
Generic and Declarative Approaches to Data
Quality Management

Leopoldo Bertossi and Loreto Bravo

Abstract Data quality assessment and data cleaning tasks have traditionally been
addressed through procedural solutions. Most of the time, those solutions have been
applicable to specific problems and domains. In the last few years we have seen
the emergence of more generic solutions; and also of declarative and rule-based
specifications of the intended solutions of data cleaning processes. In this chapter
we review some recent developments.

1 Introduction

Data quality assessment and data cleaning have been mostly ad hoc, rigid, verti-
cal, and application-dependent activities. There is a need for more general method-
ologies and solutions. Most of the existing approaches have been also procedural,
provided in terms of specific mechanisms. However, their semantics and scope of
applicability are not fully understood. Declarative approaches could be attempted in
this regard. They specify, usually by means of a logic-based formalism, what is the
intended result of a data cleaning process. The semantics of the specification tells us
what the result should look like, if there are alternative solutions, and what are the
conclusions that can be derived from the process. They also allows us, in principle,
to better understand the range of applicability and complexity of the declaratively
specified cleaning mechanism.

Considering the large body of literature accumulated in the areas of data qual-
ity assessment and cleaning, it is safe to say that there is a lack of fundamental
research around the activities of data quality assessment and data cleaning. Fortu-
nately, things are starting to change. Important impulses in this direction have come
from two sources.

One of them is related to a new look at classic integrity constraints (ICs). Since
they can be (and are) violated in many applications, they can still be used as de-
sirable properties that could be enforced if necessary, cleaning the database from

Leopoldo Bertossi
Carleton University, Ottawa, Canada. e-mail: bertossi@scs.carleton.ca

Loreto Bravo
Universidad de Concepción, Concepción, Chile. e-mail: lbravo@udec.cl

1

2 Leopoldo Bertossi and Loreto Bravo

semantic anomalies. However, this enforcement could be only partial, full, or even
virtual. It could also be imposed at query answering time, seeing ICs more like
constraints on query answers than on database states (cf. Section 3).

The other source is related to the introduction of newer classes of ICs that are in-
tended to capture data quality issues or conditions, and are intended to be used to di-
rectly support data cleaning processes. We could call them data quality constraints.
They have been proposed and investigated in the last few years, and provide generic
languages for expressing quality concerns [42]. They may be a suitable basis for
declaratively specifying adaptive and generic data quality assessment and cleaning
mechanisms (cf. Sections 4.1 and 5.2).

Generic methods for data cleaning may be proposed for possibly solving a single
but still general problem in the area, e.g. entity resolution, data editing (i.e. changes
of data values in records), incompleteness of data, etc. They are abstract and pa-
rameterized approaches or mechanisms, that can be applied to different specific in-
stances of the data cleaning problem at hand, by instantiating parameters, methods
and modules as required by the specificity of the problem and application domain.
For example, a general entity resolution algorithm may rely on matching functions
to do the actual merging of records. In the abstract formulation they are left rather
open, except for some general requirements they have to satisfy. However, when the
algorithm is applied to a specific domain, those matching functions become domain
dependent, as expected.

Earlier generic methods in data cleaning were proposed in [52]. Actually, this is
a framework for entity resolution whose aim is to separate the logic of data trans-
formations from their actual implementations. Data transformations, e.g. matching
and merging of records, are specified in an extension of SQL. The methodology was
implemented and tested in the AJAX system [52], and inspired newer developments
in the area, e.g. the Swoosh generic approach to entity resolution [7] (cf. Section
5.1). Other generic approaches are described in some articles in [39].

Declarative methods in data cleaning, again possibly for a specific and general
problem, are expected to be based on a formal, say logic-based, specification of the
intended results of the cleaning process. These results are usually represented by (or
through) the models of the specification, which requires defining a precise semantics
for the formalism at hand.

This chapter gives a survey of some recent research on generic and declarative
methods in data cleaning. Considering that this is a vast area of research, we con-
centrate in more detail only on some problems. In Section 2 we review basics of in-
tegrity constraints in relational databases. In Section 3 we concentrate on database
repairs with respect to classic semantic constraints. In Section 4, we present condi-
tional dependencies for data quality assessment and data cleaning. In Section 5, we
demonstrate the value of declarative approaches to entity resolution (or deduplica-
tion), with emphasis on the use of matching dependencies. In Section 6, we make
some final remarks and briefly mention some other problems and approaches as re-
lated to the previous sections. For more on data quality and data cleaning we refer
to the general reference [6], and to the earlier general survey [68].

Generic and Declarative Approaches to Data Quality Management 3

2 Classic Integrity Constraints

Integrity constraints (ICs) are used to capture semantics of the outside world that
is being modeled through the data model and the database. For this reason they are
also called semantic constraints. ICs have been around at least since the inception of
the relational model of data. Already in the classical and seminal papers in the area
[36] it is possible to find the notions of integrity and consistency of a database.

ICs have been studied in general and have wide application in data management.
A large body of research has been developed, in particular fundamental research has
been carried out. Furthermore, methodologies for dealing with ICs are quite general
and have broad applicability.

2.1 The basics of ICs

A database can be seen as a model, i.e. as a simplified, abstract description, of an
external reality. In the case of relational databases, one starts by choosing certain
predicates of a prescribed arity. The schema of the database consists of this set of
predicates, possibly attributes, which can be seen as names for the arguments of the
predicates, together with an indication of the domains where the attributes can take
their values. Having chosen the schema, the representation of the external reality is
given in terms of relations, which are extensions for the predicates in the schema.
This set of relations is called an instance of the schema.

For example, relational database for representing information about students of a
university might be based on the schema consisting of the predicates Students(StuNum,
StName) and Enrollment(StuName,Course). The attribute StuNum is expected to
take numerical values; StuName, character string values; and Course, alphanumeric
string values. In Figure 1 there is a possible instance for this schema.

Students Enrollment
StuNum StuName

101 john bell
102 mary stein
104 claire stevens
107 pat norton

StuNum Course
104 comp150
101 comp100
101 comp200
105 comp120

Fig. 1 A database instance

In order to make the database a more accurate model of the university domain (or
to be in a more accurate correspondence with it), certain conditions are imposed
on the possible instances of the database. Those conditions are intended to cap-
ture more meaning from the outside application domain. In consequence, these
conditions are called semantic constraints or integrity constraints (ICs). For ex-
ample, a condition could be that, in every instance, the student name functionally
depends upon the student number, i.e. a student number is assigned to at most
one student name. This condition, called a functional dependency (FD), is denoted
with StuNumber→ StuName, or Students : StuNumber→ StuName, to indicate that
this dependency should hold for attributes of relation Students. Actually, in this

4 Leopoldo Bertossi and Loreto Bravo

case, since all the attributes in the relation functionally depend on StuNum, the FD
is called a key constraint.

Students Enrollment
StuNum StuName

101 john bell
101 joe logan
104 claire stevens
107 pat norton

StuNum Course
104 comp150
101 comp100
101 comp200

Fig. 2 Another instance

Integrity constraints can be declared together with the schema, indicating that the
instances for the schema should all satisfy the integrity constraints. For example,
if the functional dependency Students : StuNumber → StuName is added to the
schema, the instance in Figure 1 is consistent, because it satisfies the FD. However,
the instance in Figure 2 is inconsistent. This is because this instance does not satisfy,
or, what is the same, violates the functional dependency (the student number 101 is
assigned to two different student names.

It is also possible to consider with the schema a referential integrity constraint
that requires that every student (number) in the relation Enrollment appears, associ-
ated with a student name, in relation Students, the official “table” of students. This
is denoted with Enrollement[StuNum] ⊆ Students[StuNum], and is a form of inclu-
sion dependency. If this IC is considered in the schema, the instance in Figure 1 is
inconsistent, because student 105 does not appear in relation Students. However, if
only this referential constraint were associated to the schema, the instance in Fig-
ure 2 would be consistent. The combination of the given referential constraint and
the functional dependency creates a foreign key constraint: The values for attribute
StuNum in Enrollment must appear in relation Students as values for its attribute
StuNum, and this attribute form a key for Students.

In can be seen that the notion of consistency is relative to a set of integrity con-
straints. A database instance that satisfies each of the constraints in this set is said to
be consistent, and inconsistent otherwise.

The two particular kinds of integrity constraints presented above and also other
forms of ICs can be easily expressed in the language of predicate logic. For example,
the FD above can be expressed by the symbolic sentence

∀x∀y∀z((Students(x,y)∧Students(x,z)) −→ y = z), (1)

whereas the referential constraint above can be expressed by

∀x∀y(Enrollment(x,y)−→ ∃zStudents(x,z)). (2)

Notice that this language of predicate logic is determined by the database schema,
whose predicates are now being used to write down logical formulas. We may also
use “built-in” predicates, like the equality predicate. Thus, ICs can be seen as form-
ing a set Σ of sentences written in a language of predicate logic.

Generic and Declarative Approaches to Data Quality Management 5

A database instance can be seen as an interpretation structure D for the language
of predicate logic that is used to express ICs. This is because an instance has an
underlying domain and (finite) extensions for the predicates in the schema. Having
the database instance as an interpretation structure and the set of ICs as a set of
symbolic sentences makes it possible to simply apply the notion of satisfaction of
a formula by a structure of first-order predicate logic. In this way, the notion of
satisfaction of an integrity constraint by a database instance is a precisely defined
notion: the database instance D is consistent if and only if it satisfies Σ , which is
commonly denoted with D |= Σ .

Since it is usually assumed that the set of ICs is consistent as a set of logical sen-
tences, in databases the notion of consistency becomes a condition on the database
instance. Thus, this use of the term “consistency” differs from its use in logic, where
consistency characterizes a set of formulas.

2.2 Checking and enforcing ICs

Inconsistency is an undesirable property for a database. In consequence, one at-
tempts to keep it consistent as it is subject to updates. There are a few ways
to achieve this goal. One of them consists in declaring the ICs together with
the schema, and the database management system (DBMS) will take care of the
database maintenance, i.e. of keeping it consistent. This is done by rejecting trans-
actions that may lead to a violation of the ICs. For example, the DBMS should reject
the insertion of the tuple (101,sue jones) into the instance in Figure 1 if the FD (1)
was declared with the schema (as a key constraint). Unfortunately, the classes of ICs
for which most commercial DBMSs offer this kind of automated, built-in support
are quite restricted [72].

