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i. Introduction. 

The purpose of this paper is twofold° On the one hand, we shall give 

in Section 2, a model for the theory of errors based on the probability 

structures of Chuaqui 1983 and 1984. The construction of this model uses 

recent result in non-standard analysis° On the other hand, a formaliza- 

tion of the notion of "approximation to truth", which includes the possi- 

bility of random errors in measurement, will be presented in Section 3. 

This last section is mainly the work of the first author, who takes full 

responsability for it. 

A formalization of the notion of approximation to truth was present- 

ed in a paper inspired by ideas of N.da Costa(Mikenberg, da Costa, and 

Chuaqui 198+,MDC, for short), but there, the possibility of random errors 

in measurement was not taken into account. As an introduction to our 

ideas in the present paper, we shall briefly sunmmrize the formalization 

of MDC. 

A relational structure ~ = <A,R i > icl is thought of as a theoretical 

physical structure about the objects in A. We think of this total struc- 

ture (ioe. for each n-tuples of elements of A, it is determined whether 

it belongs to the n-ary relation R i or not) as what the theory gives us 

for the objects in A, A natural way to formalize this point of view, is 

to consider scientific theories as set-theoretical predicates, as in 

Suppes 1957, Chapter 12. What is actually known about the objects in A, 

' is only a is in the Rartial structure ~' = <A,R! > where each R i 1 icI' 
partially defined relation over elements of A. That is, only for some 

tuples it is determined whether they belong R i or not. For the rest of 

the tuples, it is undetermined. A theoretical structure ~is adequate 

for (or compatible with) ~', if ~is an extension of ~', i.e. Ricoincides 

with R' where the latter is defined. We define a sentence to be true 
i' 

in ~' if it is true in all extensions with the same universe A. A 

theoretical structure adequate for ~' is one of these extensions,~, 

i.e. what is true in ~' is also true in ~, and nothing that is false 
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in ~' is true in ~. Thus, there may be several theoretical structures 

which are adequate for ~', each one determined (possibly) by different 

theories. When our knowledge about the objects in A increases we 

obtain another partial structure ~", which is an extension of ~'. If 

were compatible with ~2 ~ , but not with~j", then it must be changed and 

the corresponding theory also. 

Another possibility for the rejection of the theory is the following. 

Suppose that ~f' is what we know for the objects in A and that a 

theory T, say classical mechanics, determines a total structure ~f, with 

universe ~r domain ) A, that is compatible with ~f' Assume that if 

we take a differe~domain B (which may include A), then ~' is what we 

know about the objects in B, and that the theory T determines, for B, 

a total structure~that is incompatible with~'. Then T should be 

rejected, but we would say that it is still approximately true for the 

objects in A. For instance, if we take A as the medium sized objects 

at slow velocities and T as classical mechanics, then T is approximate- 

ly true for A. 

This picture, however, is not completely accurate. The theoretical 

structure ~, given by T, in general does not extend the partial structure 

~f' exactly. We usually say that ~ coincides with ~', except for possible 

errors in measurement. It is this last factor that we want to formalize 

in the present paper. 

In the measurement of a certain quantity, we usually assume that there 

is a theoretical value, given in the total structure ~f, but that the 

actual value, obtained,i.e, occurring in ~', may differ from it because 

of errors in the procedure of measurement. There are three main sources 

for this error. Sometimes, there is a systematic error derived from the 

procedure itself. Second, there may be an error produced by the limit 

of precision of the measurement method. Lastly there may be random errors. 

We shall disregard the first two types of error and consider just random 

errors, which, in general are the most important. The account presented 

in Section 2 could be modified so as to take into consideration the other 

types of errors. 

Thus, if we include random errors in measurement, then the theoretical 

structure ~might not be an extension of the partial structure 4', but, 

anyway, be considered compatible with it. That is, there might be a 

sentence true in ~', but false, strictly speaking, in'f, without this 

fact being enough ground to reject ~(and hence T). In order to formalize 

this situation, we do the following. In the first place, we associate 

with~another structure that we call an error-structure ~ . Now, a 
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sentence ~, instead of being true or false in ~, has a probability 

P~e (~)' which depends on ~ e. If there is no sentence true in ~' that 

has low probability according to ~e' and high probability according to 

~e' where~is an alternative theoretical structure of ~f, then @~is 

compatible with~'. 

