it was proved that the repair program of Definition
1 is a correct specification of database repairs wrt a set of
universal ICs of form (1) and acyclic referential ICs of form
(2).

First order queries are translated into logic programs.
Given a query Q, a new query Π(Q) is generated by first
expressing it as a datalog program [23], and next changing
every positive literal P (s̄) by P (s̄, t��), and every nega-
tive literal by not P (s̄, t��). Thus, to get consistent an-
swers, Π(Q) is “run” together with the corresponding pro-
gram Π(DB , IC ). So, consistent query answering is based
on cautious reasoning under stable model semantics [18].

Example 4 (example 3 cont.) Given Q : Ans(x) ←
S(x), Π(Q) is Ans(x) ← S(x, t��). The stable mod-
els of Π(DB , IC ) ∪ Π(Q) do not have atoms S(c, t��) in
common, so there are no consistent answers to Q. �

There are different repair policies in the literature: in [8]
RICs are repaired by adding arbitrary elements of the do-
main, but in [10], by tuple deletions only. These and other
alternative policies can be specified by repair programs.

3. Structural Optimizations of Repair Pro-
grams

The construction of repair programs and their evaluation
can be improved by doing some structural modifications. In
this section, we describe how to eliminate annotations of
database facts, rules for domain constants, and redundant
rules. It is of particular interest the elimination of program
denial constraints, because apart of eliminating unnecessary
model checking, it allows for the application of magic sets
as implemented in the DLV system (c.f. section 4).

3.1. Database Facts Annotations, Auxiliary Predi-
cates, and Redundant Rules

First, instead of adding the constant td to database facts,
they are imported directly from the database to repair pro-
grams, without any annotation; and that constant is elimi-
nated from programs. In consequence, the database predi-
cate P and its version that becomes expanded with an ex-
tra argument for annotations have to be distinguished from
each other. So, the latter is replaced by an underscored ver-
sion, e.g. P (ā, ta) becomes P (ā, ta), etc.

Furthermore, the auxiliary predicate dom, that was intro-
duced for extracting database constants to check satisfiabil-
ity of ICs, is also eliminated. Now, instead of checking that
variables are restricted to the database domain, we check
that variables do not take null values. This is achieved by
adding in the rules related to ICs, conditions of the form
x̄ �= null, instead of dom(x̄). For instance, the annota-
tion rules (c.f. rules 5 in Definition 1) become P (x̄, t�)←
P (x̄), and P (x̄, t�)← P (x̄, ta), respectively.

Finally, for each database predicate P , there is only
one interpretation rule, namely P (x̄, t��) ← P (x̄, t�),
not P (x̄, fa).

With these modifications database facts do not have to
be preprocessed, and the number of rules in the repair pro-
grams decreases considerably.

3.2. Relevant Program Denial Constraints

Program denial constraints in repair programs discard in-
coherent models, i.e. models containing atoms P (x̄) anno-
tated with both ta and fa. It can be seen that a repair pro-
gram will have rules defining P (x̄, ta), and P (x̄, fa), for an
atom P (x̄), iff there exists at least two different ICs of the
form (1) or (2) having P (x̄) both in the antecedent of an IC
and in the consequent of another. In those cases, program
denials for P should be kept.

Example 5 Given the DB = {S(a)}, and the set of ICs
IC : S(x) → Q(x), and Q(x) → R(x), Π(DB , IC ) has
the following rules for ICs and program denial constraints:
S(x, fa) ∨Q(x, ta)← S(x, t�), Q(x, fa), x �= null.
S(x, fa) ∨Q(x, ta)← S(x, t�), not Q(x), x �= null.
Q(x, fa) ∨R(x, ta)← Q(x, t�), R(x, fa), x �= null.
Q(x, fa) ∨R(x, ta)← Q(x, t�), not R(x), x �= null.
← Q(x, ta), Q(x, fa). ← S(x, ta), S(x, fa).
← R(x, ta), R(x, fa).
In the case of predicate S (R) there is no way to generate an
atom with constant ta (fa for R). Thus, the program con-
straints for S and R are always satisfied, and then, they can
be eliminated. In contrast, for predicate Q both annotations
are defined in the program, and then its program denial has
to be kept. �



This idea can be formalized by appealing to the interac-
tion between predicates as involved in ICs.