An alternative way of keeping consistency is based on the use of triggers (or ac-
tive rules) that are stored in the database [32]. The reaction to a potential violation
is programmed as the action of the trigger: if a violation is about to be produced or
is produced, the trigger automatically reacts, and its action may reject the violating
transaction or compensate it with additional updates, to make sure that at the end,
consistency is reestablished. Consistency can also be enforced through the applica-
tion programs that interact with the DBMS. However, the correctness of triggers or
application programs with respect to ensuring database consistency is not guaran-
teed by the DBMS.

Inconsistency of a DB under updates can be checked via violation views that
transitorily store violating tuples, if any. IC satisfaction corresponds to an empty
violation view. Some consistency restoration policy can be applied on the basis of
the violation views. No wonder that database maintenance and view maintenance
[60] are closely related problems. It is possible to apply similar techniques to both
problems. For example, to check IC violation and view freshness, i.e. the correspon-
dence with the base tables, inductive incremental techniques can be applied. More
precisely, on the basis of the syntactic form of an IC or a view definition, it is pos-
sible to identify the updates that are relevant under the assumption that the database
is consistent or the view is up-to-date when those updates are executed. Potential IC

6 Leopoldo Bertossi and Loreto Bravo

violations or changes in view extensions are checked only for those relevant updates
[67; 16].

It is the case that, for whatever reasons, databases may become inconsistent, i.e.
they may violate certain ICs that are considered to be relevant to maintain for a
certain application domain. This can be due to several reasons, e.g. poorly designed
or implemented applications that fail to maintain the consistency of the database,
or ICs for which a DBMS does not offer any kind of support, or ICs that are not
enforced for better performance of application programs or DBMSs, or ICs that are
just assumed to be satisfied based on knowledge about the application domain and
the kind of updates on the database. It is also possible to have a legacy database on
which semantic constraints have to be imposed; or more generally, a database on
which imposing new constraints depending on specific needs, e.g. user constraints,
becomes necessary.

In the area of data integration the satisfaction of desirable ICs by a database is
much more difficult to achieve. One can have different autonomous databases that
are separately consistent with respect totheir own, local ICs. However, when their
data are integrated into a single database, either material or virtual, certain desirable
global ICs may not be satisfied. For example, two university databases may use the
same numbers for students. If their data are put together into an integrated database,
a student number might be assigned to two different students (cf. Section 3.3).

When trying to use an inconsistent database, the application of some data clean-
ing techniques may be attempted, to cleanse the database from data that participate
in the violation of the ICs. This is done sometimes. However, data cleaning is a
complex and non-deterministic process; and it may also lead to the loss of informa-
tion that might be useful. Furthermore, in certain cases like virtual data integration,
where the data stay at the autonomous data sources, there is no way to change the
data without the ownership of the sources.

One might try to live with an inconsistent database. Actually, most likely one will
be forced to keep using it, because there is still useful information in it. It is also
likely that most of the information in it is somehow consistent. Thus, the challenge
consists in retrieving from the database only information that is consistent. For ex-
ample, one could pose queries to the database at hand, but expecting to obtain only
answers that are semantically correct, i.e. that are consistent with the ICs. This is the
problem of consistent query answering (CQA), which can be formulated in general
terms as the one of characterizing and computing semantically correct answers to
queries posed to inconsistent databases [2].

3 Repairs and Consistent Answers
The notion of consistency of a database is a holistic notion, that applies to the entire
database, and not to portions of it. In consequence, in order to pursue this idea of
retrieving consistent query answers, it becomes necessary to characterize the con-
sistent data in an inconsistent database first. The idea that was proposed in [2] is
as follows: the consistent data in an inconsistent data are the data that are invariant
under all possible way of restoring the consistency by performing minimal changes

Generic and Declarative Approaches to Data Quality Management 7

on the initial database. That is, no matter what minimal consistency restoration pro-
cess is applied to the database, the consistent data stay in the database. Each of the
consistent versions of the original instance obtained by minimal changes is called a
minimal repair, or simply, a repair.

It becomes necessary to be more precise about the meaning of minimal change. In
between, a few notions have been proposed and studied (cf. [9; 35; 10] for surveys of
CQA). Which notion to use may depend on the application. The notion of minimal
change can be illustrated using the definition of repair given in [2]. First of all, a
database instance D can be seen as a finite set of ground atoms (or database tuples)
of the form P(c̄), where P is a predicate in the schema, and c̄ is a finite sequence of
constants in the database domain. For example, Students(101, john bell) is an atom
in the database. Next, it is possible to compare the original database instance D
with any other database instance D′ (of the same schema) through their symmetric
difference D ∆D′ = {A | A ∈ (DrD′)∪ (D′rD)}.

Now, a repair of an instance D with respect toa set of ICs Σ is defined as an
instance D′ that is consistent, i.e. D′ |= Σ , and for which there is no other consistent
instance D′′ that is closer to D than D′, i.e. for which it holds D ∆D′′ $ D ∆D′. For
example, the database in Figure 2 has two repairs with respect tothe FD (1). They
are shown in Figure 3 and are obtained each by deleting one of the two conflicting
tuples in relation Students (relation Enrollment does not change).

Having defined the notion of repair, a consistent answer from an instance D to
a query Q(x̄) with respect toa set Σ of ICs is defined as an answer c̄ to Q that is
obtained from every possible repair of D with respect toΣ . That is, if the query Q is
posed to each of the repairs, c̄ will be returned as a usual answer to Q from each of
them.

For example, if the query Q1(x,y) : Students(x,y), asking for the tuples in re-
lation Students, is posed to the instance in Figure 2, then (104,claire stevens) and
(107,pat norton) should be the only consistent answers with respect tothe FD (1).
Those are the tuples that are shared by the extensions of Students in the two repairs.
Now, for the query Q2(x) : ∃yStudents(x,y), i.e. the projection on the first attribute
of relation Students, the consistent answers are (101), (104) and (107).

Students Students
StuNum StuName

101 john bell
104 claire stevens
107 pat norton

StuNum StuName
101 joe logan
104 claire stevens
107 pat norton

Fig. 3 Two repairs of Students in Fig. 2

There might be a large number of repairs for an inconsistent database. In conse-
quence, it is desirable to come up with computational methodologies to retrieve
consistent answers that use only the original database, in spite of its inconsistency.
Such a methodology, that works for particular syntactic classes of queries and ICs,
was proposed in [2]. The idea is to take the original query Q that expects consistent
answers, and syntactically transform it into a new query Q′, such that the rewritten
query Q′, when posed to the original database, obtains as usual answers the con-

8 Leopoldo Bertossi and Loreto Bravo

sistent answers to query Q. The essential question is, depending on the language in
which Q is expressed, what kind of language is necessary for expressing the rewrit-
ing Q′. The answer to this question should also depend on the kind of ICs being
considered.

The idea behind the rewriting approach presented in [2] can be illustrated by
means of an example. The consistent answers to the query Q1(x,y) : Students(x,y)
above with respect to the FD (1) can be obtained by posing the query Q′(x,y) :
Students(x,y)∧¬∃z(Students(x,z)∧ z ̸= y) to the database. The new query collects
as normal answers those tuples where the value of the first attribute is not associated
to two different values of the second attribute in the relation. It can be seen that the
set of answers to the new query can be computed in polynomial time in the size of
the database.

In this example, a query expressed in first-order predicate logic was rewritten into
a new query expressed in the same language. It has been established in the literature
that, for complexity-theoretic reasons, a more expressive language to do the rewrit-
ing of a first-order query may be necessary. For example, it may be necessary to do
the rewritings as queries written in expressive extensions of Datalog [3; 59; 5; 40].
See Section 3.1 for more details.

If a database is inconsistent with respect to referential ICs, like the instance
in Figure 1 and the constraint in (2), it is natural to restore consistency by delet-
ing tuples or inserting tuples containing null values for the existentially quantified
variables in the ICs. For example, the tuple (105,comp120) could be deleted from
Enrollment or the tuple (105,null) could be inserted in relation Students. This re-
quires a modification of the notion of repair and a precise semantics for satisfaction
of ICs in the presence of null values [21; 30].

Some repair semantics consider changes of attribute values as admissible basic
repair actions [51; 74; 18; 12; 50], which is closer to many data cleaning processes.
Usually, it is the number of these changes what is minimized. With a change of re-
pair semantics, the problems of complexity and computation of consistent answers,
query rewriting, and also of specification of database repairs, have to be reinvesti-
gated.

CQA involves, possibly only implicitly, the whole class of database repairs. How-
ever, some research in this area, and much in the spirit of classical data cleaning, has
also addressed the problem of computing a single “good” repair [18; 75; 37], or a
single universal repair that can act for some tasks as a good representative of the
class of repairs [71], or an approximate repair [12; 61].

3.1 Answer set programs for database repairing

ICs like (1) and (2) specify desirable properties of a database. However, when they
are not satisfied by a given instance, they do not tell us how to change the instance
so that they hold again. This requires a separate specification of the repair process.
A declarative specification of it will tell us, in a language with a clear logical seman-
tics, what are the intended results of the repair process, without having to explicitly

Generic and Declarative Approaches to Data Quality Management 9

express how to go about computing them. The intended models of the specification
should correspond to the expected results.

In an ideal situation, the declarative specification can also be used as (the basis
for) an executable specification, that can be used, for example, for computing the
models (the repairs in our case) or computing query answers from the specification
(the consistent answers in our case).

Actually, it turns out that the class of repairs of an inconsistent database can be
specified by means of disjunctive logic programs with stable model semantics, aka.
answer-set programs [24]. The programs can be modified in order to accommodate
computation of single repairs or an approximation to one of them, enabling in this
way a form of rule-based data cleaning process, and in this case, of restoration
of semantic integrity. In this section we briefly describe the approach proposed in
[5; 21] (cf. also [30] for more details).

The idea behind repair programs is to represent the process of capturing and re-
solving inconsistencies through rules, and enforce the minimality of repairs through
the minimality of the stable models of the program.

A repair program is produced for a database schema, including a non-necessarily
enforced set of ICs. More specifically, for each database predicate P, a new predi-
cate P is introduced. It corresponds to P augmented with an extra attribute that can
take the following values (annotation constants): t, f, t⋆ and t⋆⋆, whose intended
semantics is as follows.

Atom P(t̄, t) (respectively, P(t̄, f)) indicates the insertion of tuple t̄ into relation
P (respectively, the deletion of t̄ from P) during the repair process. Atom P(t̄, t⋆)
indicates that tuple t̄ was in the original extension of P or is inserted in the repair
process. Finally, atom P(t̄, t⋆⋆) indicates that tuple t̄ belongs to the final extension
of P. For example, if a stable model of the repair program for the FD StuNumber→
StuName contains the atoms Students(101, john bell), Students(101, joe logan),
Students (101, john bell, f) and Students (101, joe logan, t⋆⋆), it means that tuple
Students(101, john bell) was removed in order to solve an inconsistency, and tuple
Students(101, joe logan) belongs to a repair.

