
Specifying Active Rules for Database
Maintenance?

Leopoldo Bertossi and Javier Pinto

Departamento de Ciencia de la Computación
Escuela de Ingenieŕıa

Pontificia Universidad Católica de Chile
Casilla 306, Santiago, Chile

{bertossi, jpinto}@ing.puc.cl

Abstract In this article we extend previous work on the development
of logical foundations for the specification of the dynamics of databases.
In particular, we deal with two problems. Firstly, the derivation of ac-
tive rules that maintain the consistency of the database by triggering
repairing actions. Secondly, we deal with the correct integration of the
specification of the derived rules into the original specification of the
database dynamics. In particular, we show that the expected results are
achieved. For instance, the derived axiomatization includes, at the object
level, the specification that repairing action executions must be enforced
whenever necessary.

1 Introduction

In this article we propose a logic based approach to automatically derive active
rules [30] for the maintenance of the integrity of a database [5]. This research
follows the tradition of specifying the semantics of a database using mathematical
logic [20,7]. In particular, we deal with a logical framework in which transactions
are treated as objects within the logical language, allowing one to reason about
the dynamics of change in a database as transactions are executed.

As shown in [26], it is possible to specify the dynamics of a relational database
with a special formalism written in the situation calculus (SC) [17], a language
of many-sorted predicate logic for representing knowledge and reasoning about
actions and change. Apart from providing a natural and well studied semantics,
the formalism can be used to solve different reasoning tasks. For instance, reason
about the evolution of a database [3], reason about the hypothetical evolutions
of a database [1], reason about the dynamics of views [2], etc.

In the SC formalism, each relational table is represented by a table predicate.
Each table predicate has one situation argument which is used to denote the
state of the database. In order to specify the dynamics of the relations in a
database, one derives the so-called successor state axioms (SSAs); one SSA per
base relation or table.
? This research has been partially financed by FONDECYT (Grants 1990089 and

1980945), and ECOS/CONICYT (Grant C97E05).

G. Saake, K. Schwarz, and C. Türker (Eds.): TDD ’99, LNCS 1773, pp. 112–129, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Specifying Active Rules for Database Maintenance 113

Each SSA describes the exact conditions under which the presence of an
arbitrary tuple in the table holds after executing an arbitrary legal primitive
transaction1. SSAs state necessary and sufficient conditions for any tuple to
belong to a relation after a transaction is performed. These conditions refer only
to the state2 in which the transaction is executed and does not make reference
to further constraints on the resulting state. Thus, there are no explicit integrity
constraints (IC) in the specification.

Given the exhaustive descriptions of the successor states (those obtained after
executing primitive transactions) provided by the the SSAs, it is very easy to get
into inconsistencies if integrity constraints are introduced in the specification.
For example, this is true when ramification constraints are introduced. These
are constraints that force the database to make indirect changes in tables due
to changes in other tables.

There are several options to deal with this problem:

1. One can assume that the ICs are somehow embedded in the SSAs. This is the
approach in [26]. They should be logical consequences of the DB specification.

2. Some ICs can be considered as qualification constraints, that is, they are
considered as constraints on the executability of the database actions. In
[14] a methodology for translating these constraints into axioms on the exe-
cutability of actions, or better, on the legality of actions is presented. In this
approach, the so-called Action Precondition Axioms are generated.

3. For some interesting syntactical classes of ramification ICs, there are mech-
anisms for compiling them into Effect Axioms, from which the SSAs can be
re-computed. Then, the explicit ICs disappear and they turn out to be logical
consequences of the new specification [18,23] (see also [3] for implementation
issues).

4. It is also possible to think of a database maintenance approach, consisting
of adding active rules to a modification of the original specification. These
rules enforce the satisfaction of the ICs by triggering appropriate auxiliary
actions. Preliminary work on this, in a general framework for knowledge
representation of action and change, is shown in [22].

The last alternative is the subject of this paper. There are several issues to be
considered. First, a computational mechanism should be provided for deriving
active rules and repairing actions from the ICs. Second, the active rules should
be consistent with the rest of the specification and produce the expected effects.
Third, since the active rules will have the usual Event-Condition-Action (ECA)
form [30,31], which does not have a direct predicate logic semantics, they should
be specifiable in (a suitable extension of) the language of the situation calculus,
and integrated smoothly with the rest of the specification. Some work in this
direction, on the assumption that general ECA rules are given, is presented in
[4].
1 These are the simplest, non-decomposable transactions; they are domain dependent.

In the KR literature they are called “actions”. We consider the notions primitive
transaction and action as synonyms.

2 In this paper we do not make any distinction between situations and states.



114 L. Bertossi and J. Pinto

2 Specification of the Database Dynamics

Characteristic ingredients of a particular language L of the situation calculus,
besides the usual symbols of predicate logic, are:

(a) Among others, the sorts action, situation.
(b) Predicate symbols whose last argument is of the sort situation. These pred-

icates depend on the state of the world and can be thought of as the tables
in a relational database.

(c) Operation symbols which applied to individuals produce actions (or primitive
transactions), for example, enroll(·) may be an operation, and enroll(john)
becomes an action term.

(d) A constant, S0, to denote the initial state of the database.
(e) An operation symbol do that takes an action and a situation as arguments,

producing a new situation, a successor situation resulting from the execution
of the action at the given situation.

In these languages there are first-order variables for individuals of each sort, so it
is possible to quantify over individuals, actions, and situations. They are usually
denoted by ∀x̄, ∀a, ∀s, respectively.

The specification of a dynamically changing world, by means of an appropri-
ate language of the situation calculus, consists of a specification of the laws of
evolution of the world. This is typically done by specifying:

1. Fixed, state independent, but domain dependent knowledge about the indi-
viduals of the world.

2. Knowledge about the state of the world at the initial situation given in terms
of formulas that do not mention any state besides S0.