Definition 2 The dependency graph G(IC ) for a set of ICs
IC of the form (1) or (2) is defined as follow: each database
predicate P in DB is a node, and there is an edge (Pi, Pj)
from Pi to Pj iff there exists a constraint ic ∈ IC such
that Pi appears in the antecedent of ic and Pj appears in the
consequent of ic. In addition, there is an edge (Pi, Pi) if Pi

appears in the antecedent of an ic which has only built-in
predicates in its consequent. A node is called a sink (source)
if it has only incoming (outgoing) edges. �

Example 6 (example 5 cont.) The figure shows the depen-
dency graph G(IC ) for IC : S(x) → Q(x), and Q(x) →
R(x).

S Q

R

Figure 1. Dependency graph

Node S is connected to Q due to the first IC, Q is connected
to R due to the second IC. S is a source node, R is a sink
node. �

Definition 3 Given a database instance DB , and a set
of ICs IC , program Π′(DB , IC ) can be obtained from
Π(DB , IC ) by deleting program denial constraints for the
predicates that are sinks or sources in the corresponding de-
pendency graph G(IC ). �

Example 7 (example 5 and 6 cont.) Program Π′(DB , IC )
has the same set of rules as program Π(DB , IC ), except for
the program constraints for the source predicate S and the
sink predicate R in the dependency graph in example 6. �

Proposition 1 Given a database DB , and a set of ICs IC ,
Π′(DB , IC ) has the same stable models as Π(DB , IC ). �

Corollary 1 If the ICs are only formulas of the form∨n
i=1 Pi (x̄i) → ϕ, where Pi(x̄i) is an atom and ϕ is

a formula containing built-ins, then the dependence graph
G(IC ) has only sink nodes. In consequence, the repair pro-
gram Π′(DB , IC ) has no program denial constraints. �

This corollary includes important classes of ICs, such
as key constraints, functional dependencies, and range con-
straints.

Putting all the transformations so far together, we obtain:

Definition 4 Given a database instance DB , a set of ICs
IC , the repair program Π�(DB , IC ) contains the set of
rules 2 to 5 of definition 1, after applying modifications of
section 3.1, and for each database predicate P , the interpre-
tation rule: P (x̄, t��) ← P (x̄, t�), not P (x̄, fa). Program

denial constraints are generated for each predicate P that is
not a sink or a source node in G(IC ). �

Theorem 1 Given a database instance DB , and a set
of ICs IC , program Π(DB , IC ) as in Definition 1 and
Π�(DB , IC ) produce the same repairs. �

Example 8 (example 5 cont.) Π�(DB , IC ) is composed by
the rules:
S(a).
S(x, fa) ∨Q(x, ta)← S(x, t�), Q(x, fa), x �= null.
S(x, fa) ∨Q(x, ta)← S(x, t�), not Q(x), x �= null.
Q(x, fa) ∨R(x, ta)← Q(x, t�), R(x, fa), x �= null.
Q(x, fa) ∨R(x, ta)← Q(x, t�), not R(x), x �= null.
S(x, t�)← S(x). (similar for Q and R)
S(x, t�)← S(x, ta). (similar for Q and R)
S(x, t��)← S(x, t�), not S(x, fa).(similar for Q and R)
← Q(x, ta), Q(x, fa).
Stable models of program Π�(DB , IC ) contain less pred-
icates than the models of Π(DB , IC ), that due to the fact
that dom predicate was eliminated from repair programs.
However they construct the same database repairs. DB be-
comes consistent by inserting the atoms Q(a), R(a) (M1),
or by deleting S(a) (M2): M1 = {S(a), S(a, t�), Q(a,
ta), S(a, t��), Q(a, t�), R(a, ta), Q(a, t��), R(a, t�),
R(a, t��)}, and M2 = {S(a), S(a, t�), S(a, fa)}. �

From now on, repair programs are those given in Definition
4, and they will be denoted just by Π(DB , IC ).