Probability is thought of as "degree of partial truth" (see Chuaqui 

1977, for a justification for this view). Because of the possibility of 

error, we cannot get to truth; thus, we should strive to get as close 

as possible to it, i.e. to high probability. In a similar way, a false 

consequence means rejection, but we cannot get to falsehood, but just 

to low probability, which is approximate falsehood. In fact, we should 

try to approximate falsehood as much as possible, i.e. given any e >0, 

to try to get a sentence ~ true in ~' but with P~e(~ ) <~. In Chuaqui 

198 +, there is a discussion of how to approximate falsehood with a 

sequence of probabilities decreasing to zero~ In order to do this, we 

need sequences of trials of the same experiment. Thus, our structures 

~e' have to be complicated somewhat for this purpose: we construct from 

~e' the structure ~fe ~ that formalizes an unlimited number of repetitions 

of the experiments and define probabilities for sentences according to 

~e ~, derived from P~e" These probabilities are defined using the 

methods of Chuaqui 198+' 

This presentation is offered, not as a program for practical imple- 

mentation, but only as a way to illuminate the relations between theory 

and evidence, and between truth and probability, in science. It is clear, 

that the models presented here are a preliminary version that is over- 

simplified. In particular, we just consider deterministic theories. We 

hope to improve these models in the future, and include nondeterministic 

theories. 

2. A theoretical model for the theory of errors° 

In this section, we present a model for the theory of random errors. 

In this theory, a quantity is supposed to have a theoretical value, but 

the procedure of measurement introduces a random error that comes from a 

combination of a large number of independent causes, each one producing 

a very small error in the positive or negative direction. The total error 

for a particular measurement is obtained by adding up the errors produced 

by the different causes. 

In the compound probability structures of Chuaqui 1983, the causes are 

represented by a causal tree T, with a partial ordering relation. Since 

here the causes are independent, two different elements of T are never 

related, i.e. one has no influence upon the other. The fact that there 
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is a large number of causes, can be represented, in non standard analytic 

terms, by taking T to be the internal set T = { to,t I ...... ~} where 

is a non-standard infinite natural number, Joe. n~* ~ ~~° That is, T 

is an infinite, but hyperfinite internal set. With each cause t k we 

associate a positive infinitesimal number ek and t k may cause the 

error ~k or -ek with equal probability. In order to describe the 

action of tk, we introduce a simple probability structure ~, as in 

Chuaqui 1984o K k consists of two relational structures, namely, 

K k = { <{-~k,~k} , { -~k } > , <{-ek,~ k} , {~k } >} 

The universe of K k is {-ek,~ k} The first structure obtains, if 

at tk, -ek is produced, and the second, if E k is. The algebra of 

events naturally consists of all subsets of K k. In order to obtain 

the probability measure ~k' we need a group of permutations of 

{-~k,ek} , GKk. In this case, it clearly contains all permutations of 

this set and ~k' the GKk - invariant measure, assigns 1/2 to each of 

the models of Kko 

The probability structure for the action of all causes is a compound 

structure with causal tree <T,= > . In order to keep the total error 

with bounds, we must assume that ~ ~ = ~ where e is a finite posi- 
k=0 

rive number. 

The set of compounds outcomes is 

H = ~ <K k : tkET > , 

i.e., H consists of the functions $ with domain T and such that 

~(tk)CK k for each k~n. Each EeH, represents a possible measurement 

(we assume that the theoretical value to be measured is 0). As in Chuaqui 

1983 the probability measure ~ defined on subsets of H is the product 

measure of the ~k for k<n. 

