Query Rewriting using Datalog for Duplicate

Resolution™
Jaffer Gardezi Leopoldo Bertossi
University of Ottawa, SITE. Carleton University, SCS
Ottawa, Canada Ottawa, Canada
jgard082 @uottawa.ca bertossi@scs.carleton.ca

Abstract. Matching Dependencies (MDs) are a recent proposal for declarative
entity resolution. They are rules that specify, given the similarities satisfied by
values in a database, what values should be considered duplicates, and have to be
matched. On the basis of a chase-like procedure for MD enforcement, we can ob-
tain clean (duplicate-free) instances; actually possibly several of them. The clean
answers to queries (which we call the resolved answers) are invariant under the re-
sulting class of instances. In this paper, we investigate a query rewriting approach
to obtaining the resolved answers (for certain classes of queries and MDs). The
rewritten queries are specified in stratified Datalog™°"** with aggregation. In addi-
tion to the rewriting algorithm, we discuss the semantics of the rewritten queries,
and how they could be implemented by means of a DBMS.

1 Introduction

For various reasons, databases may contain different coexisting representations of the
same external, real world entity. This can occur, for example, because of errors or be-
cause the data comes from different sources using different formats. Those “duplicates”
can be entire tuples or values within them. To obtain accurate information, in particu-
lar, query answers from the data, those tuples or values should be merged into a single
representation.

Identifying and merging duplicates is a process called entity resolution (ER) [17,
23]. Matching dependencies (MDs) are a recent proposal for declarative duplicate res-
olution [24, 25]. An MD expresses, in the form of a rule, that if the values of certain
attributes in a pair of tuples are similar, then the values of other attributes in those tuples
should be matched (or merged) into a common value.

For example, the MD R;[X;] = R2[X3] — R1[Y1] = Rz[Y2] is a symbolic ex-
pression saying that, if an ?;-tuple and Ra-tuple have similar values for their attributes
X1, Xo, then their values for attributes Y7, Y5 should be made equal. This is a dynamic
dependency, in the sense that its satisfaction is checked against a pair of instances: the
first one where the antecedent holds, and the second one where the identification of
values takes place. This semantics of MDs was sketched in [25].

In this paper we use a refinement of that original semantics that was put forth in [30]
(cf. also [31]). It improves wrt the latter in that it disallows changes that are irrelevant to

* Research supported by the NSERC Strategic Network on Business Intelligence (BIN ADC05)
and NSERC/IBM CRDPJ/371084-2008.

the duplicate resolution process. Actually, [30] goes on to define the clean versions of
the original database instance Dy that contains duplicates. They are called the resolved
instances (RIs) of Dy wrt the given set M of matching dependencies. A resolved in-
stance is obtained as the fixed point of a chase-like procedure that starts from Dy and
iteratively applies or enforces the MDs from M . Each step of this chase generates a new
instance by making equal values that are identified as duplicates by the MDs.

In [30] it was shown that resolved instances always exist, and that they have certain
desirable properties. For example, the set of allowed changes is just restrictive enough
to prevent irrelevant changes, while still guaranteeing existence of resolved instances.
The resolved instances that minimize the overall number of attribute value changes
(associated to a same tuple identifier) wrt the original instance are called minimally
resolved instances (MRIs). On this basis, given a query Q posed to a database instance
Dy that may contain duplicates, we define the resolved answers wrt X' as the query
answers that are true of all the minimally resolved instances [30].

The concept of resolved query answer has similarities to that of consistent query
answer (CQA) in a database that fails to satisfy a set of integrity constraints [4, 10, 12].
The consistent answers are invariant under the repairs of the original instance. However,
data cleaning and CQA are different problems. For the former, we want to compute a
clean instance, determined by MDs; for the latter, the goal is obtaining semantically
correct query answers. MDs are not (static) ICs. In principle, we could see clean in-
stances as repairs, treating MDs similarly to static FDs. However, the existing repair
semantics do not capture the matchings as dictated by MDs (cf. [30, 31] for a more
detailed discussion).

In this paper, we investigate the problem of computing the resolved answers, simply
called resolved answer problem (RAP). The motivation for addressing this problem is
that even in a database instance containing duplicates, much or most of the data may be
duplicate-free. One can therefore obtain useful information from the instance without
having to perform data cleaning on the instance. This would be convenient if the user
does not want, or cannot afford, to go through a data cleaning process. In other situations
the user may not have write access to the data being queried, or any access to the data
sources, as in virtual data integration systems [35, 13].

In [29] we identified classes of MDs and conjunctive queries for which RAP can
be solved in polynomial time in data complexity. Furthermore, a recursively-defined
predicate was introduced for identifying the sets of duplicate values within a database
instance. This predicate can be combined with a query, opening the ground for a query
rewriting approach to RAP.

In this paper we present a query rewriting methodology for the RAP problem (for
the identified classes of MDs and queries). It can be used to rewrite the original query Q
into a new query Q’, in such a way that the latter, posed as usual to the original instance
Dy, returns the resolved answers to the original query. More precisely, we make the
following contributions:

1. We show that queries Q (in a restricted but broad class of conjunctive queries) that
expect to obtain resolved answers from a given dirty database D can be rewritten
into a (non-disjunctive) recursive Datalog™®* query Q' with stratified negation
and aggregation. Q' posed to D returns the answers to Q.