4. Optimizing Query Evaluation

Consistent answers are obtained from stable models for
the combination of the repair and query programs. Nev-
ertheless, in most of the cases the former -so as its stable
models- contain more information than necessary to answer
the query, because repair programs are built considering
all database predicates and database facts. However, query
predicates are related to a subset of the database predicates.
Furthermore, we are not interested in obtaining complete
stable models (or repairs), but in only obtaining the con-
sistent answer to our queries. In consequence, it is impor-
tant to optimize the evaluation of the programs, considering
only predicates and facts that are relevant to the query. This
is precisely the purpose of the magic sets (MS) technique
[6], that achieves it by simulating a top-down [9] -and then
a directed- evaluation of the query through bottom-up prop-
agation [9]. This technique produces a new program that
contains a subset of the original rules, along with a set of
new, “magic”, rules.

Classic MS techniques for datalog programs [6, 24] have
been extended to logic programs with unstratified nega-
tion under stable models semantics [15], to disjunctive pro-
grams with stratified negation [20], with an optimized ver-



sion [11] being implemented in DLV. For this kind of pro-
grams, MS is sound and complete, i.e. the method computes
all and only correct query answers for the query. In [19] a
sound but incomplete methodology is presented for disjunc-
tive programs with constraint rules of the form ← C(x),
where C(x) is a conjunction of literals (a positive or negated
atom). Here, we present a sound and complete methodol-
ogy for our disjunctive repair programs with program de-
nial constraints. The latter fall in the category of constraint
rules with only positive intensional literals in the body. The
methodology works for the kind of programs that we have,
but not necessarily in the general case of disjunctive pro-
grams with constraints rules. It works as follows: the set
of program denials PD is separated from the rest of the
rules, then MS, as defined in [11], is applied to the result-
ing program. At the end of the process, the program de-
nial constraints are put back into the resulting program, and
so enforcing that the rewritten program has only coherent
models.

4.1. Magic Sets for Repair Programs

Given an atomic ground (or partially grounded) query
and a program, MS selects the relevant rules from the pro-
gram to compute the answer for the query, and pushes down
the query constants to restrict the tuples involved in the
computation of the answer. MS carries this out by sequen-
tially performing three well defined steps: adornment, gen-
eration and modification. The method will be illustrated
using the following repair program and query, where rules
have been enumerated to refer to them.

Example 9 DB = {S(a), T (a)} and IC = {S(x) →
Q(x), Q(x) → R(x), T (x) → P (x)}. Π(DB , IC ,Q) :=
Π(DB , IC ) ∪Π(Q) consists of the rules:
1. S(a). T (a).
2. S(x, fa) ∨Q(x, ta)← S(x, t�), Q(x, fa), x �= null.
3. S(x, fa) ∨Q(x, ta)← S(x, t�), not Q(x),

x �= null.
4. Q(x, fa) ∨R(x, ta)← Q(x, t�), R(x, fa), x �= null.
5. Q(x, fa) ∨R(x, ta)← Q(x, t�), not R(x),

x �= null.
6. T (x, fa) ∨ P (x, ta)← T (x, t�), P (x, fa), x �= null.
7. T (x, fa) ∨ P (x, ta)← T (x, t�), not P (x),

x �= null.
8. S(x, t�)← S(x, ta). (same for Q,R, T, P )
9. S(x, t�)← S(x). (same for Q,R, T, P )
10. S(x, t��) ← S(x, t�), not S(x, fa). (same for

Q,R, T, P )
11. ← Q(x, ta), Q(x, fa).
Q : Ans(x)← S(x, t��).
The program has four stable models, and under cautious
reasoning there are no answers to Q. �

MS is applied over Π−(DB , IC ,Q) := Π(DB , IC ,Q)
�PD , where PD is the set of program denial constraints of
program Π(DB , IC ,Q).

