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ABSTRACT
In multidimensional (MD) databases and data warehouses we com-
monly prefer instances that have summarizable dimensions. This is
because they have good properties for query answering. Most typ-
ically, with summarizable dimensions, precomputed and material-
ized aggregate query results at lower levels of the dimension hierar-
chy can be used to correctly compute results at higher levels of the
same hierarchy, improving efficiency. Being summarizability such
a desirable property, we argue that some established MD models
cannot properly model the summarizability condition, and this is a
consequence of the limited expressive power of the modeling lan-
guages. We propose an extension to the Hurtado-Meldelzon (HM)
MD model with subcategories, the EHM model, and show that it
allows to capture the summarizability. We propose an efficient
algorithm that, for a given cube view (i.e. MD aggregate query) in
an EHM database, determines from which minimal subset of pre-
computed cube views it can be correctly computed. Finally, we
show how the EHM can be implemented with minor modifications
to the familiar ROLAP schemas.

Keywords
multidimensional databases and models, data warehouses, summa-
rizability, query answering, categories, ROLAP

1. INTRODUCTION
Data warehouses form a particular class of multidimensional datab-
ases (MDDBs), and combine data from different sources, for anal-
ysis and decision support. MDDBs represent data in terms of di-
mensions and fact tables. A dimension is represented in terms of
a dimension schema, i.e. a hierarchy (more generally, a lattice) of
category names, plus a dimension instance that assigns extensions
to the category names, organizing them in a hierarchy that paral-
lels the category hierarchy. A row in the fact table corresponds
to a measurement that is taken at the intersection of the categories
at the bottom of the dimensions: a quantity that is given context
through base dimension values. This MD organization allows users
to aggregate data at different levels of granularity, corresponding to
different levels of categories in the hierarchies. Aggregation is the
most important operation in OLAP applications. OLAP queries are
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complex, may involve massive data, and also aggregation. There-
fore, fast query answering is a crucial task in OLAP [24].

Some model of MDDBs have been proposed in the literature [8,
23], but we adopt as basis for our research the Hurtado-Mendelzon
(HM) model of MDDBs [15, 19]. It is an established and exten-
sively investigated model, and it provides solid and clear founda-
tions for further investigation of MDDBs.

Example 1. We represent data about a company sales for differ-
ent times and locations in Figure 1. We illustrate there only the
Location dimension, represented as a hierarchy of places where
the company has branches. The Location dimension schema is in
Figure 1a, and a possible instance for it is shown in Figure 1b.

In this schema, City, State, etc., are categories. Country is a
parent of categories State and Province; and an ancestor of cat-
egory City. Category City is a base category, i.e. it has no chil-
dren. At the instance level, element LA of City rolls up to USA, as
an ancestor element in category Country. LA and Vancouver are
base elements. As we can see, both the schema and the instance
are endowed each with compatible partial orders (lattices) that are
directed from the bottom to the top.

Figure 1c shows the fact table containing data about sales for cities
(of the base category) at different times. 2

Due to the possibly very large volumes of data in MDDBs, com-
putation from scratch of aggregate queries should be avoided when-
ever possible. Ideally, aggregate query results at lower levels should
be used to correctly calculate results at higher levels of the hierar-
chy. If this is the case, we say -informally for the moment (precise
definition will follow)- that the dimension instance is summariz-
able. This notion can be applied to an instance in local terms: if a
parent category and a set of its descendant categories allow for this,
we say that the parent is (locally) summarizable from those descen-
dants. For this to happen, every base element that rolls up to some
element in the parent category must pass through one and only
one element from the descendant categories [19]. As an example,
in the instance in Figure 1b, category All is summarizable from
Continent, but Country is not summarizable from Province:
the base elements LA and London do not pass through any element
from Province when rolling up to Country. In the absence of
summarizability, a multidimensional database will either return in-
correct query results when using pre-computed views, or lose effi-
ciency by having to compute the answers from scratch [20, 27].

We can see that summarizability may take different shapes: local
and global, and in the latter case relative to all the descendants of a
category or only to a subclass of them. Accordingly, we say that a
dimension is strict-summarizable if every category is (locally) sum-
marizable from each one of its descendant categories. This is the



(a) Location schema (b) Location instance

(c) Fact table

Figure 1: Sales database

concept that has been the focus of previous research in the literature
[6, 7, 11, 10, 19, 29]. In particular, it has been established that for
a dimension to be strict-summarizable, it must satisfy three condi-
tions [20, 29]. First, the dimension schema must have a single base
category, which contains the all elements that have no children.
Second, the dimension instance must be strict, i.e. each element
in a category must have at most one parent in each upper category.
Third, the instance has to be homogeneous (aka. covering), i.e.
each element in a category has at least one parent element in each
parent category. The last two conditions can be seen as semantic
constraints on a dimension instance. We refer to the combination
of these three conditions as the strict-summarizability conditions.
The Location dimension in Figure 1 has a single base category,
City. But the instance is not strict: London rolls up to the two
different elements in Country: England and UK. It is also non-
homogeneous, i.e. heterogeneous: London does not roll up to any
element in State or Province.

Dimensions that do not satisfy strictness or homogeneity (or both)
are said to be inconsistent. The Location dimension instance in
Figure 1 is inconsistent. It violates both strictness and homogene-
ity. Dimensions may become inconsistent for several reasons, in
particular, as the result of a poor design or a series of update oper-
ations [22].

We argue that the strict-summarizability conditions are too restric-
tive, and imposing them will filter out a wide range of useful mod-
els and instances. This includes any dimension that has multiple
base categories. However, there are other cases. As another exam-
ple, the instance in Figure 2 shows that category Country is not
summarizable from State, nor from Province. Therefore, the di-
mension is not strict-summarizable. However, Country is summa-
rizable from the combination of State and Province. Therefore,
we can still take advantage of pre-computed cube views at the level
of State and Province to compute aggregate results for Country.
We will redefine the notion of summarizability for a dimension in-
stance to take multi-child aggregation into consideration.

The restrictions imposed by strict-summarizability are not the whole
problem. It is not only that an instance at hand fails to be sum-
marizable. Actually, there are many commonly used dimensions
for which the HM metamodel (i.e. the framework that supports

Figure 2: A dimension that will be filtered out by the imposition of
strict-summarizability conditions

the creation of specific HM models) fails to accommodate an MD
model, including instances, that satisfies summarizability. This is
because any HM model that captures the external reality will be
bound, already by the sheer MD schema used, to have instances
that do not satisfy the summarizability conditions expressed above.
An example is given by Figure 2: when capturing in an HM model a
real-world assumption, such as having State and Province, at the
same level, as immediate and partitioning ancestors of City, there
is no HM model that can capture this domain in a summarizable
way. Every reasonable instance (e.g. with non-empty categories)
will not be summarizable.