The result of the measurement represented by an outcome $cH is given 

as follows. For each k~n, we first define a random variable Xk÷*~ 

(the non-standard reals or hyperreal numbers) by, 

Xk(~) = ~k' if ~(t k) = <{~k,-~k} , {~k } > 

(ioeo, ~k = ~k or ~k = -~k )° 

Then. the result of the measurement in outcome ~eH is 
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f(~) = ~ k(~) 
k=0 

In order to study the distribution of f, we need the central limit 

theorem with the Lindeberg condition in non-standard form as given in 

Stoll 1982: 

If n~* I~ - lq and < Yk : k~n > is an internal sequence of *indepen- 

dent random variables in an internal probability space (g,A,~) such that 

~(Yk ) = 0 and ~(¥k 2) = I, and < ak: k-<n > is a sequence of infinitesi- 

mal weights ~k c* ]R such that k=~o~k2 = 2 with 0 <°~e~ +, then 

~([ ~ ~kYk<-~]) i* ~Q ~- ) for all Xe*~. 

k=0 

Here *~ is the non-standard normal distribution with mean 0 and 

standard deviation I. 

Taking standard parts, one can show that if ~ is Loeb's measure gene- 

rated by o , then 

~([o ~ ~kYk_<~] ) = ~(o -~) , for all ~c~, where ~ is the standard 
k=0 a 

normal distribution. 

This work of Stoll is based on Loeb 1975 and Anderson 1976. 

Thus, we have for our random variable f:H ÷ * ~, the following dis- 

tribution : 

~([f-<~]) = ~([ ~k=O ~k [~]-<~]) 

*+(oA) , 

for each ~c* ~. 

Then, its standard distribution is, 

~([of<~]) = ~(o~), 

for each ~e~R 

Thus, the result of the measurement is normally distributed with 

mean 0 and standard deviation °E. It is easy to modify the construc- 

tion so that the mean (i.e. the theoretical measurement) is any number 

r cA. Thus, in order to obtain a model for the measurement of a certain 

quantity, we must be given two parameters: the theoretical measurement 
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r and the standard error °Co With these two numbers, we construct a 

compound probability structure as above (that will be called an error 

probability structures)° Then the random variable f, which gives the 

actual value of the measurement, will be normally distributed with 

mean r and standard deviation o~° 

The mean r represents the theoretical measurement and may be 

obtained by calculations from the theory or be estimated from the data. 

For instance, a measurement of length is usually obtained directly from 

the data, but other quantities may be consequences or the theory° 

The standard deviation °E,on the other hand, depends on the 

method of measurement. If the method is more accurate E ° will be 

smaller, ioeo there may be less causes of error of the error produced by 

each cause may be smaller. There may be several procedures of measure- 

ment for the same quantity all should give the same mean, but possibly 

have different standard deviations. This standard error is usually esti- 

mated from the distribution of actual measurements, but occasionally it 

is roughly estimated from theoretical considerations concerning the 

supposed precision of the procedure. 

These values of the mean and standard error are,then, compared 

with a series of actual values using the usual statistical techniquesoif 

the distribution of the actual values is very improbable according to 

the theoretical distribution then this last one is rejected as a model 

of the real state of affairs° 

Although the mean has a theoretical significance, the standard 

error has not, since we are just considering deterministic phenomena° 

Thus, it is usually important just to test the appropriateness of the 

theoretical value of the measurement as compared with the actual values 

obtained.Which is the theoretical standard error (ioeothe standard de- 

viation of the error probability structure) is not important° A statis- 

tical test for testing the mean with unknown standard deviation is 

Student's Test. For using this test, we calculate the quantity 

M - r t - 

when r is the theoretical va~ue of the measurement, M the mean value 

of the values actually obtained, and S M the standard deviation of these 

values. We can then compute the probability of Itl<a for an a oR, 

for any error probability structure with mean r. We can obtain a value 

of a for which these probabilities (one for each error probability 

structure) are less than a certain ~o Thus, whatever may the standard 

deviation of the error probability structure be, the probability of 
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ItI<a, is less than =o If we take ~ sufficiently small, then the pro- 

bability of the event ;tl<a, will be small for r being the theoreti- 

cal value of the measurement° Here, the hypothesis that r is this 

value, is to be rejected. 