For the adornment step, the relationship between the
query predicates and the predicates of the program Π− are
explicitly defined. The output of this step is a new adorned
program, where each intensional predicate (IDB) is of the
form PA, where A is a string of letters b, f (for bound and
free, respectively) whose length is equal to the arity of pred-
icate P .

Starting from the given query, adornments are created.
First, Q becomes Ansf (x) ← S fb(x, t��), meaning that
the first argument of S is a free variable, and the second
one is bound. The adorned predicate S fb is used to prop-
agate bindings (adornments) onto the rules defining it. For
instance, S fb propagate bindings to the rules 2, 3, 8, 9 and
10. Thus, rule 8 becomes S fb(x, t�) ← S fb(x, ta), and
rule 9, S fb(x, t�) ← S(x). Extensional predicates (EDB),
e.g. S(x), only bind variables and do not receive any anno-
tation.

For disjunctive rules, adorned predicates also propa-
gates bindings to others head atoms in rules defining them.
For instance, the adorned atom S fb used on rule 2 pro-
duces adornments over the head atom Q(x, ta), rule 2 be-
comes S fb(x, fa) ∨Qfb(x, ta)← S fb(x, t�), Qfb(x, fa),
x �= null. Note that the adorned predicate Qfb also has
to be processed. In the end, the adorned program contains
adorned rules for predicates {S,Q,R} only.

Different strategies can be used when considering in
what order atoms are to be processed and how bindings
could be propagated. We follow the strategy adopted in
[11], according to which only EDB predicates bind new
variables, i.e. variables that do not carry a binding already.
For disjunctive rules, head atoms different from the adorned
atom that is being processed, only receive bindings, but
do not bind any variable. For instance, the adorned atom
S bb processed on rule S(x, fa) ∨ Q(x, y, ta)← S(x, t�),
Q(x, y, fa), x �= null binds variable x of the head atom Q,
but y stays free.

The next step is the generation of magic rules; those that
simulate a top-down evaluation of the query. They are gen-
erated for each rule of the adorned program. In the case
of non-disjunctive rules, for each adorned atom PA in the
body of an adorned rule, a magic rule is generated as fol-
lows: the head of the rule becomes the magic version of
PA, i.e. the new predicate magic PA, from which all the
arguments labelled with f in A are deleted. The body of
the rule becomes the magic version of the adorned rule’s
head, followed by the predicates that are able to propagate
the bindings on PA. As an illustration, for the adorned
rule S fb(x, t�)← S fb(x, ta), being PA = S fb(x, ta), the
magic rule is: magic S fb(ta)←magic S fb(t�).



For disjunctive adorned rules, first intermediate non-
disjunctive rules are generated, which is achieved by
moving head atoms into the bodies of rules. Then,
magic rules are generated as described previously. For
instance, for the rule: S fb(x, fa) ∨ Qfb(x, ta) ←
S fb(x, t�), Qfb(x, fa), x �= null, two non-disjunctive
rules are generated: (i) S fb(x, fa) ← Qfb(x, ta),
S fb(x, t�), Qfb(x, fa), x �= null, and (ii) Qfb(x, ta)
← S fb(x, fa), S fb(x, t�), Qfb(x, fa), x �= null.
For rule (i) the following magic rules are generated:
magic Qfb(ta) ← magic S fb(fa); magic S fb(t�) ←
magic S fb(fa); and magic Qfb(fa)← magic S fb(fa).

In the modification step, magic atoms constructed in the
generation stage are included in the body of adorned rules.
Thus, for each adorned rule, the magic version of its head
is inserted into the body. The rest of the adornments of the
rule are now deleted. For instance, for the adorned rule 2:
S fb(x, fa) ∨ Qfb(x, ta) ← S fb(x, t�), Qfb(x, fa), x �=
null, the modified rule is: S(x, fa) ∨ Q(x, ta) ←
magic S fb(fa),magic Qfb(ta), S(x, t�), Q(x, fa), x �=
null.