3. Preconditions for performing the different actions (or making their execu-
tion possible). The predicate Poss is introduced in L. The predicate has
one action and one situation as arguments. Thus, Poss(a, s) says that the
execution of action a is possible in state s.

4. The immediate (positive or negative) effects of actions in terms of the tables
whose truth values we know are changed by their execution.

In Reiter’s formalism, the knowledge contained in items 1. and 2. above is con-
sidered the initial database Σ0. The information given in item 3. is formalized
by means of action precondition axioms (APAs) of the form:

Poss(A(x̄), s) ≡ πA(x̄, s),

for each action name A, where πA(x̄, s) is a SC formula that is simple in s.
A situation is said to be simple in a situation term s if it contains no state
term other than s (e.g., no do symbol); no quantifications on states; and no
occurrences of the Poss predicate [15]. Finally, item 4. is expressed by effect
axioms for pairs (primitive transaction, table):



Specifying Active Rules for Database Maintenance 115

Positive Effects Axioms: For some pairs formed by a table R and an action name
A, an axiom of the form:

∀(x̄, ȳ, s)[Poss(A(ȳ), s) ∧ ϕ+
R(ȳ, x̄, s) ⊃ R(x̄, do(A(ȳ), s))]. (1)

Intuitively, if the named primitive transaction A is possible, and the precondi-
tions on the database are true at state s (in particular, on the table R, repre-
sented by the meta-formula ϕ+

R(ȳ, x̄, s)) then the statement R becomes true of x̄
at the successor state do(A(ȳ), s) obtained after execution of A at state s. Here,
x̄, ȳ are parameters for the table and action. Notice that in general we have two
kinds of conditions: (a) Preconditions for action executions, independently from
any table they might affect. These are axiomatized by the Poss predicate. (b)
Preconditions on the database for pairs table/action which make the changes
possible (given that the action is already possible). These preconditions are rep-
resented by ϕ+

R(ȳ, x̄, s).

Negative Effects Axioms: For some pairs formed by a table R and an action
name A, an axiom of the form:

∀(x̄, ȳ, s)[Poss(A(ȳ), s) ∧ ϕ−
R(ȳ, x̄, s) ⊃ ¬R(x̄, do(A(ȳ), s))]. (2)

This is the case where action A makes table R to become false of x̄ in the
successor state.

Example 1. Consider an educational database as in [26], with the following in-
gredients. Tables: 1. Enrolled(stu, c, s), student stu is enrolled in course c in
the state s. 2. Grade(stu, c, g, s), the grade of student stu in course c is g in
the state s. Primitive Transactions: 1. register(stu, c), register student stu in
course c. 2. change(stu, c, g), change the grade of student stu in course c to g.
3. drop(stu, c), eliminate student stu from the course c.

Action Precondition Axioms:

∀(stu, c, s)[Poss(register(stu, c), s) ≡ ¬Enrolled(stu, c, s)].

∀(stu, c, g, s)[Poss(change(stu, c, g), s) ≡ ∃g′Grade(stu, c, g′, s)].

∀(stu, c, s)[Poss(drop(stu, c), s) ≡ Enrolled(stu, c, s)].

Effect Axioms:

∀(stu,c, s)[Poss(register(stu, c), s) ⊃ Enrolled(stu, c, do(register(stu, c), s))]

∀(stu,c, s)[Poss(drop(stu, c), s) ⊃ ¬Enrolled(stu, c, do(drop(stu, c), s))]

∀(stu,c, g, s)[Poss(change(stu, c, g), s) ⊃
Grade(stu, c, g, do(change(stu, c, g), s))].

∀(stu,c, g, g′, s)[Poss(change(stu, c, g′), s) ∧ g 6= g′ ⊃
¬Grade(stu, c, g, do(change(stu, c, g′), s))]

2



116 L. Bertossi and J. Pinto

A problem with a specification like the one we have so far is that it does not
mention the usually many things (entries in tables) that do not change when
a specific action is executed. We face the so-called frame problem, consisting
of providing a short, succinct, specification of the properties that persist after
actions are performed. Reiter [25] discovered a simple solution to the frame
problem as it appears in the situation calculus. It allows to construct a first-order
specification, that accounts both for effects and non–effects, from a specification
that contains descriptions of effects only, as in the example above. We sketch
this solution in the rest of this section.

For illustration, assume that we have no negative effects, and two positive
effect laws for table R: (1) and

∀(x̄, z̄, s)[Poss(A′(z̄), s) ∧ ψ+
R(z̄, x̄, s) ⊃ R(x̄, do(A′(z̄), s))]. (3)

We may combine them into one general positive effect axiom for table R:

∀(a, x̄, s)[Poss(a, s) ∧ [∃ȳ(a = A(ȳ) ∧ ϕ+
R(ȳ, x̄, s)) ∨

∃z̄(a = A′(z̄) ∧ ψ+
R(z̄, x̄, s))] ⊃ R(x̄, do(a, s))].

In this form we obtain, for each table R, a general positive effect law of the form:

∀(a, x̄, s)[Poss(a, s) ∧ γ+
R (a, x̄, s) ⊃ R(x̄, do(a, s))].

Analogously, we obtain, for each table R, a general negative effect axiom:

∀(a, x̄, s)[Poss(a, s) ∧ γ−
R (a, x̄, s) ⊃ ¬R(x̄, do(a, s))].

For each table R we have represented, in one single axiom, all the actions and
the corresponding conditions on the database that can make R(x̄) true at an
arbitrary successor state obtained by executing a legal action. In the same way
we can describe when R(x̄) becomes false.

Example 2. (cont’d) In the educational example we obtain the following general
effect axioms for the table Grade:

∀(a, stu, c, g, s)[Poss(a, s) ∧ a = change(stu, c, g) ⊃ Grade(stu, c, g, do(a, s))]

∀(a, stu, c, g, s)[Poss(a, s) ∧ ∃g′(a = change(stu, c, g′) ∧ g 6= g′)

⊃ ¬Grade(stu, c, g, do(a, s))].