3. Structures with errors in measurement° 

We are now ready to introduce a theoretical structure that includes 

measurement with random errors, and the corresponding partial structure 

representing what we actually know. In fact, we shall introduce two new 

types of theoretical structures : a pure measurement structure or ]R- 

structure, and the error structures associated with it. We shall discuss 

later the structures that represent our knowledge and which correspond 

to the partial structures of the old setting sketched in Section Io 

An ]R-structure is a system of the form 

~= <A'fi@'Rj ~f> i~l,j~J' 

where each Rj, for j~J, is an nj-ary relation between elements of A, 

and each fi ~, for icl, is an ni-ary operation from A into ]Ro We could 

also have operations from A into A, or distinguished elements of A, 

but, for simplicity, we shall not include them, since they can be re- 

placed by relations° We think of ~ as what we accept theoretically to be 

true of the elements of A. The R.~'s represent possible relations between 

these elements, and the f.~ 's J l , measurements performed on them. Thus, 

f~.~_ (a o .... ,ani_l) is a real number that measures some property of the 

system~r (ao ..... an_ l) of elements of A. There could be two measurements 

f~ and f~, with i jk, of the same quantity. In the JR-structure 

they could coincide. However, in the error structures and the partial 

structures to be introduced below, they may differ. As in Section I,~ is 

what the scientific theory prescribes for the elements of Ao In this 

paper, we only consider deterministic theories. 

The language for ]R-structures is a one-sorted language, with variables 

x,y,z, .... that constains the following types of atomic formulas: 

x= y 

Rj x O ..... Xn _i for each j~J, 

and 

[fi(Xo ..... Xni_l) er] , for each rc~ (the rational numbers), and 

each i~lo 

These formulas are combined in an L~lu-language with negation, 

countable conjunctions and disjunctions, and finitely many quantifiers° 
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The variables are assigned elements of Ao For each formula ~ and each 

assigment s of the variables in A, we define when s satisfies ~ in 

~, in symbols ~I =~[s]o Most of the clauses are the usual ones, plus 

I =[fi(xO ..... Xni_l)~r][s] iff f~ (S(Xo) ..... X(Xni_l))~ro 

We could also have a two-sorted language with variables and operations 

for the real numbers, but we shall not need this in this paper. 

Most of the mathematical results obtained in MDC could easily be extend- 

ed. to m-structures, with the natural notion of partial ~-structure. We 

shall not pursue this line here. Instead, we shall introduce another 

type of theoretical structure: the error-structures (or briefly, E-struc- 

tures) associated with the m-structure ~. While ~determines whether a 

formula is satisfied by an assignment or not, an E-structure ~e,determines 

only the probability that is assigned to the formula. 

An E-structure associated with ~is a system of the form 

~e = <A,fi~e, ~e>icl,jcj , 

where ~e = ~,~ for j~J, and, if f~ is an ni-ary operation, then 

for each ao, ~A, f~ e .... ani (a ° .... ,ani_l) is a random variables whose 

distribution is given by an error probability structure (see Section 2): 

fi e(ao .... ,ani_l) is a random variable having a normal distribution with 

mean f~ for each icl More precisely, fi~e(ao , ,a n _i ) 
i ( ao ..... ani - I) . . . . . .  i 

= fi(ao ..... ani_l) + ~i(ao ..... ani_l),where ei(ao ..... ani_l) is random 

variable with mean 0, which represents the error in the measurement. 

The distribution of ei(ao, .... an._ I) is determined by an error pr~ility 
l 

structure (of Section 2) whose universe H is the domain of 

~i(ao ...... an _i) o 
I 

Each fi ~, for iel, represents one method of measurement for a quanti- 

ty. There may be several methods for the same quantity indexed by 

different elements of Io Thus f~ and fk ~C may be measurements of length, 

say by a ruler and by wavelengths° In this case, fi~f(ao ..... an_ 1 ) = 

fk ~ (a O ..... an_ l) for every a ° ...... an_l,~A. Hence, fi~e(ao ..... an_ l) 

and fk ~e (a o ..... an_ l) are random variables with the same mean. But, 

their standard deviations may be different. This deviation depends on 

the procedure of measurement, and may be determined by the theory of 

the method or the empirical data. as was explained in Section 2. 
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It may be more reasonable to assume that for each icl, f.~e is i 

defined only for a subset of A, namely, for those objects that are 

possible to measure with the procedure involved° This would introduce 

additional inessential complications to our models, so that we shall 

assume that for each tuple a ° .... ,an_ I of elements of A, 

fi%le(ao ..... ,an_ l) is defined (ioeo it is a random variable with values 

in ~). 