One way to approach the problem of modeling such domains con-
sists in making changes to the dimension schema and/or the dimen-
sion instance to restore strictness and homogeneity. In accordance
with the area of consistent query answering (CQA) in relational
databases [1, 4, 5], a resulting dimension instance could be called
a repair of the original one. A minimal repair (we usually and
simply call a “repair") is one that minimally differs (in some pre-
scribed sense of minimality) from the original dimension and sat-
isfies strictness and homogeneity [2, 6]. In some cases, this repair
process might lead to unnatural repairs, that do not quite conform
to the external reality.

Instance-based repairs have been introduced and studied in [6, 7,
11, 9, 29], and in some sense, but not as repairs, in [28, 18]. In this
case, consistency is restored by modifying data elements or links
between them in the original dimension instance. For this reason,
these repairs are also called data repairs. These repairs have been
proposed to deal mainly with non-strictness, and usually assuming
homogeneity [6, 9]. When both non-strictness and heterogeneity
are addressed [7, 11, 29], the latter has been confronted through
the insertion of null values [18, 28, 29].

Schema-based repairs (aka. structural repairs) have been formally
proposed and studied in [2], and under different forms and names,
in [18, 19, 21]. They modify the schema of an inconsistent dimen-
sion instance by adding or removing categories and/or links be-
tween them, to restore strictness and homogeneity. These changes
on the schema affect an instance in that elements of categories have
to be redistributed in the categories of the modified schema (for the
links between elements to parallel the links between categories).
However, under schema-based repairs, there are no “data changes"
(as with data repairs), in the sense that the data elements and also
the edges connecting them persist.

Data repairs have been the main focus of previous work on repair-
ing MDDBs. However, there exist real world domains, such as the
one in Example 1, where this approach may produce an unnatu-
ral solution, e.g. for the instance in Figure 1b), one that connects
London to California in State, and to BC or a null in Province.
Of course, additional restrictions could be imposed on the repair



Figure 3: An EHM Location dimension
process, like not allowing such links, but in some cases there might
be no repair then.

With data repairs, a single change on a dimension instance directly
results in several changes on records in the underlying database (the
number of changes depends on the underlying ROLAP schema, and
is usually larger when changes are made at higher levels of the in-
stance [29]). With structural repairs this is not the case, which is
advantageous for users who do not want their records changed. On
the other hand, with structural repairs, some sort of query reformu-
lation becomes necessary since old queries may refer to categories
of the old schema that may have been changed or disappeared (with
consequent changes on the relational schemas).

In this work, as an alternative to repairs for confronting the model-
ing problem mentioned above, we introduce and investigate an ex-
tension of the HM metamodel. This extension allows us to produce
extended HM (EHM) models. The main ingredient of this extension
is the addition of subcategories. Figure 3 shows an EHM model of
the Location dimension. Subcategories are shown as rectangles
inside a category (when a subcategory coincides with its containing
category, we omit the inner rectangle). The idea, that we develop
in this work, is that, by introducing subcategories Country1 and
Country2, category Continent now becomes summarizable from
its direct lower level, in this case from subcategory Country1. We
did not have summarizability in any HM model of this dimension.

We investigate the extended model as a way to directly model MD-
DBs, with some clear advantages over HM models. Most impor-
tantly, EHM is -in a precise technical sense- more expressive than
HM for modeling MDDBs subject to summarizability conditions.
In particular, it follows that a summarizable HM model is still
a summarizable EHM model, without any changes. Also, there
are common real-world examples for which no summarizable HM
model exists, but can be modeled using a summarizable EHM model.

We establish that EHM models have a positive computational fea-
ture: Given any category C and an arbitrary subset, K, of its de-
scendant categories in an EHM dimension, one can decide whether
C is summarizable from K without processing the instance (which
is usually very large). Furthermore, this decision algorithm can
be extended in order to compute for a category C, the class K of
all sets K of descendants from which it is summarizable. EHM
models enjoy this feature because subcategories reflect the exact
structure of the dimension instance (but at a much higher level or
granularity, which reduces size). As expected, this behavior comes
at the expense of imposing additional semantic constraints on di-
mension instances. This will have an impact on the population and
maintenance of the dimension instance. However, this cost is more
than offset by the benefits for OLAP query answering. More pre-
cisely, when confronted with an aggregate query Q, it will be pos-
sible to determine (at a preprocessing step) the most appropriate set
of pre-computed aggregate views at lower levels that can be used
to efficiently answer Q.

Notice that, for an arbitrary, non-extended HM model, a decision

procedure and an algorithm for computing “summarizable classes
of children" as for EHM models will also depend on the dimension
instance, which is usually very large. Therefore, a similar prepro-
cessing step becomes impractical for aggregate query answering
in HM models. It should be noted that although the EHM meta-
model is an extension of the HM metamodel, not necessarily an
HM dimension (including the schema and instance) is an EHM di-
mension, because the latter are subject to additional conditions, as
mentioned above. As a consequence, the algorithms for the EHM
model just described do not necessarily apply to HM models, as
expected.

The conditions on EHM dimension instances have to be imposed
and maintained. We provide an algorithm for populating a EHM
dimension instance. It is based on first specifying the categories,
and then adding data links one by one. In some cases, that seem
to be rare in practice, this may require updating the subcategory
schema. More precisely, splitting a subcategory in two (within the
same category), and creating a new link to the upper subcategories.
Actually, this approach opens the possibility of creating EHM mod-
els from scratch.

We show that the extended HM model does not produce complica-
tions with the implementation of MDDBs as/on relational databases
(ROLAP) [25]. Actually, our extended HM models can be cap-
tured by the well-known and familiar ROLAP schemas, like star or
snowflake, with minor modifications.

As stated earlier, EHM models have better summarizability proper-
ties that HM models. In particular, we can take advantage of more
pre-computed views (from lower levels) when answering higher
level queries, with a significant impact on the efficiency of query
answering. We will provide experimental support for this claim.

Summarizing, in this paper we make the following contributions:

1. We introduce and formalize the Extended HM models (EHM
models) for MDDBs (Section 2). We also specify when an HM
model can be considered as particular kind of EHM model.

2. We introduce a new, less restrictive notion of summarizabil-
ity that applies to both HM and EHM dimensions (Section 3). We
show that: (a) Summarizable HM models are still summarizable
as EHM models. (b) There are sensible real-world examples for
which no summarizable HM model exists, but that can be modeled
using a summarizable EHM model, showing a difference in expres-
sive power.

3. We present the algorithms for EHM dimensions previously an-
nounced, in particular, to determine from which precomputed cube
views a cube view (i.e. aggregate query) can be correctly com-
puted, for summarizability reasons (Section 4.2).

4. We show how EHM dimension instances can be populated
from scratch, assuming categories (but not subcategories) are al-
ready specified (Section 5.1).

5. We show that EHM models can be implemented with the usual
ROLAP schemas, with minor modifications (Section 5.2).

6. We provide a formal characterization of expressiveness for
classes of dimension models. We establish that the class of summa-
rizable HM dimensions is less expressive than that of summarizable
EHM dimensions (Section 6).