2

The basic assumption underlying Reiter’s solution to the frame problem is that
the general effect axioms, both positive and negative, for a given table R, contain
all the possibilities for tableR to change its truth value from a state to a successor
state. Actually, for each table R we generate its Successor State Axiom:

∀(a, s)Poss(a, s) ⊃ ∀x̄[R(x̄, do(a, s)) ≡ (γ+
R (a, x̄, s) ∨ (R(x̄, s) ∧ ¬γ−

R (a, x̄, s)))].
(4)



Specifying Active Rules for Database Maintenance 117

Here, γ+ and γ− are of the form
∨

some A′s ∃ū(a = A(ū) ∧ ϕ(ū, x̄, s)), meaning
that action A, under condition ϕ, makes R(x̄, do(A, s)) true, in the case of γ+,
and false, in the case of γ−. Thus, the SSA says that if action a is possible, then
R becomes true at the successor state that results from the execution of action
a if and only if a is one of the actions causing R to be true (and for which the
corresponding preconditions, ϕ, are true), or R was already true before executing
a and this action is not one of the actions that falsify R.

Example 3. (cont’d) In our running example, we obtain the following SSAs for
the tables in the database:

∀(a, s)Poss(a, s) ⊃ ∀(stu, c)[Enrolled(stu, c, do(a, s)) ≡ a = register(stu, c) ∨
Enrolled(stu, c, s) ∧ a 6= drop(stu, c)]

∀(a, s)Poss(a, s) ⊃ ∀(stu, c, g)[Grade(stu, c, g, do(a, s)) ≡ a = change(stu, c, g) ∨
Grade(stu, c, g, s) ∧ ¬∃g′(a = change(stu, c, g′) ∧ g′ 6= g)].

2

Notice that, provided there is complete knowledge about the contents of the
tables at the initial state, the SSAs completely describe the contents of the
tables at every state that can be reached by executing a finite sequence of legal
primitive transactions (that is for which the corresponding Poss conditions are
satisfied). The SSAs have a nice inductive structure that makes some reasoning
tasks easy, at least in principle.

In order for the specification to have the right logical consequences, we will
assume that the following Foundational Axioms of the Situation Calculus (FAs)
underlie any database specification [14]:

1. Unique Names Axioms for Actions (UNAA): Ai(x̄) 6= Aj(ȳ), for all different
action names Ai, Aj ; and ∀(x̄, ȳ)[A(x̄) = A(ȳ) ⊃ x̄ = ȳ], for every action
name A.

2. Unique Names Axioms for States:

S0 6= do(a, s),

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2.

3. For some reasoning tasks we need an Induction Axiom on States:

∀P [P (S0) ∧ ∀s∀a (P (s) ⊃ P (do(a, s))) ⊃ ∀s P (s)],

that has the effect of restricting the domain of situations to the one contain-
ing the initial situation and the situations that can be obtained by executing
a finite number of actions. In this way, no non-standard situations may ap-
pear. The axiom is second order, but for some reasoning tasks, like proving
integrity constraints, reasoning can be done at the first-order level [14,3].

4. Finally, we will be usually interested in reasoning about states that are acces-
sible from the initial situation by executing a finite sequence of legal actions.



118 L. Bertossi and J. Pinto

This accessibility relation on states, ≤, can be defined from the induction
axiom plus the conditions:

¬s < S0

s < do(a, s′) ≡ Poss(a, s′) ∧ s ≤ s′.

Summarizing, a specificationΣ, in the SC, of transaction based database updates
consists of the sets: Σ0 ∪ APAs ∪ SSAs ∪ FAs.

Example 4. (cont’d) A static IC we would like to see satisfied at every accessible
state of the database is the functional dependency for table Grade3. The IC can
be expressed by:

∀s(S0 ≤ s ⊃ ∀stu, c, g1, g2 (Grade(stu, c, g1, s) ∧ Grade(stu, c, g2, s) ⊃ g1 = g2)).
(5)

According to Reiter [26], this formula should be a logical consequence of a correct
specification of the form described above; actually in our example this is the case.
Otherwise, we should have to embed the IC into a modified specification of the
same form as before or we should have to generate active rules for making the
IC hold. 2

3 Integrity Constraints and Internal Actions

In the following, we distinguish between agent or user actions and internal ac-
tions4. We have already considered the first class; they are user defined primitive
transactions, and appear explicitly in a possibly more complex user transaction5.
Instead, the internal actions are executed by the database management system
as a response to the state of the database. They will be executed immediately
when they are expected to be executed with the purpose of restoring the integrity
of the database.

In the rest of this paper, with the purpose of illustrating our approach, we
will consider only ICs of the form

∀s(S0 ≤ s ⊃ ∀x̄ (R1(x̄, s) ∧R2(x̄, s) ⊃ R(x̄, s)), (6)

where R1, R2, R are table names, or negations of them; and the variables in
each of them in (6) are among the variables in x̄. The Rs could also be built-
in predicates, like the equality predicate. In particular, as described in a later
example, functional dependencies, fall in this class.

A basic assumption here is that an IC like (6) is not just a logical formula
that has to be made true in every state of the database, but it also has a causal
3 In this paper we consider only static integrity constraints. A methodology for treating

dynamic integrity constraints as static integrity constraints is presented in [1].
4 In [22] they are called natural actions.
5 Complex database transactions have been treated in [4]. In this paper we restrict

ourselves to primitive transactions only.



Specifying Active Rules for Database Maintenance 119

intention, in the sense that every time the antecedent becomes true, necessarily
the consequent has to become true as well, whereas from a pure logical point of
view, just making the antecedent false would work (see [13,28] for a discussion
about the logical representation of causal rules.).