As expected, such a query can be computed in polynomial time in the size of the
initial database. The recursion arises from the fact that identifying duplicate values
requires computing the transitive closure of binary similarity operators. Transitiv-
ity is not assumed for similarity operators, and in fact, common similarity relations
used in practice, such as those based on the edit distance and related string simi-
larity metrics, are not transitive. Aggregation is needed to enforce the minimality
constraint, since this involves finding the frequency of occurrence of values within
a set of duplicates.

2. We analyze the queries resulting from the rewriting mechanism in terms of the com-
bination of aggregation and recursion. We discuss semantic issues of these queries,
their runtime, and their implementability on top of a DBMS.

To the best of our knowledge, this is the first result on query rewriting in the context
of MD-based entity resolution. Furthermore, our rewritings into Datalog are non-trivial,
in the sense that they are not the result of translations into Datalog of first-order rewrit-
ings. Our rewriting uses in an essential manner the elements of the resulting Datalog
queries, namely recursion and aggregation. It is worth mentioning that the polynomial-
time rewritings for conjunctive queries proposed for consistent query answering have
been all been first-order (FO) [4, 20, 28, 37].

On the other hand, the general answer set programs that have been proposed as
repair programs [5, 7, 33, 22, 19], that specify database repairs and can be used for
highly expressive query rewritings, have a higher expressive power and complexity than
Datalog programs with stratified negation and aggregation.! The attempts in [11] to
obtain lower complexity programs for CQA from repair programs for some tractable
classes of queries and constraints led back to FO rewritings. Thus classical, i.e. non-
disjunctive and stratified, Datalog was missed as an “intermediate” language for CQA.

This paper is organized as follows. In Section 2 we introduce basic concepts and
notation on MDs. In Section 3, we define the important concepts used in this paper, in
particular, (minimally) resolved instances and resolved answers to queries. Section 4
contains the main results of this paper, that includes a query rewriting algorithm for a
special case of the resolved query answer problem. Section 5 concludes the paper and
discusses related and future work. In the Appendix, we consider possible implementa-
tions of the queries rewritten in Datalog. Proofs of results can be found in [29].

2 Preliminaries

We consider a relational schema S that includes an enumerable, possibly infinite do-
main U, and a finite set R of database predicates. Elements of U are represented by
lower case letters near the beginning of the alphabet. S determines a first-order (FO)
language L(S). An instance D for S is a finite set of ground atoms of the form R(a),
with R € R, say of arity n, and @ € U". R(D) denotes the extension of R in D.
Every predicate R € S has a set of attribute, denoted attr(R). As usual, we sometimes
refer to attribute A of R by R[A]. We assume that all the attributes of a predicate are
different, and that we can identify attributes with positions in predicates, e.g. R[i], with

! Under the common assumption that the polynomial hierarchy does not collapse.

1 < ¢ < n. If the ith attribute of predicate R is A, for a tuple t = (¢1,...,¢,) € R(D),
t2[A] (usually, simply ¢ z[A] or t[A] if the instance is understood) denotes the value c;.
For a sequence A of attributes in attr(R), t[A] denotes the tuple whose entries are the
values of the attributes in A. Attributes have and may share subdomains of U.

In the rest of this section, we summarize some of the assumptions, definitions, no-
tation, and results from two previous papers, [30] and [29], that we will need.

We will assume that every relation in an instance has an auxiliary attribute, a surro-
gate key, holding values that act as tuple identifiers. Tuple identifiers are never created,
destroyed or changed during the duplicate resolution process. They do not appear in
MDs, and are used to identify different versions of the same original tuple that result
from the matching process. We usually leave them implicit; and “tuple identifier at-
tributes” are commonly left out when specifying a database schema. However, when
explicitly represented, they will be the “first” attribute of the relation. For example, if
R € R is n-ary, R(t,c1,...,c,) is a tuple with id ¢, and is usually written as R(¢,).
We usually use the same symbol for a tuple’s identifier as for the tuple itself. Tuple
identifiers are unique over the entire instance.

Two instances over the same schema that share the same tuple identifiers are said to
be correlated. In this case it is possible to unambiguously compare their tuples, and as
a result, also the instances.

As expected, some of the attribute domains, say A, have a built-in binary similar-
ity relation = 4. That is, &4 C Dom(A) x Dom(A). It is assumed to be reflexive and
symmetric. Such a relation can be extended to finite lists of attributes (or domains there-
for), componentwise. For single attributes or lists of them, the similarity relation is is
generically denoted with ~.

A matching dependency (MD) [24], involving predicates R, .S, is an expression (or
rule), m, of the form

m: R[A] ~ S[B] — R|C]= S[E], (1)

with A = (A4, ..., A), C = (C4, ..., Cy) lists of (different) attributes from attr(R);
and B = (By, ..., By), E = (E\, ..., E}/) lists of attributes from attr(S).2

The set of attributes on the left-hand-side (LHS) of the arrow in m is denoted with
LHS(m). Similarly for the right-hand-side (RHS).

In relation to (1), the attributes in a corresponding pair (A;, B;) or (C;, E;) are
assumed to share a common domain; and in particular, a similarity relation ~;. In con-
sequence, the condition on the LHS of (1) means that, for a pair of tuples ¢; in R and
to in S, t1[A4;] =, t2[B;], 1 < i < k. Similarly, the expression on the RHS means
t1[A;] = t2[Bi], 1 < i < k’. Here, = means that the values should be updated to the
same value.

Accordingly, the intended semantics of the MD in (1) is that, for an instance D, if
any pair of tuples, t; € R(D) and t5 € S(D), satisfy the similarity conditions on the
LHS, then for the same tuples (or tuple ids), the attributes on the RHS have to take the
same values [25], possibly through updates that may lead to a new version of D.