The language for the E-structures ~e associated with ~, is the 

same as that for ~. However, instead of satisfaction, ~e determines 

a probability° For each formula ~ and each assignments of the variables 

in A, we define the probability that s assigns to ~ in ~, in 

symbols Pq(~,s). The definition that will be given below is based in 

that of Scott and Krauss 1966. The main differences with Scott and 

Krauss are that we use assignments instead of constants, and that we 

give the definition jointly for all relations and operations instead of 

doing it separately, and then joining them by their method of indepen- 

dent unions. In any case this means that we assume the different f~ 
' i 

and Rj, for iel and j~J, to be stochastically independent. 

We now proceed to state the definition of P4lin several stages. Let 

Re 
B i (do, - .... ,an_ l) be the measure algebra of the error probability structure 

where f~e (a O ..... an_ 1 ) is defined, and ~i@/e(ao ...... a n i ) , its measure. 

We shall always consider, now and in what follows, strictly positive 

measures, i.e. measures that vanish only on the zero of the algebra, and 

their corresponding measure algebras° This is needed because in our 

definitions we must have complete algebras, ioe. algebras where the 

suprema and infima are always defined. If necessary, to achieve a strict- 

ly positive measure, we take the algebra (and the measure) modulo its 

null sets. In what follows, we shall suppose that this is done, with- 

out mentioning it. @f 
For each icl, Bi ne is defined to be the product algebra. 

B'~el = ~<Bi~(ao, ,,.an_l) : ao,..o,an_ I cA>. 

and ui ~e its corresponding (strictly positive) measure. 

For each j~J, Bj ~ is the two element measure algebra {0j ,lj} , 

and uj~e the measure that assigns i to lj and 0 to 0j° 

We consider, now, the product B ~e of all these algebras: 
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8~e = ~<8# : kcluJ>, 

and its corresponding product measure, 

An element in B ~e is a system 

= <~k : k~luJ > ; 

on its turn, if icl, then ui is a system 

~ i  = < ~ i  ( a o '  . . . .  a n . - 1 )  : ao  . . . . .  a n . - 1  eA > 
1 1 

We call the unit of ~fge, I , and its zero 0 Similarly, Ik,0 k 

w i l l  b e  t h e  c o r r e s p o n d i n g  e l e m e n t s  o f  B k ~  , f o r  k ~ I U J ,  w h e r e ,  i f  

i~l, i i = < li(a ° .... ,an._l): a ° ...... an._leA>, and 
1 1 

0 i = < O i ( a  o . . . .  , a n ~ _  1) : a o . . . . .  a n . _ l  CA > 

For each formula ~ and assignment s of the variables in A, we define 

a v a l u a t i o n  h ( ~ ; s ) e B  ~/'e, b y  r e c u r s i o n :  

(i) h(x=y;s) = {~', otherwiseif s(x) = s(y) 

(ii) h(Rjx o ..... Xn_l ,s) 

lj, 
Pj = 

0j, otherwise, 

and ~k = Ik ' for all keluJ with j ~k. 

= ~ , where its components ~j are given by 

if <s(x o) ..... S(Xn_10 >eRj ~ 

(iii) h([fi(x O ...... Xn_l)er] ; s) = ~ , where 

~i(S(Xo) ..... S(Xn_l)) = [fi~e(s(Xo ) ...... S(Xn_l)) er] 

(i.e. the corresponding element of Si~(s(x o) ..... S(Xn_l)), 

~i(ao ..... an_l) = li(a ° ..... an_ l) for (a o ...... an_ l) 

(S(Xo) ..... S(Xn_l)) , and 

~k = Ik' for kcluJ, k ~io 

(iv) h(-~ ¢;s) = ~ - h(~,s) 

( v )  h (  v ~ n ; S )  = v h ( O n , S  ) 
n c  1.I n c  1~I 

(vi) h( A Cn;S) = ^ h(~n,S ) 

nc 11 ne lq 
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X 
(vii) h(@x~;s) = a~A h(~'Sa) 

(viii) h(V~;s) = ^ h(~,s~) 
aeA 

Here, s x is the assigment that coincides with s everywhere, except, a 
possibly, on x where it assigns a. 

