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Abstract

Entity resolution (ER) is an important and common
problem in data cleaning. It is about identifying and
merging records in a database that represent the same
real-world entity. Recently, matching dependencies
(MDs) have been introduced and investigated as declar-
ative rules that specify ER. An ER process induced by
MDs over a dirty instance leads to multiple clean in-
stances, in general. In this work, we present disjunc-
tive answer set programs (with stable model semantics)
that capture through their models the class of alterna-
tive clean instances obtained after an ER process based
on MDs. With these programs, we can obtain clean
answers to queries, i.e., those that are invariant under
the clean instances, by skeptically reasoning from the
program. We investigate the ER programs in terms of
expressive power for the ER task at hand. As an im-
portant special and practical case of ER, we provide a
declarative reconstruction of the so-called union-case
ER methodology, as presented through a generic ap-
proach to ER (the so-called Swoosh approach).

1 Introduction
Entity resolution (ER) is a classical, common and diffi-
cult problem in data cleaning. It deals with identifying
and merging database records in a database that refer to
the same real-world entity [Bleiholder and Naumann 2008;
Elmagarmid, Ipeirotis and Verykios 2997]. In this way, du-
plicates are eliminated via a matching process. Matching de-
pendencies (MDs) are declarative rules that generalize entity
resolution tasks. They assert in declarative terms that certain
attribute values in relational tuples have to be matched, i.e.,
made the same, when certain similarity conditions hold be-
tween possibly other attribute values in those tuples. MDs
were first introduced in [Fan 2008], and more formally in-
vestigated in [Fan et al. 2009].

Example 1. Consider the relational schema R =
{R(A,B)}, with a predicate R with attributes A and B. The
symbolic expression

R[A] ≈ R[A] −→ R[B]
.
= R[B]), (1)

Copyright c⃝ 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is an MD requiring that, if for any two database tuples
R(a1, b1), R(a2, b2) in an instance D of the schema, when
the values for attributes A are similar, i.e. a1 ≈ a2, then their
values for attribute B have to be made equal (matched), i.e.
b1 or b2 (or both) have to be changed to a value in common.
Let us assume that ≈ is reflexive and symmetric, a2 ≈ a3,
and a2 ̸≈ a1 ̸≈ a3.

On the LHS below we have the extension R(D) for pred-
icate R in D. In it, some duplicates are not resolved, since,
e.g., the tuples (with tuple identifiers) t1 and t2 have similar
– actually equal – values for attribute A, but the values for
B are different.

R(D) A B
t1 a1 b1
t2 a1 b2
t3 a2 b3
t4 a3 b4

R(D′) A B
t1 a1 b1
t2 a1 b1
t3 a2 b5
t4 a3 b5

That is, the MD above does not hold in D, so it is a dirty
instance. After applying the MD, we could get the instance
D′ on the RHS, where the values for B have been identified.
Notice that D′ is stable in the sense that the MD holds in the
traditional sense of an implication on D′. We call D′ a clean
instance. In general, for a dirty instance and a set of MDs,
multiple clean instances may exist. Notice that if we add the
MD R[B] ≈ R[B] −→ R[A]

.
= R[A]), creating a set of

interacting MDs, a matching based on one MD may create
new similarities that could enable a different MD in the set,
e.g. the similarity b1 = b1 in D′. �

A dynamic semantics of MDs was introduced in [Fan et
al. 2009], in the sense that it requires a pair of database in-
stances: a first one where the similarities hold and second
one where the matchings are enforced, like D and D′ in Ex-
ample 1. This example also shows that the MDs, as intro-
duced in [Fan et al. 2009], do not specify how the matchings
have to be made. We could even pick up a new value, like
b5 above, for the common value. This semantics was refined
and extended in [Bertossi, Kolahi and Lakshmanan 2011],
using a matching function (MF) to guide the matchings, for
each of the participating attribute domains. The MFs in-
duce a lattice-theoretic structure on these domains [Bertossi,
Kolahi and Lakshmanan 2011]. An alternative dynamic se-
mantics was introduced in [Gardezi, Bertossi and Kiringa
2011]. It does not appeal to matching functions, but match-



ings have to be mandatory (as also in [Bertossi, Kolahi and
Lakshmanan 2011]) and minimal, i.e., a minimum number
of changes to attribut values need to be applied in order to
satisfy the MDs.

In this work we revisit the approach to ER via MDs intro-
duced in [Bertossi, Kolahi and Lakshmanan 2011], that uses
matching functions. In that scenario, a “dirty” instance D
w.r.t. a set Σ of MDs may lead to several different clean and
stable solutions D′, each of which can be obtained by means
of a provably terminating, but non-deterministic, chase-like
procedure [Bertossi, Kolahi and Lakshmanan 2011]. The
latter involves enforcing MDs iteratively by means of apply-
ing matching functions. The set of all such clean instances
is denoted by C(D,Σ). Our goal in this paper is to provide
a declarative specification to this procedural data cleaning
semantics.

In [Bertossi, Kolahi and Lakshmanan 2011], the clean an-
swers to a query were introduced, as those that are (essen-
tially) certain, i.e., true of all the clean instances (cf. Sec-
tion 2 for details). The clean answers are invariant across
the class C(D,Σ), and then are intrinsically “clean”. The
problem of deciding, computing and approximating clean
answers was also investigated in [Bertossi, Kolahi and Lak-
shmanan 2011]. Clearly, computing clean answers via an
explicit and materialized computation of all clean instances
is prohibitively expensive and should be avoided whenever
possible. Indeed, for a given initial instance D, we could
have exponentially many clean instances (in the size of D).

Answer set programming is a new declarative program-
ming paradigm [Brewka, Eiter and Truszczynski 2011]. It
has been successfully used to implicitly specify in general
logical terms, say G, all the solutions of a general, usu-
ally combinatorial problem. Given a concrete, properly en-
coded instance, I , for the problem, the models of the com-
bined specification G ∪ I become the solutions for instance
I . The solutions can be computed using a general under-
lying solver. In principle, different kinds of logical for-
malisms can be used [Marek, Niemela, Truszczynski 2011].
However, most commonly, and also historically, the logi-
cal formalism is the one provided by (extended) disjunctive
logic programs with stable model semantics [Gelfond and
Lifschitz 1991], also commonly called answer set programs
[Gelfond and Leone 2002].

In this work, we introduce answer set programs, in the
form of disjunctive Datalog [Eiter, Gottlob and Mannila
1997], to specify the class C(D,Σ) of clean instances for D
w.r.t. Σ. Actually, for each instance D and set Σ of MDs, we
show how to build an answer set program Π(D,Σ) whose
stable models (in the sense of the stable model seman-
tics) are in one-to-one correspondence with the instances in
C(D,Σ).

The cleaning program Π(D,Σ) axiomatizes the class
C(D,Σ). Hence reasoning from/with the program amounts
to reasoning with the full class C(D,Σ). In particular, the
clean query answers can be obtained from the original in-
stance D by skeptical or cautious reasoning from the pro-
gram.

Answer set programs have been successfully used be-
fore in the area of consistent query answering (CQA) in

databases [Arenas, Bertossi, and Chomicki 1999; Bertossi
2006; Chomicki 2007; Bertossi 2011], in the form of re-
pair programs, that specify the repairs of an instance w.r.t.
a set of integrity constraints (ICs) [Arenas, Bertossi, and
Chomicki 2003; Greco, Greco and Zumpano 2003; Barcelo,
Bertossi and Bravo 2003]. They can be used for CQA [Ca-
niupan and Bertossi 2010], i.e., to compute certain answers
w.r.t. the class of all repairs. However, MDs cannot be
treated as classical ICs. For the particular framework used
in this work, the matching functions and the lattice-theoretic
structure of the domains, with the induced domination order,
create a scenario that is substantially different from the one
encountered in database repairs w.r.t. classical ICs. New
challenges arise that cannot be solved by reusing repair pro-
grams or what we know about them. Furthermore, the se-
mantics of MDs is also quite different from the one of clas-
sical ICs, and repair techniques for CQA cannot be straight-
forwardly used for ER via MDs or for clean query answering
(cf. [Gardezi, Bertossi and Kiringa 2011] for a discussion).