As an example, the repair program for the student database with the FD (1) and
the referential constraint (2) contains the original database tuples as program facts,
plus:

1. A rule to enforce the FD:

Students (x,y, f) ∨ Students (x,z, f) ← Students (x,y, t⋆),Students (x,z, t⋆), y ̸= z,
x ̸= null, y ̸= null, z ̸= null.

The right hand side of the rule checks if there are tuples (that were originally part
of the database or that where made true while repairing) that violate the FD. If that
is the case, it solves the inconsistency by removing one of the two tuples (the left
hand side of the rule). Notice that there can be a violation of the FD in a database
with null only if x, y and z are not null.

2. Rule to enforce the referential constraint:

10 Leopoldo Bertossi and Loreto Bravo

Aux(x) ← Students (x,z, t⋆), not Students (x,z, f), x ̸= null, z ̸= null.
Enrollment (x,y, f)∨Students (x,null, t)←Enrollment (x,y, t), not Aux(x),x ̸= null.

The first rule populates an auxiliary predicate storing all the students numbers stored
in the table Students that are not deleted in the repair process. The second rule checks
through its right hand side if for any enrolled student, his/her number does appear in
the table Students. If there is a violation, to solve the inconsistency, it forces either
to remove the tuple from Enrollment or add a tuple to Students.

3. Rules defining the annotation semantics:
Students (x,y, t⋆) ← Students(x,y).
Students (x,y, t⋆) ← Students (x,y, t).
Students (x,y, t⋆⋆) ← Students (x,y, t⋆), not Students (x,y, f).
← Students (x,y, t),Students (x,y, f).

 Similarly for
Enrollment

The first two rules ensure that tuples with t⋆ are those in the original database or
those that are made true through the repair. The third rule collects tuples that belong
to a final repair. The last rule is a program constraint that discards models were a
tuple is made both true and false.

If rules 1. to 3. are combined with the database instance in Figure 2, the repair
program has two stable models M1 and M2, such that in M1 predicate Students =
{(101, john bell, t⋆), (101, joe logan, t⋆),(104,claire stevens, t⋆), (101, john bell, f),
(101, joe logan, t⋆⋆),(104,claire stevens, t⋆⋆),(107,pat norton, t⋆⋆)}, whereas in M2
predicate Students = {(101, john bell, t⋆), (101, joe logan, t⋆), (104,claire stevens,
t⋆), (101, joe logan, f), (101, john bell, t⋆⋆), (104,claire stevens, t⋆⋆), (107,pat norton,
t⋆⋆)}. These models correspond to the repairs shown in Figure 3.

Given a database D and a set of ICs Σ , if Σ is RIC-acyclic [21], i.e. there is
no cycle through referential constraints, then there is a one-to-one correspondence
between repairs and stable models of the program: the tuples annotated with t⋆⋆ in
a stable model form a repair of D with respect to Σ .

Consistent query answers can be computed directly from the repair program us-
ing the cautious or skeptical semantics, according to which an atom is true if it
belongs to all models of the program. For example, if we want to pose the query
Q1(x,y) : Students(x,y), or the query Q2(x) : ∃yStudents(x,y), we would sim-
ply add the rule AnsQ1(x,y)← Students (x,y, t⋆⋆) to the program, or AnsQ2(x)←
Students (x,y, t⋆⋆), respectively. Cautious reasoning from the extended program re-
turns the consistent query answers to the queries.

There are techniques to improve the efficiency of repair programs by concentrat-
ing only on what is relevant for the query at hand [30]. Repair programs can also
be modified to capture other semantics. For example, with weak constraints one can
specify repairs that minimize the number of tuple insertions/deletions [3].

3.2 Active integrity constraints

When specifying a database that could possibly not satisfy certain ICs, we might
want to explicitly indicate how to restore consistency when an IC is violated. In this

Generic and Declarative Approaches to Data Quality Management 11

way, we specify both the constraint and its enforcement. In this direction, in [31]
active integrity constraints were proposed. They extend traditional ICs with specifi-
cations of the actions to perform in order to restore their satisfaction, declaratively
bringing ICs and active rules together.

For example, if we wanted to repair violations of the constraint (2), by only
removing tuples from Enrollment, we could specify the following active IC:

∀x∀y[Enrollment(x,y), ¬∃zStudents(x,z)⊃−Enrollment(x,y)],
with the effect of removing a tuple Enrollment when it participates in a violation.

If, instead, we want to repair by either removing or inserting, we could use
∀x∀y[Enrollment(x,y),¬∃zStudents(x,z)⊃−Enrollment(x,y)∨+Students(x,⊥)],

where ⊥ is a constant denoting an unknown value.
A founded repair is a minimal repair (as defined in Section 3) where each inser-

tion and removal is supported by an active IC. The founded repairs can be computed
using logic programs with stable models semantics (cf. [31] for details).

3.3 ICs and virtual data integration

Virtual data integration [62; 11] is about providing a unified view of data stored in
different sources through what is usually called a mediator. This is achieved by the
definition of a global database schema, and mappings between this schema and the
source schemas. Queries that are received by the integration system via the mediator
are automatically rewritten into a set of sub-queries that are sent to the sources. The
answers from the sources are combined to give an answer to the user query. In this
setting, specially because of the autonomy of the sources, it is hard or impossible
to ensure that data are consistent across the different sources. Actually, it is natural
to try to impose global ICs, i.e. on the global schema, with the intention to capture
the semantics of the integration system as a whole. However, there is nothing like
an explicit global database instance on which these ICs can be easily checked or
enforced.

Consider, for example, a university that uses a virtual data integration system that
integrates the departmental databases, which are maintained by the departments.
The university officials can pose queries through a global schema that logically uni-
fies the data, without the need of transforming and moving all the data into a single
place.

StuPs StuCS
StuNum StuName

101 john bell
104 claire stevens
107 pat norton

StuNum StuName Admission
104 alex pelt 2011
121 ana jones 2012
137 lisa reeves 2012

Fig. 4 Two data sources with student information from different departments

12 Leopoldo Bertossi and Loreto Bravo

For simplicity, assume we have only two data sources, containing information
about psychology and computer science students, in tables StuPs and StuCS, re-
spectively, as shown in Figure 4. The mediator offers a global schema

StuUniv(StuNum,StuName,Admission,Department).
The relationship between the sources and the global schema can be defined through
the following mappings:

StuPs(x,y) ← StuUniv(x,y,z, ‘psychology′). (3)
StuCS(x,y,z) ← StuUniv(x,y,z, ‘comp. sci.′). (4)

These mappings are defined according to the local-as-view (LAV) approach, where
the sources are defined as views over the global schema.1 Usually sources are as-
sumed to be open (or incomplete), in the sense that these mappings require that
potential global instances, i.e. for the global schema, if we decided to built and
materialize them, have to contain at least the data that are needed to reconstruct
the source contents through the view definitions (3) and (4). For example, the first
mapping requires that, for every tuple in StuPs, there exists a tuple in StuUniv with
a value for Admission (possibly not known) and with the value psychology for at-
tribute Department.

As a consequence, a global instance satisfies a mapping if the result of applying
the mapping to it (through the right hand side of the mapping) produces a superset
of the data in the source that is defined by it. If a global instance satisfies all the
mappings, it is called a legal instance of the integration system.

The semantics of query answering in such a data integration system is the one
of certain answers. More precisely, an answer to a query expressed in terms of the
global schema is a certain answer it is a (usual) answer from each of the possible
legal instances. When dealing with monotone queries, say without negation, it is
enough to concentrate on the minimal legal instances. They are the legal instances
that are minimal under set inclusion.

StuUniv
StuNum StuName Admission Department

101 john bell X psychology
104 claire stevens Y psychology
107 pat norton Z psychology
104 alex pelt 2011 comp. sci.
121 ana jones 2012 comp. sci.
137 lisa reves 2012 comp. sci.

Fig. 5 A minimal legal instance with X, Y and Z representing arbitrary values from the domain

In the university database the minimal legal instances can be represented by the
instance in Figure 5 where the variables can take any value in the domain. A le-
gal instance will be any instance of the global schema that is a superset of one
of these minimal legal instances. The set of certain answers to query Q3(x) :
∃y∃z∃wStudents(x,y,z,w) is {101,104,107,121,137} since its elements belong to

1 cf. [62] for alternative approaches to mapping definitions.

Generic and Declarative Approaches to Data Quality Management 13

all the minimal legal instances. Query Q4(x,z) : ∃y∃wStudents(x,y,z,w) will return
only {(104,2011),(121,2012),(137,2012)} since different minimal legal instances
will return different admission years for the students of the Psychology Department.

It is possible to specify this class of legal instances as the models of an answer-
set program [11], and certain answers can be computed by cautious reasoning from
the program. In the university example, the program that specifies the minimal legal
instances contains the source facts, plus the rules:

1. dom(X). (for every value X in the domain)
2. StuUniv(x,y,z, ‘psychology′) ← StuPs(x,y),F1(x,y,z).

StuUniv(x,y,z, ‘comp. sci.′) ← StuPs(x,y,z).
3. F1(x,y,z) ← StuPs(x,y),dom(z),choice((x,y),z).

The first rule adds all the elements of the finite domain.2 The next two rules com-
putes the minimal legal instances from the sources. Since the psychology depart-
ment does not provide information about the admission year of the student, a value
of the domain needs to be added to each instance. This is achieved with predicate
F1(X ,Y,Z), which satisfies the functional dependency X ,Y → Z and assigns in each
model a different value for Z for each combination of values for X and Y . This
requirement for F1 is enforced with the choice operator in the last rule, whose se-
mantics can be defined by ordinary rules with a stable models semantics [56]. For
more details, more complex cases, and examples, see [11].

So far, we haven’t consider global ICs. IC violations are likely in integration
systems, and dealing with global ICs is a real challenge. In our ongoing example, we
want to enforce that the StuNum is unique within the University. Both data sources
in Figure 4 satisfy this requirement, but when we combine the data, every legal
instance will violate this constraint since they will contain students claire stevens
and alex pelt with the same student number. As in the case of traditional relational
databases, most of the data are still consistent, and we would like to be able to still
provide answers from the consistent data.

StuUniv
StuNum StuName Admission Department

101 john bell X psychology
104 claire stevens Y psychology
107 pat norton Z psychology
121 ana jones 2012 comp. sci.
137 lisa reeves 2012 comp. sci.