7. In Section 7 we show our experiments.

An extended version of this paper can be found at [3]. It contains an
Appendix with the proofs missing here and our instance population
algorithm.



2. THE EXTENDED HM MODEL
An EHM dimension schema S is a tuple of the form ⟨U, C,S,↗
, θ⟩, where U is a possibly infinite set (the underlying data domain),
C is a finite set of categories (or better, category names), S is a fi-
nite set of subcategories (or names therefor), ⟨S,↗⟩ is a directed
acyclic graph, and θ : S → C is a total and onto (surjective) func-
tion. C and S are disjoint, but when a category has a single subcat-
egory (as determined by θ), we will sometimes identify them. No-
tice that ↗ is a binary relation between subcategories. Its transitive
and reflexive closure is denoted by ↗∗. We make the additional
assumption that any two subcategories assigned to a same category
are ↗∗-incomparable.

Every dimension schema has a distinguished top category, All,
with a single subcategory, also denoted by All, which is reach-
able from every other subcategory: For every subcategory s ∈ S ,
s ↗∗ All holds. For a subcategory s, a subcategory s′ for which
s′ ↗ s (s′ ↗∗ s) holds is called a child (resp. descendant) of
s. Subcategories that have no descendants are called base subcat-
egories. The graph structure on U induces a graph structure on C,
which we also denote with ↗ (and ↗∗): For c, c′ ∈ C, c ↗ c′

holds iff there are s, s′ with θ(s) = c, θ(s′) = c′, and s ↗ s′.
Accordingly, we can talk about categories that are children or de-
scendants of a category. Finally, we also assume that every schema
contains a unique base category, i.e. a category with no children.
However, this base category may contain one or more base subcat-
egories.

Given a dimension schema S, a dimension instance for the schema
S is a tuple D = ⟨M, δ, <⟩, where M is the finite subset of U ,
δ : M → S is a total function (assigning data elements to subcate-
gories), and < is a binary relation on M that parallels relation ↗
on subcategories: e1 < e2 iff δ(e1) ↗ δ(e2). If θ(δ(e)) = c, then
we also say by extension that e ∈ c. Element all ∈ M is the only
element of subcategory All.

The transitive and reflexive closure of < is denoted with <∗, and
can be used to define the roll-up relations for any pair of categories
ci, cj : Rcj

ci (D) = {(ei, ej) | ei ∈ ci, ej ∈ cj , and ei <∗ ej}.
Similarly, roll-up relations can be associated to pairs of subcate-
gories or pairs formed by a category and a subcategory (usually
of some other category). Notice that in any case where it is not
the case that ci <∗ cj , then Rcj

ci (D) is the empty relation. When
ci = cj , it is the identity relation, with elements of the form (e, e)
with e ∈ ∪{δ(s) | s ∈ S and θ(s) = ci}.

Definition 1. An instance D for a schema S is compliant if, for
a pair of subcategories si, sj ∈ S, Rsj

si (D) is a total function. 2

The condition above will make sure that the subcategory hierarchy
will reflect the structure of the instance. Notice that the requirement
on the roll-up relations is not imposed on pairs of categories.

Example 2. The Location dimension in Figure 3 can be mod-
eled through the following schema S:

CLoc = {City, State, Province, Country, Continent, All}.
SLoc = {City1, City2, City3, State, Province, Country1,

Country2, Continent, All}.
↗ = {(City1, State), (City2, Province), (City3, Country1),

(City3, Country2), (State, Country1),

(Province, Country1), (Country1, Continent),

(Country2, Continent), (Continent, All)}.

For example, here, θ(City1) = θ(City2) = City ∈ CLoc. Now,
for the corresponding dimension instance D, we have:

MLoc = {LA, Vancouver, Ottawa, London, California, BC,
ON, USA, Canada, England, UK, NA, Europe, all}.

< = {(Vancouver, BC), (Ottawa, ON), (LA, California),
(London, England), (London, UK), (BC, Canada),

(ON, Canada), (California, USA), (Canada, NA),

(USA, NA), (England, Europe), (UK, Europe),

(NA, all), (Europe, all)}.

Here, for example, δ(LA) = City1. Now, the ancestors in cate-
gories Province and Country of all base elements can be obtained
via the following roll-up relations:

RProvince
City (D) = {(Vancouver, BC), (Ottawa, ON)}.

RCountry
City (D) = {(Ottawa, Canada), (Vancouver, Canada)

(LA, USA), (London, England), (London, UK)}.

The second one is not a function. However, the subcategory roll-
ups are total functions. For example:

RCountry1
City2 (D) = {(Ottawa, Canada), (Vancouver, Canada)}.

is a total function from (the extension of) subcategory City2 to
subcategory Country1. 2

Definition 2. An HM dimension schema is an EHM dimension
schema S = ⟨U, C,S,↗, θ⟩, where θ is a bijective function. An
HM instance for an HM schema S is an instance in the sense of
EHM. 2

This definition establishes the connection with the (old) HM mod-
els [15, 19]. Basically, in an HM dimension, each category has a
single subcategory. Notice that an HM instance for its HM schema
may not be compliant. However, a compliant HM dimension ac-
cording to this definition is (isomorphic to) an HM dimension in
the sense of [15, 19] that satisfies strictness and homogeneity (as
also defined in [15, 19]).

In the rest of this paper, we will be using the terms instance and
dimension indistinctly.

3. SUMMARIZABILITY
The most common aggregate queries in DWHs are those that per-
form grouping by the values of a set of categories from different
dimension schemas (known as the granularity), and return a single
aggregate value per group. These aggregate queries are known as
cube views [16]. The aggregation is achieved by upward naviga-
tion through a path in the dimension schema, which is captured by
roll-up relations.

3.1 Classic HM summarizability
In this subsection we review some known concepts and results for
summarizability in the HM model. Cube views are defined using
distributive aggregate functions [13] with SUM, MAX and MIN
being the most common cases. We will use Ψf [c1, ..., cn] to denote
a cube view at granularity {c1, ..., cn} where f is the distributive
aggregate function, and each ci is a category (name) from a dimen-
sion schema Si. Most of the time we will concentrate on a single
dimension, in which case, the cube view will be of the form Ψf [c],
with c a category of a dimension schema S.



Lets assume D1, ..., Dn are a set of HM dimensions with schemas
S1, ..., Sn and base categories b1, ..., bn, respectively. Cube view
Ψf [c1, ..., cn], where ck is a category from schema Sk, can be de-
fined as follows:

Πc1,...,cn,f(m)(Rc1
b1
(D1) ◃▹ ... ◃▹ Rcn

bn
(Dn) ◃▹ F )

where m is a measure from fact table F .

A common technique for speeding up OLAP query processing is to
pre-compute some cube views and use them for the derivation (or
answering) of other cube views. This approach to query answer-
ing is correct under the summarizability property, which ensures
that higher-level cube views (from the base categories and fact ta-
bles) can be correctly computed using cube-views at lower level as
if they were fact tables [21]. As shown in Example 3, the reuse
of pre-computed cube views has a great impact on query answer-
ing performance. Therefore, maximizing summarizability between
categories is a crucial optimization task for MDDBs [24].