We statically analyze the cleaning programs, in terms of
their syntactic structures, properties associated with them,
and complexity results. In particular, we show that their ex-
pressive power is appropriate for our application in ER, and
they are in line with the computational complexity of com-
puting clean instances and clean query answers. This also al-
lows us to establish complexity properties for checking clean
instances. We also show how to use cleaning programs with
the skeptical (or cautious) semantics for the computation of
clean answers from the original database, with a similar data
complexity.

The Swoosh approach to ER was proposed in [Benjel-
loun et al. 2009], as a generic specification of ER proce-
dures. In particular, the “union-case” of entity resolution
is investigated. In that framework, individual records (or
attribute values in them) can be seen as sets of triples of
the form (id , attr , value), i.e. as objects. An ER step ba-
sically matches values by producing their union. In this
way, the resulting value dominates, in terms of information
contents, the two original values. This is a common and
important scenario for ER. In [Bertossi, Kolahi and Laksh-
manan 2011], the Swoosh’s union-case was reconstructed in
the MD framework. In [Benjelloun et al. 2009] the Swoosh
approach to ER is presented in procedural terms. In this
work, we provide, as an additional contribution, a declara-
tive version of the union-case of Swoosh via MDs and their
cleaning programs.

This paper is structured as follows. Section 2 introduces
the necessary background on relational databases, matching
dependencies and their semantics, and disjunctive Datalog
programs. In Section 3, we introduce the cleaning programs
that specify the clean instances w.r.t. a set of MDs. They are
used in Section 4 to do clean query answering. In Section 5
we analyze and transform the cleaning programs, addressing
some complexity issues. In Section 6 we present a declara-
tive version of the union case of Swoosh. In Section 7 we
point to possible extensions of our work and to ongoing and
future research. To conclude, in Section 8, we obtain a few
final conclusions. Proofs of results, and also examples with
the DLV system [Leone et al. 2006] that we have used for
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small experiments with cleaning programs, can be found in
the appendices.

2 Preliminaries
2.1 Relational databases
We consider relational schemas S consisting of a possibly
infinite data domain U , a finite setR of database predicates,
say R, each of a fixed, finite arity, and a set B of built-in
predicates, like =, ̸=, etc. Each R ∈ R, of some arity n, has
n attributes, say A1, . . . , An, each of them with a domain
DomAi ⊆ U . For simplicity, and without loss of general-
ity, we may assume that all the Ai are different, and dif-
ferent predicates do not share attributes. However, different
attributes may share the same domain.

An instance D for schema S can be seen as a finite set of
ground atoms of the form R(c1, . . . , cn), with ci ∈ DomAi .
R(c1, . . . , cn) is also called a tuple. In this work, we will
assume that tuples have identifiers, as in Example 1. Tuple
identifiers allow us to compare the extensions of the same
predicate in different instances, which is necessary since
we are updating instances by changing attribute values (and
never inserting or deleting tuples).

Tuple identifiers can be accommodated by adding an extra
attribute, say T , to each predicate R ∈ R, so that the tuples
take the form R(t, c1, . . . , cn), with t a value for T . We
assume that for each predicate, T acts as a key, i.e., all other
attributes functionally depend upon T . Most of the time we
leave the tuple identifier, or we use the tuple identifier to
denote the whole tuple, e.g., t for denoting the whole tuple
R(t, c1, . . . , cn). More precisely, if t is a tuple identifier in
an instance D, then tD denotes the entire database atom,
R(c̄), identified by t. Similarly, if A is a list of attributes of
predicate R, then tD[A] denotes the tuple identified by t, but
restricted to the attributes in A.

Schema S determines a language L(S) of first-order (FO)
predicate logic. A conjunctive query is a formula of L(S) of
the form Q(x̄) : ∃ȳ(P1(x̄1) ∧ · · · ∧ Pm(x̄m)), where Pi ∈
R∪B, x̄ = (∪ix̄i)r ȳ is the list free variables of the query.
If x̄ = x1 · · ·xk, an answer to the query in instance D is a
sequence ⟨a1, . . . , ak⟩ ∈ Uk, such that D |= Q[a1, . . . , ak],
i.e., that makes the query true in D when the variables in it
are replaced by a1, . . . , ak. We denote withQ(D) the set of
answers to Q in D.

Notice that a query can be seen as a mapping that sends
instances to instances [Abiteboul, Hull, and Vianu 1995],
of a possibly different schema. E.g., the resulting schema
may have the single, new predicate Q, of arity k (and with
k attributes from S), and Q(D) would be an instance of the
new schema.

2.2 Matching dependencies for ER
Given a relational schema S with predicates R1[L̄1],
R2[L̄2], with lists of attributes L̄1, L̄2, resp., a matching de-
pendency (MD) [Fan et al. 2009] is a formula of the form
(omitting quantifiers)

φ : R1[X̄1] ≈ R2[X̄2]→ R1[Ȳ1]
.
= R2[Ȳ2]. (2)

Here, where X̄1, Ȳ1 are sublists of L̄1, and X̄2, Ȳ2 sublists of
L̄2. The lists X̄1, X̄2 are comparable, i.e., the attributes in

them, say Xj
1 , X

j
2 , are pairwise comparable in the sense that

they share the same data domain Domj on which a binary
similarity (i.e., reflexive and symmetric) relation ≈j is de-
fined. Similarly, the corresponding attributes in Y1, Y2 also
share a domain. Actually, (2) can be seen as an abbreviation
for the formula

φ :
∧
j

R1[X
j
1 ] ≈j R2[X

j
2 ]→

∧
k

R1[Y
k
1 ]

.
= R2[Y

k
2 ].

This MD intuitively states that if for an R1-tuple t1 and an
R2-tuple t2 in instance D, the attribute values in tD1 [X̄1] are
similar to attribute values in tD2 [X̄2], then we need to make
the values tD1 [Ȳ1] and tD2 [Ȳ2] identical. This will result in
another instance D′, where tD

′

1 [Ȳ1], t
D′

2 [Ȳ2] have been up-
dated in a way that tD

′

1 [Ȳ1] = tD
′

2 [Ȳ2] holds. Without loss of
generality, we assume that the list of attributes on the right-
hand side of MDs contain only one attribute (see [Fan et al.
2009]).

If we have a set Σ of MDs, like the one in (2), a pair
of instances (D,D′) satisfies Σ if whenever D satisfies the
antecedents of the MDs, then D′ satisfies the consequents
(taken as equalities). If (D,D) ̸|= Σ, we say that D is
“dirty” (w.r.t. Σ). On the other side, an instance D is stable
if (D,D) |= Σ [Fan et al. 2009].

In order to enforce an MD on two tuples and make the
values of attributes identical, we assume that for each com-
parable pair of attributes A1, A2 with domain (in common)
DomA, there is a binary matching function (MF) mA :
DomA × DomA → DomA, such that the value mA(a, a

′) is
used to replace two values a, a′ ∈ DomA whenever the two
values need to be made equal. Following [Bertossi, Kolahi
and Lakshmanan 2011; Benjelloun et al. 2009], we expect
MFs to be idempotent, commutative, and associative.

The structure (DomA,mA) forms a join semilattice, that
is, a partial order with a least upper bound (lub) for ev-
ery pair of elements. The induced partial order ≼A on
the elements of DomA is defined as follows: For every
a, a′ ∈ DomA, a ≼A a′ whenever mA(a, a

′) = a′. The lub
operator with respect to this partial order coincides with mA:
lub≼A

{a, a′} = mA(a, a
′). We also assume the existence of

the greatest lower bounds, glb(a, a′) [Bertossi, Kolahi and
Lakshmanan 2011].