Now we are ready to define P~ (~,s), the probability that s assigns 

~o This is simply given by 

P~e($, s) = ~e(h(,; s)) . 

We shall now proceed to the discussion of the structures that represent 

what we actually know and their relation to the theoretical structures~ 

In order to study this relationship, it is not enough to consider one 

~-structure ~f, but need to consider all of its alternatives, as well. 

An alternative to the l~-structure ~/is an l~-structure~, with the 

same universe A and the same similarity type. That is, if 

~= < A,fi ~, Rj#$>icl,jej, then 7 = <A, fi~,Rj~>i~l,j~ J where fi ~ 

and R. ~j are of the same arity as f.~l and Rj~ respectively (The 

similarity type T determines for each keluJ, where the symbol 

indexed by k is an operation or a relation, and its arity) o The set 

of alternatives with universe A and similarity type r, we call the 

A,T-alternatives, 

For each alternative~to ~f we construct the corresponding E-struc- 

ture. If @re is an E-structure associated with~/, we shall designate 

by ~e' the E-structure associated to ~in which the distribution of 

i ~ (ao , e  ...,an_ 1 ) has the same standard deviation as that of 

fi~e(ao ..... an_l) O 

Now, we define an A z-partial IR-structure ~' , where A is a uni- 

verse (i.e. a nonempty set) and T a similarity type. ~f' is a system 

of the form: 

~f' ~f~>ie I, ~f' = < A,f i , Rj jcJ 

where fi , for iel, is an ni-ary partial function from A into ~, 

and Rj , for jeJ, is an nj partial relation. For describing partial 

structures, it is better to replace relations by their characteristic 

functions, i.e. we write 
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Rj (a o ..... an _i) = I, if < a ° ...... an._l>ERj ~' 
3 3 

= 0, otherwise 

Then, a partial relation is a partial function from A into {0,I}o 

A complete extension ~of the A,T-partial ~-structure ~f' is an 

A,T-alternative (ioe, an R-structure with universe A and similarity 

type T) such that the operations and relation of ~are extension of 

those in ~'o We already have defined satisfaction for R-structures. 

We can now define satisfaction for partial R-structures ~/' as in 

MDC, namely, for any formula ~ , and assignment s in A: 

9~f' I=T~[S] iff for every complete extension ~of ~f', we have 

~l= ~esl 

~' ~F~[S] iff @/' I= T ~[s ] 

~[' ~U ~[S] , otherwise 

Thus, a formula may be satisfied, not satisfied, or left undetermined 

by an assignment s in ~'. 

Notice that for atomic formulas, the definition of satisfaction given 

above can be translated to : 

_ f ~' ~' ~T [fi (Xo ...... Xn_ I) >r][s] iff i (S(Xo) ...... S(Xn_l) , is 

defined and ~ r; 

~TRj x O ...... Xn_ 1 Is] iff 5 (S(Xo) ...... S(Xn_l)) is defined 

and equal to I. 

A partial ~-structure ~' represents what we actually know, or, at 

least, accept and are not willing to change° In MDC, the theoretical 

structures ~compatible with ~/' (i.e. that are possible givenS') are 

the complete extensions of ~f'. Here, the situation will be different. 

There may be compatible theoretical structures which are not extensions 

of @/'. 

Now we are ready to relate ~to ~'o We say that ~' is incompatible 

with the total ~-structure ~/(given ~e ) , iff there is a formula ~ and 

an assignment s in ~such that, 

(i) ~/' I= T #Is] , 
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(ii) P~/e(~,s ) is low, 

and 

(iii) P~ (#,s) is high, for some alternative to ~/,~. 

In the account without considering random errors of MDC,@/was to be 

rejected, if it was not an extension of ~o That is, if a sentence true 

in ~/, was false in @/' (or, more precisely, if there is a formula ~ and 

an assignment s such that ~[s] , but ~f' I= T ~ ~[s] ). In our 

present account, ~fmight not be an extension of ~', but anyway compatible 

with it, if P~(~,s) is high for all ~ and s with ~' l=T#[S]. That 

is, everything that is approximately true in ~(i.e. has high probability 

in ~fe ) is true in ~', and there is nothing true in ~' that is 

approximately false in ~(i.e. has low probability in ~e ) . 