We assume that all sets M of MDs are in standard form, i.e. for no two different
MDs my,mg € M, LHS(m1) = LHS(mz). All sets of MDs can be put in this form.

2 We assume that the MDs are defined in terms of the same schema S.

MDs in a set M can interact in the sense that a matching enforced by one of them may
create new similarities that lead to the enforcement of another MD in M. This intuition
is captured through the MD-graph.

Definition 1. [31] Let M be a set of MDs in standard form. The MD-graph of M,
denoted MDG (M), is a directed graph with a vertex m for each m € M, and an edge
from m to m' iff RHS(m) N LHS(m') # 0.3 If MDG (M) contains edges, M is called
interacting. Otherwise, it is called non-interacting (NI). O

3 Matching Dependencies and Resolved Answers

Updates as prescribed by an MD m are not arbitrary. The updates based on m have to
be justified by m, as captured through the notion of modifiable value in an instance.

Definition 2. Let D be an instance, M a set of MDs, and P be a set of pairs (¢, G),
where ¢ is a tuple of D and G is an attribute of ¢. (a) For a tuple tz € R(D) and C' an
attribute of R, the value t2[C] is modifiable wrt P if there exist S € R, ts € S(D), an
m € M of the form R[A] ~ S[B] — R[C] = S|E], and a corresponding pair (C, E)
of (C, E) in m, such that (tg, F) € P and one of the following holds:

1. tg[A] = ts[B], but tp[C] # ts[E].
2. tgr[A] ~ tg[B] and tg[E] is modifiable wrt P . {(ts, E)}.

(b) The value t2[C] is modifiable if it is modifiable wrt V \ {(tg, C)}, where V is the
set of all pairs (¢, G) with ¢ a tuple of D and G an attribute of ¢. O

Definition 2 is recursive. The base case occurs when either case 1 applies (with any
‘P) or when there is no tuple/attribute pair in P that can satisfy part (a). Notice that
recursion must terminate eventually, since the latter condition must be satisfied when P
is empty, and each recursive call reduces the size of P.

Example 1. Consider m: R[A] ~ R[A] — R[B] = R[B] on schema R[A, B], and

the following instance. Assume that the R(D)|A|B
only non-trivial similarities are a; ~ ag ~ t1 |a1|aa
as and by =~ by. Since as ~ a3z and tay |az|c1
c1 # c3, t2[B] and t3[B] are modifiable t3 |as|cs
(base case). With case 2 of Definition 2, ty |b1|c3
since a1 =~ asg, and t3[B] is modifiable, ts |bo|c3

we obtain that ¢1[B] is modifiable.

For t5[B] to be modifiable, it must be modifiable wrt {(¢;,B) | 1 < i < 4}, and
via t4. According to case 2 of Definition 2, this requires ¢4[B] to be modifiable wrt
{(t;, B) | 1 < i < 3}. However, this is not the case since there isno ¢;, 1 <14 < 3, such
that t4[A] =~ t;[A]. Therefore ¢5[B] is not modifiable. A symmetric argument shows
that ¢4[B] is not modifiable. O

3 That is, they share at least one corresponding pair of attributes.

Definition 3. [30] Let D, D’ be correlated instances, and M a set of MDs. (D, D’)
satisfies M, denoted (D, D') F M, iff: 1. For any pair of tuples tr € R(D), ts €

S(D), if there exists an m € M of the form R[A] ~ S[B] — R[C] = S[E] and
tr[A] ~ tg[B], then for the corresponding tuples (i.e. with same ids) ¢, € R(D’) and
thy € S(D'), it holds t}3[C] = tis[E].

2. For any tuple tg € R(D) and any attribute G of R, if tz[G] is non-modifiable, then
tR|G) = tg|G]. O

Intuitively, D’ in Definition 3 is a new version of D that is produced after a single
update. Since the update involves matching values (i.e. making them equal), it may pro-
duce “duplicate” tuples, i.e. that only differ in their tuple ids. They would possibly be
merged into a single tuple in the a data cleaning process. However, we keep the two
versions. In particular, D and D’ have the same number of tuples. Keeping or eliminat-
ing duplicates will not make any important difference in the sense that, given that tuple
ids are never updated, two duplicates will evolve in exactly the same way as subsequent
updates are performed. Duplicate tuples will never be subsequently “unmerged”.

This definition of MD satisfaction departs from [25], which requires that updates
preserve similarities. Similarity preservation may force undesirable changes [30]. The
existence of the updated instance D’ for D is guaranteed [30]. Furthermore, wrt [25],
our definition does not allow unnecessary changes from D to D’. Definitions 2 and 3
imply that only values of attributes that appear to the right of the arrow in some MD are
subject to updates. Hence, they are called changeable attributes.*

Definition 3 allows us to define a clean instance wrt M as the result of a chase-like
procedure, each step being satisfaction preserving.