In the rest of this work, especially in answer set pro-
grams, we will assume by default that similarity relations
and matching functions are built-in (evaluable, embedded)
relations with fixed extensions and the desired properties.
Only occasionally, we may introduce rules for specifying
them and enforcing their properties.

A chase-based semantics for data cleaning (or entity res-
olution) with matching dependencies is given in [Bertossi,
Kolahi and Lakshmanan 2011]: starting from an instance
D0, we identify pairs of tuples t1, t2 that satisfy the sim-
ilarity conditions on the left-hand side of a matching de-
pendency φ, i.e., tD0

1 [X̄1] ≈ tD0
2 [X̄2],1 and apply a

matching function on the values for the right-hand side
attribute, tD0

1 [A1], t
D0
2 [A2], to make them both equal to

1but not its RHS
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mA(t
D0
1 [A1], t

D0
2 [A2]). We keep doing this on the resulting

instance, in a chase-like procedure, until a stable instance is
reached.

Definition 1. Let D,D′ be database instances with the same
set of tuple identifiers, Σ be a set of MDs, and φ : R1[X̄1] ≈
R2[X̄2] → R1[Ȳ1]

.
= R2[Ȳ2] be an MD in Σ. Let t1, t2 be

an R1-tuple and an R2-tuple identifiers, respectively, in both
D and D′. We say that instance D′ is the immediate result of
enforcing φ on t1, t2 in instance D, denoted (D,D′)[t1,t2] |=
φ, if

(a) tD1 [X̄1] ≈ tD2 [X̄2], but tD1 [Ȳ1] ̸= tD2 [Ȳ2];

(b) tD
′

1 [Ȳ1] = tD
′

2 [Ȳ2] = mA(t
D
1 [Ȳ1], t

D
2 [Ȳ2]); and

(c) D,D′ agree on every other tuple and attribute value. �

Definition 2. For an instance D0 and a set of MDs Σ, an
instance Dk is (D0,Σ)-clean if Dk is stable, and there exists
a finite sequence of instances D1, . . . , Dk−1 such that, for
every i ∈ [1, k], (Di−1, Di)[ti1,ti2] |= φ, for some φ ∈ Σ and
tuple identifiers ti1, t

i
2. �

An instance D0 may have several (D0,Σ)-clean in-
stances. However, for the special cases of (a)
similarity-preserving MFs (i.e., a ≈ a′ implies a ≈
mA(a

′, a′′), ∀a, a′, a′′); and (b) interaction-free MDs (i.e.,
each attribute may appear in either right or left-hand side
of MDs in Σ), there is a unique clean instance for a dirty
instance D. In general, C(D,Σ) denotes the set of clean
instances for instance D w.r.t. Σ.

2.3 Semantic domination and clean answers
The relation a ≼A a′ can be thought of in terms of rela-
tive information contents [Bertossi, Kolahi and Lakshmanan
2011]. This notion has been investigated in domain the-
ory [Gunter and Scott 1990], in the context of semantic-
domination lattices. Domain-level partial order ≼A can
be lifted to a tuple-level partial order, defined by: t1 ≼
t2 iff t1[A] ≼A t2[A], for each attribute A. This in turn can
be lifted to a relation-level partial order: D1 ⊑ D2 iff ∀t1 ∈
D1 ∃t2 ∈ D2 t1 ≼ t2.

It can be observed that when a tuple tD in instance D

is updated to tD
′

in instance D′ by enforcing an MD and
applying a matching function, we have tD ≼ tD

′
. Moreover,

the instances D and D′ satisfy: D ⊑ D′. If instances are
all “reduced” by eliminating tuples that are dominated by
others, the set of reduced instances with ⊑ forms a lattice.
That is, we can compute the greatest lower bound (glb) and
the least upper bound (lub) of every finite set of instances
w.r.t. partial order ⊑. This is a useful result that allows us to
compare sets of query answers w.r.t. ⊑.

Indeed, the set of clean answers to a query Q from in-
stance D w.r.t. Σ is formally defined by CleanD

Σ (Q) :=
glb

⊑
{Q(D′) | D′ ∈ C(D,Σ)} [Bertossi, Kolahi and Laksh-

manan 2011]. The clean answers are similar to the certain
answers [Imielinski and Lipski 1984], but here the partial or-
der is brought into the definition. Deciding clean answers is
co-NP -complete [Bertossi, Kolahi and Lakshmanan 2011].

2.4 Disjunctive Datalog with SMS
We will use logic programs Π in Datalog∨,not , i.e.,
(function-free) disjunctive Datalog programs with weak
negation [Gelfond and Lifschitz 1991; Eiter, Gottlob and
Mannila 1997]. They contain a finite number of rules of
the form

A1 ∨ . . . ∨An ← P1, . . . , Pm, not N1, . . . , not Nk, (3)

where 0 ≤ n,m, k, and Ai, Pj , Ns are (positive) atoms. The
terms in these atoms are constants or variables. All the vari-
ables in the Ai, Ns appear among those in the Pj . The con-
stants in program Π form the (finite) Herbrand universe H
of the program. The ground version of program Π, gr(Π),
is obtained by instantiating the variables in Π in all possible
ways using values from H . The Herbrand base HB of Π
consists of all the possible atoms obtained by instantiating
the predicates in Π with constants in H .

A subset M of HB is a model of Π if it satis-
fies gr(Π), that is: For every ground rule A1 ∨ . . . ∨
An ← P1, . . . , Pm, not N1, . . . , not Nk of gr(Π), if
{P1, . . . , Pm} ⊆ M and {N1, . . . , Nk} ∩ M = ∅, then
{A1, . . . , An} ∩ M ̸= ∅. M is a minimal model of Π if
it is a model of Π, and Π has no model that is properly con-
tained in M . MM (Π) denotes the class of minimal models
of Π.

Now, take S ⊆ HB(Π), and transform gr(Π) into a
new, positive program gr(Π)S (i.e., without not), as follows:
Delete every rule A1 ∨ . . . ∨ An ← P1, . . . , Pm, not N1,
. . . , not Nk for which {N1, . . . , Nk} ∩S ̸= ∅. Next, trans-
form each remaining rule A1 ∨ . . . ∨ An ← P1, . . . , Pm,
not N1, . . . , not Nk into A1 ∨ . . . ∨ An ← P1, . . . , Pm.
Now, S is a stable model of Π if S ∈ MM (gr(Π)S). It is
well known that a stable model of Π is a minimal model of
Π.

The expressive power of Datalog∨,not (cf. Section 5) has
been useful and necessary for applications to database re-
pairs and CQA [Caniupan and Bertossi 2010] due to the in-
herently rather high complexity of CQA [Bertossi 2011].

3 Declarative MD-Based ER
We start by showing that clean query answering is a non-
monotonic process.

Example 2. Consider the instance D and the MD ϕ:
R(D) name phone addr
t1 John Doe (613)7654321 Bank St.
t2 Alex Smith (514)1234567 10 Oak St.

ϕ : R [phone, addr] ≈ R [phone, addr] →
R [addr]

.
= R [addr].

D is a stable, clean instance w.r.t. ϕ. Now consider
the query Q(z) : ∃yR(John Doe, y, z), asking for the ad-
dress of John Doe. In this case, CleanD

{ϕ}(Q) = Q(D) =

{⟨Bank St .⟩}.
Now, suppose that D is updated into D′:
R(D′) name phone addr
t1 John Doe (613)7654321 Bank St .
t2 Alex Smith (514)1234567 10 Oak St .
t3 J .Doe 7654321 25 Bank St .
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Assuming that “(613)7654321” ≈ “7654321”, Bank St . ≈
25 Bank St ., and also maddr(Bank St., 25 Bank St.) =
25 Bank St., then D′′ below is the only clean instance:

R(D′′) name phone addr
t1 John Doe (613)7654321 25 Bank St.
t2 Alex Smith 6131234567 10 Oak St.
t3 J.Doe 7654321 25 Bank St.