Example 5. (cont’d) The functional dependency (5) has the form (6). Neverthe-
less, it is not written in a “causal” form. That is, the intention behind the axiom
is not to state that if two grades g1 and g2 are recorded for the same student
in a course at a given situation, then both grades are caused to be the same.
Actually, it would make no sense to try to enforce this. A more appropriate way
to write (5) is

∀s(S0 ≤ s ⊃ ∀stu, c, g1, g2 (Grade(stu, c, g1, s) ∧ g1 6= g2 ⊃ ¬Grade(stu, c, g2, s),
(7)

that is, a student having a certain grade is the cause for the same student not
having any other different grade. 2

For each IC of this form, we introduce an internal action name AR with as
many arguments as non situational arguments appear in R. We introduce a new
predicate, Internal on actions; then, for AR, we specify

Internal(AR(x̄)), (8)

Poss(AR(x̄), s) ⊃ R1(x̄, s) ∧R2(x̄, s) ∧ ¬R(x̄, s), (9)

Poss(AR(x̄), s) ⊃ R(x̄, do(AR(x̄, s)). (10)

This says that: (a) the new action is internal; (b) a necessary condition for the
internal action to be possible is that the corresponding IC is violated; and (c) if
it possible, then, after the internal action is executed, the R, mentioned in the
head of (6), becomes true of the tuple x̄ at the successor state.

Notice that the right-hand side of (9) should be an evaluable or domain inde-
pendent formula [29,10]. In addition, as mentioned in Example 5, and according
with the causal view of ICs, the literal R there should not be associated to a
built-in predicate, because its satisfaction is enforced through formula (10).

As discussed later on, there may be extra necessary conditions at a state s
to specify for the execution of AR at s. Once all these necessary conditions have
been collected, they can be placed in a single axiom of the form

Poss(AR(x̄, s)) ⊃ ϕAR
(x̄, s). (11)

Later, we appeal to Clark’s completion [9] for the possibility predicate for the
internal action. Thus, transforming necessary conditions into necessary and suf-
ficient conditions. Thus, replacing ⊃ by ≡ in (11).

In our example, ϕAR
(x̄, s) would contain the right-hand side of (9) among

other things, but not the right-hand side of (10) that corresponds to a new effect
axiom.

The need for extra necessary conditions for the repairing action AR in (9),
is related to specific repair policies to be adopted. In our running example, we



120 L. Bertossi and J. Pinto

might decide that when a new grade is inserted for a student in a course, then
the old grade has to be eliminated in favor of the new one. Therefore, adding
the new grade will be equivalent to performing an update. This should be the
effect of the internal, repairing action. Therefore, the extra necessary condition
for this action is that the grade to be eliminated was in the database before the
new one was introduced. This sort of historical conditions can be handled in our
formalism by means of virtual tables that record the changes in the tables [4]
(in our example, the old grade would not be recorded as a change, but the new
one would; see example 6 below); or by means of a methodology, presented in [1]
and based on [6], for specifying the dynamics of auxiliary, virtual, and history
encoding views defined from formulas written in past temporal logic.

Once the internal action is introduced, in order to produce the effects de-
scribed in (10), the action AR has to be inserted in the SSA of the corresponding
table: if the right-hand side of (6) is a table R, with SSA like (4), then a = AR

must now appear in γ+
R (a, x̄, s) in (4) to make R true. If the right-hand side is

¬R, then a = A¬R must be appear in γ−
R (a, x̄, s), to make R false.

Action AR is specified to make R true. The fact that R is different from R1
and R2, or even when R is the same as, say, R1, the fact that the arguments to
which the literals apply are different, will cause that AR will not affect the truth
of R1(x̄, s) ∧R2(x̄, s); it will persist from s to do(AR(x̄), s), making the IC true
at do(AR(x̄), s), that is, AR has a repairing effect. Notice also that the IC is not
satisfied at the state s, where the internal action AR will be forced to occur. In
this sense, s will be an “unstable” situation.

Since, later on, we will force internal actions to occur at corresponding un-
stable situations, we define a stable situation as every situation where no internal
actions are possible:

stable(s) ≡ ¬∃a (Internal(a) ∧ Poss(a, s)). (12)

Intuitively, the stable situations are those where the integrity constraints are to
be satisfied. Instead, unstable situations are a part of a sequence of situations
leading to a stable situation; in those unstable, intermediate situations, ICs do
not need to hold. The transition to a stable situation is obtained by the execution
of auxiliary, repairing actions.

The specification in (11) suggests the introduction of the following active
rule:

EAR
(x̄); {ϕAR

(x̄)} ⇒ AR(x̄); (13)

where EAR
(x̄) is an Event associated to the IC that corresponds to changes

produced in the database, for example, the insertion of x̄ in the tables appearing
in (9). This event causes the rule to be considered. Then, Condition {ϕAR

(x̄)}
is evaluated. It includes the fact that R1, R2 became true and ¬R became false.
If this Condition is satisfied, then the Action AR is executed.

An alternative to rule (13) would be to skip EAR
, and always check Condition

{ϕAR
(x̄)} after any transaction, but including in the Condition the information

about the changes produced in the database by keeping them in an auxiliary



Specifying Active Rules for Database Maintenance 121

view, so that they can be taken into account for the Action to be executed. This
approach is illustrated in the next example.

Example 6. (cont’d) Given the functional dependency (7), we introduce the in-
ternal action AGrade(stu, c, g). Assume that we already have a view

ChangesGrade(stu, c, g, s)

that records the changes in Grade. That is, ChangesGrade(stu, c, g, s) means that
Grade(stu, c, g, s) ∧ ¬Grade(stu, c, g, s′), where s′ is the situation that precedes
s. Then, the precondition axiom for the new action is

Poss(AGrade(stu, c, g), s) ≡ Grade(stu, c, g1, s) ∧ g1 6= g ∧ Grade(stu, c, g, s)

∧ ChangesGrade(stu, c, g1, s).
(14)

The new action should have the effect of deleting tuple (stu, c, g) from Grade.
This is specified with the effect axiom:

Poss(AGrade(stu, c, g), s) ⊃ ¬Grade(stu, c, g, do(AR(stu, c, g), s)), (15)

that corresponds to (10).
Thus, when the IC is violated (this violation is expressed by the first three

conjuncts on the right side of (14)), the action AGrade is possible. When the in-
ternal action becomes possible, it must be executed. As a result of the execution,
the repair is carried out, by eliminating the old grade.