Example 3. Lets assume the Sales database of Figure 1 be-
longs to a worldwide corporation. The managers of this corporation
need to compute its aggregate sales information for every continent
between the years 2003 and 2012.

Computing this query directly (i.e. without taking advantage of
summarizability) requires a join between three relations: RContinent

City ,
RYear

Day and the fact table. Assuming the fact table contains daily val-
ues for 3000 cities over this period of time, these relations will con-
tain more than 3000, 3600 and 107 tuples respectively. Obviously
this will be a time consuming query.

On the other hand, if we were to compute the same query using a
pre-computed cube view, for example Ψsum[Country, Year], rela-
tions that were involved in the new join would be RContinent

Country , RYear
Month

and Ψsum[Country, Year] with at most 200, 120 and 24000 tuples
respectively. Hence, great improvement in query processing time
would be obtained.

This performance improvement would be much more significant
in real world examples involving more than two dimensions (e.g.
by adding a product dimension) and more detailed base categories
(e.g. a Location dimension with Branch as the base category
rather than City). 2

An HM instance is considered to be summarizable if a cube view
on any category c can be computed a from pre-computed cube view
for each one of its descendant categories c′ (as if the cube view for
c′ were a fact table) [6, 7, 11, 10, 19, 29]. We will refer to this
notion of summarizability (i.e. the one used in the literature) as
strict-summarizability, as we indicated in Section 1. The reason
for this is that in Section 3.2 we will relax this notion, providing a
less restrictive definition of summarizability.

Definition 3. [29] An HM instance D is (a) Strict iff for all cat-
egories ci,cj , the roll-up relation Rcj

ci (D) is a (possibly partial)
function. (b) Homogeneous iff for all categories ci,cj , the roll-up
relation Rcj

ci (D) is total. (c) Consistent iff it satisfies the two pre-
vious conditions; and inconsistent otherwise. 2

THEOREM 1. [19] An HM instance with a single base category
is strict-summarizable iff it is consistent. 2

3.2 Flexible summarizability for EHM
The definition of strict-summarizability specified in Section 3.1 can
be applied to EHM dimensions as well as HM dimensions. How-
ever, in this section, we are going to define a new notion that is

more flexible and will cover a wider range of useful models and
instances.

In the following, except when otherwise stated, we will consider
single EHM dimensions. That is, we consider a dimension schema
S = ⟨U, C,S,↗, θ⟩, and a compliant instance D = ⟨M, δ, <⟩.
Now we give a definition of summarizability for the extended HM
metamodel. However, the new notion of summarizability can be
applied to HM dimensions as well as EHM dimensions that may or
may not be compliant.

Cube views for EHM dimensions can be defined as in Section 3.1.

Definition 4. (a) Category c is K-summarizable with regard to
distributive aggregate function f , where K = {c1, ..., cn} contains
descendants of c, iff every cube view on c can be computed by ap-
plying f to pre-computed cube views on {c1, ..., cn}.
(b) K is a minimal summarizability set for c iff c is K-summarizable,
and there is no K′ $ K such that c is K′-summarizable.
(c) For any dimension D, the summarizability sets of a category c,
denoted SumSetsD(c), is a set containing all minimal summariz-
ability sets of c.
(d) Dimension D is summarizable iff every category c in C is K-
summarizable for some subset K of its child categories. More pre-
cisely, for every category c there exists a set K ∈ SumSetsD(c),
such that K ⊆ {c′| c′ ↗ c}. 2

Notice that in Definition 4, we are not making any reference to
subcategories. However, in a compliant EHM dimension, subcat-
egories (and more specifically their roll-ups) will help in the com-
putation of cube views from lower level precomputed cube views.
This is demonstrated by the following example.

Example 4. We will demonstrate the effect of subcategories by
comparing the HM dimension of Figure 1 with the EHM dimen-
sion of Figure 3. Notice that in the HM dimension, a cube view
on category Continent cannot be computed using a precomputed
cube view on Country (because element London will be counted
twice once through England and another time through UK).

Now, in the case of the EHM dimension of Figure 3, a cube view on
category Continent can be derived from a precomputed cube view
on Country by simply joining with the roll-up from subcategory
Country1 as follows:

Ψf (Continent) = Ψf (Country) ◃▹ RContinent
Country1 . 2

For any dimension, having access to the summarizability sets of
categories can be very useful. Suppose, we are given an aggre-
gate query on category c and we want to compute the result us-
ing available pre-computed cube views on descendants of c. The
class of summarizability sets of c is exactly what we need in order
to choose the right set of pre-computed cube views to answer the
original query. Therefore, being able to compute and generate these
sets can have a great impact on improving query answering perfor-
mance (as long as the process of generating the summarizability
sets does not become more complex than answering the query).
Once summarizability sets have been computed, they can be used
for different queries until some updates on the dimension instance
affect and change the summarizability sets.

Example 5. Consider the Sales database of Figure 1 plus a Date
dimension with categories Day, Month and Year. In this setting,
category Country is summarizable from the set of categories {City,
State, Province} but the latter is not a minimal summarizabil-
ity set for Country because Country is also summarizable from
{City}.



The summarizability sets for categories of the Location dimen-
sion are as follows:

SumSetsLoc(All) = {{Continent}, {Country}, {City}},
SumSetsLoc(Continent) = {{City}},
SumSetsLoc(Country) = {{City}},
SumSetsLoc(State) = {{City}},
SumSetsLoc(Province) = {{City}}.

Category Continent has only one child, Country, from which it
is not summarizable, and therefore, the Location dimension is not
summarizable. Actually, we can show that Ψsum[Continent, Day]
cannot be computed by aggregating over the values of cube view
Ψsum[Country, Day]. In fact, using the fact table of Figure 1c, we
obtain the following answers for cube view Ψsum[Country, Day]:

(USA, 1/1/12) 7→ 0, (Canada, 1/1/12) 7→ 10500,

(England, 1/1/12) 7→ 10000, (UK, 1/1/12) 7→ 10000,

(USA, 1/2/12) 7→ 3000, (Canada, 1/2/12) 7→ 5500,

(England, 1/2/12) 7→ 1400, (UK, 1/2/12) 7→ 1400.

Combining these results with RContinent
Country , we will obtain cube view

Ψsum[Continent, Date] as:

(NA, 1/1/12) 7→ 10500, (Europe, 1/1/12) 7→ 20000,

(NA, 1/2/12) 7→ 8500, (Europe, 1/2/12) 7→ 2800,

which is not correct since sales for London have been counted twice
for Europe. 2

Example 6. For the EHM Location dimension of Figure 3, the
summarizability sets are as follows:

SumSetsLoc(All) = {{Continent}, {Country}, {City}},
SumSetsLoc(Continent) = {{Country}, {City}},
SumSetsLoc(Country) = {{City}},
SumSetsLoc(State) = {{City}},
SumSetsLoc(Province) = {{City}}.