Now, CleanD′

{ϕ}(Q) = Q(D′′) = {⟨25 Bank St .⟩}.
Clearly, Q(D) ̸⊆ Q(D′), even though D ⊆ D′. �

This example shows that a non-monotonic logical formal-
ism is required to capture the clean instances as its models.
Intuitively, when an MD is enforced on two tuples of an in-
stance in a single step of the chase procedure, the tuples are
updated to newer versions. The older versions of the tuples
should no longer be available during the rest of the chase.

We use answer set programs as the basic formalism to
capture this non-monotonic chase procedure. More pre-
cisely, given a database instance D0 and a set of MDs Σ,
we develop a logic program Π(D0,Σ), whose stable models
correspond to (D0,Σ)-clean instances that can be obtained
by enforcing matching dependencies in a chase-like proce-
dure.

The program Π(D0,Σ) should have rules to implicitly
simulate a chase sequence, i.e., rules that enforce MDs on
pairs of tuples that satisfy certain similarities, create newer
versions of those tuples by applying matching functions, and
make the older versions of the tuples unavailable for other
rules. The idea is to have the stable models of the program
correspond to valid chase sequences that will give us clean
instances.

Program Π(D0,Σ) specifies clean instances by explicitly
eliminating, using program denial constraints, instances that
are the result of illegal applications of matching dependen-
cies. A set of matching applications is illegal if we cannot
put them in a chronological order to represent the steps of
a chase. That is, there are some matching applications that
use old versions of tuples that have been replaced by new
versions.

To ensure that the matchings are enforced according to
an order that correctly represents a chase, we record pairs
of matchings in an auxiliary relation, Prec, in the cleaning
program of Section 3.1, and explicitly impose an order on
the auxiliary relation using program constraints.

3.1 Cleaning programs for MDs
Let D0 be a given initial instance that is possibly dirty w.r.t.
a given set Σ of MDs. The cleaning program, Π(D0,Σ),
that we will introduce here, contains an (n + 1)-ary predi-
cate R′

i, for each n-ary database predicate Ri. It will be used
in the form R′

i(T, Z̄), where T is a variable for an additional
attribute used for the tuple identifier, and Z̄ is a list of vari-
ables standing for the (ordinary) attribute values of Ri.

For every attribute A in the schema, with domain DomA,
we use a built-in ternary predicate MA that represents
the matching function mA. Here, MA(a, a

′, a′′) means
mA(a, a

′) = a′′, a, a′, a′′ ∈ DomA. We write X ≼A Y

as an abbreviation for MA(X,Y, Y ). When an attribute A
(or its domain) does not have a matching function, because
it is not affected by an MD, then ≼A becomes the equal-
ity, =A. For two lists of variables Z̄1 = ⟨Z1

1 , . . . Z
n
1 ⟩ and

Z̄2 = ⟨Z1
2 , . . . Z

n
2 ⟩, we write Z̄1 ≼ Z̄2 to denote the con-

junction Z1
1 ≼A1 Z1

2 ∧ . . . ∧ Zn
1 ≼An Zn

2 .
Moreover, for each attribute A, there is a built-in binary

predicate ≈A. For two lists of variables X̄1 = ⟨X1
1 , . . . X

l
1⟩

and X̄2 = ⟨X1
2 , . . . X

l
2⟩ representing comparable attribute

values, we write X̄1 ≈ X̄2 to denote the conjunction X1
1 ≈1

X1
2 ∧ . . . ∧X l

1 ≈l X
l
2.

These predicates are built-in in the sense that they have a
fixed extension, and their atoms can be evaluated at request
by some built-in mechanism. Of course, in some applica-
tions we may not want to treat MA or ≈A as built-ins. In
those cases they could be further specified by means of ad-
ditional program rules, in particular to enforce their expected
properties (cf. Section 2.2).

The program Π(D0,Σ) contains the rules in 1.-9. below:2

1. For every tuple (id) tD0 = Rj(ā), the fact R′
j(t, ā).

2. For each MD ϕj : R1[X1] ≈ R2[X2] → R1[A1]
.
=

R2[A2], the program rules:

Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2) ∨
NotMatchϕj(T1, X̄1, Y1, T2, X̄2, Y2) ←
R′

1(T1, X̄1, Y1), R
′
2(T2, X̄2, Y2), X̄1 ≈ X̄2, Y1 ̸= Y2.

← NotMatchϕj(T1, Z̄1, T2, Z̄2),

not OldVersion1(T1, Z̄1),not OldVersion2(T2, Z̄2).

OldVersioni(T1, Z̄1) ← R′
i(T1, Z̄1), R

′
i(T1, Z̄

′
1),

Z̄1 ≼ Z̄′
1, Z̄1 ̸= Z̄′

1.

In these rules, the X̄is are lists of variables corresponding to
lists of attributes on the LHS of the MD, whereas the Yis are
single variables corresponding to the attribute on the right-
hand side of the MD. Also, the Z̄is are lists of variables cor-
responding to all attributes in a tuple.

These rules are used to enforce the MD whenever the nec-
essary similarities hold for two tuples. The first rule speci-
fies that in that case, a matching may or may not take place,
but the latter is acceptable only if one of the involving tu-
ples is used for another matching and replaced by a newer
version. This is enforced using the second rule, which is a
program constraint (it has the effect of filtering out stable
models where the conjunction in its body becomes true).

Notice that for each tuple identifier t, there could be many
atoms of the form R′

i(t, ā) corresponding to different ver-
sions of the tuple associated with t that represent the evo-
lution of the tuple during the enforcement of MDs. The
third rule specifies when an atom R′

i(t, ā) for a tuple identi-
fier t has been replaced by a newer version R′

i(t, ā
′), where

ā ≼ ā′, due to a matching application. For convenience,
below we refer to the various atoms associated with a given
tuple identifier t as versions of the tuple identifier t.

2All the capitalized arguments of predicates are variables (e.g.
X) or lists thereof (e.g. X̄). We use this notation to make the
association with attributes or lists thereof in MDs easier.
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Notice that, when the two predicates appearing in ϕj are
the same, say R1, then the first rule becomes symmetric
w.r.t. every two atoms R′

1(t1, ā1) and R′
1(t2, ā2) that satisfy

the body of the rule. We therefore need to make sure that
if the matching takes place for these two tuples, then both
Matchϕj (t1, ā1, t2, ā2) and Matchϕj (t2, ā2, t1, ā1) exist.
Thus, for every such matching dependency, we need a rule
of the following form

Matchϕj(T2, X̄2, Y2, T1, X̄1, Y1) ←
Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2).

3. Rules to insert new tuples into R1, R2, as a result of
enforcing ϕj (Mj stands for the MF for the attribute on the
RHS of ϕj):

R′
1(T1, X̄1, Y3) ← Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2),

Mj(Y1, Y2, Y3).

R′
2(T2, X̄2, Y3) ← Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2),

Mj(Y1, Y2, Y3).

4. For every two matchings applicable to different versions
of a tuple with a given identifier, we need to record the rel-
ative order of the two matchings. This is done through an
auxiliary predicate, Prec. The matching that is applied to
the smaller version of the tuple according to partial order ≼
has to precede the other matching.

Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3) ←

Matchϕj(T1, Z̄1, T2, Z̄2),Matchϕk(T1, Z̄
′
1, T3, Z̄3),

Z̄1 ≼ Z̄′
1, Z̄1 ̸= Z̄′

1.

We need similar rules (four rules in total) for the cases
where the common tuple identifier variable T1 appears in
different components of the two Match predicates (cf. rules
4. in Example 3 below).
5. Each version of a tuple identifier can participate in more
than one matching only if at least one of them does not
change the tuple. For every two matchings applicable to a
single version of a tuple identifier, we need to record the rel-
ative order of the two matchings in Prec. The matching that
produces a new version for the tuple has to come after the
other matching. If both of the two matchings do not produce
a new version of the tuple, they can be applied in any order,
and there is no need to explicitly record their relative order
in Prec.