Definition 4. [30] (a) A resolved instance (RI) for D wrt M is an instance D’, such
that there are instances D1, D, ...D,, with: (D, D1) F M, (D1,D3) E M,..., (Dy,—1,
D,)E M, (D,,D’')E M,and (D’,D") E M. We say D' is stable. (b) D’ is a mini-
mally resolved instance (MRI) for D wrt M if it is a resolved instance and it minimizes
the overall number of attribute value changes wrt D and in relation with the same tuple
ids. (¢) MRI(D, M) denotes the class of MRIs of D wrt M. O

Example 2. Consider the MD R[A] ~ R[A] — R[B] = R[B] on predicate R, and the
instance D. It has several resolved instances, among them, four that

RD)A[B| RDNAB| RD)AB
t1 |ai|cy t1 |ai|cy ty |ai|cy
ty lay|ca ta |ai|cy ta |ai|cy
t3 |bi|c3 t3 |b1|cs t3 |b1|c1
ty |b1|ca ta |b1|c3 ta |b1|c1

minimize the number of changes. One of them is D;. A resolved instance that is not
minimal in this sense is Ds. O

It can be shown that an RI exists for any instance [30]. It follows immediately that every
instance has an MRL

* Not to be confused with “modifiability”, that applies to tuples.

In this work, as in [30, 31], we are investigating what we could call “the pure case”
of MD-based entity resolution. It adheres to the original semantics outlined in [25],
which does not specify how the matchings are to be done, but only which values must
be made equal. That is, the MDs have implicit existential quantifiers (for the values
in common). The semantics we just introduced formally captures this pure case. We
find situations like this in other areas of data management, e.g. with referential integrity
constraints, tuple-generating dependencies in general [1], schema mappings in data ex-
change [8], etc. A non-pure case that uses matching functions to realize the matchings
as prescribed by MDs is investigated in [15, 16, 6].

The resolved answers to a query are certain for the class of MRIs for D wrt M.

Definition 5. [30] Let Q(T) be a query expressed in the first-order language L(S) as-
sociated to schema S of an instance D. A tuple of constants a from U is a resolved
answer to Q(z) wrt the set M of MDs, denoted D =), Qlal, iff D’ = Qlal, for every
D’ € MRI(D,M). We denote with ResAn(D, Q, M) the set of resolved answers to
Q from D wrt M. O

Example 3. (example 1 continued) Since the only MRI for the original instance D is
R(D/) = {<tla ai, Cl>7 <t23 a2, Cl>a <t3a as, Cl)a <t47 b17 C3>7 <t5a b27 C3>}» the resolved
answers to the query Q(x,y): R(z,y) are {{a1,c1), {az,c1), {as,c1), (b1, cs), (b2, c3)}.
O

The problem of deciding whether or not @ € ResAn(D, Q, M) for a given tuple a is
called the resolved answer decision problem.

4 Query Rewriting for Resolved Answers

In this section, we present a query rewriting method for retrieving the resolved answers
for certain classes of queries and sets of MDs. We provide an intuitive and informal
presentation of the rewritten queries. For precise details and a proof of correctness, see
[29].

It has been shown in previous work that the resolved answer decision problem is
generally intractable [30, 31, 29]. However, there are tractable cases of the problem
that are practically relevant [29]. Two of those cases are considered here: that of non-
interacting (NI) sets of MDs (cf. Definition 1), and that of hit-set-cyclic (HSC) sets of
MDs, that we now define.

Definition 6. A set M of MDs is hit-simple-cyclic iff the following hold: (a) In all
MDs in M and in all their corresponding pairs, the two attributes (and predicates) are
the same. (b) In all MDs m € M, at most one attribute in LHS(m) is changeable. (c)
Each vertex v1 in MDG (M) is on at least one cycle, or there is a vertex vy on a cycle
with at least two vertices such that there is an edge from v; to vs. O

Example 4. For schema R[A, C, F, G], consider the following set M of MDs:
my: R[A] = R[A] — RI[C,F,G] = R|C, F,G],
ms: R[C] = R[C] — R[A,F,G] = R[A,F,G)].

Set M obviously satisfies (a) and (b) of Definition 6. Also, MDG (M) consists of a
single cycle through the two vertices, so M satisfies (c). M is then HSC.

Predicate R subject to the given M has two “keys”, R[A] and R[C]. Such relations
are common in practice. For example, R may be used in a database about people: R[A]
could be used for the person’s name, R[C] the address, and R[F'] and R[G] for non-
distinguishing information, e.g. gender and age. U

HSC sets have properties similar to those of NI sets wrt the resolved answer problem
[29]. For both classes, the value positions identified as duplicates are the same for all
MRIs, and they are characterized through the equivalence classes of the tuple-attribute
closure, which we now define.

Definition 7. [29]Let M = {m, |i = 1,...,n} be aset of MDs, with m;: R;[A;] ~;
Si[B;] — Ri[C;] = Si[E;]. (a) The previous set of m;, denoted PS(m;), is the set
of all MDs m; € M with a path in MDG (M) from m; to m,. (b) For an instance
D, and tuples ids t1,t2 for R, S, resp. (i.e. ids for tuples t; € R(D),ty € S(D)):
(t1,Ci) & (ta, B;) <= t1[4;] = t2[Bj], where (C;, E;) is a corresponding pair of
(Cy, E;) inm; and m; € PS(m;). (c) The tuple-attribute closure (TA closure) of M
wrt D, denoted TAMD , is the reflexive, symmetric, and transitive closure of &' O

Example 5. (example 4 continued) In this case, PS(m1) = PS(mz2) = {mq, ma}.
Consider the instance D, where the only similarities are: a; ~ aj, b; = bj, d; = d;,

R(D)|A|B ei ~ ej, with i,j € {1,2}. The rela-
t1 |ai|dy tions (timoda+1, 4) = (ti+1)modat1, A)
ta |az|e2 and (timodat+1, B) = (t(i+1)modat1, B),
ts |b1|ex 0 < i < 3, hold. The TA closure is given
ty b2 d2

by {TA(t;,z,t;,x) |1 <1i,j <4, x € {A, B}}. Notice that this relation involves just
tuple ids and attributes. However, it depends on D through the similarity conditions in
(b) in the definition. O

For the set of MDs as in Definition 7, the TA closure can be specified by Datalog rules.
The database predicates in them have a first argument (attribute) to explicitly represent
the tuple id. More precisely, for 1 < ¢ < n, for each corresponding pair (C, E) of
(Cy, E;), and for each m; € PS(m;), we have the rule:®

(t1, Ri[C]) &' (t2, Si[E]) + Ri(t1, @), Si(ta, y), t1[A;] ~; t2]Bj).