Notice that predicate Changes could be pushed to the Event part of the
rule, as discussed before, because it keeps record of the changes in the database.
The dynamics of an auxiliary view like Changes could be specified, and in this
way, integrating everything we need into the same specification, by means of a
corresponding SSA. This can be achieved by means of a general methodology de-
veloped in [2] and [1] for deriving SSAs for views and history encoding relations,
resp.

4 Specifying Executions

The approach presented in the previous section is still incomplete. Indeed, for this
approach to work, we need to address two independent but important problems.
First, we need to specify that executions should be enforced, since, up to now,
the formalism presented deals with hypothetical executions. Second, we need to
deal with the problem of executions of repairing actions arising from several ICs
violated in the same situation. We deal with these issues below.

Notice that there is nothing in our SC specification that forces the action
AR to be executed. The whole specification is hypothetical in the sense that if
the actions ... were executed, then the effects ... would be observed.. Thus, from
the logical specification of the dynamics of change of a traditional database,
it is possible to reason about all its possible legal evolutions. However, these



122 L. Bertossi and J. Pinto

specifications do not consider transactions that must be executed given certain
environmental conditions (i.e., the database state). In order to include active
rules in this style of specifications, it is necessary to extend the situation calculus
with executions. This is necessary, given that the actions specified by active
rules must be forced to be executed when the associated Event happens and the
corresponding Condition is satisfied. That is, the future is not open to all possible
evolutions, but constrained by the necessary execution of actions mentioned in
the rules that fire, given that their related conditions hold.

The notion of execution in SC was first introduced in [24]6. This problem
has subsequently been treated in [19,22]. Our discussion is based upon [22].
The starting point is the observation that every situation s identifies a unique
sequence of actions. That is, situations can be identified with the history of
actions that lead to them (starting in S0): s = do(an, . . . (do(a2, do(a1, S0)) . . . ).
We say that the actions a1, a2, . . . , an belong to the history of s. The predicate
executed, that takes an action and a situation as arguments, is introduced in
order to specify constraints in valid or legal histories. For illustration purposes,
let us assume that we have situations S, S′, such that S < S′. Further, assume
that we specify that executed(A,S). The fact that A has to have been executed
in S, from the perspective of S′, should entail that action A must appear in the
history of S′ (unless S′ were not legal), immediately after S. To specify such a
constraint we use the predicate legal for situations. This predicate characterizes
the situations that conform to the executions that should arise in their histories;
the specification of legal is as follows:

legal(sh) ≡ S0 ≤ sh ∧ ∀a, s (s < sh ∧ executed(a, s) ⊃ do(a, s) ≤ sh). (16)

The notion of legality, defined with the legal predicate, introduces a more re-
strictive form of legality for situations than the notion strictly based upon the
Poss predicate. A situation is considered legal, in this more restrictive sense, if
the executions that must arise in its history appear in it, and if all the situa-
tions in the history are reached by performing possible transactions starting in
S0. When modeling active databases, we consider that situations are legal when
their histories are consistent with the intended semantics of the rule executions.

Whenever the condition of an active rule in consideration is satisfied, the
action mentioned in the rule must be executed. Therefore, the specification of
an active rule must include the presence of the predicate executed associated
to its Action, actually, an internal action in our context. In a database whose
situations are all legal will be such that active rules, when triggered, are properly
dealt with. Thus, in a situation calculus tree we only consider branches in which
actions that must be executed by rule triggerings are actually executed.

Now we can force internal actions to be executed. This is specified as follows:

∀a, s Poss(a, s) ∧ Internal(a) ⊃ executed(a, s). (17)

That is, if an internal action is possible, it must be executed. In this way the
repairing internal actions are executed immediately. Nevertheless, it should not
6 It was called occurrence there.



Specifying Active Rules for Database Maintenance 123

be difficult to specify in our SC formalism delayed executions. In [4], these issues
are considered along with other issues dealing with execution priority of rules,
and execution of complex transactions.

The active rule (13) is not written in the SC object language of the speci-
fication, and in that sense its semantics is not integrated with the rest of the
first-order semantics. Nevertheless, it can now be eliminated from the specifica-
tion in favor of axioms (8), (9), (10), and (17). Recall that, in addition to the
introduction of these new axioms, the SSA (4) for table R has to be modified
by introducing a = AR in the formula γ+

R (a, x̄, s), since new positive effects have
been specified for table R. This possible re-computation of the SSAs is a very
simple task. Only one action for IC with its condition has to be plugged into an
SSA. If the active rules for database maintenance are given in advance, then the
SSAs for the tables can be computed incorporating the corresponding actions
from the very beginning.

Now, it can be proved that the following formula is a logical consequence of
the new specification:

∀s(S0 ≤ s ∧ stable(s) ⊃ ∀x̄ (R1(x̄, s) ∧R2(x̄, s) ⊃ R(x̄, s)). (18)

It says that the IC is satisfied at all stable situations of the database.
There is, however, a problem with the above axiomatization in the context

of our specification. The specification of executions in [22] is given in a situation
calculus with concurrent (simultaneous) actions. In our specification, primitive
actions are executed non concurrently. This may be a problem if two separate
IC repairing actions are possible in the same situation. In fact, assume that
two separate ICs are violated in a given situation S. Assume further that there
are two internal repairing actions A1 and A2, that are defined for each of these
two ICs. Since both ICs are violated in S, then we need both A1 and A2 to be
executable in S.