The output of magic sets is the program
MS(Π−(DB , IC ,Q)) that consist of the magic rules,
and the modified rules. The final rewritten program
denoted by MS←(Π(DB , IC ,Q)) consists of program
MS(Π−(DB , IC ,Q)), the set of program denials PD ,
and the magic seed atom, which is the magic version of the
Ans predicate from the adorned query rule. For instance,
for the adorned rule: Ansf (x) ← S fb(x, t��), the magic
seed atom is magic Ansf .

The rewritten version of program in example 9,
MS←(Π(DB , IC ,Q)) has two stable models: M1 =
{S(a), T (a), S(a, t�), Q(a, ta), S(a, t��), Q(a, t�),
R(a, ta), Ans(a)}; and M2 = {S(a), T (a), S(a, t�),
S(a, fa)} (they are displayed without the magic atoms), and
has no cautious answers toQ : Ans(x)← S(x, t��), which
is now expressed as Ans(x) ← magic Ansf , S(x, t��) in
the rewritten program. The original program has four SM,
and program MS←(Π(DB , IC ,Q)) has only two, which
are partially computed. In addition, the unique database
predicates that are instantiated are the ones related to the
query, i.e. Q, and R, in this case via the ICs. For the same
reason, programMS←(Π(DB , IC ,Q)) contains rules re-
lated to predicates {S,Q,R} of the original repair program
(plus the magic rules), but not rules for predicates {T, P},
which are not relevant to the query.

For the method described here for (disjunctive) repair
programs with program denial constraints, we conclude that
the rewritten program and the original repair program are
query equivalent under both brave and cautious reasoning2.

2Programs Π1 and Π2 are bravely (resp. cautiously) equivalent w.r.t.
a query Q, denoted Π1 ≡Q Π2, if for any set F of facts, brave (resp.
cautious) answers to Q from the program Π1 ∪ F are the same as the

This result establishes that MS techniques are a good op-
tion for evaluating repair programs over large databases. In
[11, 19] important results of the application of MS in eval-
uation of benchmark programs are reported.

Theorem 2 Given a database instance DB , a set of ICs IC ,
an atomic and possibly partially ground query Q, program
MS←(Π(DB , IC ,Q)) ≡Q Π(DB , IC ,Q) under both the
brave and cautious semantics. �

This methodology based on leaving aside the program
denial constraints when MS is applied and adding them
at the end always works in the case of repair programs.
This is because of two things. First, the rewritten pro-
gramMS(Π−(DB, IC,Q)) produced by MS contains all
the rules that are necessary to check the satisfiability of
the program constraints that are relevant to the query, in
the sense that they contain predicates that are connected to
the query predicate in the graph G(IC ). More precisely,
we have program denials of the form← P (x̄, ta), P (x̄, fa)
in Π(DB , IC ) only when there are rules defining P (x̄, ta)
and P (x̄, fa) in Π(DB , IC ). InMS(Π−(DB, IC,Q)), the
output of the MS, we will still find all the rules defining P ;
then it will be possible to check the satisfiability of the pro-
gram denials in the models ofMS(Π−(DB, IC,Q)). Sec-
ond, with MS we obtain a “subset”(without considering the
magic atoms) of the stable models of the original program.

By the first remark, the stable models of the MS pro-
gram satisfy the program denials. Furthermore, each of
these models of the MS program contain limited extensions
for database predicates (including annotations), those that
are sufficient to answer the query as well, however each
of them can be extended to a stable model of the origi-
nal program. More precisely, it is possible to prove that,
for every stable model M of M ofMS←(Π(DB, IC,Q))
(without considering the magic atoms), there is a stable
model M ′ of Π(DB , IC ,Q) that extends M in the sense
that M = M”, where M” is the set of atoms of M ′

that appear in the head of a rule in (the ground version
of) MS←(Π(DB, IC,Q)). As a consequence, the stable
models of program MS←(Π(DB, IC,Q)) are all coher-
ent models, they contain all the atoms needed to answer a
query, and they compute the same answers as the models of
Π(DB , IC ,Q) for the given query.