Additionally, for all attributes A of R; and ids ¢ of tuples in R;, we have

TA(t, A,t, A) < R;(t,T);)

similarly for .S;. For arbitrary tuple ids ¢1, ¢, and ¢3, and attributes A, B, and C,
TA(tlaA7t27B) < TA(t27B7t1;A)? (3)
TA(t17A7t27B> — (tlaA) %/ (t27B)7 (4)
TA(tlvAvthC) — TA(tlaAvt%B)a(tQaB) ml (t3aC)' (5)

5 Remember that the first argument in R;, S; stands for the tuple id.

Rules (4) and (5) express that TA is the transitive closure of relation &'. Rules (2)
and (3), that T4 is reflexive and symmetric. A related concept is the one of attribute
closure.

Definition 8. [31] Let M be a set of MDs on schema S. (a) The symmetric binary
relation =,. relates attributes R[A], S[B] of S whenever there is an MD m in M where
R[A] = S[B] appears in RHS(m). (b) The attribute closure of M is the reflexive,
symmetric, transitive closure of =,.. (c) E'g[4) denotes the equivalence class of attribute
R[A] in the attribute closure of M. O

Example 6. Let M be the set of MDs

R[A] =1 S[B] = R[C] = 5[D], The equivalence classes of 7T, are
S[E] =2 T[F] A S[G) = T[H] — ER[C] — {R[CL S[D},T[J]}, ES[K] —

SID,Kl=T[J,L], {S[K], T[L),T[M]}, and Erp; =
T[|F) =3 T|H] — T[L,N] = T[M, P]. {T[N],T[P]}. U

It is easy to show that if a pair (u1, A), (ug, B) is in the same equivalence class of
tuple-attribute closure, then A and B must be in the same equivalence class of attribute
closure.

Definition 9. Let M be a set of MDs and D and instance and a a data value. For an
equivalence class E of TAM P the frequency of a in E is the quantity freq” (a,F) :=
[{(t,A)]| (t,A) € E, t[{A] = ain D}|. O

Proposition 1. [29] For M an NI or HSC set of MDs, and D an instance, each MRI for
D wrt M is obtained by setting, for each equivalence class E of TAM:P all the values
for t[A], with (t, A) € E, to a value a that maximizes freq” (a, E). O

Example 7. (example 5 continued) The two equivalence classes of TA closure are)y, =
{(t;; A) |1 <i<4}and E> = {(t;, B) | 1 <1 < 4}. All values in the A (B) column
of the table have frequency 1 in E; (E>). Thus, there are 16 MRIs, obtained by setting
all values in each column to a common value chosen from those in the column. (]

Now we turn to resolved query answering. Proposition 1 tells us that the minimally
resolved instances for an instance D can be obtained by identifying most frequently
occurring values. Thus, resolved query answers from D can be computed by imposing
this requirement on the original query. As a consequence, the rewritten queries will
become aggregate queries.

In Datalog notation, aggregate queries take the form P(a,Z, Agg(ud)) + B(%),
where P is answer collecting predicate, the body B(%) represents a conjunction of
literals all of whose variables are among those in ¢, a is a list of constants, zUu C ¢, and
Agg is an aggregate operator such as Count or Sum. The variables Z are the “group-by”
variables. That is, for each fixed value b for Z, aggregation is performed over all tuples
that make B %, the instantiation of B on b for 7, true. Count () counts the number of
distinct values of @, while Sum (%) sums over all @, whether distinct or not.

Our query rewriting methodology for computing resolved answers will be applica-
ble to a certain class of conjunctive queries, the called UICQ queries defined below. In
[29] a counterexample for the general applicability to all conjunctive queries is given.

Definition 10. [29] For a set M of MDs, a conjunctive query Q without built-ins is
an unchangeable join conjunctive query (UICQ query) if there are no existentially
quantified variables in a join in @ in the position of a changeable attribute. For fixed,
M, UJCQ denotes this class of queries. O

In the rest of this paper we assume that the we have a fixed and finite set M of MDs
that satisfies the hypothesis of Proposition 1. The queries posed to the initial, possibly
non-resolved instance belong to UJCQ.

The rewritten queries will be in Datalog™°%* [1], i.e. Datalog queries with stratified
negation and aggregation, and the built-ins # and <. For simplicity, the rewriting makes
use of tuple identifiers only. In the absence of such a surrogate key, whole tuples could
be used instead of identifiers.

Given a UJCQ query Q, with answer predicate @),

Q(i’) — Rl(’l_)l),RQ(’l_)Q),...,Rn(’l_)n)7 (6)

the rewritten query Q' is the conjunction of the rewritings Q; of each of the R;, to be
given in (8) below, i.e.

Q'(z) «+ Q1(11),Q2(02), ..., Qn(Tn). (7N

Now, for a fixed atom R;(7;) in (6), let C' be the set of changeable attributes corre-
sponding to a free variable in ¥;, i.e. also appearing in Q(Z). We denote the list of such
variables by v¢.