The situation calculus that we have been using is non-concurrent, in the sense
that given a situation s, any successor situation is obtained by the execution of
a single primitive action. one way out of this problem is to ensure that the
views that record changes to the databases (Changes in the running example)
are updated only after non-internal actions are executed. In the example, we
can non-deterministically execute a1, and reevaluate the applicability of a2 once
the first repairing action has been executed. In this case, it would be possible to
have a1 repair both ICs without having to execute a2. It would also be possible
to have situations where one repair introduces other violations to ICs, forcing
yet other repairs. Chaining of repairs and further details related to this problem
are still to be worked out. In order for this approach to work, we need to drop
axiom (17) in favor of:

∀a, s Poss(a, s) ∧ Internal(a) ⊃ pexecuted(a, s), (19)

(∀s)[(∃a)pexecuted(a, s) ⊃ (∃b)executed(b, s) ∧ pexecuted(b, s)]. (20)

Here, we introduce the predicate pexecuted to represent the notion of possi-
bly executed. Thus, if some action is possibly executed in a situation s, then



124 L. Bertossi and J. Pinto

some possibly executed action must be executed in s. Notice that this has a
non-deterministic flavor. Thus, if several internal actions are possible, then the
specification is satisfied if either of them is executed.

5 A Causal Approach to Integrity Constraints

In this paper we have not considered the problem of determining all possible
repairs of a database in detail. From a logical point of view, there are many pos-
sible minimal repairs for an inconsistent database [11,8]. In principle, we could
choose any of them and specify corresponding maintenance rules for enforcing
that particular kind of repair. This could be accommodated in our formalism.
Nevertheless, we might have some preference for some repairs instead of oth-
ers. For example, we may want to keep the changes produced by a sequence of
primitive transactions even in the case they take the database to a state that
does not satisfy the ICs. In this case, we would generate new, additional changes
which restore the consistency of the database, pruning out some of the logically
possible repairs (like the ones that undo some of the new primitive transactions).
This kind of repairs are possible only if the updated database is consistent with
the ICs [27].

In our approach, there is implicit a notion of causality behind the ICs (see
example 5). There are cases where the ICs have an implicit causal contents,
and making them explicit may help us restrict ourselves, as specifiers, to some
preferred forms of database repairs, like in our running example. Introducing
explicit causality relations into the ICs can be seen as form of user intervention
[5], that turns out to be a way of predetermining preferred forms of database
repairs.

It is possible to make explicit the causal relation behind a given integrity
constraint by means of a new causality predicate, as introduced by Lin in [13].
This avoids considering a causal relation as a classical implicative relation.

Lin’s approach is also based upon the situation calculus, albeit in a different
dialect. The main difference is that the tables are not predicates but functions.
For instance, in order to express that a property p is true of an object x in a
situation s, we write p(x, s). In the dialect used by Lin, this same statement is
written as Holds(p(x), s). The advantage of treating tables at the object level,
is that one can use properties as arguments in a first-order setting. In particular,
Lin’s approach to causality is based upon the introduction of a special predicate
Caused , which takes a table, a truth value7, and a situation as arguments. Thus,
one can write Caused(p(x),True, s) with the intent of stating that table p has
been caused to be True of x in situation s. In our framework, we will use the
alternative syntax Caused(p(x, s),True), as a meta-formula, and will eliminate
the Caused predicate, as discussed below.

In Lin’s approach, the Caused predicate is treated in a special manner. First,
there is an assumption, formalized using circumscription [16], that Caused has
7 In Lin’s framework, a special sort for truth values is introduced. The sort is fixed,

with two elements denoted with the constants True and False respectively.



Specifying Active Rules for Database Maintenance 125

minimal extent. That is, Caused is assumed to be false, unless it must be True.
Furthermore, if a table is caused to be true (false) in a situation, then it must
be true (false) in that situation. If there is no cause for the table to take a truth
value, then the table does not change.

It turns out that it is possible, in many interesting cases, to translate Lin’s
handling of the Caused predicate into a specification in the style proposed in
this article (making use of Internal actions) [21]. We illustrate this approach by
interpreting Caused as syntactic sugar and by providing a translation of a causal
formula to our language.

The IC (7) of our example, can be expressed in causal terms as follows:

ChangesGrade(stu, c, g, s) ⊃ (∀g′)[g 6= g′ ⊃ Caused(Grade(stu, c, g′, s),False)].
(21)

Keeping in mind that ChangesGrade records the addition of a grade for a student
in a course, the formula above should be interpreted as if the grade g has been
provided for student stu in course c, then there is a cause for the student not to
have any other grade.

To eliminate Lin’s causality predicate, taking the specification back to the
formalism based on table names, actions and situations only, we pursue the
following idea. We admit the existence of unstable situations in which the causal
rules (ICs) can be violated. In these unstable situations some internal actions
become possible which repair the ICs. The approach introduces a new action
function per causal rule. Let AI denote the new action function for rule (21).
The rule is replaced by the following axioms:

Internal(AI(stu, c, g)). (22)

Poss(AI(stu, c, g), s) ≡ ChangesGrade(stu, c, g, s) ∧
¬(∀g′)[g 6= g′ ⊃ ¬Grade(stu, c, g′, do(AI(stu, c, g), s)]

(23)

Poss(AI(stu, c, g), s) ⊃ (∀g′)[g 6= g′ ⊃ ¬Grade(stu, c, g′, s)] (24)

Notice that the elimination of the causal relation follows a mechanical proce-
dure which can be applied to a set of stratified causal rules, as defined by Lin.
The stratification simply ensures that there are no circular causalities. In this
setting, it can be proved that both approaches, using explicit causal rules, and
the translation, lead to the same results [21].

It is illustrative to compare axioms (22)-(24) with the axioms obtained for
the integrity constraint (7) in the approach described in Section 3, which results
in an axiomatization (see example 5) that yields equivalent results. Therefore,
from a methodological point of view, one can use a logical language extended
with a causality relation that would enhance the expressive capabilities of the
language. This extra expressive power gives the modeler a more natural way
to express preferences regarding database repairs. Furthermore, the semantics
for the new causal relations can be understood in terms of a more conventional
logical language.