Our approach does not work for the general cases as
those presented in [19]. To show this, some of the exam-
ples given there can be used. In them MS is applied to a
disjunctive program with constraints that does not have sta-
ble models. However, for a ground query, the MS method
produces a program that has one stable model, which is due
to the fact that the query is related with a part of the pro-
gram which is consistent with the program denial; and MS
focalizes on that part of the program to answer the query.

brave (resp. cautious) answers to Q from Π2 ∪ F .



In addition, our MS method will not work either for some
programs that do have stable models. For instance, for the
database {R(a)} and program Π with rules: (Y (x) ←
S(x)), (P (x) ← R(x), not S(X)), (S(x) ← R(x),
not P (X)), and denial← Y (x), we have one stable model
M = {R(a), P (a)}. But for query Ans(x) ← P (x),
our MS method produces a program that has two sta-
ble models (shown here without magic atoms): M1 =
{R(a), P (a), Ans(a)}; and M2 = {R(a), S(a)}, and as
a consequence there are not cautious answers to the query
even though a should be an answer to it. This happens be-
cause the MS method does not select rule Y (x) ← S(x).
Then, when the constraint← Y (x), is put back to the pro-
gram it is satisfied even though it should not be if S(a) be-
longs to the stable model. In our case, a rule that is relevant
to check the satisfiability of a program denial constraint is
never left out of the MS rewritten program.

4.2. Applying Magic Sets to CQA in the DLV System

In theory, MS, as presented in the previous section, can
be successfully applied to the evaluation of disjunctive re-
pair programs with program denial constraints. Unfortu-
nately, it is not implemented in DLV (or in any other system
that we know). Nevertheless, DLV does implement MS for
disjunctive programs without program or denial constraints
[22]. In this case, DLV applies MS internally, without giv-
ing access to the rewritten program (to which it would be
easy to add the program constraints at the end). As a con-
sequence, the application of MS with DLV for the evalua-
tion of repair programs with program denial constraints is
not straightforward. Here we describe how to modify our
programs in order to be able to apply MS directly through
DLV. Basically, program constraints are rewritten in such a
way that DLV does not recognize them as denial rules, but
it is still able to consider only coherent models, i.e. models
without a same database atom annotated both with both ta
and fa.

Let Π′′(DB , IC ) be the program obtained from
Π(DB , IC ) by replacing program denials in it by rules of
the form inc ← P (x̄, ta), P (x̄, fa). Π′′(DB , IC ) may
have SM that are not coherent models of the original pro-
gram; namely those that contain both P (c̄, ta) and P (c̄, fa)
for a given predicate P in DB and a constant c.

Example 10 (example 9 cont.) Program Π(DB , IC )
has one program denial, for predicate Q. So that,
Π′′(DB , IC ) contains the modified denial rule inc ←
Q(x, ta), Q(x, fa), and has two additional stable mod-
els: M1 = {T (a), S(a), T (a, t�), S(a, t�), Q(a, ta),
S(a, t��), Q(a, t�), Q(a, fa), P (a, ta), inc, T (a, t��),
P (a, t�), P (a, t��)}; M2 = {T (a), S(a), T (a, t�),
S(a, t�), Q(a, ta), S(a, t��), Q(a, t�), Q(a, fa), T (a, fa),
inc}. �

In order to retrieve consistent answers, queries have to
be modified. A ground query Q becomes Q ∨ inc, which
does not affect the cautious semantics and does not requires
to discard the incoherent models. This is due to the fact that
coherent models do not satisfy atom inc, and then they are
required to satisfy Q.