As shown above, the summarizability sets of each category contain
at least one set that is fully composed of its direct children. There-
fore, this dimension is summarizable. 2

In Proposition 1 below, we characterize the notion of summariz-
ability in terms of roll-up relations (i.e. in purely algebraic terms).
As shown by Example 4, in a compliant EHM dimension we can
take advantage of subcategory roll-ups to summarize over existing
cube views and compute values for higher level cube views. This
justifies the presence of subcategories in the following proposition.

PROPOSITION 1. A compliant EHM instance D with schema
S = ⟨U, C,S,↗, θ⟩ is summarizable iff, for every category c ∈ C
and base subcategory b ∈ S, there exists a set of subcategories
T = {s1, ..., sn}, all children of subcategories in c, such that:

1. dom(Rc
b(D)) ⊆ dom(

∪
s∈T

Rs
b(D)), and

2. The relation {(eb, es) | eb ∈ dom(Rc
b(D)) and (eb, es) ∈∪

s∈T
Rs

b(D)} is a function. 2

Remark 1. Proposition 1 can be applied without change to an
HM instance. As before, we assume that every category in the
schema has a single subcategory. 2

Figure 4: An HM dimension with non-transitive summarizability
sets

Example 7. Consider the HM Location dimension of Figure 1.
For category c = Continent and base subcategory b = City, we
have only one option as the set of child subcategories for category
Continent, namely ST = {Country}. Now, we have:

Rc
b(D) = {(LA, NA), (Vancouver, NA), (Ottawa, NA),

(London, Europe)}.∪
s∈T

Rs
b(D) = {(LA, USA), (Vancouver, Canada),

(Ottawa, Canada), (London, England),

(London, UK)}.

As a result, dom(Rc
b(D)) ⊆ dom(

∪
s∈T

Rs
b(D)) and the first condi-

tion of Proposition 1 is satisfied.
As for the second condition in Proposition 1, we can see that the
relation {(LA, USA), (Vancouver, Canada), (Ottawa, Canada),
(London, England), (London, UK)} is not a function, therefore this
condition is not satisfied. 2

4. SUMMARIZABILITY SETS
To efficiently answer an aggregate query using pre-computed cube
views, we need to be able to decide which cube views produce
correct results for the given query. This decision requires the com-
putation of the summarizability sets for categories involved in the
aggregate query. In this section, we will show that, unlike HM
models, summarizability sets can be efficiently computed for com-
pliant EHM models.

4.1 Computing summarizability sets in HM
To compute and generate summarizability sets for arbitrary HM
models, both the dimension schema and instance have to be pro-
cessed. This is because, with the HM model, we cannot say much
about properties of the summarizability sets. This is due to the fact
that in HM, the schema may not reflect the hierarchy of the dimen-
sion instance.

Example 8. Summarizability sets in HM do not necessarily have
the property of transitivity. This is illustrated with the dimension
shown in Figure 4. Here, {D,E} ∈ SumSets(B) and {B,C} ∈
SumSets(A) but it is not the case that {D,E,C} ∈ SumSets(A).
2

Actually, to generate the summarizability sets for an arbitrary HM
model, we need to process the dimension instance. One way to do
this is by checking the two conditions of Proposition 1 for every
category and every subset of its children (let’s call this the naive
algorithm).



PROPOSITION 2. The naive algorithm for computing summa-
rizability sets of an HM instance takes O(k × 2k × n lg n) time
where k is the size of the dimension schema (i.e. number of cate-
gories) and n is the size of the dimension instance (i.e. number of
data elements). 2

The dimension instance is usually very large in size and as a re-
sult such a computation becomes impractical. We do not have a
practical way to decide whether an aggregation over pre-computed
cube views for child categories will produce correct aggregate re-
sults for a cube view on a parent category (unless all dimensions
are known to be summarizable and remain summarizable after any
future updates which is usually not the case).

4.2 Computing summarizability sets in EHM
As stated earlier, the hierarchy of subcategories in a compliant
EHM dimension reflects the hierarchy of the dimension instance.
As a result, we can use this structure (which is smaller in size) to
generate the summarizability sets. In the following, we will pro-
vide an algorithm that computes summarizability sets for a compli-
ant EHM dimension by only processing its dimension schema (and
not the instance itself).

We will first provide a characterization of local summarizability
solely expressed in terms of elements of the dimension schema
(Proposition 1). This characterization will be based on the notion
of base-containment vectors defined next.

Definition 5. Let D be a compliant EHM instance with schema
S = ⟨U, C,S,↗, θ⟩ and base subcategories s1, ..., sm. The base-
containment vector, bcv : S∪C → {0, 1}m, is a total function that
assigns every subcategory s ∈ S (and every category c ∈ C) to an
m-ary boolean relation (v1, ..., vm) where vk is 1, iff sk↗∗s (or in
the case of a category, iff θ(sk)↗∗c), otherwise vk is 0. 2

Example 9. Consider the EHM dimension of Figure 3. The base-
containment vector of category Continent is (1, 1, 1) because all
base subcategories (i.e. City1, City2 and City3) roll up to the
Continent subcategory which in turn belongs to the Continent

category. Also, for subcategories Country1 and Country2 the bcv
value is (1, 1, 1) and (0, 0, 1), respectively. 2

We can define the following operators for base-containment vectors
of the same arity:

1. Operator + is the usual add operation for two relations of the
same arity. Note that the operands and the result have the same
arity, but they are not necessarily boolean (i.e. they can contain
items greater than 1). As usual, the extension of + for more than
two operands will be denoted by

∑
.

2. Operator ⊕ is the boolean add operation for two boolean rela-
tions of the same arity. The result will also be a boolean relation.
We denote the extension of ⊕ for more than two operands by

∑
⊕.

3. Operator ≤ compares two relations of the same arity and suc-
ceeds only if all elements of the first relation are smaller or equal
to all elements of the second relation.

In addition, we will use (1, ..., 1)m to denote an m-ary relation
where all items are 1.

The following characterization of summarizability is a result of
Proposition 1 for compliant EHM dimensions.

COROLLARY 1. Let D be a compliant EHM instance with schema
⟨U, C,S,↗, θ⟩. Any category c ∈ C is K-summarizable where

K = {c1, ..., cn} ⊆ CD , iff there exists a set of subcategories
T = {s1, ..., sm} ⊆ S with θ(si) ∈ K such that bcv(c) ≤∑
sk∈K

bcv(sk) ≤ [1 ... 1]1×m. 2

Example 10. (example 9 continued) The Continent category
is summarizable from Country in the EHM dimension of Figure
3. This is because if we choose T = {Country1}, we have
bcv(Continent) = (1, 1, 1) and bcv(Country1) = (1, 1, 1) there-
fore bcv(Continent) ≤ bcv(Country1) ≤ (1, 1, 1). 2

Now, our algorithm for computing summarizability sets is com-
posed of three simple steps:

1. First, it computes bcv values for base subcategories themselves.
Notice that this is straightforward since every base subcategory has
only one non-zero item in its bcv.