StuUniv
StuNum StuName Admission Department

101 john bell X psychology
107 pat norton Z psychology
104 alex pelt 2011 comp. sci.
121 ana jones 2012 comp. sci.
137 lisa reeves 2012 comp. sci.

Fig. 6 Repairs of the global integration system

Different approaches have been explored for dealing with global ICs. One of them
consists in applying a repair semantics as in Section 3. More precisely, if a min-
imal legal instance does not satisfy a set of global ICs, it is repaired as before.
The consistent answers to global queries are those that can be obtained from ev-
ery repair from every minimal legal instance [11]. In our example, the (global) re-

2 For details of how to treat infinite domains see [11].

14 Leopoldo Bertossi and Loreto Bravo

pairs in Figure 6 are obtained by deleting either (104,claire stevens,Y,psychology)
or (104,alex pelt,2011,comp. sci.) from every minimal legal instance in Figure 5.
Now, the consistent answers to query Q3 will coincide with the certain answers
since 104 is also part of every repair. On the other hand, the consistent answers to
query Q4 now do not contain (104,2011) since that answer is not obtained from all
repairs.

Notice that the program above that specifies the minimal legal instances can be
then extended with the rules introduced in Section 3.1, to specify the repairs of the
minimal legal instances with respect tothe global FD [11]. Next, in order to retrieve
consistent answers from the integration system, the already combined program can
be further extended with the query program.

Since the repair process may not respect the nature of the sources, in terms of
being open, closed, etc. (as it is the case with the global repairs we just showed),
we may decide to ignore this aspect [11] or, whenever possible, go for a repair se-
mantics that respects this nature. For example, inserting global tuples may never
damage the openness of a source [26; 27]. However, if these tuple insertions are due
to the enforcement of inclusion dependencies, the presence of functional dependen-
cies may create a problem since those insertions might violate them. This requires
imposing some conditions on the syntactic interaction of FDs and inclusion depen-
dencies [26].

Another possibility is to conceive a mediated system as an ontology that acts as
a metadata layer on top of incomplete data sources [63]. The underlying data can be
chased by means of the mappings and global ICs, producing data at the global level,
extending the original extensional data [28].

Under any of these approaches the emphasis is on certain query answering, and
a full computation of legal instances, repairs, or chase extensions should be avoided
whenever possible.

4 Data Dependencies and Data Quality
In Section 2 we have considered techniques for data quality centered in classical
ICs, such as functional dependencies and referential constraints. These constraints,
however, are not always expressive enough to represent the relationships among
values for different attributes in a table.

Let us consider the example in Figure 7 of a database storing information of
the staff working at a newspaper. There are several restrictions on the data that can
be represented using classical constraints. For example, in table Staff we have two
FDs: (Num→ Name,Type,Street,City,Country,Zip), and (Zip,Country→ City).
We also have the inclusion dependency: (Journalist[Num] ⊆ Staff [num]. It is easy
to check that the instance in Figure 7 satisfies all these constraints.

The data, however, is not consistent with respect to other dependencies that can-
not be expressed using this type of constraints since they apply only to some tuples
in the relation. For example, in the UK, the zip code uniquely determines the street.
If we try to enforce this requirement using the FD Zip→ Street, we would not obtain
what we want since this requirement would be imposed also for tuples correspond-

Generic and Declarative Approaches to Data Quality Management 15

ing to the US. Also, we cannot express that every journalist in Staff should have a
role assigned in table Journalist, and that every Num in Journalist belongs to a tuple
in table Staff with the SNum = Num and Type =‘ journalist’. The given instance
does not satisfy any of these additional constraints. In order to clean the data, we
need to consider those dependencies that apply only under certain conditions.

Staff
Num Name Type Street City Country Zip
01 john admin First Miami US 33114
02 bill journalist Bronson Miami US 33114
03 nick journalist Glebe Tampa US 33605
04 ana admin Crow Glasgow UK G11 7HS
05 mary journalist Main Glasgow UK G11 7HS

Journalist
SNum Role

01 news
02 news
02 columnist
03 columnist

Fig. 7 The Newspaper database

4.1 Conditional dependencies

In [19; 22], conditional functional dependencies and conditional inclusion depen-
dencies are introduced, to represent data dependencies that apply only to tuples
satisfying certain conditions.

A conditional functional dependency (CFD) is a pair (X → Y,Tp), where X → Y
is a classical functional dependency, and Tp is a pattern tableau, showing attributes
among those in X and Y . For every attribute A of Tp and every tuple tp ∈ Tp, it holds
that tp[A] is a constant in the domain of A or an unnamed variable ‘ ’.

For the newspaper database we could define a CFD for relation Staff that enforces
that for the UK the zip code determines both the city and the street:

ψ1 = (Country,Zip→ Street,City,T1), with T1:
Country Zip Street City

UK

Two data values n1 and n2 match, denoted n1 ≍ n2 if n1 = n2 or one of n1, n2 is
‘ ’. Two tuples match, denoted t1 ≍ t2, if they match componentwise. Now, a CFD
(X → Y,Tp) is satisfied by a database instance if for every tp ∈ Tp and every pair of
tuples t1 and t2 in the database, if t1[X] = t2[X]≍ tp[X], then t1[Y] = t2[Y]≍ tp[Y].

Constraint ψ1 is violated by the instance in Figure 7 since the last two tuples
are from the UK, they share the same zip code but they are associated to different
streets.

A conditional inclusion dependency (CIND) is a pair (R1[X ;Xp]⊆ R2[Y ;Yp],Tp)
where:

(i) R1 and R2 are database predicates,
(ii) X , Xp (respectively, Y and Yp) are disjoint lists of attributes of R1 (respectively,

R2),3 and
(iii)Tp is a pattern tableau that contains all the attributes in X , Xp, Y and Yp and

tp[X] = tp[Y].

3 The empty list is denoted by nil.

16 Leopoldo Bertossi and Loreto Bravo

In this case, the inclusion dependency R1[X]⊆ R2[Y] is said to be embedded in the
CIND.

For the newspaper database we could define two CINDs:

ψ2 = (Staff [Num;Type]⊆ Journalist[SNum;nil],T2), with T2:
Num Type SNum

journalist

ψ3 = (Journalist[SNum;nil]⊆ Staff [Num;Type],T3), with T3:
SNum Num Type

journalist

Constraint ψ2 enforces that every Num of a journalist in relation Staff has a role
assigned to it in relation Journalist. Constraint ψ3 enforces that, for every SNum in
relation Staff , there is a tuple with the same number in Num of type Journalist.

A CIND (R1[X ;Xp]⊆R2[Y ;Yp], tp) is satisfied, if for every tuple t1 ∈R1 and every
tp ∈ Tp if t1[X ,Xp]≍ tp[X ,Xp] then there exists a tuple t2 ∈ R2 such that t2[Y] = t1[Y]
and t2[Y,Yp] ≍ tp[Y,Yp]. Intuitively, the CIND enforces the inclusion dependency
R1[X] ⊆ R2[Y] for each tuple that matches the pattern for [X ,Xp], and also requires
that the tuple in R2 should match the pattern for [Y,Yp].

Instance in Figure 7 does not satisfy constraint ψ2 since there is a journalist with
Num = 05 in relation Staff for which there is no tuple in Journalist with SNum = 05.
It also violates constraint ψ3 because for tuple (01,news) in relation Journalist there
is no tuple in Staff with Num = 01 and Type = journalist.

Classical functional dependencies are a particular case of CFDs for which the
pattern tableau has a single tuple with only unnamed variables. In the same way,
classical inclusion dependencies are a particular case of CINDs that can be defined
using Xp = Yp = nil, and a pattern tableau with a single tuple with only unnamed
variables.

CFDs have been extended to consider (i) disjunction and inequality [23], (ii)
ranges of values [57], and (iii) cardinality and synonym rules [33]. Automatic gen-
eration and discovery of CFDs have been studied in [46; 34; 43]. Pattern tableaux
have also been used to show the portions of the data that satisfy (or violate) a con-
straint [57; 58]. These pattern tableaux can be used both to characterize the quality
of the data and generate CFDs and CINDs.

We can see that conditional dependencies (CDs) have a classic semantics. Ac-
tually, it is easy to express them in first-order predicate logic. However, they have
been proposed with the problems of data quality and data cleaning in mind.

4.2 Data cleaning with CDs

CFDs and CINDs were introduced to specify data dependencies that were not cap-
tured by classic constraints, and to be used for improving the quality of the data.
In [37] a data cleaning framework is provided for conditional functional depen-
dencies. Given a database instance which is inconsistent with respect toa set of
CFDs, the main objective is to find a repair through attribute updates that mini-
mizes a cost function. The cost of changing a value v by a value v′ is cost(v,v′) =
w(t,A) ·dist(v,v′)/max(|v|, |v′|), where w is a weight assigned to attribute A in tuple
t, and dist is a distance function. The weights, for example, could be used to include

Generic and Declarative Approaches to Data Quality Management 17

in the repair process information that we could have about the data, e.g. about their
accuracy. The distance function should measure the similarity between values. It
could be, for example, the edit distance, that counts the number of insertions and
deletions of characters to transform from one string into another.

Consider relation S in Figure 8(a), the conditional FDs φ1 = (X → Y,T1), φ2 =
(Y →W,T2), and φ3 = (Z→W,T3), with:

T1:
X Y

T2:
Y W
b

T3:
Z W
c d
k e

The instance does not satisfy φ1. Solving the inconsistencies with respect to φ1
by replacing t1[Y] by b triggers more inconsistencies with respect to φ2, that need
to be solved by changing more values for attributes Z and W . On the other hand, if
we instead replace t2[Y] and t3[Y] by c, all inconsistencies are solved. The repairs
obtained in these two ways correspond to S1 and S2 in Figure 8 (the updated values
are in bold). If we consider w(t,A) = 1 for all attributes, and use the edit distance,
the cost of each change is 2; and therefore, the cost of repairs S1 and S2 are 6 and
4, respectively. Thus, S2 is a better repair than S1. Another minimal-cost repair, say
S3, is obtained by replacing t2[Y] by c, and t3[X] by any constant different from a.

X Y Z W U
t1: a c c d f
t2: a b k e g
t3: a b c d h

(a) S

X Y Z W U
t1: a b c d f
t2: a b c d g
t3: a b c d h

(b) Repair S1

X Y Z W U
t1: a c c d f
t2: a c k e g
t3: a c c d h

(c) Repair S2

Fig. 8 Inconsistent instance S and two possible repairs S1 and S2.