If C is empty, then its rewriting becomes Q;(7;) < R;(7;). Intuitively, this is
because, by Definition 10, only attributes corresponding to free variables can participate
in joins, so changes to values of attributes corresponding to bound variables cannot
affect satisfaction of the body in (6).

Suppose C' is non-empty, and consider R;[A] € C. From Proposition 1, deciding
whether or not all MRIs have the same value v for R;[A] for a given tuple id ¢ will
involve finding the frequency of v in E for the equivalence class E of the TA closure
to which (¢, R;[A]) belongs. We introduce aggregation operators to express this count.
The values to be counted are values for attributes in ;4] (cf. the remark following
Example 6).

We introduce a predicate O [A], with an attribute at the start of its attribute list
whose value is the attribute in E'r,4) over whose values aggregation is performed. For
an attribute A and list of variables v, we denote with v 4 the variable holding the value
for A. For each S[B] € ERg, 4], we have the rule

CHA(S[B], t1,vs(m), Count(t2)) « TA(t1, Ri[Al],ta, S[B]), Ri(t1, 1), S(ta,v),

in which all predicate arguments are variables except for the attribute labels S[B] and
R;[A], that are constants.

10

In each tuple in the head predicate of the above expression, the value of the Count
expression is [{t | (t, S[B]) € E, t[S[B]] = vgp)}|, where E is the equivalence class
of the TA closure to which (t1, R;[A]) belongs.

To find the frequency of the value of vgp) in E, this count must be extended to all

attributes in E'g, 4). We introduce the predicate Total Bl for this purpose:

Total ™A (¢, v, Sum(z)) « CTMA(z ¢ 0, 2).
Tuples in Total RilA] specify in their last argument the frequency of v in the equivalence
class of the TA-closure to which (u, R[A;]) belongs.

To compare these aggregate quantities for different values of v, we use the Compare
predicate:

Compare™il(t,v) «— Total™ ™ (t, v, 21), Total® M (t,0', 25), 21 < 29,0 # .
Tuples in Compare™ 4] consist of a tuple identifier ¢ in R; and a value v for attribute
R;[A]. For such a pair (¢, v) there is another value v’ whose frequency in the equivalence
class of the TA closure to which (¢, R;[A]) belongs is at least as large as that of v.

In order for a value to be a “certain” for a given attribute R;[A] in a given tuple,
the tuple and value must not occur as a tuple in Compare™ A Let v, be v; with all
variables in ¥¢ replaced with new variables. Then,

Qi(v;) <+ Ryi(t,v)), /\ not Compare™i14l (t,vR,[a])
R;[AleC
Total 4] (t,vR,[A]; 2)- (8)
Example 8. Consider the schema R[ABC/, S|[EF'G], U[HI| with non-interacting MDs:
R[A] ~ S[E] — R[B] = S[F], and the UJCQ query:
S[E] ~ U[H] — S[F] = UlI]; Q(z,y,2) « R(x,y,2),5(u,v,2),U(p, q).

Since the S and U atoms have no free variables holding the values of changeable at-
tributes, they remain unchanged. Therefore, the rewritten query Q' has the form

Q"+ R'(2,y,2),5(u,v,2),U(p,q), ©)

where R’ is the rewritten form of R. The only free variable holding the value of a
changeable attribute is y. This variable corresponds to attribute R[B], which belongs to
the equivalence class Er(p) = {R[B], S[F],U[I]}. Therefore, we have the rules:

CR[B] (R[BL t17 Y, Count(tQ)) <~ TA(th R[B], t?; R[B])7 R(th I/, y/a Z/)7 R(t27 x,Y, Z)
CHIBI(S[F),t1,y, Count(ts)) + TA(t1, RIB, 12, S[F)), R(t1, 2"y, '), S(t2, 2,y 2).
CR[B](U[I],tl,y, Count(ts)) + T A(t1, R[B], t2, U[I]), R(t1, 2,9, 2"), Ulta, x,y).
Total™P)(t, y, Sum(u)) « CFE (2,1, y, u).

Compare™P(t,y) < Total™P(t,y, 1), Total™P)(t, 1", 25), 21 < 22, y" # .

The rewriting of R becomes

11

R'(z,y,2) < R(t,z,y,z), not Compare™B)(t,y), Total*B)(t, y, w). (10)

Thus, the rewriting of the original query is the stratified Datalog program [1] with ag-
gregation consisting of rules (9), (10), plus the five rules preceding (10). (]

In order to obtain the resolved answers to a query on a possibly non-resolved instance
D, the resulting Datalog program can be run on D in polynomial time in the size of D.
Remarks on implementation and an example are included in the appendix.

5 Conclusions

This paper considered a novel approach based on query rewriting to the duplicate res-
olution problem within the framework of matching dependencies. The transformed
queries return the resolved answers to the original query, which are the answers that
are true in all minimally resolved instances.

We used minimal resolved instances (MRIs) as our model of a clean database. An-
other possibility is to use arbitrary, not necessarily minimal, resolved instances (RIs).
While MRIs have the advantage of being “closer” to the original instance than Rls, they
have the downside of being overly restrictive.

In practice, update values are typically chosen by applying a merging function to the
sets of duplicates [9, 15, 16], rather than by imposing a minimal change constraint. RIs
are more flexible in that they take into account all ways of choosing the update values
that lead to a clean database. We are currently investigating query answering over Rls,
and have identified several tractable cases of the problem that are not tractable in the
case of MRIs.