2. Then, in a bottom-up order, bcv values for other subcategories
will be computed. Notice that we can compute the bcv for any
subcategory, having already computed bcv values for its child sub-
categories (which explains the bottom-up order).

3. Finally, having all base-containment vectors, we can check
Proposition 1 for any category c and all combinations of its lower
level subcategories, to see if the respective lower level categories
belong to the summarizability set of c.
We will first demonstrate these steps with an example.

Example 11. Consider again the EHM dimension of Figure 3.
Step 1: We have three base subcategories for which the bcv values
are as follows:

bcv(City1) = (1, 0, 0), bcv(City2) = (0, 1, 0),

bcv(City3) = (0, 0, 1).

Step 2: For all other subcategories the bcv will be initialized to
all 0 elements. In a loop (until every subcategory is processed),
we will choose parents of already processed subcategories and add
(boolean add) to their bcv, the bcv value of the child subcategory.
For example, we will choose base subcategory City1 as an al-
ready processed subcategory, and find all its direct parents (in this
case only subcategory State), and add bcv(City1) to bcv(State),
therefore bcv(State) becomes (0, 0, 0)⊕(1, 0, 0) = (1, 0, 0). No-
tice that for a subcategory that has more than one child, such as
Country1, the bcv values of all the children will be added gradu-
ally in the loop to finally obtain the correct value for bcv(Country1)
which is (1, 1, 1). At the end of this loop, the bcv values for all sub-
categories have been computed.

Step 3: Finally, for any category such as Country, we first com-
pute the bcv value by the boolean addition of the bcv values of its
subcategories. In this case bcv(Country) = (1, 1, 1)⊕ (0, 0, 1) =
(1, 1, 1). Then, we find the set of subcategories that roll up to some
subcategory in Country, in this case {State, Province, City1,
City2, City3} and let L be the set of all possible subsets. In this
case, L will contain 32 subsets including {City1, City2, City3},
{State, Province} and {City1, City2, City3, State}. Now,
for each of these 32 subsets, we must check if the condition in
Proposition 1 is satisfied. If so, the corresponding set of categories
will be added to the summarizability set of Country. For exam-
ple, bcv(City1) + bcv(City2) + bcv(City3) = (1, 1, 1) which
satisfies the condition, so category City will be added. On the
other hand, bcv(State) + bcv(Province) = (1, 1, 0) which does
not satisfy the condition. Also, notice that the third subset will
not be added regardless of the condition, because it involves the
set of categories {City, State} and some subset of this (in this



case {City}) has already been added to the summarizability set of
Country. 2

Algorithm Compute-SumSets(S)
Input: S = ⟨U, C,S,↗, θ⟩, the schema of compliant EHM di-
mension D.
Output: SumSetsD , the summarizability sets of D.
Initialize WorkingQueue to an empty queue
// Step 1: Compute bcv for base subcategories
For base subcategories s1, ..., sm:

bcv1k(si) =

{
1 if k = i

0 otherwise
Push si into WorkingQueue

// Step 2: Compute bcv for other subcategories from bottom up
For every non-base subcategory s:

initialize bcv(s) to [0, ..., 0]1×m

Loop until WorkingQueue is empty
Pop s from WorkingQueue
If (s is not already processed)

For every sp such that s ↗ sp
bcv(sp) = bcv(sp)⊕ bcv(s)
Push sp into WorkingQueue

// Step 3: Check satisfaction of Proposition 1 for every combination
// of a category and its descendants
For every category c ∈ C:

Let bcv(c) be
∑

⊕ bcv(sk) where sk is a subcategory of c
Initialize SumSetsD(c) to an empty set
Initialize L to a list containing subsets of S that all roll up to

some subcategory in c
Sort L in the ascending order of number of categories

involved in each subset
For every set of subcategories T in L

Let K be {θ(si) | si ∈ T }
If no subset of K is already in SumSetsD(c)

If bcv(c) ≤
∑

sk∈T
bcv(sk) ≤ (1, ..., 1)m

Add K to SumSetsD(c)
Return SumSetsD .

PROPOSITION 3. Algorithm Compute-SumSets for computing
summarizability sets for all categories of a compliant EHM dimen-
sion takes O(k2 × 2k) time where k is the size of the dimension
schema (i.e. number of subcategories). 2

5. CREATING EHM DIMENSIONS
By imposing the compliance conditions on EHM dimensions, we
are putting an additional overhead on the creation of dimensions.
However, the result reduces the costs of computing summarizabil-
ity sets. This trade-off is well justified by the importance of fast
query processing versus updates in OLAP.

In the process of creating an EHM dimension, say a DWH, the user
defines and specifies categories (not subcategories). Also, when
posing queries, the user thinks in terms of categories. For this rea-
son, subcategories will be defined and maintained by the underly-
ing DWH management system, to keep track of the exact structure
of data elements. The existence of subcategories can be transparent
to the user.

5.1 Creating an EHM instance
We propose an incremental algorithm for inserting data links (with
already defined parent elements) into a compliant EHM instance.
The algorithm guarantees that the instance will remain compliant

after the insertion. This will also make it possible to create compli-
ant EHM dimensions from scratch. For this purpose, initially the
dimension instance will contain only one element all that belongs
to subcategory All. The instance will be populated incrementally
by adding links one by one. The algorithm works as described be-
low.

We start with a predefined set of categories in the dimension schema
(defined by the DWH user), and with only one subcategory per cat-
egory. For inserting a link such as (e1, e2), the parent element (in
this case e2) should already exist in the instance (this is not neces-
sarily the case for the child element). If e1 (i.e. the child side of the
link) is a new element, the category should be specified as part of
the input. One of the following two scenarios will happen:

1. If the new link matches the structure of the subcategory hier-
archy (i.e. there is a subcategory s within the category of e1 such
that if we put e1 in s, the instance will remain compliant), then we
simply add the link and set its subcategory to be s. We will call this
a compliant addition.

2. If we cannot find such a subcategory, then the subcategory hi-
erarchy must be restructured by adding new subcategories. First, a
new subcategory will be added to the category of e1. If, by the new
addition, the functionality of the subcategory roll-up relations be-
comes violated, we will also have to add a new subcategory to the
category of e2 (i.e. the parent). The new subcategory will contain
e2 as its sole element (notice that we also had the option of moving
along with e2 any combination of its siblings except the one causing
the non-functionality, hence multiple EHM models can be created,
but our algorithm chooses only one). In some special cases, multi-
ple categories can be affected. This kind of link addition is called
restructuring addition.

A compliant addition is more frequent and less time consuming.
But, when we start populating a dimension instance, restructuring
additions may occur until the subcategory hierarchy finds its final
form (one that matches the external reality).

We will demonstrate these steps with an example. The complete
algorithm with details can be found in the extended version [3].

Example 12. Consider the process of creating the EHM instance
of Figure 3 from scratch. We can assume the initial schema shown
in Figure 5a has been provided as input (by the DWH user, with an
instance containing only element, all).