Prec(T1, X̄1, Y1, T2, X̄2, Y2, T1, X̄1, Y1, T3, X̄3, Y3) ←
Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2),

Matchϕk(T1, X̄1, Y1, T3, X̄3, Y3),

Mk(Y1, Y3, Y4), Y1 ̸= Y4.

As in 4. above, we need four rules of this form, for different
possible appearances of the common variable T1. This rule
will never allow two matchings that will produce incompara-
ble versions of a tuple w.r.t. ≼, because we ensure that Prec
is antisymmetric. (Cf. rules 6.-8. below that specify the
properties of Prec.) As a consequence, every two matchings
applicable to a given tuple identifier will fire one of the two
rules 4. or 5., and they will have a relative order recorded in
Prec, unless they both do not change the tuple.

6. Rules for making Prec a reflexive relation:

Prec(T1, Z̄1, T2, Z̄2, T1, Z̄1, T2, Z̄2) ←
Matchϕj(T1, Z̄1, T2, Z̄2).

7. Program constraints for making Prec antisymmetric:

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),

Prec(T1, Z̄
′
1, T3, Z̄3, T1, Z̄1, T2, Z̄2),

(T1, Z̄1, T2, Z̄2) ̸= (T1, Z̄
′
1, T3, Z̄3).

8. Program constraints for making Prec transitive:

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),

Prec(T1, Z̄
′
1, T3, Z̄3, T1, Z̄

′′
1 , T4, Z̄4),

not Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′′
1 , T4, Z̄4).

9. Finally, rules to collect in Rc
i the latest version of each

tuple for every predicate Ri .

Rc
i (T1, Z̄1) ← R′

i(T1, Z̄1), not OldVersioni(T1, Z̄1).

These rules are used to form the clean instances.

Notice that the rules in 2. above are the only ones that de-
pend on an essential manner on the particular MDs at hand.
Rules 1. are just the facts that represent the initial, underly-
ing database. All the other rules are basically generic, and
could be used by any cleaning program, as long as there is
a correspondence between the predicates Matchφ with the
MDs φ, for which the former have labels (the subindices) to
indicate the latter.

Example 3. Consider relation R(A,B), and set Σ consist-
ing of the following MDs:

ϕ1 : R [A] ≈ R [A]→ R [B]
.
= R [B],

ϕ2 : R [B] ≈ R [B]→ R [B]
.
= R [B].

Assume that in the dirty instance D0 below, exactly the fol-
lowing similarities hold: a1 ≈ a2, b2 ≈ b3. Moreover, the
matching functions act as follows:
MB(b1, b2) = b12,
MB(b2, b3) = b23,
MB(b1, b23) = b123.

R(D0) A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

Enforcing Σ on D0 according to Definition 2 will result
in the following two chase sequences, each enforcing the
MDs in a different order, and two final stable clean instances
D1 and D′

2.

D0 A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

⇒ϕ1

D1 A B
t1 a1 b12
t2 a2 b12
t3 a3 b3

D0 A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

⇒ϕ2

D′
1 A B

t1 a1 b1
t2 a2 b23
t3 a3 b23

⇒ϕ1

D′
2 A B

t1 a1 b123
t2 a2 b123
t3 a3 b23

The cleaning program Π(D0,Σ) has the following rules:
(although built-in, we make the extension of MFs explicit)

6



1. a1 ≈ a2. b2 ≈ b3.
R′(t1, a1, b1). R′(t2, a2, b2). R′(t3, a3, b3).

MB(b1, b2, b12). MB(b2, b3, b23). MB(b1, b23, b123).

2.Matchϕ1(T1, X1, Y1, T2,X2, Y2) ∨
NotMatchϕ1(T1, X1, Y1, T2,X2, Y2) ←
R′(T1, X1, Y1), R

′(T2, X2, Y2), X1 ≈ X2, Y1 ̸= Y2.

Matchϕ2(T1, X1, Y1, T2,X2, Y2) ∨
NotMatchϕ2(T1, X1, Y1, T2,X2, Y2) ←
R′(T1,X1, Y1), R

′(T2, X2, Y2), Y1 ≈ Y2, Y1 ̸= Y2.

Matchϕ1(T1,X1, Y1, T2, X2, Y2) ←
Matchϕ1(T2, X2, Y2, T1, X1, Y1).

(simmilarly for Matchϕ2 )

← NotMatchϕ1(T2, X2, Y2, T1, X1, Y1),

not OldVersion(T1,X1, Y1),

not OldVersion(T2, X2, Y2).

(simmilarly for NotMatchϕ2 )

OldVersion(T1, Z̄1) ← R′(T1, Z̄1), R
′(T1, Z̄

′
1),

Z̄1 ≼ Z̄′
1, Z̄1 ̸= Z̄′

1.

3. R′(T1, X1, Y3) ← Matchϕ1(T1, X1, Y1, T2,X2, Y2),

MB(Y1, Y2, Y3).

R′(T1, X1, Y3) ← Matchϕ2(T1, X1, Y1, T2, X2, Y2),

MB(Y1, Y2, Y3).

4. Prec(T1, X1, Y1, T2, X2, Y2, T1,X1, Y
′
1 , T3,X3, Y3) ←

Matchϕj(T1,X1, Y1, T2, X2, Y2),

Matchϕk(T1,X1, Y
′
1 , T3, X3, Y3),

Y1 ≼ Y ′
1 , Y1 ̸= Y ′

1 .

(with 1 ≤ j, k ≤ 2)

As mentioned above, we may need four similar rules, when
the common tuple identifer T1 appears in different compo-
nents of the two match predicates; e.g one of them is:

Prec(T1,X1, Y1, T2, X2, Y2, T3, X3, Y3, T1,X1, Y
′
1 ) ←

Matchϕ1(T1,X1, Y1, T2, X2, Y2),

Matchϕ2(T3,X3, Y3, T1, X1, Y
′
1 ), Y1 ≼ Y ′

1 , Y1 ̸= Y ′
1 .

5. Prec(T1, X1, Y1, T2, X2, Y2, T1,X1, Y1, T3, X3, Y3) ←
Matchϕj(T1, X1, Y1, T2,X2, Y2),

Matchϕk(T1, X1, Y1, T3, X3, Y3), MB(Y1, Y3, Y4),

Y1 ̸= Y4. (with 1 ≤ j, k ≤ 2)
As for the rules in 4., we have four similar rules, for cases
with different appearances of common variable T1; e.g.,

Prec(T1, X1, Y1, T2,X2, Y2, T1, X1, Y1, T3, X3, Y3) ←
Matchϕ1(T1, X1, Y1, T2, X2, Y2),

Matchϕ2(T3,X3, Y3, T1, X1, Y1),

MB(Y1, Y3, Y4), Y1 ̸= Y4.

6. Prec(T1, X1, Y1, T2, X2, Y2, T1,X1, Y1, T2, X2, Y2) ←
Matchϕ1(T1, X1, Y1, T2, X2, Y2). (similarly for Matchϕ2 )

7. ← Prec(T1, X1, Y1, T2, X2, Y2, T1, X
′
1, Y

′
1 , T3,X3, Y3),

Prec(T1, X
′
1, Y

′
1 , T3, X3, Y3, T1,X1, Y1, T2, X2, Y2),

(T1,X1, Y1, T2, X2, Y2) ̸= (T1, X
′
1, Y

′
1 , T3, X3, Y3).

8. ← Prec(T1, X1, Y1, T2, X2, Y2, T1, X
′
1, Y

′
1 , T3,X3, Y3),

Prec(T1,X
′
1, Y

′
1 , T3, X3, Y3, T1, X

′′
1 , Y

′′
1 , T4,X4, Y4),

not Prec(T1, X1, Y1, T2,X2, Y2, T1, X
′′
1 , Y

′′
1 , T4, X4, Y4).