There are some situations in which inconsistencies with respect to CFDs cannot
be solved by replacing values by constants of the domain. In those cases, repairs
are obtained using null. A tuple with null will not create a new inconsistency
with respect to an existing constraint since we assume that t[X] ̸≍ tp[X] when t[X]
contains null. For example, assume that we add the constraint (U →W,T4), with
T4 = {(,d),(,e)}, requiring that every tuple in S should contain d and e in at-
tribute W . Enforcing it is, of course, not possible, unless we satisfy the constraint by
using null.

The problem of finding a minimal-cost repair is coNP-complete, but an efficient
approximation algorithm, based on equivalent classes, is provided in [37]. The repair
process is guided by interaction with the user, to ensure its accuracy. As a way to
minimize the required feedback, it is possible to add machine learning capabilities,
to learn from previous choices by the user [75]. If the cost of each update depends
only on the tuple that is being updated, i.e. cost(v,v′) = w(t), it is possible to find a
constant factor approximation of a repair when the set of constraints is fixed [61].

18 Leopoldo Bertossi and Loreto Bravo

5 Applications of Declarative Approaches to Entity Resolution
The problem of entity resolution (ER) is about discovering and matching database
records that represent the same entity in the application domain, i.e. detecting and
solving duplicates [17; 41; 66]. ER is a classic, common and difficult problem in
data cleaning, for which several ad hoc and domain-dependent mechanisms have
been proposed.

ER is a fundamental problem in the context of data analysis and decision mak-
ing in business intelligence. From this perspective, it becomes particularly crucial
in data integration [65], and even more difficult in virtual data integration systems
(VDIS). As we saw in Section 3.3, logic-based specifications of the intended so-
lutions of a generic VDIS have been proposed, used and investigated [62; 11]. As
a consequence, logic-based specifications of ER or generic approaches to ER, that
could be combined with the specifications of the integration process, would be par-
ticularly relevant.

Notice that in virtual data integration systems, sources are usually not modified
through the mediator. As a consequence, physical ER through the integration system
is not possible. This forces us to consider as a real alternative some form of on-the-
fly ER, performed at query-answering time. The declarative, logic-based approaches
to ER are particularly appropriate for their amalgamation with queries and query
answering processes via some sort of query rewriting.

5.1 A generic approach: Swoosh

In [7], a generic conceptual framework for entity resolution is introduced, the
Swoosh approach. It considers a general match relation M and a general merge func-
tion, µ . In the main general formulation of Swoosh, the match relation M and the
merge function µ are defined at the record (or tuple) level (but see [7] for some
extensions). That is, when two records in a database instance are matched (found
to be similar), they can be merged into a new record. This is iteratively done until
the entity resolution of the instance is computed. Due to the merge process, some
database tuples (or records) may be discarded. More precisely, the number of tuples
may decrease during the ER process, because tuples that are dominated by others
are eliminated (see below).

Swoosh views a database instance I as a finite set of records I = {r1, . . . ,rn}
taken from an infinite domain of records Rec. Relation M maps Rec× Rec into
{true, false}. When two records are similar (and then could be merged), M takes the
value true. Moreover, µ is a partial function from Rec×Rec into Rec. It produces
the merge of two records into a new record, and is defined only when M takes the
value true.

Given an instance I, the merge closure of I is defined as the smallest set of records
Ī, such that I ⊆ Ī, and, for every two records r1,r2 for which M(r1,r2) = true, it
holds µ(r1,r2) ∈ Ī. The merge closure of an instance is unique and can be obtained
by adding merges of matching records until a fixpoint is reached.

Generic and Declarative Approaches to Data Quality Management 19

Swoosh considers a general domination relationship between two records r1,r2,
written as r1 ≼s r2, which means that the information in r1 is subsumed by the
information in r2. Going one step further, we say that instance I2 dominates instance
I1, denoted I1 ⊑s I2, whenever every record of I1 is dominated by some record in I2.

For an instance I, an entity resolution is defined as a subset-minimal set of records
I′, such that I′ ⊆ Ī and Ī ⊑s I′. It is shown that for every instance I, there is a unique
entity resolution I′ [7], which can be obtained from the merge closure by removing
records that are dominated by other records.

A particularly interesting case of Swoosh occurs when the match relation M is
reflexive and symmetric, and the merge function µ is idempotent, commutative, and
associative. We then use the domination order imposed by the merge function, which
is defined by: r1 ≼s r2 if and only if µ(r1,r2) = r2. Under these assumptions, the
merge closure and therefore the entity resolution of every instance are finite [7].4

We can see that Swoosh’s framework is generic and abstract enough to accom-
modate different forms of ER in different domains. Now, a still generic but special
case of Swoosh, that also captures common forms of ER, is the so-called union case,
that does do matching, merging, and merge domination at the attribute level [7]. We
illustrate this case by means of an example.

Example 1. We can treat records as objects, i.e. as sets of attribute/value pairs. In this
case, a common way of merging records is via their union, as objects. For example,
consider:

r1 = {⟨Name,{J. Doe}⟩,⟨St.Number,{55}⟩,⟨City,{Toronto}⟩},
r2 = {⟨Name,{J. Doe}⟩,⟨Street,{Grenadier}⟩,⟨City,{Vancouver}⟩}.

If they are considered to be similar, e.g. on the basis of their values for attribute
Name, they can be merged into:

µ(r1,r2) = {⟨Name,{J. Doe}⟩,⟨St.Number,{55}⟩,⟨Street,{Grenadier}⟩,
⟨City,{Toronto,Vancouver}⟩}. 2

In the union-case, one obtains a single resolved instance (i.e. a single entity res-
olution).

Swoosh has been extended in [73] with negative rules. They are used to avoid
inconsistencies (e.g. with respect to semantic constraints) that could be introduced
by indiscriminate matching. From this point of view, certain elements of database
repairs (cf. Section 3) are introduced into the picture (cf. [73, sec. 2.4]). In this
direction, the combination of database repairing and ER is studied in [47].

4 Finiteness is shown for the case when match and merge have the representativity property (equiv-
alent to being similarity preserving) in addition to other properties. However, the proof in [7] can
be modified so that representativity is not necessary.

20 Leopoldo Bertossi and Loreto Bravo

5.2 ER with matching dependencies

Matching Dependencies (MDs) are declarative rules that generalize entity resolution
(ER) in relational DBs [44; 45]. They specify attribute values that have to be made
equal under certain conditions of similarity for other attribute values.

Example 2. Consider the relational schema R1(X ,Y),R2(X ,Y), where X ,Y are at-
tributes (or lists of them). The following symbolic expression is a matching depen-
dency:

φ : R1[X̄1]≈ R2[X̄2] −→ R1[A1]
.
= R2[A2]. (5)

It says that “When in two tuples the values for attribute(s) X̄ in R1,R2 are similar,
the values in them for attribute(s) A must be matched/merged, i.e. made equal”. 2

In an MD like this R1 and R2 can be the same predicate if we are partially merging
tuples of a same relation. The similarity relation, ≈, is application-dependent, asso-
ciated to a particular attribute domain. It is assumed to be reflexive and symmetric.5

Example 3. Now consider the MD φ telling us that “similar name and phone num-
ber → identical address”. we apply it to the initial instance D0 as follows:

D0 name phone address
John Doe (613)123 4567 Main St., Ottawa

J. Doe 123 4567 25 Main St.
=⇒

D1 name phone address
John Doe (613)123 4567 25 Main St., Ottawa

J. Doe 123 4567 25 Main St., Ottawa

We can see that, in contrast to classical and conditional dependencies, that have a
“static semantics”, an MD has a dynamic semantics, that requires a pair of databases:
(D0,D1) |=φ . That is, when the left-hand side (LHS) of φ is satisfied in D0, the RHS
(the matching) is made true in a second instance D1.

In this example we are using a very particular matching function (MF) that
implicitly treats attribute values as objects, i.e. sets of pairs ⟨Attribute,Value⟩,
e.g. the first value for address in D0 can be seen as {⟨StreetName,MainSt.⟩,
⟨City,Ottawa⟩,⟨HouseNumber,ε⟩}. The MF produces the union of the two records
as sets, and next, for a same attribute, also the union of local values. 2

An MD does not tell us how to do the matching. In this regard, two alternatives
have been explored in the literature. One of them treats the values in common re-
quired by the matching on the RHS essentially as an existential quantification. For
example, for (5), that there is a value y for which R1[Y1] = y = R2[Y2]. The initial
instance can be “chased” with the MDs, producing a duplicate free instance (as pre-
scribed by the set of MDs). Desirable clean instances could be those that minimize

5 Notice that the similarity relation in this section corresponds somehow to the match function M
of Section 5.1; and matching functions we will consider here to identify two values, to the merge
function µ of Section 5.1.

Generic and Declarative Approaches to Data Quality Management 21

the number of changes of attribute values. We refer to [55; 54; 53] for details on this
approach.

The second approach uses matching functions to provide a value in common for
a matching. We briefly describe it in the following (details can be found in [13; 15]).

Given the MD (5) over a database schema, we say that the pair of instances
(D,D′) satisfies φ , denoted (D,D′) |= φ , iff every pair of tuples for which D satis-
fies the antecedent but not the consequent of φ , the consequent is made true (sat-
isfied) in D′ (by matching attribute values in those tuples as prescribed by function
m). Formally, (D,D′) |= φ when for every R1-tuple t1 and R2-tuple t2: If t1[X̄1] ≈
t2[X̄2], but t1[A1] = a1 ̸= t2[A2] = a2 in D, then t1[A1] = t2[A2] =mA(a1,a2) in D′.

Above, mA is a binary idempotent, commutative and associative function de-
fined on the domain in common of attributes A1,A2. The MF mA induces a finite
semi-lattice with partial order defined by: a ≼A a′ :⇔ mA(a,a′) = a′. That is,
a′ dominates a when a and a′ are matched into a′. Furthermore, the least-upper-
bound of two elements in the lattice is obtained by applying function m to them:
lub≼{a,a′} = mA(a,a′). We usually assume the greatest-lower-bound of any two
lattice elements, glb≼{a,a′}, also exists.

MFs can be used to define a semantic domination lattice, related to information
contents, as in “domain theory” [25]. The higher in the lattice, the more information
contents. Figure 9 shows an information lattice at the domain level.

25 Main St., Ottawa

Main St., Ottawa 25 Main St.

Main St.

Fig. 9 A semantic-domination lattice

Now, for a set Σ of MDs, an instance D′ is stable if (D′,D′) |= Σ . The idea is to
obtain a stable instance by applying the MDs starting from an initial in stance D.
This defines a chase procedure by which different chase sequences can be generated:

D =⇒φ1 D1 =⇒φ2 D2 =⇒φ3 · · · · · · =⇒φn D′

dirty instance stable (clean) instance

The final (finitely terminating) results of the chase are the so-called clean in-
stances. They form a class that we denote with Clean(D,Σ). Since tuples identifiers
are used, it is possible to put in correspondence a clean instance with the original
instance.