126 L. Bertossi and J. Pinto

6 Determining Events for the Maintenance Rules

So far, we have not said much about the events in the active rules (see last
part of section 3). In [5], Ceri and Widom handle this problem in detail, al-
though without saying much about deriving Actions for the maintenance rules.
They provide a mechanism which, from the syntactic form of an IC, derives the
transition predicate. This transition predicate determines the Event part of the
active rule that will maintain the constraint. This predicate is defined in terms
of the primitive transactions that might lead to a violation of the IC. Ceri and
Widom present a methodology for determining those transactions. The primitive
transactions considered are insertions, deletions, and updates in tables.

In our case, we have user defined primitive transactions that may affect sev-
eral tables simultaneously. In addition, by the presence of the SSAs, we know
how each base table evolves as legal actions are executed, and which actions may
affect them. Now, it is possible to associate a view to an IC. Namely, the view
that stores the tuples that violate the IC (hopefully this view remains empty).
This is what we have in the RHS of condition (9). Since this view is a derived
predicate and not one of the base tables in the database, we may not have an
SSA for it. Nevertheless, as shown in [2], it is always possible to automatically
derive an SSA for a view. Then, we may easily compute an SSA for the violation
predicate (or view) associated to an IC.

Having an SSA of the form (4) for the violation predicate, it can be easily
detected which are the primitive transactions that can make it change. In partic-
ular, which primitive transactions can make it change from empty to not empty.
This change entails a violation of the corresponding IC (this can be detected
from the γ+ part of the SSA). In this way, we are in position to obtain a mecha-
nism for determining events leading to violations of ICs, as in [5]. However, our
approach can be used for more general primitive transactions. In addition, it also
allows to identify repairing actions from the derived SSAs8. This possibility is not
addressed in [5], and that part is left to the application designer; this approach
can be complemented or replaced by an approach, such as ours, which allows
the automatic identification of repairing policies. Even in this scenario, the ap-
plication designer could specify his/her repairing preferences by using causality
predicates, as described before.

7 Conclusions

In this paper we have considered the problem of specifying policies for database
maintenance in a framework given by the specification of the dynamics of a re-
lational database. The specification is given in the situation calculus, a language
that includes both primitive actions and database states at the same level as the
objects in the database domain. Among others, we find the following advantages
in using the SC as a specification language: (1) It has a clear and well under-
stood semantics. (2) Everything already done in the literature with respect to
8 In [2] other applications of derived SSAs for views storing violating tuples of ICs are

presented.



Specifying Active Rules for Database Maintenance 127

applications of predicate logic to DBs can be done here. In particular, all static
and extensional aspects of databases and query languages are included. (3) Dy-
namic aspects at the same object level can be considered, in particular, it is
possible to specify how the database evolves as transactions are executed. (4)
It is possible to reason in an automated manner from the specification and to
extract algorithms for different computational tasks from it. (5) In particular,
it is possible to reason explicitly about DB transactions and their effects. (6) In
this form it is possible to extend functionalities of usual commercial DBMSs.

Repairing actions are introduced for the integrity constraints that are ex-
pected to be satisfied. They are integrated into the original specification by
providing their effects and preconditions. Then simple active rules are created
for repairing the ICs. Since these active rules do not have a predicate logic se-
mantics, there are alternatively specified in the same formalism as the database
dynamics.

The ICs are expected to be logical consequences of the modified specification,
which must be true at every legal state of the database. Nevertheless, IC viola-
tions may give rise to a transition of the database along a sequence of executions
of repairing actions, during which the ICs are not necessarily satisfied. Since
we may not exclude those intermediate states from the database dynamics, we
distinguish in our formalism between stable and unstable states. It is only at
stable states where the ICs have to be satisfied, and this can be proved from the
new specification. Instead, the unstable states are related to executions of the
repairing actions.

The original specification has a hypothetical nature, in the sense of describing
what the database would be like if the actions were executed. Therefore, no
executions can be said to necessarily occur. To overcome this limitation, we
extended the formalism with the notion of executed action. In this way, we
can deal with the imperative nature of active rules, thus forcing executions of
repairing actions.

We have considered the derivation of repairing actions for a simple case of
actions (primitive actions) and ICs. Reparations policies for more complex cases
of ICs based on sequences of atomic transactions [12] could be integrated in our
specification formalism. For doing this, a treatment of more complex active rules
would be necessary. In [4], we developed in an extended formalism for specifying
a database dynamics, the whole framework needed for specifying this kind of
active rules, including complex user transactions and the Actions in the rules,
priorities among rules, database transitions and rollbacks.

By using the derived specification of the dynamic of views storing the tuples
that violate an IC, it is possible to determine the right events for the mainte-
nance rules. For restoring the consistency new, internal, primitive actions are
introduced. Which repairing actions will be introduced and with which effects
may depend on the causal contents that the user attributes to the ICs.

The final result of the whole process of new axiom derivation will be a new
specification, extending the original one. The resulting specification has a clear
standard Tarskian semantics, and includes an implicit imperative declaration of
active rules for IC maintenance. From the resulting specifications, direct first-



128 L. Bertossi and J. Pinto

order automated reasoning is possible; e.g., about the behavior of active rules.
The causal content of an IC, that the application designer might have in mind,
can be easily specified in the resulting specification, without leaving its classical
semantics. In this way, preferences for particular maintenance policies can be
captured.

References

1. M. Arenas and L. Bertossi. Hypothetical Temporal Queries in Databases. In
A. Borgida, V. Chaudhuri, and M. Staudt, editors, Proc. “ACM SIGMOD/PODS
5th Int. Workshop on Knowledge Representation meets Databases (KRDB’98):
Innovative Application Programming and Query Interfaces, pages 4.1–4.8, 1998.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-10/.