Matching dependencies first appeared in [24], and their semantics is given in [25].
The original semantics was refined in [15, 16], including the use of matching functions
(MFs) for matching two attribute values. The approach in [15, 16] uses a chase to define
clean instances. The MDs are applied one at a time to pairs of tuples, rather than all at
once to all tuples as in the present paper. Another important difference is that here we
do not use MFs to do a mathcing, but implicit existential quantifiers for the values in
common. When the update values are determined by the matching functions there is
no uncertainty arising from different possible choices for update values. Rather, the
different clean instances are produced by applying the MDs in different orders. Clean
answers are obtained by taking a glb (or lub) over the clean instances wrt a partial
ordering that is based on semantic domination of one value by another.

The alternative refinement of the semantics used in this paper was first introduced in
[30, 31]. A thorough complexity analysis, as well as the derivation of a query rewriting
algorithm for the resolved answer problem was done in [29].

Our work in some ways resembles work on query answering over ontologies [32,
18]. As in our duplicate resolution setting, a chase is applied repeatedly to an initial
instance, terminating in a “repaired” instance which is a fixed point of the chase rules.
The set of chase rules can include tuple generating dependencies (TGDs) and equal-
ity generating dependencies (EGDs). Despite these similarities, our chase differs from
those based on EGDs and TGDs in that it does not generate new tuples, but modifies
values in existing tuples. Also, despite the fact that MDs are similar to EGDs, issues

12

arise as a result of the non-transitivity of similarity operators that do not occur in the
case of EGDs.

In [3], Datalog is used for identifying groups of tuples that could be merged. How-
ever, they do not do the merging (a main contribution in our approach) or base their
approach on MDs. Actually, that work could be considered as complimentary to ours,
in the sense that, in essence, the authors address the problem of identifying similarities.
This is the starting point for the actual matchings that we address in this paper.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] F. Afrati and P. Kolaitis. Repair checking in inconsistent databases: Algorithms and com-
plexity. Proc. ICDT, 2009, pp. 31-41.

[3] A. Arasu, Ch. Ré and D. Suciu. Large-scale deduplication with constraints using dedupa-
log. Proc. ICDE 2009, pp. 952-963.

[4] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent
databases. Proc. PODS, 1999, pp. 68-79.

[S] M. Arenas, L. Bertossi, and J. Chomicki. Answer sets for consistent query answering in
inconsistent databases. Theory and Practice of Logic Programming, 2003, 3(4-5):393-424.

[6] Z.Bahmani, L. Bertossi, S. Kolahi and L. Lakshmanan. Declarative Entity Resolution via
Matching Dependencies and Answer Set Programs. Proc. KR 2012, pp. 380-390.

[7] P. Barceld, L. Bertossi, and L. Bravo. Characterizing and computing semantically correct
answers from databases with annotated logic and answer sets. In Semantics in Databases,
Springer LNCS 2582, 2003, pp. 1-27.

[8] P. Barcelo. Logical foundations of relational data exchange. SIGMOD Record, 2009,
38(1):49-58.

[9] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. Euijong Whang, and J. Widom.
Swoosh: A generic approach to entity resolution. VLDB Journal, 2009, 18(1):255-276.

[10] L. Bertossi. Consistent query answering in databases. ACM Sigmod Record, 2006,
35(2):68-76.

[11] L. Bertossi. From database repair programs to consistent query answering in classical logic.
Proc. AMW, 2009, CEUR-WS, Vol-450.

[12] L. Bertossi. Database Repairing and Consistent Query Answering, Morgan & Claypool,
Synthesis Lectures on Data Management, 2011.

[13] L. Bertossi and L. Bravo. Consistent query answers in virtual data integration systems. In
Inconsistency Tolerance, Springer LNCS 3300, 2004, pp. 42-83.

[14] L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko. The complexity and approximation
of fixing numerical attributes in databases under integrity constraints. Information Systems,
2008, 33(4):407-434.

[15] L. Bertossi, S. Kolahi, and L. Lakshmanan. Data cleaning and query answering with match-
ing dependencies and matching functions. Proc. ICDT, 2011.

[16] L. Bertossi, S. Kolahi and L. Lakshmanan. Data cleaning and query answering with
matching dependencies and matching functions. Theory of Computing Systems, DOI:
10.1007/500224-012-9402-7, 2012.

[17] J. Bleiholder and F. Naumann. Data fusion. ACM Computing Surveys, 2008, 41(1):1-41.

[18] A. Cali, G. Gottlob, T. Lukasiewicz and A. Pieris. A logical toolbox for ontological rea-
soning. ACM Sigmod Record, 2011, 40(3):5-14.

[19] M. Caniupan and L. Bertossi. The consistency extractor system: answer set programs for
consistent query answering in databases. Data & Knowledge Engineering, 2010, 69(6), pp.
545-572.

13

[20] J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance using tuple dele-
tions. Information and Computation, 2005, 197(1/2):90-121.

[21] M. Consens and A. Mendelzon. Low complexity aggregation in graphlog and datalog.
Theoretical Computer Science, 1993, 116(1/2):95-116.

[22] T .Eiter, M., Fink, G., Greco, G. and D. Lembo. Repair localization for query answering
from inconsistent databases. ACM Trans. Database Syst., 2008, 33(2).

[23] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detection: A survey. /[EEE
Trans. Knowledge and Data Eng., 2007, 19(1):1-16.

[24] W. Fan. Dependencies revisited for improving data quality. Proc. PODS, 2008, pp. 159-
170.