Inserting (NA, all), (USA, NA), (Canada, NA) and (California,
USA) is consistent with the initial subcategory hierarchy. There-
fore, these are compliant additions and no change in the schema is
required. The result of inserting these links is shown in Figure 5a.
Now, when adding link (LA, California), LA will have no parent
in subcategory Province and there is no subcategory in category
City that matches this element. Therefore, we will have to create a
new subcategory, City1, in category City. Notice we may option-
ally remove the old subcategory City from category City, because
it has no elements (but we do not have to). The result of this step is
shown in Figure 5b.

Next, we may add links (England, Europe), (UK, Europe), (BC,
Canada) and (ON, Canada), all consistent with the subcategory hi-
erarchy. So, without any change in the schema, the resulting in-
stance is shown in Figure 5c.
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Figure 5: Steps of the add link algorithm for creating the Location dimension

The insertion of links (Vancouver, BC) and (Ottawa, ON) will re-
quire another restructuring of the subcategory hierarchy. In this
case, as shown in Figure 5d, another subcategory, City2, must be
added to category City that will reflect the structure of new ele-
ments being added.
Similarly, adding link (London, England) is a restructuring addi-
tion because no subcategory of City is connected only to Country

(and not to Province or State). As shown in Figure 5e, City3
will be added to category City.

Finally, when adding link (London, UK), the roll-up relation be-
tween subcategories City3 and Country becomes a non-function,
and as a result, we must split category Country into two subcate-
gories, i.e. Country1 and Country2, so that the instance becomes
compliant again. The final result is shown in Figure 5f. 2

5.2 EHM and ROLAP schemas
Multidimensional databases are commonly represented using the
star or snowflake relational schemas. In the case of star, a fact
table consisting of numerical measurements is directly joined to a
set of dimension tables that contain descriptive attributes. On the
other hand, the snowflake schema provides a hierarchical relational
representation which is the normalized version of star [25].

The EHM model can be implemented by extending these ROLAP
schemas and adding tables corresponding to categories that contain
more than one subcategory (one column per subcategory). Fig-
ure 6a shows the representation of the Location dimension as a
relational database instance for a star schema. Figure 6b shows
tables that have been added to store subcategory information for
categories City and Country. A similar extension can be applied
to the snowflake schema.

With these relational extensions, the computation of roll-up rela-
tions between subcategories (e.g. RCountry1

City1 ) is straightforward and
requires only conditional joins with new tables. In addition, adding
or deleting subcategories can be performed by simple add column
or drop column operations. Data elements can be moved between
subcategories using batch column updates.

6. EHM AND EXPRESSIVENESS

A natural question to ask is whether every HM dimension can be
replaced by an equivalent compliant EHM dimension, i.e. one with
the same elements and links in the dimension instance. We argue
that the dimension instance is the representative (or model) of the
outside reality being modeled. Therefore, expressiveness can be
measured by the range of dimension instances a metamodel (such
as HM or EHM) can capture. This is formalized by Definition 6.
We first formalize what it means for two dimensions to be isomor-
phic. Notice that we do not bring the schema into the picture. So,
the two dimensions can have different schemas (even more, one
schema can be modeled using HM and the other using EHM).

In this section, we will be using the term dimension in a general
sense to refer to HM dimensions as well as EHM dimensions that
may or may not be compliant. We define the notion of expressive-
ness for classes of dimensions. For example, we refer to all the
dimension instances that can be modeled using a compliant EHM
dimension, as the class of compliant EHM dimensions.

Definition 6. (a) Dimension instances D1 = ⟨M1, δ1, <1⟩ and
D2 = ⟨M2, δ2, <1⟩ (that may or may not be compliant) are iso-
morphically equivalent, iff there exists bijective function f : M1 →
M2 such that for arbitrary data elements ei, ej ∈M1, it holds that
ei<1 ej iff f(ei) <2 f(ej).
(b) A class of dimensions, H1, expressively covers H2, denoted
H2 ≫ H1, iff for any D ∈ H2, there exists D′ ∈ H1 such that D
and D′ are isomorphically equivalent.
(c) H1 and H2 are expressively equivalent, iff H1 ≫ H2 and
H2 ≫ H1.
(e) H2 is more expressive than H1, iff H2 ≫ H1 but not H1 ≫
H2. 2

One can propose having one subcategory per category of an arbi-
trary HM dimension to produce such a complaint EHM dimension
(with the same instance). Unfortunately, the result will not neces-
sarily be a compliant instance. However, in [2] we show that by
splitting categories in a correct fashion, we can make roll-up rela-
tions become total functions (a process that may result in multiple
different base categories). A similar split process can be applied to
subcategories of an EHM dimension (instead of categories) to make
the instance compliant. The result is that every HM dimension can
be replaced by a compliant EHM dimension without changing the
dimension instance. This is expressed in Proposition 4.



(a) Star representation of Location (b) Storing EHM subcategories

Figure 6: Star implementation of the Location EHM dimension

PROPOSITION 4. The class of compliant EHM dimensions is
expressively equivalent to the class of HM dimensions. 2

As discussed before, elements in the summarizability sets of any
dimension are key for speeding up OLAP queries. Another natural
question is whether all these items are preserved after replacing an
HM dimension with its EHM counterpart.

Definition 7. Let D and D′ be isomorphically equivalent instances
with schemas ⟨U, C,S,↗, θ⟩ and ⟨U ′, C, S ′,↗′, θ′⟩ (i.e. with the
same set of categories). We say that D′ covers summarizability
items of D, denoted D′ ≥sum D, iff for every category c ∈ C,
having {c1, ..., cn} ∈ SumSetsD(c) implies that there exists K ∈
SumSetsD′(c) such that K ⊆ {c1, ..., cn}. 2

We can show that not only summarizability items of HM dimen-
sions can be preserved when replacing them by compliant EHM
dimensions, but also in many cases we can add more items in the
summarizability sets that did not exist before. This is captured in
Proposition 5.

PROPOSITION 5. Let DHM be an arbitrary HM dimension with
schema S = ⟨U, C,S,↗, θ⟩. There exists an isomorphically equiv-
alent compliant EHM dimension DEHM with schema S′ = ⟨U ′, C,
S ′,↗′, θ′⟩ such that DEHM ≥sum DHM . 2

Example 13. The EHM Location dimension covers summariz-
ability items of the HM Location dimension of Figure 1. The in-
verse is not true since {Country} ∈ SumSetsLoc(Continent)
for the EHM dimension but Continent is not summarizable from
Country in the HM dimension. 2

Now, a more important comparison should be made between the
class of summarizable HM dimensions and the class of summariz-
able EHM dimensions. This is expressed in Corollary 2 which is a
direct result of Proposition 5.