The partial orders≼A at the attribute level can be lifted to a partial order on tuples
of a same relation: t1 ≼ t2 :⇐⇒ t1[A]≼A t2[A], for all A, which in its turn gives rise
to a partial order of semantic domination at the instance-level (of a same relation):
D1 ⊑ D2 :⇐⇒ ∀t1 ∈ D1 ∃t2 ∈ D2 t1 ≼ t2.

22 Leopoldo Bertossi and Loreto Bravo

When constructing the partial order ⊑ we get rid of dominated tuples within
a relation. This partial order is useful for comparing sets of query answers as in-
stances of a relation. Actually, we use it to define the set, CleanAnsΣ

D(Q), of clean
answers to a query Q posed to a (possibly dirty) instance D that is subject to a set
Σ of MDs. Intuitively, they are the answers that are invariant under the ER process:
CleanAnsΣ

D(Q) := glb⊑{Q(D′) | D′ ∈ Clean(D,Σ)}. Notice that this is a lattice-
dependent notion of “certain” answer.

Example 4. Consider the MD φ : R[name]≈ R[name] → R[address] .= R[address]
applied to instance D0 below, whose clean instances are D′ and D′′.

D0 name address
John Doe Main St., Ottawa
J. Doe 25 Main St.
Jane Doe 25 Main St., Vancouver

D′ name address
John Doe 25 Main St., Ottawa
J. Doe 25 Main St., Ottawa
Jane Doe 25 Main St., Vancouver

D′′ name address
John Doe Main St., Ottawa
J. Doe 25 Main St., Vancouver
Jane Doe 25 Main St., Vancouver

For the query Q : πaddress(σname=“J. Doe”(R)), it holds: CleanAnsΣ
D(Q)= {25 Main St.}.

2

It is possible to prove that every chase sequence terminates in polynomially many
steps in the size of the original instance. The result is a clean instance (by definition)
that semantically dominates the original instance. Furthermore, computing clean
answers is a coNP-complete problem (in data complexity) [15].

5.3 Answer-set programs for MD-based ER

A natural research goal is to come up with a general methodology to specify the
result of an MD-based ER process. More precisely, the aim is to compactly and
declaratively specify the class of clean instances for an instance D subject to ER
on the basis of a set Σ of MDs. In principle, a logic-based specification of that
kind could be used to reason about/from the class of clean instances, in particular,
enabling a process of clean query answering.

A simple but important observation about MD-based ER (or ER in general), is
that clean query answering becomes a non-monotonic process, in the sense that we
can lose clean answers when the database is updated, and has to undergo a new ER
process. As a consequence, the specification mentioned above must appeal to some
sort of non-monotonic logical formalism. Actually, it is possible to use (disjunctive)
answer set programs (ASPs), in such a way that the class of stable models of the
“cleaning program”, say Π(D,Σ), corresponds to the class Clean(D,Σ) of clean
instances. On this basis, the clean answers to a query posed to D can be obtained via
cautious reasoning from the program. In the following we illustrate the approach by
means an extended example; details can be found in [4].

Generic and Declarative Approaches to Data Quality Management 23

The main idea is that program Π(D,Σ) implicitly simulates the chase sequences,
each one represented by a model of the program. For this, Π(D,Σ) has rules to: (1)
Enforce MDs on pairs of tuples satisfying similarities conditions. (2) Create newer
versions of those tuples by applying MFs. (c) Make the older versions of the tuples
unavailable for other matchings. (d) Make each stable model correspond to a valid
chase sequence, leading to a clean instance. This is the most intricate part.

In order to give an example of cleaning program, consider the set Σ of MDs,
matching function MB, similarity relation, and initial instance below.

φ1 : R [A]≈ R [A] → R [B] .= R [B], φ2 : R [B]≈ R [B] → R [B] .= R [B] .

MB(b1,b2,b12) a1 ≈ a2
MB(b2,b3,b23) b1 ≈ b2
MB(b1,b23,b123)

R(D) A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

Enforcing Σ on D results in two chase sequences:

D A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

⇒φ1

D1 A B
t1 a1 b12
t2 a2 b12
t3 a3 b3

and

D A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

⇒φ2

D′1 A B
t1 a1 b1
t2 a2 b23
t3 a3 b23

⇒φ1

D′2 A B
t1 a1 b123
t2 a2 b123
t3 a3 b23

Program Π(D,Σ) contains:

1. For every tuple (id) tD = R(c̄), the fact R′(t, c̄), i.e. we use explicit tuple IDs.
2. Rules to capture possible matchings when similarities hold for two tuples:

Matchφ1(T1,X1,Y1,T2,X2,Y2) ∨NotMatchφ1(T1,X1,Y1,T2,X2,Y2) ←
R′(T1,X1,Y1), R′(T2,X2,Y2), X1 ≈ X2, Y1 ̸= Y2.

(similarly for Matchφ2)

Here, Ti stands for a tuple ID. Notice that predicate Match does not do the actual
merging; and we need the freedom to match or not to match, to obtain different
chase sequences (cf. below).
3. Match does not take place if one of the involved tuples used for another matching,
and replaced by newer version:

← NotMatchφ1(T2,X2,Y2,T1,X1,Y1), not OldVersion(T1,X1,Y1),

not OldVersion(T2,X2,Y2).

This is a program constraint filtering out models that make the body true (similarly
for NotMatchφ2).
4. Predicate OldVersion is specified as containing different versions of every tuple in
relation R′ which has been replaced by a newer version. This is captured by upward
lattice navigation:

OldVersion(T1, Z̄1) ← R′(T1, Z̄1), R′(T1, Z̄′1), Z̄1 ≼ Z̄′1, Z̄1 ̸= Z̄′1.

Up to this point we have no rules to do the actual merging yet.
5. Rules to insert new tuples by merging, creating new versions:

24 Leopoldo Bertossi and Loreto Bravo

R′(T1,X1,Y3) ← Matchφ1(T1,X1,Y1,T2,X2,Y2), MB(Y1,Y2,Y3).

R′(T1,X1,Y3) ← Matchφ2(T1,X1,Y1,T2,X2,Y2), MB(Y1,Y2,Y3).

The rules so far tell us what can be done or not in terms of matching and merging,
but not exactly how to combine those possibilities. So, we need additional structure
to create valid chase sequences. Since each chase sequence is an ordered sequence
of instances within a partial order of instances, these ordered sequences have to be
captured by additional conditions, which we do next.
6. Rules specifying a predicate Prec that records the relative order of matchings.
It applies to two pairs of tuples, to two matchings of two tuples. For MDs φ j,φk ∈
{φ1,φ2}:

Prec(T1,X1,Y1,T2,X2,Y2,T1,X1,Y ′1,T3,X3,Y3) ←Matchφj(T1,X1,Y1,T2,X2,Y2),

Matchφk(T1,X1,Y ′1,T3,X3,Y3),Y1 ≼ Y ′1, Y1 ̸= Y ′1.

This predicate is better read as Prec(⟨T1,X1,Y1⟩,⟨T2,X2,Y2⟩ | ⟨T1,X1,Y ′1⟩, ⟨T3,X3,Y3⟩),
saying that the matching of the first two tuples precedes the matching of the last two.
For two matchings applicable to two different versions of a tuple, Prec records their
relative order, with matching applied to ≼-smaller version first

A couple of similar rules are still required (see [4] for more details). With this
definition, Prec could still not be an order relation, e.g. it could violate antisym-
metry. Consequently, program constraints are used to make it an order, and each
stable model will have a particular version of that order. That is, different orders
correspond to different models, and to different chase sequences. More precisely,
additional rules and program constraints are needed to make Prec reflexive, anti-
symmetric and transitive (not given here). They are used to eliminate instances
(models) that result from illegal applications of MDs.

In essence, what we have done here is to define a predicate Prec in terms of the
matching of tuples. By imposing restrictions on this predicate, we implicitly impose
conditions on the matchings, that, in their turn, are the basis for the actual merging,
i.e. applications of the matching functions.
7. Finally, rules are introduced to collect the latest version of each tuple, to form
the clean instance, with new predicates (nicknames):

Rc(T1,X1,Y1) ← R′(T1,X1,Y1), not OldVersion(T1,X1,Y1).

This example illustrates a general and computable methodology to produce
cleaning ASPs from an instance D and a set Σ of MDs. With it we obtain a sin-
gle logical specification of all chase sequences. It is possible to prove that there is a
one-to-one correspondence between Clean(D,Σ) and the stable models of Π(D,Σ).
More precisely, the clean instances are the restrictions to predicates Rc of the stable
models.

We can use the same program Π(D,Σ) to compute clean answers to different
queries Q posed to D. The query has to be first expressed in terms of the Rc-atoms.
For example, the query Q(x) : ∃x′y(R(x,y)∧R(x′,y)∧ x ̸= x′ becomes the rule (a
simple query program) AnsQ(X) ← Rc(T,X ,Y), Rc(T ′,X ′,Y),X ̸= X ′, which has
to be added to the cleaning program. Clean answers can be obtained by set-theoretic

Generic and Declarative Approaches to Data Quality Management 25

cautious reasoning from the combined program, i.e. as the intersection of the sets of
answers in all stable models [4].

As we can see, the cleaning programs provide a general methodology for clean
query answering. However, a natural question is whether these programs are too ex-
pressive for this task. In this regard, it is possible to verify that the syntactic structure
of the cleaning programs makes them head-cycle free. As a consequence, they can
be transformed into equivalent non-disjunctive programs, for which cautious query
answering is coNP-complete in data [38]. This matches the intrinsic complexity of
query answering (cf. Section 5.2).

As a final remark, we make notice that the clean answers were not defined via
a set-theoretic intersection (as usual in ASP), but via the lattice-theoretic glb (cf.
Section 5.2). The clean answers can still be computed via ASPs by introducing
some additional rules into the query program that capture the glb in set-theoretic
terms [4].

5.4 MDs and Swoosh

The Swoosh’s ER methodology is generic, but not declarative, in the sense that
the semantics of the system is not captured in terms of a logical specification of
the instances resulting from the cleaning process. On the other side, MD-based ER
is initially based on a set of matching dependencies, and the semantics is model-
theoretic, as captured by the clean instances. However, the latter have a procedural
component. A really declarative specification of MD-based ER is eventually given
through the cleaning programs introduced in the previous section.