How low the probabilities should be to reject ~, depends fundamental- 

ly on the alternatives available. If there is a "reasonable alternative 

that assigns high probabilities to all sentences true in ~', then we 

might reject ~, even though the probabilities in ~e might not be very 

low. With no reasonable alternative, we would need very low probabilities, 

in order to reject ~. The following is a possible explanation of what a 

reasonable alternative is. First, a definition. We say that the theory 

• (in the similarity type T ) is confirmed by the B-T-partial structure 

(given ~[e ) if the total ~-structure ~determined by T for the 

objects in B, has the property that for all formulas ~ and assignments 

s in B, if ~ l=T~[S] then P~(~,s) is high. Suppose that if B is 

a set of objects that has been studied in a science, then ~ is the 

B-T-partial structure that is accepted as true, and assume that T is 

confirmed by all such ~. Then, if ~ is the total ~-structure deter- 

mined by such a T for the objects in A, it is a reasonable alternative 

to ~. 

The account given up to now is unrealistic in that it assumes that we 

measure each object just once. We could solve this problem by having 

several measurements, but assign one value to fi~(ao , .... an_l) , namely, 

their average. However, by using this procedure we lose some of the 

statistical power that may be available° In particular, with just one 

value assigned, we have no real hope of getting rid of ~e in the 

definition of incompatibility. As given, we defined~incompatible with 

91[' (given ~)° The standard deviations included in ~fe are not, 

usually, important for scientific theories. 
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In order to include repetitions of measurements, we introduce, for 
w each ~and ~e' the structure ~e' called an w-E-structure, with a 

language for this structure and a definition of probability for its 

formulas. 

To all operations and relations in ~, we add one more place to range 
~w 

over w, the natural numbers; fie (ao,...,an_l,t) is a random variable 

for each ao, ..... an_leA and tow, with the same distribution as 

~(ao, fi~e(ao ...... an_l); similarly, with relations, Rj .... an_l,t) = 

Rj~(a o .... an_ 1 ) for all a o ..... an_l,eA, tom. 

The language is now a two-sorted language with variables x,y,z... 

for elements of A, and m,n for elements of ~. The atomic formulas are: 

x = y 

m = n 

Rj x ° ..... Xn _l,m , for each jcJ 
J 

[fi(Xo .... Xn._l,m)->r] , for each rc~, iEl. 
]_ 

This language will be a two-sorted L -language with finitely many 

quantifiers for both types of variables. IThe assignments s,ncw, adscribe 

elements of A for the variables x,y,z .... and elements of ~ for the 

the other sort. Just as for ~fe' ~e assigns probabilities to formulas. 

Let B i e(a o ..... ,an_ 1 ) be the product algebra of B (a ° .... an_ 1 ) 

w-times, and ~ e (ao,..o,an_l) its product measure. Then, 

~w 
<Bi ~ (a o, ,an_ 1 ) a o ..... Bie = ~ ... : ,an_leA > 

~w 
and ~i e is its corresponding product measure. For jeJ, 

~e ~ Bj and ~j e are defined analogously. Finally, let 

8 ~ = ~ <8k ~e : k~IuJ >, 

and let ~ be its corresponding product measure. 

8% An element ~e is a system 

= <~k : kcluJ >. 

If kcJ, then ~k = <~k (t):tew > where ~k(t)c Bk ~fe. If icl, then 
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~i = < ~i(ao ...... an-l't) : ao ..... an-~A'tcm ~ where ~i(ao ..... an_l,t)~Bi (a O ..... an_l) 

for each t~o 

h, now, assigns to each formula ~ and assignment s of the new 

language an element of B ~, as follows: 

(i) h(x=y;s) 
= i I, if s(x) = s(y) 

~, otherwise~ 

h(n = m;s) = 
~, if s(n) = s(m) 

~, otherwise° 

(ii) 

and 

h(Rj x o ..... Xn_l,m;s ) = ~ where 

lj, if R~(S(Xo) ..... S(Xn_l)) = I 

~j(s(m)) = ~j, otherwise, 

~k(t) = ik, for all keluJ, t~m, with k~j or t ~ s(m). 