2. M. Arenas and L. Bertossi. The Dynamics of Database Views. In B. Freitag,
H. Decker, M. Kifer, and A. Voronkov, editors, Transactions and Change in Logic
Databases, Lecture Notes in Computer Science, Vol. 1472, pages 197–226, Springer-
Verlag, 1998.

3. L. Bertossi, M. Arenas, and C. Ferretti. SCDBR: An Automated Reasoner for
Specifications of Database Updates. Journal of Intelligent Information Systems,
10(3):253–280, 1998.

4. L. Bertossi, J. Pinto, and R. Valdivia. Specifying Database Transactions and Active
Rules in the Situation Calculus. In Logical Foundations for Cognitive Agents.
Contributions in Honor of Ray Reiter, pages 41–56, Springer, 1999.

5. S. Ceri and J. Widom. Deriving Production Rules for Constraint Maintenance. In
D. McLeod, R. Sacks-Davis, and H.-J. Schek, editors, Proc. of the 16th Int. Conf.
on Very Large Data Bases, VLDB’90, Brisbane, Australia, August 13–16, 1990,
pages 566–577, Morgan Kaufmann Publishers, 1990.

6. J. Chomicki. Efficient Checking of Temporal Integrity Constraints Using Bounded
History Encoding. ACM Transactions on Database Systems, 20(2):149–186, June
1995.

7. J. Chomicki and G. Saake, editors. Logics for Databases and Information Systems.
Kluwer Academic Publishers, 1998.

8. T. Chou and M. Winslett. A Model-Based Belief Revision System. J. Automated
Reasoning, 12:157–208, 1994.

9. K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293–322, Plenum Press, 1978.

10. A. Van Gelder and R. Topor. Safety and Correct Translation of Relational Calculus
Formulas. In Proc. ACM Symposium on Principles of Database Systems, PODS’87,
San Diego, CA, pages 313–327, ACM Press, 1987.

11. M. Gertz. An Extensible Framework for Repairing Constraint Violations. In
S. Conrad, H.-J. Klein, and K.-D. Schewe, editors, Integrity in Databases – Proc.
of the 7th Int. Workshop on Foundations of Models and Languages for Data and
Object, Schloss Dagstuhl, Sept. 16-20, 1996, Preprint No. 4, pages 41–56, Institut
für Technische Informationssysteme, Universität Magdeburg, 1996.

12. M. Gertz. Diagnosis and Repair of Constraint Violations in Database Systems,
Dissertationen zu Datenbanken und Informationssystemen, Vol. 19. infix-Verlag,
Sankt Augustin, 1996.

13. F. Lin. Embracing Causality in Specifying the Indirect Effects of Actions. In Proc.
International Joint Conference on Artificial Intelligence, Montreal, pages 1985–
1991, Morgan Kaufmann Publishers, 1995.



Specifying Active Rules for Database Maintenance 129

14. F. Lin and R. Reiter. State Constraints Revisited. Journal of Logic and Compu-
tation. Special Issue on Actions and Processes, 4(5):655–678, 1994.

15. F. Lin and R. Reiter. How to Progress a Database. Artificial Intelligence, 92(1–
2):131–167, 1997.

16. J. McCarthy. Circumscription a form of Non-Monotonic Reasoning. Artificial
Intelligence, 13:27–39, 1980.

17. J. McCarthy and P. Hayes. Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence,
Vol. 4, pages 463–502. Edinburgh University Press, Edinburgh, Scotland, 1969.

18. S. McIlraith. Representing Actions and State Constraints in Model-Based Diag-
nosis. In Proc. of the National Conference on Artificial Intelligence (AAAI–97),
pages 43–49, 1997.

19. R. Miller and M. Shanahan. Narratives in the Situation Calculus. The Journal of
Logic and Computation, 4(5):513–530, 1994.

20. J. Minker. Logic and Databases. Past, Present and Future. AI Magazine, pages
21–47, 1997.

21. J. Pinto. Causality, Indirect Effects and Triggers (Preliminary Report). In Sev-
enth International Workshop on Non-monotonic Reasoning, Trento, Italy, 1998.
URL=http://www.cs.utexas.edu/users/vl/nmr98.html.

22. J. Pinto. Occurrences and Narratives as Constraints in the Branching Structure
of the Situation Calculus. Journal of Logic and Computation, 8:777–808, 1998.

23. J. Pinto. Compiling Ramification Constraints into Effect Axioms. Computational
Intelligence, 13(3), 1999.

24. J. Pinto and R. Reiter. Adding a Time Line to the Situation Calculus. In Working
Notes: The Second Symposium on Logical Formalizations of Commonsense Rea-
soning, Austin, Texas, USA, pages 172–177, 1993.

25. R. Reiter. The Frame Problem in the Situation Calculus: a Simple Solution (some-
times) and a Completeness Result for Goal Regression. In V. Lifschitz, editor,
Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, pages 359–380, Academic Press, 1991.

26. R. Reiter. On Specifying Database Updates. Journal of Logic Programming,
25(1):53–91, 1995.

27. K.-D. Schewe and B. Thalheim. Limitations of the Rule Triggering Systems for In-
tegrity Maintenance in the Context of Transition Specifications. Acta Cybernetica,
13:277–304, 1998.

28. M. Thielscher. Ramification and Causality. Artificial Intelligence, 89:317–364,
1997.

29. J. Ullman. Principles of Database and Knowledge-Base Systems, Vol. I. Computer
Science Press, 1988.

30. J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann Publishers, 1996.

31. C. Zaniolo, S. Ceri, Ch. Faloutsos, R. T. Snodgrass, V.S. Subrahmanian, and R. Zi-
cari. Advanced Database Systems. Morgan Kaufmann Publishers, 1997.


	Introduction
	Specification of the Database Dynamics
	Integrity Constraints and Internal Actions
	Specifying Executions
	A Causal Approach to Integrity Constraints
	Determining Events for the Maintenance Rules
	Conclusions