In [7], algorithms are introduced for different cases of Swoosh. One of them,
instead of working at the full record level (cf. Section 5.1), considers doing the
matching on the basis of values for features, which, consider certain combinations
of attributes [7, sec. 4]. This is in some sense close to the spirit of MDs.

In [13; 15], Swoosh’s union-case is reconstructed via MDs. This indicates that
it is possible to apply the general methodology for writing cleaning programs pre-
sented in Section 3.1 for that case of Swoosh. Here we show instead a direct method-
ology for producing this kind of cleaning programs. In this way, we obtain a declar-
ative and executable version of the Swoosh’s union-case.

Actually, for each instance of this case of Swoosh, it is possible to construct
a non-disjunctive stratified ASP, ΠUC(D), that uses function and set terms [29],
for set union and set membership. Such a program has a single stable model that
corresponds to the unique resolved instance guaranteed by Swoosh, and it can be
computed in polynomial time in data. Here we only give an example.

Example 5. Assume the matchings a1 ≈A a2, a2 ≈A a3 hold. Records have at-
tributes A,B, whose values are sets of elements of the underlying domains A, B,
resp. Here, two records matching in A are fully merged, and two set values match if
there are A-elements in them that match. The following is a resolution process based
on the union-case:

26 Leopoldo Bertossi and Loreto Bravo

R(D) A B
{a1} {b1}
{a2} {b2}
{a3} {b3}

⇒
R(D′) A B

{a1,a2} {b1,b2}
{a2,a3} {b2,b3}

⇒ ER(D) A B
{a1,a2,a3} {b1,b2,b3}

The cleaning program ΠUC(D) contains: (1) Facts for the initial instance D, plus
MatchA(a1,a2), a1,a2 ∈ DomA. (2) Rules for the merge closure of D:

R(#Union(S1
1,S

2
1),#Union(S1

2,S
2
2)) ← R(S1

1,S
1
2), R(S2

1,S
2
2),

#Member(A1,S1
1),#Member(A2,S2

1),

MatchA(A1,A2), (S1
1,S

1
2) ̸= (S2

1,S
2
2).

Tuple domination is captured via subset relation:

DominatedR(S1
1,S

1
2) ← R(S1

1,S
1
2), R(S2

1,S
2
2), (S

1
1,S

1
2) ̸= (S2

1,S
2
2)

(#Union(S1
1,S

2
1),#Union(S1

2,S
2
2)) = (S2

1,S
2
2).

Finally, the elements of the ER are collected:
REr(S1,S2) ← R(S1,S2), not DominatedR(S1,S2). 2

5.5 Rules and ontologies for duplicate detection

In the previous sections we have mostly concentrated on the merge part of ER.
However, identifying similarities and duplicates is also an important and common
problem [66]. There are some declarative approaches to duplicate detection. They
could be naturally combined with declarative approaches to merging.

A declarative framework for collective entity matching of large data sets using
domain-specific soft and hard constraints is proposed in [1]. The constraints specify
the matchings. They use a novel Datalog-style language, Dedupalog, to write the
constraints as rules. The matching process tries to satisfy all the hard constraints,
but minimizing the number of violations to the soft constraints. Dedupalog is used
for identifying groups of tuples that could be merged. They do not do the merging
or base their work on MDs.

Another declarative approach to ER is presented in [69]. The emphasis is placed
mainly on the detection of duplicates rather than on the actual merging. An ontol-
ogy expressed in a logical language based on RDF-S, OWL-DL and SWRL is used
for this task. Reconciliation rules are captured by SWRL, a rule language for the
semantic web. Also negative rules that prevent reconciliation of certain values can
be expressed, much in the spirit of Swoosh with negative rules [73].

6 Final Remarks
In the previous sections we have presented some recent developments in the area of
declarative and generic data cleaning. The proposed solutions are general enough
to be applied in different cases. Furthermore, the semantics of those approaches are
formal and precise, and also executable on the basis of their logical and symbolic
formulations.

Generic and Declarative Approaches to Data Quality Management 27

In Section 5 we have restricted ourselves to some recent generic and declarative
approaches to entity resolution, which is vast subject, with a solid body of research.
For more details and a broader perspective of entity resolution we refer the reader
to [70].

We have left out of this discussion several problems and approaches in data clean-
ing that can also be approached from a declarative and generic side. One of them is
data editing [49], which is particularly crucial in census data, and can also treated
with logic-based methods [51; 20]. Master data [8] are used as a reference for dif-
ferent data cleaning tasks, e.g. entity resolution and data editing. The use of master
data in combination with data editing and database repairing has been recently in-
vestigated in [48].

We are just starting to see the inception of generic and declarative approaches
to data quality assessment and data cleaning. An interesting direction to watch is
the one of ontology-based data management [63], which should naturally lead to
ontology-based data quality. Ontologies provide both the semantics and the contexts
upon which the activities of data quality assessment and data cleaning naturally rely
[14; 64].

Acknowledgments: This chapter describes research supported by the NSERC
Strategic Network on Business Intelligence (BIN), NSERC/IBM CRDPJ/371084-
2008, NSERC Discovery, and Bicentenario Project PSD-57. We are grateful to our
research collaborators with whom part of the research described here has been car-
ried out.

References

1. Arasu A, Ré C, Suciu D (2009) Large-scale deduplication with constraints using dedupalog.
In: Proceedings of the 2009 IEEE International Conference on Data Engineering, IEEE Com-
puter Society, ICDE ’09, pp 952–963

2. Arenas M, Bertossi L, Chomicki J (1999) Consistent query answers in inconsistent databases.
In: Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of database systems, ACM, PODS ’99, pp 68–79

3. Arenas M, Bertossi L, Chomicki J (2003) Answer sets for consistent query answering in in-
consistent databases. Theory and Practice of Logic Programming 3(4):393–424

4. Bahmani Z, Bertossi L, Kolahi S, Lakshmanan LVS (2012) Declarative entity resolution via
matching dependencies and answer set programs. In: Brewka G, Eiter T, McIlraith SA (eds)
Proceedings of the13th International Conference on Principles of Knowledge Representation
and Reasoning, AAAI Press, KR’ 12, pp 380–390

5. Barceló P, Bertossi L, Bravo L (2001) Characterizing and computing semantically correct
answers from databaseswith annotated logic and answer sets. In: Bertossi L, Katona GOH,
Schewe KD, Thalheim B (eds) Semantics in Databases, Springer LNCS 2582, pp 7–33

6. Batini C, Scannapieco M (2006) Data Quality: Concepts, Methodologies and Techniques.
Data-Centric Systems and Applications, Springer

7. Benjelloun O, Garcia-Molina H, Menestrina D, Su Q, Whang SE, Widom J (2009) Swoosh: a
generic approach to entity resolution. VLDB Journal 18(1):255–276

8. Berson A, Dubov L (2010) Master Data Management and Data Governance. McGraw-Hill
Osborne Media

28 Leopoldo Bertossi and Loreto Bravo

9. Bertossi L (2006) Consistent query answering in databases. ACM SIGMOD Record 35(2):68–
76

10. Bertossi L (2011) Database Repairing and Consistent Query Answering. Synthesis Lectures
on Data Management, Morgan & Claypool Publishers

11. Bertossi L, Bravo L (2005) Consistent query answers in virtual data integration systems. In:
Bertossi L, Hunter A, Schaub T (eds) Inconsistency Tolerance, Springer LNCS 3300, pp 42–
83

12. Bertossi L, Bravo L, Franconi E, Lopatenko A (2008) The complexity and approximation
of fixing numerical attributes in databases under integrity constraints. Information Systems
33(4-5):407–434

13. Bertossi L, Kolahi S, Lakshmanan LVS (2011) Data cleaning and query answering with
matching dependencies and matching functions. In: Proceedings of the 14th International Con-
ference on Database Theory, ACM, ICDT ’11, pp 268–279

14. Bertossi L, Rizzolo F, Jiang L (2011) Data quality is context dependent. In: Castellanos M,
Dayal U, Markl V (eds) Proceedings of the 4th International Workshop on Enabling Real-Time
Business Intelligence held at VLDB 2010, Springer LNBIP 84, BIRTE 2010, pp 52–67

15. Bertossi L, Kolahi S, Lakshmanan L (2012) Data cleaning and query answering with matching
dependencies and matching functions. Theory of Computing Systems pp 1–42, DOI 10.1007/
s00224-012-9402-7

16. Blakeley JA, Coburn N, Larson PA (1989) Updating derived relations: Detecting irrelevant
and autonomously computable updates. ACM Transactions on Database Systems 14(3):369

17. Bleiholder J, Naumann F (2008) Data fusion. ACM Computing Surveys 41(1):1–41
18. Bohannon P, Flaster M, Fan W, Rastogi R (2005) A cost-based model and effective heuristic

for repairing constraints by value modification. In: Özcan F (ed) Proceedings of the ACM
SIGMOD International Conference on Management of Data, ACM, pp 143–154

19. Bohannon P, Fan W, Geerts F, Jia X, Kementsietsidis A (2007) Conditional functional depen-
dencies for data cleaning. In: Chirkova R, Dogac A, Özsu MT, Sellis TK (eds) Proceedings of
the International Conference on Data Engineering, IEEE, ICDE 2007, pp 746–755

20. Boskovitz A, Goré R, Hegland M (2003) A logical formalisation of the fellegi-holt method of
data cleaning. In: Berthold MR, Lenz HJ, Bradley E, Kruse R, Borgelt C (eds) Proceedings
of the 5th International Symposium on Intelligent Data Analysis, Springer LNCS 2810, IDA
2003, pp 554–565

21. Bravo L, Bertossi L (2006) Semantically correct query answers in the presence of null val-
ues. In: Proceedings of the EDBT WS on Inconsistency and Incompleteness in Databases,
Springer-Verlag, Berlin, Heidelberg, EDBT’06, pp 336–357

22. Bravo L, Fan W, Ma S (2007) Extending dependencies with conditions. In: Koch C, Gehrke
J, Garofalakis MN, Srivastava D, Aberer K, Deshpande A, Florescu D, Chan CY, Ganti V,
Kanne CC, Klas W, Neuhold EJ (eds) Proceedings of the 33rd International Conference on
Very Large Data Bases, ACM, VLDB 2007, pp 243–254

23. Bravo L, Fan W, Geerts F, Ma S (2008) Increasing the expressivity of conditional functional
dependencies without extra complexity. In: Alonso G, Blakeley JA, Chen ALP (eds) Proceed-
ings of the 24th International Conference on Data Engineering, IEEE, ICDE 2008, pp 516–525

24. Brewka G, Eiter T, Truszczynski M (2011) Answer set programming at a glance. Communi-
cations of the ACM 54(12):92–103