(iii) h([fi(x o ...... Xn_l,m) er];s) = ~ where 

~i(S(Xo) ...... S(Xn_l),s(m)) = [fi(S(Xo) ..... S(Xn_l)) e r] 

and ~k(ao ..... an_it ) = ik(a ° ..... an_l) , for all k ~ i or 

(a o ...... an_l,t) ~ (s(x O) ...... S(Xn_l),s(m)) 

(iv), (v), ~vii), and (viii) are the same as before. 

We need two more clauses: 

(ix) h(~n~;s) = v h(~,s~ )o 
tom 

n). (x) h(¥n~;s) = ^ h(~,s t 
t~ 

Just as before, the probability in ~ is given by: 

~e 
P~ (~,s) = ~ (h(#;S))o 

Now, the A,t- partial m-structures (or partial structures with 

repetition), Bare of the form 
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~ = <A,f~ R~> 
1 ' J i~l, j~J' 

-- n. 

where f~ is a partial operation defined on 1Axm into ~ and R.~is ] 

n. 

a partial relation on ]Axe. (Here, nA is the set of n-tuples of A). 

These functions may be partially defined on A,m or both; eogo 

f~(a o ..... ,an_l,t) may be defined only for some ao, .... an_l ~A and t~m. 

In general, if we assume that ~ represents our actual knowledge, then, 

for each ao, .... ,an_leA there will only be finitely many tc~ with 

f~(a o ..... an_i t ) defined. 

A complete extension ~ of ~ will have these functions defined 

everywhere in A and ~ , and extend those of ~ o Observe that in 

~,_ or in any of its extensions ~ , we may have f~ (a o,o.o,an_l,t)~ 

fi~(ao,...,an_l,V), for t,vem with t ~v° 

Satisfaction for ~ is defined just as for the partial structures 
without repetitions ~'. 

In the language that we have introduced there is a formula ~ and an 
assignment s such that 

i= T¢[s] iff Iti(a ° ..... an_l) I < a 

where ti(ao,ooo,an_l) is Student's t for the measurement f~(a o .... ,an_l,V) 

with vE~ that are defined in ~ and a e~. p 

That is 

ti(a o ..... an_ l) = 

M- fi~f(ao ..... an_l) 

S M 

where M is the average of the sequence 

<f~(a o .... ,an_l,V):Ve~ and fi~(ao ..... an_l,V) is defined in ~ > and 

SMiS its sample standard deviation° 

As we mentioned in Section 2, there is an a ~, such that P~(¢,s) 
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is low for all u-E-structures ~e , associated with ~o Thus, the 

following definition makes sense° 

We say that the partial ~-structure 

there is a formula ~ and an assignment 

(i) ~ ~T~[S] , 

(ii) P~(~,s) is low, 

~e associated with~. 

is incompatible with ~ iff 

s such that, 

for every ~-E-structure 

(iii) P~(~,s) is high, for a certain alternative to ~/, ~, 
~e 

and a certain m-E- structure ~ associated with~o 
e 

If a certain ~-E-structure ~e is preferred, because of theoretical 

reasons, over all other u-E-structures associated with@/, then we 

might relativize the definition of compatibility to this ~, by 

changing (ii) to (ii)' : P~ (~,s) is low. 

However, the definition given (with (ii) instead of (ii)') is prefe- 

rable, because it is independent of inessential theoretical features, 

such as standard deviations. 

It can be shown, by arguments similar to those presented in Chuaqui 

198+, that the statistical tests for hypothesis are a special case of 

these definitions for the situation of this paper. In particular, we 

can explain, in this fashion the approximation to falsehood by a sequence 

of probabilities decreasing to zero° 

Two possible extensions of the models discussed here may be mentioned. 

In the first place, fi R (ao, .... an_ 1 ) may have a different distribution 

than the normal one. This may happen with some methods of measurement. 

The second possible extension is to non-deterministic theories. In 

this case, the theoretical structure Sfitself may have random variables, 

i.e. fi@/(ao ..... an_ I) may itself be a random variable. This is a 

possible line of inquiring that we have not yet pursued. 
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