9. Rc(T1,X1, Y1) ← R′(T1, X1, Y1),

not OldVersion(T1, X1, Y1).

Program Π(D0,Σ) has two stable models, whose Rc-atoms
are shown below:
M1 = {..., Rc(t1, a1, b12), R

c(t2, a2, b12), R
c(t3, a3, b3)},

M2 = {..., Rc(t1, a1, b123), R
c(t2, a2, b123),

Rc(t3, a3, b23)}.
From them we can read off the two clean instances D1, D′

2
for D0 that were obtained from the chase. The stable mod-
els of the program can be computed using the DLV system
[Leone et al. 2006]. The DLV code for this example can be
found in Appendix B. �

Next we establish that, for an instance D0 and a set
Σ of MDs, the set SM (Π(D0,Σ)) of the stable models
of Π(D0,Σ), is in one-to-one corresponds with the set of
(D0,Σ)-clean instances.

Proposition 1. For every (D0,Σ)-clean instance Dk, we
can construct a set of atoms SDk

that is a stable model for
the logic program Π(D0,Σ). �

Proposition 2. For every stable model S of the program
Π(D0,Σ), we can construct a (D0,Σ)-clean instance DS .
�

Theorem 1. There is a one-to-one correspondence between
C(D,Σ) and the set SM (Π(D,Σ) of stable models of the
cleaning program Π(D,Σ). More precisely, the clean in-
stances for D w.r.t. Σ are exactly the restrictions of the ele-
ments of SM (Π(D,Σ)) to schema S. �

The restriction of the stable models to the relational
schema S is due to the fact that they have extensions for
the auxiliary predicates used in the programs.

4 Query Answering
We would like to use the cleaning program Π(D0,Σ) to
compute the clean answers to a query Q posed to D0, as
defined in Section 2.3. The set of clean answers is defined
there, by taking into account the underlying lattices, as the
greatest lower bound of all the sets of answers that can be
obtained by evaluating the query on a clean instance. This
is not the same as certain (or skeptical) answers, i.e., the
set-theoretic intersection of all the answers from every clean
instance, and therefore it is not equivalent to skeptical an-
swer of the logic program. In this section we provide a
mechanism for computing clean answers while still using
the skeptical query answering from the cleaning programs.
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Given a FO query Q(x1, . . . , xn), with free variables
standing for attributes A1, . . . , An of S, and defined by a
formula φ(x̄), (with x̄ = x1, . . . , xn), a non-disjunctive and
stratified query program Π(Q) can be obtained from φ, us-
ing a standard transformation [Lloyd 1987]. It contains an
answer predicate AnsQ(x̄), to collect the answers to Q, and
rules defining it, of the form AnsQ(x̄) ← B(x̄′), where
the Bs are conjunctions of literals (i.e., atoms or negations
not A thereof). The R-atoms inQ, with R ∈ S , are replaced
in Π(Q) by Rc-atoms.

We can obtain reduced answer sets (cf. Section 2.3) by
adding two new rules to Π(Q):

AnsrQ(x̄) ← AnsQ(x̄), not DominatedQ(x̄).

DominatedQ(x̄) ← AnsQ(ȳ), x̄ ≼ ȳ, x̄ ̸= ȳ.

The stable models S of Π(D,Σ,Q) := Π(D,Σ) ∪
Π(Q) are the stable models of Π(D,Σ) expanded with
extensions AnsrQ(S) for predicate AnsrQ. Those exten-
sions, as database instances, are already reduced. As-
sume that SM (Π(D,Σ,Q)) = {S1, . . . , Sm}. It holds,
CleanD0

Σ (Q) = glb⊑{AnsrQ(Si) | i = 1, . . . ,m} = Red⊑(
{glb≼{ā1, . . . , ām} | āi ∈ AnsrQ(Si), i = 1, . . . ,m}), where
Red⊑ produces the reduced version of the set to which it is
applied.

Next we show how the program Π(D,Σ,Q) can be mod-
ified, so that the clean answers to query Q can be obtained
by running the program under the skeptical semantics.

Given AnsrQ(Si), the set of answers to Q from the clean
instance corresponding to the stable model Si, we define its
downward expansion by:

AnsexpQ (Si) := {b̄ | b̄ ≼ ā, for some ā ∈ AnsrQ(Si)}.

That is, AnsexpQ (Si) contains all the atoms in AnsrQ(Si) and
everything below them w.r.t. the≼ lattice. Notice that, since
AnsrQ(Si) is finite, then AnsexpQ (Si) is also finite, because
we assume the lattices are finite.

Proposition 3. Let D be an instance, Σ be a set of MDs, and
Q be a query. Let SM (Π(D,Σ,Q)) = {S1, . . . , Sm}, then
glb⊑{AnsrQ(Si) | i = 1, . . . ,m} = Red⊑(

∩
{AnsexpQ (Si) |

i = 1, . . . ,m}). �
As a consequence of this result, the clean answers can

be obtained by taking the (set-theoretic) intersection of all
sets AnsexpQ (Si) (followed by a final reduction process) in-
stead of taking the glb over all sets AnsrQ(Si). This can
be achieved directly through Π(D,Σ,Q) by adding to it the
following rule:

AnsexpQ (ȳ)← AnsrQ(x̄), ȳ ≼ x̄, DomL(ȳ). (4)

Here, DomL(·) is a predicate standing for the cartesian
product of the finite domains for the local lattices LA, where
A is an attribute of the query schema.

In order to obtain the clean answers to queryQ, the query
atom AnsexpQ (ȳ) can be skeptically answered from this ex-
tension of Π(D,Σ,Q), which has the effect of computing
the ground query atoms in the intersection of its stable mod-
els.

The new rule will expand each stable model by adding
finitely many AnsexpQ (b̄) atoms for every AnsrQ(ā) atom,
where b̄ ≼ ā. The values for ȳ are taken from DomL. Then
each stable model will contain the atoms in the glb of all sta-
ble models, restricted to the AnsexpQ predicate, and therefore
the intersection of all stable models will contain the glb.

In Section 7.1 we discuss an alternative approach to clean
query answering.

5 Analysis of Cleaning Programs
In this section we investigate the properties of the cleaning
programs in terms of their syntactic structure, and by doing
so, shedding some light of their expressive power and com-
putational complexity. At the same time, this analysis will
provide upper-bounds for natural computational problems in
relation to entity resolution via MDs. In this direction, we
first review the main classes of Datalog programs, and some
known complexity results for them.

With Datalog∨,not ,s, we denote the subclass of programs
in Datalog∨,not that have stratified negation. For these pro-
grams, the set of predicates P can be partitioned into a se-
quence P1, . . . ,Pk in such a way that, for every P ∈ P:

1. If P ∈ Pi and predicate Q appears in a head of a rule
with P , then Q ∈ Pi.

2. If P ∈ Pi and Q appears positively in the body of a
rule that has P in the head, then Q ∈ Pj , with j ≤ i.

3. If P ∈ Pi and Q appears negatively in the body of a
rule that has P in the head, then Q ∈ Pj , with j < i.

If a program is stratified, then its stable models can be com-
puted bottom-up by propagating data upwards from the un-
derlying extensional database (that corresponds to the set
of facts of the program), and making sure to minimize the
selection of true atoms from the disjunctive heads. Since
the latter introduces a form of non-determinism, a program
may have several stable models. If the program is non-
disjunctive, there is a single stable model, and it can be
computed in polynomial time in the size of the extensional
database.
Datalog∨,not (cf. Section 2.4) extends the classes

Datalog , Datalognot,s, and Datalognot of non-disjunctive,
classical Datalog programs, Datalog programs with strat-
ified negation, and Datalog programs with negation, resp.
[Abiteboul, Hull, and Vianu 1995; Ceri, Gottlob and Tanca
1989]. Datalog∨,not,s extends Datalognot,s. Programs in
Datalog and Datalognot,s have a single stable model that can
be computed in a bottom-up manner starting from the exten-
sional database (EDB), i.e., the set of facts or rules of the
form (3) with n = 1,m = k = 0, and A1 ground. In gen-
eral, disjunctive Datalog programs and those in Datalognot

(without stratified negation) may have multiple stable mod-
els.