25. Buneman P, Jung A, Ohori A (1991) Using powerdomains to generalize relational databases.
Theoretical Computer Science 91(1):23–55

26. Calı̀ A, Lembo D, Rosati R (2003) On the decidability and complexity of query answering over
inconsistent and incomplete databases. In: Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of database systems, PODS ’03, pp 260–271

27. Calı̀ A, Calvanese D, De Giacomo G, Lenzerini M (2004) Data integration under integrity
constraints. Information Systems 29:147-163

28. Calı̀ A, Gottlob G, Lukasiewicz T, Marnette B, Pieris A (2010) Datalog+/-: A family of logical
knowledge representation and query languages for new applications. In: Proceedings of the

Generic and Declarative Approaches to Data Quality Management 29

25th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society, LICS
2010, pp 228–242

29. Calimeri F, Cozza S, Ianni G, Leone N (2009) An ASP system with functions, lists, and sets.
In: Erdem E, Lin F, Schaub T (eds) Proceedings of the 10th International Conference on Logic
Programming and Nonmonotonic Reasoning, Springer LNCS 5753, LPNMR 2009, pp 483–
489

30. Caniupan M, Bertossi L (2010) The consistency extractor system: Answer set programs for
consistent query answering in databases. Data & Knowledge Engineering 69(6):545–572

31. Caroprese L, Greco S, Zumpano E (2009) Active integrity constraints for database consistency
maintenance. IEEE Transactions on Knowledge and Data Engineering 21(7):1042–1058

32. Ceri S, Cochrane R, Widom J (2000) Practical applications of triggers and constraints: Success
and lingering issues (10-year award). In: El Abbadi A, Brodie ML, Chakravarthy S, Dayal U,
Kamel N, Schlageter G, Whang KY (eds) Proceedings of the 26th International Conference
on Very Large Data Bases, Morgan Kaufmann Publishers, VLDB 2000, pp 254–262

33. Chen W, Fan W, Ma S (2009) Incorporating cardinality constraints and synonym rules into
conditional functional dependencies. Information Processing Letters 109(14):783–789

34. Chiang F, Miller RJ (2008) Discovering data quality rules. PVLDB 1(1):1166–1177
35. Chomicki J (2007) Consistent query answering: Five easy pieces. In: Schwentick T, Suciu D

(eds) Proceedings of the 11th International Conference of Database Theory, Springer LNCS
4353, ICDT 2007, pp 1–17

36. Codd EF (1970) A Relational Model of Data for Large Shared Data Banks. Communications
of the ACM 13(6):377–387

37. Cong G, Fan W, Geerts F, Jia X, Ma S (2007) Improving data quality: Consistency and accu-
racy. In: Koch C, Gehrke J, Garofalakis MN, Srivastava D, Aberer K, Deshpande A, Florescu
D, Chan CY, Ganti V, Kanne CC, Klas W, Neuhold EJ (eds) Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases, ACM, VLDB 2007, pp 315–326

38. Dantsin E, Eiter T, Gottlob G, Voronkov A (2001) Complexity and expressive power of logic
programming. ACM Computing Surveys 33(3):374–425

39. Dong XL, Tan WC (2011) Letter from the special issue editors. IEEE Data Engineering Bul-
letin 34(3):2

40. Eiter T, Fink M, Greco G, Lembo D (2008) Repair localization for query answering from
inconsistent databases. ACM Transactions on Database Systems 33(2):10:1–10:51

41. Elmagarmid AK, Ipeirotis PG, Verykios VS (2007) Duplicate record detection: A survey.
IEEE Transactions on Knowledge and Data Engineering 19(1):1–16

42. Fan W (2008) Dependencies revisited for improving data quality. In: Lenzerini M, Lembo D
(eds) Proceedings of the 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, ACM Press, PODS 2008, pp 159–170

43. Fan W, Geerts F, Lakshmanan LVS, Xiong M (2009) Discovering conditional functional de-
pendencies. In: Ioannidis YE, Lee DL, Ng RT (eds) Proceedings of the 25th International
Conference on Data Engineering, IEEE, ICDE 2009, pp 1231–1234

44. Fan W, Jia X, Li J, Ma S (2009) Reasoning about record matching rules. PVLDB 2(1):407–418
45. Fan W, Gao H, Jia X, Li J, Ma S (2011) Dynamic constraints for record matching. VLDB

Journal 20(4):495–520
46. Fan W, Geerts F, Li J, Xiong M (2011) Discovering conditional functional dependencies. IEEE

Transactions on Knowledge and Data Engineering 23(5):683–698
47. Fan W, Li J, Ma S, Tang N, Yu W (2011) Interaction between record matching and data

repairing. In: Sellis TK, Miller RJ, Kementsietsidis A, Velegrakis Y (eds) Proceedings of the
ACM SIGMOD International Conference on Management of Data, ACM, pp 469–480

48. Fan W, Li J, Ma S, Tang N, Yu W (2012) Towards certain fixes with editing rules and master
data. VLDB Journal 21(2):213–238

49. Fellegi IP, Holt D (1976) A systematic approach to automatic edit and imputation. J of the
American Statistical Association 71(353):17–35

50. Flesca S, Furfaro F, Parisi F (2010) Querying and repairing inconsistent numerical databases.
ACM Transactions on Database Systems 35(2):14:1–14:50

30 Leopoldo Bertossi and Loreto Bravo

51. Franconi E, Palma AL, Leone N, Perri S, Scarcello F (2001) Census data repair: a challenging
application of disjunctive logic programming. In: Nieuwenhuis R, Voronkov A (eds) Proceed-
ings of the 8th International Conference Logic for Programming, Artificial Intelligence and
Reasoning, Springer LNCS 2250, LPAR 2001, pp 561–578

52. Galhardas H, Florescu D, Shasha D, Simon E, Saita CA (2001) Declarative data cleaning:
Language, model, and algorithms. In: Proceedings of the 27th International Conference on
Very Large Data Bases, Morgan Kaufmann, Orlando, VLDB 2001, pp 371–380

53. Gardezi J, Bertossi L (2012) Query rewriting using datalog for duplicate resolution. In: Bar-
celó P, Pichler R (eds) Proceedings of the Second International Workshop on Datalog in
Academia and Industry, Springer LNCS 7494, Datalog 2.0, vol 7494, pp 86–98

54. Gardezi J, Bertossi L (2012) Tractable cases of clean query answering under entity resolution
via matching dependencies. In: Hüllermeier E, Link S, Fober T, Seeger B (eds) Proceedings
of the 6th International Conference Scalable Uncertainty Management, Springer LNCS 7520,
SUM 2012, pp 180–193

55. Gardezi J, Bertossi L, Kiringa I (2012) Matching dependencies: semantics and query answer-
ing. Frontiers of Computer Science 6(3):278–292

56. Giannotti F, Pedreschi D, Saccà D, Zaniolo C (1991) Non-determinism in deductive databases.
In: Delobel C, Kifer M, Masunaga Y (eds) Proceedings of the Second International Confer-
ence on Deductive and Object-Oriented Databases, Springer LNCS 566, DOOD 1991, pp
129–146

57. Golab L, Karloff HJ, Korn F, Srivastava D, Yu B (2008) On generating near-optimal tableaux
for conditional functional dependencies. PVLDB 1(1):376–390

58. Golab L, Korn F, Srivastava D (2011) Efficient and effective analysis of data quality using
pattern tableaux. IEEE Data Engineering Bulletin 34(3):26–33

59. Greco G, Greco S, Zumpano E (2003) A logical framework for querying and repairing incon-
sistent databases. IEEE Transactions on Knowledge and Data Engineering 15(6):1389–1408

60. Gupta A, Mumick IS (1995) Maintenance of materialized views: Problems, techniques and
applications. IEEE Quarterly Bulletin on Data Engineering 18(2):3–18

61. Kolahi S, Lakshmanan LVS (2009) On approximating optimum repairs for functional depen-
dency violations. In: Proceedings of the 12th International Conference on Database Theory,
ACM, New York, NY, USA, ICDT ’09, pp 53–62

62. Lenzerini M (2002) Data integration: a theoretical perspective. In: Proceedings of the 21st
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, ACM
Press, PODS 2002, pp 233–246

63. Lenzerini M (2012) Ontology-based data management. In: Freire J, Suciu D (eds) Proceedings
of the 6th Alberto Mendelzon International Workshop on Foundations of Data Management,
CEUR Workshop Proceedings, CEUR-WS.org, AMW 2012, vol 866, pp 12–15

64. Malaki A, Bertossi L, Rizzolo F (2012) Multidimensional contexts for data quality assessment.
In: Freire J, Suciu D (eds) Proceedings of the 6th Alberto Mendelzon International Workshop
on Foundations of Data Management, CEUR Workshop Proceedings, CEUR-WS.org, AMW
2012, vol 866, pp 196–209

65. Motro A, Anokhin P (2006) Fusionplex: resolution of data inconsistencies in the integration
of heterogeneous information sources. Information Fusion 7(2):176–196

66. Naumann F, Herschel M (2010) An Introduction to Duplicate Detection. Synthesis Lectures
on Data Management, Morgan & Claypool Publishers

67. Nicolas JM (1982) Logic for improving integrity checking in relational data bases. Acta In-
formatica 18(3):227–253

68. Rahm E, Do HH (2000) Data cleaning: Problems and current approaches. IEEE Data Engi-
neering Bulletin 23(4):3–13

69. Saı̈s F, Pernelle N, Rousset MC (2007) L2R: A logical method for reference reconciliation.
In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, AAAI Press, AAAI
2007, pp 329–334

70. Talburt J (2013) A practical guide to entity resolution with OYSTER. In: Sadiq S (ed) Hand-
book on Data Quality Management, Springer, Handbook Series. This volume, chapter ???.

Generic and Declarative Approaches to Data Quality Management 31

71. ten Cate B, Fontaine G, Kolaitis PG (2012) On the data complexity of consistent query an-
swering. In: Deutsch A (ed) Proceedings of the 15th International Conference on Database
Theory, ACM, ICDT 2012, pp 22–33

72. Türker C, Gertz M (2001) Semantic integrity support in SQL:1999 and commercial (object-)
relational database management systems. VLDB Journal 10(4):241–269

73. Whang SE, Benjelloun O, Garcia-Molina H (2009) Generic entity resolution with negative
rules. VLDB Journal 18(6):1261–1277

74. Wijsen J (2005) Database repairing using updates. ACM Transactions on Database Systems
30(3):722–768

75. Yakout M, Elmagarmid AK, Neville J, Ouzzani M, Ilyas IF (2011) Guided data repair. PVLDB
4(5):279–289