Example 11 (example 10 cont.) The queryQ : (not S(a)∨
R(a)) expressed as a program is: Ans ← not S(a) and
Ans← R(a). It is true in program Π(DB , IC ,Q), but be-
comes false when evaluated in Π′′(DB , IC ,Q). However,
the query (not S(a) ∨R(a) ∨ inc), which as a program is:
Ans ← not S(a), Ans ← R(a), and Ans ← inc, is true
when evaluated in Π′′(DB , IC ,Q). �

For non-ground queries, e.g. Ans(x)← S(x), we need
to make the extension of the Ans predicate in the incoherent
models sufficiently large, so that cautious answers from the
coherent models are not lost. So for this kind of queries
we add rules of the form Ans(x) ← inc, P (x, t�) to the
query program, for each predicate P that is connected to
some predicate in the query in the graph G(IC )3, in this
case, to S. We use atoms with annotation t� since they
give an extension large enough to the Ans predicate, that
makes the consistent answers to the original query to belong
to it. Furthermore, the extensions of Ans in the incoherent
models are bounded and can be computed using the same
program.

As an illustration, for query Ans(x) ← S(x) evalu-
ated with program in example 9, the following query rules
have to be added: Ans(x) ← inc, S(x, t�), Ans(x) ←
inc,Q(x, t�), Ans(x)← inc,R(x, t�).

Proposition 2 Given a database instance DB , a set of ICs
IC , and query program Π(Q), if Π′′(Q) is obtained from
Π(Q) by adding rules on it of the form Ans(x) ←
inc, P (x, t�), for each predicate P that is connected in
G(IC ) to a query predicate appearing in Π(Q), then
Π′′(DB , IC ) ∪ Π′′(Q) ≡Q Π(DB , IC ) ∪ Π(Q) under the
cautious semantics. �

4.3. Selecting Relevant Database Facts

The repair programs in Definition 4 consider all the
database facts (rule 1 in it), and all of them appear in the sta-
ble models of the program, even if they are not involved in
the computation of answers to a particular query. In exam-
ple 9 tuples regarding to predicate T appear in stable mod-
els, but they are not related to the predicate S in the query.
In spite of this, the set of tuples that are relevant to answer
a query can be selected before processing the query. This

3A pair of nodes are connected in the graph G(IC ) if there is a se-
quence of consecutive edges (consider as undirected edges) connecting
vertices.



can be achieved by analyzing the relation between database
predicates and query predicates as captured by the depen-
dency graph in Definition 2. Intuitively, the database facts
that are necessary to answer a query Q are among those that
are associated to predicates connected in the graph to the
predicates in the query.

Let Π(DB , IC ,Q) ↓Q be the same as program Π(DB ,
IC ,Q) except for the facts: the former contains only those
P (ā) with P (ā) ∈ DB , such that one P appears inQ, or P
is connected to P ′ in the graph G(IC ), with P ′ appearing
in Q.

Proposition 3 Π(DB , IC ,Q) ↓Q and Π(DB , IC ,Q) re-
trieve the same cautious/brave answers to query Q. �

Example 12 (example 9 cont.) The dependency graph
G(IC ) has the set of nodes {S, Q, R, T, P}, and edges
= {(S,Q), (Q,R), (T, P )}. Thus, Π(DB , IC ,Q) ↓Q for
Q : Ans(x) ← S(x, t��) contains as facts only those in
relations {S,Q,R}, in this case, tuple S(a). �

Apart from the reduction of database facts to be involved
in the computation of the stable models, it is worth notic-
ing that a system like DLV may bring into main memory
the answers to a given query. In particular, this query could
ask for the facts that are relevant to a second query as de-
termined by the dependency graph, so that they can be used
for the computation of answers to the latter.

5. Specification of Scalar Aggregation In Re-
pair Programs

In [3] the notion of consistent answers for scalar aggre-
gation queries in inconsistent database wrt functional de-
pendencies (FDs) was defined. Aggregation queries are of
the form: SELECT f (...) FROM R, where f is one
of the aggregate operators min, max, count, sum, avg, which
are applied over an attribute or the entire relation R. These
queries return single numerical values. A consistent answer
for a scalar aggregate query [3] is the shortest numerical in-
terval [a, b] such that the value of the scalar function evalu-
ated in every repair can be found within it.