The (likely) higher expressive power of Datalog∨,not

w.r.t. Datalog and Datalognot,s is reflected in, or caused
by, the (probable) difference in computational complexity.
The problem of deciding if a ground atom A is entailed by a
program Π ∈ Datalog∨,not , i.e., if A is true in all the stable
models of Π, is ΠP

2 -complete in the size of the EDB. This
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decision problem is also referred to as skeptical (cautious)
query answering. The same problem can be solved in poly-
nomial time for programs in Datalog and Datalognot,s (cf.
[Dantsin et al. 2001] for more details).

Proposition 4. The cleaning programs Π(D,Σ) belong to
the class Datalog∨,not,s. �

As a consequence of this result, the stable models of the
programs introduced in Section 3.1 can be obtained with a
bottom-up computation, which is in line with the chase pro-
cedure of Definition 2, that defines the clean instances.

It is worth noticing that the data complexity of skeptical
query evaluation for programs in Datalog∨,not,s is the same
as for programs with unstratified negation, i.e., for the class
Datalog∨,not, i.e., ΠP

2 -complete [Eiter and Gottlob 1995;
Dantsin et al. 2001; Gelfond and Leone 2002].

Repair programs for CQA under ICs, also belong to the
class Datalog∨,not,s [Caniupan and Bertossi 2010]; and their
relatively high expressive power is really needed to spec-
ify database repairs, because the intrinsic data complexity
of CQA is provably ΠP

2 -complete (cf. [Bertossi 2011] for a
survey of complexity results in CQA). In the case of cleaning
programs two natural questions arise. First, if they provide
an expressive power that exceeds the one needed for clean
query answering. Secondly, as to whether we can obtain an
informative upper bound on the complexity of clean query
answering.

These questions are closely related to the properties of the
cleaning programs as determined by their syntactic struc-
ture. Actually, it turns out that their syntactic structure can
be simplified. More precisely, a cleaning program can be
transformed into one that that is non-disjunctive. To under-
take this task, we need some terminology.

Let Π ∈ Datalog∨,not , and Πg be its ground version. The
dependency graph, DG(Πg) is a directed graph where each
literal L (i.e., of the form A or not A, with A an atom) is
a node, and there is an arc from L1 to L2 iff there is a rule
in Πg where L1 appears positive in the body and L2 appears
in the head. Π is head-cycle free (HCF) iff its DG(Πg) does
not contain directed cycles that go through two literals that
belong to the head of a same rule [Ben-Eliyahu and Dechter
1994; Dantsin et al. 2001].

Example 4. Consider the ground program
Π = {a ∨ b← c, d← b, a ∨ b← e,not f }.

Figure 1: DG(Π)

Its dependency graph is shown in Figure 1. Π is HCF, be-
cause there is no cycle involving both a and b, the atoms that
appear in the disjunctive head. �

Programs in Datalog∨,not that are HCF can be trans-
formed into equivalent non-disjunctive programs, i.e., with
the same stable models [Ben-Eliyahu and Dechter 1994].
That is, they can be written as programs in Datalognot. We
have:

Proposition 5. Every cleaning program Π(D,Σ) is HCF,
and hence can be transformed into an equivalent non-
disjunctive program in Datalognot. �

The transformation is standard. Each disjunctive rule gen-
erates as many non-disjunctive rules as atoms in the head, by
keeping one at a time in the head, and moving the others in
negated form to the body. In our case, the disjunctive rule

Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2) ∨
NotMatchϕj(T1, X̄1, Y1, T2, X̄2, Y2) ←
R′

1(T1, X̄1, Y1), R
′
2(T2, X̄2, Y2), X̄1 ≈ X̄2, Y1 ̸= Y2.

gives rise to two rules:

Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2) ← R′
1(T1, X̄1, Y1),

R′
2(T2, X̄2, Y2),not NotMatchϕj(T1, X̄1, Y1, T2, X̄2, Y2),

X̄1 ≈ X̄2, Y1 ̸= Y2.

and

NotMatchϕj(T1, X̄1, Y1, T2, X̄2, Y2) ← R′
1(T1, X̄1, Y1),

R′
2(T2, X̄2, Y2),not Matchϕj(T1, X̄1, Y1, T2, X̄2, Y2),

X̄1 ≈ X̄2, Y1 ̸= Y2.

In general, for a HCF program, checking if a set of atoms
is a stable model can be done in polynomial time [Gelfond
and Leone 2002]. However, checking if a set of atoms is
contained in a stable model becomes an NP -complete prob-
lem [Ben-Eliyahu and Dechter 1994]. In our case, check-
ing if an instance D′ is a clean instance (for D and Σ),
amounts to checking if D′ is contained in stable model of
Π(D,Σ), since the stable models also contain atoms other
than S-atoms (S is the relational schema). Equivalently,
D′ does not contain the “cleaning-history” (chase steps) as
represented by those other atoms in a stable model. That
cleaning-history seems to be necessary to check if D′ is a
clean instance (just checking stability, i.e., if (D′, D′) |= Σ
is the easy part). In consequence, directly from Proposition
5 we can only obtain that checking if an instance is a clean
instance belongs to NP .

The data complexity of skeptical query answering from
program in Datalognot is co-NP -complete [Dantsin et al.
2001]. In consequence, the decision problem of skeptical
query answering from Π(D,Σ) belongs to the class co-NP .
From this result and Theorem 1, we obtain

Proposition 6. For a set Σ of MDs, and a FO query Q(x̄),
deciding if a tuple c̄ is a clean answer to Q from an instance
D belongs to the class co-NP (in the size of D).3 �

This result should be contrasted with the co-NP -complete
data complexity of deciding clean query answers presented

3To be precise, we have to use program Π(D,Σ,Q)) expanded
with rule (4), which actually adds to D the extension of DomL.
However, the latter could be left as a fixed parameter.
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in [Bertossi, Kolahi and Lakshmanan 2011, Theorem 3].
We have reobtained the membership to co-NPvia cleaning
programs, but, more importantly, we can conclude that our
cleaning programs are not overkilling the problem of clean
query answering, and that we need all the expressive power
that they provide.

The proof of co-NP -hardness for clean query answering
in [Bertossi, Kolahi and Lakshmanan 2011] can be easily
modified to prove that certain query answering, i.e. truth
in all clean instances (as opposed to taking the glb), is also
co-NP -hard. This result, combined with the reduction pro-
vided by Theorem 2, tells us that, among the HCF programs
in Datalog∨,not, the cleaning programs are hard.

Proposition 7. Skeptical query answering from cleaning
programs is co-NP -complete. �

It is possible to obtain a non-disjunctive, stratified clean-
ing program when matching functions are similarity pre-
serving or MDs are non-interacting. In these cases, the
cleaning program has a single stable model, computable in
polynomial time, which confirms via cleaning programs a
similar result in [Bertossi, Kolahi and Lakshmanan 2011].

6 Declarative Swoosh ER: The Union Case
In [Benjelloun et al. 2009] a generic approach to entity
resolution, Swoosh, was proposed and developed. A gen-
eral match function, M , and a general merge function, µ
are considered. They mostly work at the record level, but
the approach can be presented in terms of database tu-
ples [Bertossi, Kolahi and Lakshmanan 2011, section 7].
More precisely, we consider a finite set R of tuples, i.e.,
ground atoms of the form R(ā), for a relational predicate
R(A1, . . . , An), where the Ai are attributes, with domains
DomAi .

For r1, r2 ∈ R, M(r1, r2) takes the value true if the
r1, r2 match; otherwise, false. In the former case, the ac-
tual matching is the tuple µ(r1, r2) ∈ R.