COROLLARY 2. The class of summarizable EHM dimensions
is more expressive than the class of summarizable HM dimensions.
2

7. EXPERIMENTS
Proposition 5 states that our extended model allows for modeling
compliant EHM dimensions with summarizability sets that cover
all the elements of the summarizability sets of their HM counter-
parts. This means that we can take advantage of more pre-computed
views in answering higher level aggregate queries. We claim that
this has a significant impact on the efficiency of MD query answer-
ing. In this section, we provide experimental support for this claim,
comparing the HM vs. EHM implementation of an MD setting with
three dimensions: Branch, Date and Product. HM schemas for
these dimensions are shown in Figure 7.

For the EHM implementation, the schemas for Date and Product

remains the same but the Branch schema will be different which is
shown in Figure 8.

Figure 7: HM schemas for dimensions Branch, Date, Product

Figure 8: EHM version of the Branch dimension schema

Now, a star implementation of our HM dimensions will be com-
posed of the following relational schemas (for simplicity and with-
out loss of generality, we are assuming the fact tables contains only
on measure, namely Sales):

BranchStar(Branch, City, State, Province, Country,

Continent, All),

DateStar(Day, Month, Year, All),

ProductStar(Product, ProductType, Category, All),

FactTable(Branch, Day, Product, Sales)

As explained in Section 5.2, for the EHM implementation of RO-
LAP relational schemas, we need additional tables corresponding
to categories that contain more than one subcategory. In our experi-
ment setting, only dimension Branch has categories with more than
one subcategory (these categories are Branch, City and Country).
Therefore, in a star implementation of our EHM dimensions, in
addition to the above relations, we need the following relational
schemas:

BranchSubcats(Branch, Branch1, Branch2, Branch3),

CitySubcats(City, City1, City2, City3),

CountrySubcats(Country, Country1, Country2)

We consider the performance at aggregate query answering, and



Figure 9: Comparison Between HM and EHM in aggregate query
answering

we use IBM DB2 v9.7 for our experiments. We implemented a data
generator in Java, to load a sizeable amount of test data into our MD
databases for both HM and EHM. Starting with initial random data,
the program generates elements for each category in the dimension
schema, but taking into account the hierarchy levels. That is, the
lower the category level the bigger the set of generated elements.
For the Branch dimension, we inserted 30000, 2000, 400, 300,
200 and 5 distinguished data elements in categories Branch, City,
State, Province, Country and Continent, respectively. For the
Date dimension, we inserted 3650, 120 and 10 distinguished data
elements in categories Day, Month and Year, respectively. Sim-
ilarly, for the Product dimension, we inserted 2000, 50 and 10
distinguished data elements in categories Product, ProductType
and Category, respectively. The fact table was populated with 1
million records.

In order to compare the query answering performance of the two
models, we posed aggregate queries at different granularities for
the three dimensions. For the Branch dimension we considered
the level of categories Country and Continent. For dimensions
Date and Product, we considered all levels except category All.
We have chosen 6 combinations and provided the results in Figure
9. The horizontal axis shows the chosen granularity of each cube
view and the vertical axis shows the average time in milliseconds it
took the DBMS to compute the cube view (each query was posed
10 times and the average was computed).

With the EHM implementation, after cube views at the level of
Country were computed, we could use them for more efficient
computation of cube views at the level of Continent. This was
not the case for the HM implementation since such reuse of pre-
computed cube views would result in incorrect aggregate values.

As Figure 9 shows, for computing cube views at the level of cat-
egory Country, the HM and EHM implementations yield simi-
lar results, but the difference in query answering time for com-
puting results at the level of Continent is significant. Also, as
we move to higher levels of all dimensions (in this case the level
of [Continent, Year, Category]), the improvement in query an-
swering time becomes much more apparent.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have addressed three important problems in rela-
tion to MD databases:

1. We have proposed and analyzed a new MD model which is
an extension to the HM model with subcategories. This so-called
extended HM (EHM) model has interesting properties with regard
to summarizability. Namely, summarizable HM dimensions will

still be summarizable in EHM without change. Additionally, in the
case of non-summarizable HM dimensions, it allows for modeling
dimensions in which more categories are summarizable from their
lower level descendants. This in turn results in more efficient query
answering by reusing pre-computed cube views at the level of those
descendant categories.

2. One of the important issues in improving query answering per-
formance for MD databases is to choose a set of cube views for ma-
terialization when it is too expensive to materialize all cube views
[14]. Later, when another aggregate query needs to be computed,
we need to be able to decide whether this new query can be com-
puted using the set of materialized pre-computed cube views. To
make this latter decision, we need an efficient algorithm that given
a cube view can determine from which pre-computed cube views it
can be computed. With the HM model such an algorithm will have
to process the dimension instance which is usually very large and
makes the computation impractical. With the help of the constraints
that exist in the EHM model, we have designed such an algorithm
for compliant EHM dimensions that runs in constant time with re-
gard to the instance size.

3. We have provided a formal characterization of expressiveness
for classes of dimension models. We have established that the class
of summarizable HM dimensions is less expressive than that of
summarizable EHM dimensions.

In addition, we have shown how EHM dimensions can be imple-
mented using familiar ROLAP schemas with minor modifications
to the underlying representation of tables.

1. There are many interesting research directions that are opened
by this proposal:

2. Our naive algorithm for adding data links to an EHM instance
was intended to demonstrate how an EHM model can be gener-
ated from scratch. We will extend our work by designing more
efficient algorithms for insertions into an EHM dimension. Those
algorithms can possibly insert a whole path starting from a base
category to category All at once, rather than adding links in a path
one by one. The optimization and implementation of this algorithm
will be left for future work.

3. The EHM model allows for a schema-based repair approach
that transforms non-summarizable HM dimensions into summariz-
able EHM dimensions. Such a transformation can be used as a
replacement for both data and structural repairs without having to
change the dimension instance or remove user-defined categories
in the schema, thus resolving issues introduced by previous repair
approaches.

4. In this paper, we have not considered consistent query answer-
ing for aggregate queries. The main problem is about doing CQA
under summarizability constraints without explicitly computing all
repairs. In this direction, we should investigate the existence of a
corresponding notion of canonical instance introduced in [6], that
was used to do and approximate consistent answers (under their
repair semantics).

5. In [26] what-if or hypothetical queries in an OLAP setting have
been investigated. These are classic OLAP (cube) queries but eval-
uated under assumed scenarios. It would be interesting to extend
this work in an EHM setting.

6. An alternative to computing summarizability sets from scratch
would be to compute them once and then check after any update,



to see if the sets require modification. Specially, in the case of HM
dimensions where computing summarizability sets before queries
is not efficient, this might be a viable solution that requires further
investigation.

7. Our characterization of expressiveness was based on a notion
of equivalence with regard to dimension instances. In [17], the
authors define a notion of equivalence for schemas in the presence
of dimension constraints where the focus is on information capacity
(without considering the instance). This would result in a different
characterization of expressiveness which is worth exploring.

8. Our relational schema extension for implementing ROLAP
schemas can be formalized with the notion of schema evolution
[12]. This can be done by providing a language of schema modifi-
cation operators to concisely express schema changes. As a result
the DBA will be allowed to evaluate the effects of such schema
changes.
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