Example 13 DB = {E(smith, 5000), E(smith, 8000),
E(jones, 3000)}, violates FD : Name → Salary.
There are two repairs: DB1 = {E(smith, 5000),
E(jones, 3000)} and DB2 = {E(smith, 8000),
E(jones, 3000)}. The consistent answer to query SELECT
MAX(salary) FROM E is the interval [5000, 8000]. �

Repairs wrt FDs can be specified by disjunctive logic
programs, together with the aggregate query. The semantics
of aggregation under stable model semantics for disjunctive
program is investigated in [13, 16]. DLV can be used to

compute, with some restrictions, aggregate queries that in-
volve min, max, count, times, sum [16]. Unfortunately, our
repair programs satisfy only the restrictions for functions
max and min.4

Example 14 (example 13 cont.) Program Π(DB , IC ) has
the following rules5:
E(smith, 5000). E(smith, 8000). E(jones, 3000).
E (x, y, fa) ∨ E (x, z, fa) ← E (x, y, t�), E (x, z, t�),

y �= z, y �= null, z �= null.
E (x, y, t�)← E (x, y, ta).
E (x, y, t�)← E(x, y).
E (x, y, t��)← E (x, y, t�), not E (x, y, fa).
A(w)← #max{y :E (x, y, t��)}=w,E ( , w, t��).
The rule A(w) ← #max{y : E (x, y, t��)} = w,
E ( , w, t��), defines the aggregate function max, which
is applied over variable y of predicate E ; A is a new pred-
icate, and w is the variable that stores the value returned by
max in each stable model [16].6 The program Π(DB , IC )
has two stable models, and the aggregation function returns
5000 as the maximum salary in one of them, and 8000 in
the other. In order to obtain consistent answers to aggre-
gate queries, one can capture all the values returned by
the aggregation function across the models, which can be
achieved by posing the query Ans(x) ← A(x) to the pro-
gram Π(DB , IC ) under the brave semantics. Here we ob-
tain the values Ans(5000), Ans(8000), and therefore the
consistent answer is the interval [5000, 8000]. �

6. Conclusions

In this paper, repair programs have been simplified and
optimized by eliminating redundant rules, and annotations.
Moreover, important classes of ICs are identified for which
repair programs can be specified without program denial
constraints. The elimination of those constraints becomes
very important when MS techniques are applied with the
DLV system. It was shown that the MS method is sound
and complete when it is applied to disjunctive repair pro-
grams with program denial constraints. In order to apply
MS to repair programs in DLV, a suitable processing of the
remaining program denial constraints has to be performed.
This is due to the fact that currently DLV does not support
MS for programs with program constraints. The evaluation
of programs in DLV was also improved by involving only
relevant facts in the computation of query answers, so that

4However, correct specifications for the other aggregate functions can
be given in similar terms; the problem with them is relative to DLV.

5By corollary 1 this repair program does not have program denial con-
straints.

6The last occurrence of E in the body is used to bound the ground
instantiation of w, which is easy to achieve for max or min, but is more
problematic for the other aggregate functions.



now only a smaller portion of the database is imported into
DLV system.

We explored the aggregation capabilities of DLV sys-
tem for computing consistent answers to scalar aggregation
queries as defined in [3]. The current version of DLV im-
plements five aggregation functions with some restrictions,
that are satisfied by our repair programs for functions max
and min only. We are interested in extensions of consistent
query answering to aggregate queries with GROUP BY us-
ing logic programs.

We are currently developing a system for computing
CQA based on repair programs. Currently, the system im-
plements the logic approach presented in [7], with some of
the optimizations of section 3.

In addition, we are working on the identification of
classes of ICs and queries for which, the well-founded se-
mantics of logic programs [25] can be used, instead of the
stable models semantics. Preliminary research in this di-
rection can be found in [2], for slightly different specifica-
tion programs. This could be interesting due to the fact that
the well-founded semantics has lower computational com-
plexity than the stable model semantics [12], and efficient
implementations are available (http://xsb.sourceforge.net/).

It would be also interesting to extend the techniques de-
scribed in [14] for splitting the database into the affected
and safe parts to RICs under the satisfaction semantics in
presence of null values [7].
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