[25] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules. Proc. VLDB,
2009, pp. 407-418.

[26] S. Flesca, F. Furfaro, and F. Parisi. Querying and repairing inconsistent numerical
databases. ACM Trans. Database Syst., 2010, 35(2).

[27] E. Franconi, A. Laureti Palma, N. Leone, S. Perri, and F. Scarcello. Census data repair: A
challenging application of disjunctive logic programming. Proc. LPAR, 2001, pp. 561-578.

[28] A. Fuxman and R. Miller. First-order query rewriting for inconsistent databases. J. Com-
puter and System Sciences, 2007, 73(4):610-635.

[29] J. Gardezi, L. Bertossi. Query answering under matching dependencies for data cleaning:
Complexity and algorithms. arXiv:1112.5908v1.

[30] J. Gardezi, L. Bertossi, and 1. Kiringa. Matching dependencies with arbitrary attribute
values: semantics, query answering and integrity constraints. Proc. LID, 2011, pp. 23-30.

[31] J. Gardezi, L. Bertossi, and I. Kiringa. Matching dependencies: semantics, query answering
and integrity constraints. Frontiers of Computer Science, Springer, 2012, 6(3):278-292.

[32] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: rewriting and optimization. Proc.
ICDE, 2011, pp. 2-13.

[33] G. Greco, S. Greco, and E. Zumpano. A logical framework for querying and repairing
inconsistent databases. IEEE Trans. Knowledge and Data Eng., 2003, 15(6):1389-1408.

[34] K. Kline, D. Kline, and B. Hunt. SQL in a Nutshell. O’Reilly, 2004.

[35] M. Lenzerini. Data integration: a theoretical perspective. Proc. PODS 2002, pp. 233-246.

[36] J. Wijsen. Database repairing using updates. ACM Trans. Database Systems, 2005,
30(3):722-768.

[37] J. Wijsen. On the first-order expressibility of computing certain answers to conjunctive
queries over uncertain databases. Proc. PODS, 2010, pp. 179-190.

Appendix: Implementation Issues

The output of the query rewriting algorithm that we presented is a recursive Datalog
program that involves both negation and aggregation. It is easy to see that it is stratified
with respect to both negation and aggregation. That is, each predicate can be assigned a
number (its stratum), such that, for each rule, the strata of body predicates defined with
aggregation operators and also of predicates in negative literals are lower than that of the
head. The semantics of such a program is the same as that of stratified Datalog without
aggregation, i.e. Datalog™?* [1]: Proceeding from the lowest to highest stratum, the
rules defining the predicates in a given stratum are evaluated until no further changes to
these predicates are produced [21].

Such queries are supported by the SQL3 standard. Also, the similarity operators
used in the queries could be implemented as user-defined functions, which are sup-
ported by most database vendors [34].

14

Example 9. (example 1 continued) We show how to implement our query rewriting
technique in SQL, to obtain the resolved answers to the query Q(z,y): R(z,y). The
TA closure can be expressed in SQL as a recursive view, as follows (since there is only
one changeable attribute, we include only tuple identifiers in the view, not the attribute):

WITH TA(tid, tid') AS (
SELECT 7ri.tid, ro.tid
FROM R 71, R 7o
WHERE 7r1.A =~ 71r3.A
UNION ALL
SELECT tay.tid', 7'.tid
FROM TA tai, R r, R 1’/
WHERE 7.A =~ 1. A AND tay.tid" = r.tid)
We need a definition for predicate CRIBI In this case, we have only one rule, since
there is only one changeable attribute. It is also defined as a view (again, excluding the
attribute-valued argument):

WITH C(X1,X2,Xs5) AS
SELECT ta.tid AS X1, ro.B AS Xo, Count(re.tid) AS Xj
FROM TA ta, R 71, R 1o
WHERE ta.tid = r1.tid AND ta.tid' = ro.tid
GROUP BY ta.tid, r.B
Finally, the following query retrieves the resolved answers:

SELECT r.A AS A, c¢.Xo AS B
FROM R 7, C ¢
WHERE 7.tid = ¢.X;, ¢.X3> ALL(SELECT c.Xj;
FROM C ¢
WHERE ¢ . X, = r.tid)
We give below the extensions of the intermediate views and the query answer (the
tuple id of ¢; is 7):

- 7

TA tzld tzzd X5
1 3 1 C1 2 Q A|\B
2 3 1 C3 1 a1 |C1
4 5 2 C1 2 as|Cy
211 2 lc3| 1 az|cy
3 1 3 C1 2 bl C3
3) 3 C3 1 b2 C3
5 4 4 C3 2

O

While it is possible to execute the rewritten queries using only the interface provided by
a typical RDBMS, the runtime may be unacceptable if this approach is used. The calcu-
lation of the TA closure predicate generally requires O(n?) applications of a (possibly
expensive) comparison operator, with n the size of the database, in order to identify all
pairs of similar values.

15

In duplicate resolution, the runtime cost of this step is usually reduced by applying
some approximation technique, such as blocking or sliding window approaches [23].
While it may be possible to implement some of these techniques in SQL, it may be
better to subject the data to an initial preprocessing step if the user has sufficient access
privileges to the data. This step would generate a new table relating pairs of similar
tuples. While the transitive closure computation could also be included in this step,
this may not be necessary depending on the data. Computing the transitive closure of
a binary relation is an O(n + m) operation, where n is the number of elements and m
is the number of pairs of related elements. If the number of pairs of duplicate values is
O(n), then transitive closure can be computed in O(n) time.

16