When M and µ have the ICAR properties (idempotency,
commutativity, associativity and representativity), there is a
natural domination or subsumption partial order on R, the
merge domination: r1 ≤s r2 iff M(r1, r2) = true and
µ(r1, r2) = r2 [Benjelloun et al. 2009], as we did in Section
2. As outlined there, domination can be extended to a partial
order ≼S on database instances.

Given an instance D, its entity resolution is defined as the
(unique) instance D′ that satisfies the conditions: (a) D′ ⊆
D̄. (b) D̄ ≼s D′. (c) No strict subset of D′ satisfies the
first two conditions [Benjelloun et al. 2009]. Here, D̄ is the
merge closure of D, i.e., the smallest set of tuples such that
includes D, and for every r1, r2 ∈ D̄, when M(r1, r2) =
true, also µ(r1, r2) ∈ D̄.

There is a particular, but still common and broad, class of
match and merge functions that is based on union of values.
This is the union-case for Swoosh (UC Swoosh), on which
we will concentrate in the rest of this section.

More precisely, attribute values are represented as sets of
finer granularity values, like objects. If S1, S2 are (sets of)
values for attribute A, they are merged via a local merge
function µA defined by µA(S1, S2) := S1 ∪ S2. The

“global” merge function µ can be defined in terms of the
local merge functions µA. The match function can also be
defined in terms of local, component-based match functions.
The resulting merge and match functions satisfy the ICAR
properties [Benjelloun et al. 2009; Bertossi, Kolahi and Lak-
shmanan 2011].

Example 5. Consider the instance D below.

R(D) A B
{a1} {b1}
{a2} {b2}
{a3} {b3}

Two tuples match when
the values for attribute
A match, which happens
when there is a pair

of values in the A-sets that match: For values S1, S2 for A,
MA(S1, S2) holds when there are v1 ∈ S1, v2 ∈ S2 with
m(v1, v2) = true, where m is a lower-level match function.

Assume that m(a1, a2) and m(a2, a3) hold (are true). The
following is an ER process starting from D:

R(D′) A B
{a1, a2} {b1, b2}
{a2, a3} {b2, b3}

ER(D) A B
{a1, a2, a3} {b1, b2, b3}

In this example we are not using tuple identifiers and we
are also getting rid of dominated tuples, as Swoosh does.
However, if we had tuple identifiers, keeping them along the
ER process, the final instance above would have had three
identical tuples, modulo the tuple id. �

6.1 Special cleaning programs for UC-Swoosh
In this section we provide answer set programs (ASPs)
for the declarative specification of the union-case (UC) of
Swoosh. Since we are dealing with attributes that take as
values entire set of values, the ASPs have to be able to cap-
ture sets and sets operations, such as union. For this pur-
pose we use an extension of disjunctive logic programs with
stable model semantics that supports function terms and set
terms, with built-in functions for their manipulation [Cal-
imeri et al. 2008; Calimeri et al. 2009].

In this extension, basic terms are constants and variables,
and complex terms including functional, list and set terms
are inductively defined: for terms t1, ..., tn,

1. A functional term is of the form f(t1, ..., tn), where f
is a function symbol.

2. A list term has any of the forms: (a) [t1, ..., tn]; (b)
[h|t], where h is a term, and t is a list term.

3. A set term is of the form {t1, ..., tn}, where the ti do
not contain any variables.

Some functional terms, called built-in functions, are prede-
fined, with a fixed meaning. They are prefixed by # in the
language. Similarly for predicates, atoms prefixed by # use
built-in predicates, with predefined meanings [Calimeri et
al. 2009].

Example 6. We can build facts like Parent(person, {
child1, . . . , childn}), to show associations between parents
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and children. We can obtain the names of all descendants of
a person with the following rules:
Ancestor(A,Cs)← Parent(A,Cs).

Ancestor(A,#Union(Ds, Ss))← Ancestor(A,Ds),

#Member(S,Ds), Parent(S, Ss).

Here, #Union(Ds, Ss) and #Member are built-in predi-
cates with the intended meaning of union and membership
(to a set or a list). �

Given a database instance D, the swoosh-program
ΠUCS(D) that follows captures the generic UC-Swoosh ap-
proach to ER [Benjelloun et al. 2009]. It contains the fol-
lowing rules 1.-4. below:
1. For every atom R(s̄) ∈ D, ΠUCS(D) contains a fact of
the form R′(s̄). For every attribute A of R, that takes finite
sets of values from an underlying domain DomA, facts of
the form MatchA(a1, a2), with a1, a2 ∈ DomA.
2. Two tuples in R match whenever for attributes Ai of R,
1 ≤ i ≤ n, there exists a pair of values, one in each of the
set values for Ai that match. Hence, for every attribute Ai,
the rule:

R′(#Union(S̄1, S̄2)) ← R′(S̄1), R′(S̄2),

#Member(A1, S
1
i ), #Member(A2, S

2
i ),

MatchAi(A1, A2), S̄
1 ̸= S̄2.

Here, S̄1 = [S1
1 , . . . , S

1
n], a list of variables; similarly

for S̄2. R′(#Union(S̄1, S̄2)) is an abbreviation for the
componentwise union, namely: R′(#Union(S1

1 , S
2
1), . . . ,

#Union(S1
n, S

2
n)). The S1

j , S2
j , A1, A2 are variables,

whereas in Ai, the attribute is fixed. Notice that these rules
both specify the match function based on the elements of the
set values for attributes, and also the result of the merge.
3. A rule defining tuple domination:

Dominated(S̄1) ← R′(S̄1), R′(S̄2),
#Union(S̄1, S̄2) = S̄2, S̄1 ̸= S̄2.

4. A predicate that collects the result of the ER process:
Er(S̄) ← R′(S̄), not Dominated(S̄).

The facts in 1. correspond to the elements of the ini-
tial instance, and the pairs of low-level attributes values that
match. The merge closure of the instance is obtained with
rules in 2. By the properties of match and merge functions
for the UC, dominated tuples in the merge closure of D can
be eliminated via merge domination, which is specified by
rule 3. Rule 4. collects those tuples of the merge closure D̄
that are not dominated.

It is easy to verify that the program ΠUCS(D) is strati-
fied. Then, it has a single stable model that can be computed
bottom-up in polynomial time in the size of D. This model,
restricted to predicate Er , coincides with the ER procedu-
rally computed in [Benjelloun et al. 2009], where it was
shown that the ICAR properties make the ER computation
tractable. In consequence, our declarative approach to UC
Swoosh is in line with the results in [Benjelloun et al. 2009].
Example 7. (example 5 continued) The specific rules are:
1. R′({a1} , {b1}). R′({a2} , {b2}). R′({a3} , {b3}).

MatchA(a1, a2). MatchA(a2, a3).

2. R′(#Union(S1
1 , S

2
1),#Union(S1

2 , S
2
2)) ←

R′(S1
1 , S

1
2), R

′(S2
1 , S

2
2),

#Member(A1, S
1
1), #Member(A2, S

2
1),

MatchA(A1, A2), (S
1
1 , S

1
2) ̸= (S2

1 , S
2
2).

In this case we are matching via attribute A. If we also used
B, we would have a similar, additional rule for it.

3. Dominated(S1
1 , S

1
2) ← R′(S1

1 , S
1
2), R

′(S2
1 , S

2
2),

(#Union(S1
1 , S

2
1),#Union(S1

2 , S
2
2)) = (S2

1 , S
2
2),

(S1
1 , S

1
2) ̸= (S2

1 , S
2
2).

4. Er(S1, S2) ← R′(S1, S2), not Dominated(S1, S2).

This program, containing set terms and operations, can be
run with DLV-Complex [Calimeri et al. 2009].4 �

The answer set programs for UC Swoosh we just intro-
duced are rather ad hoc for this case. However, it is possible
to obtain them as special cases of our general ASP approach
to ER via MDs developed in Section 3.1 (c.f. Appendix
C). The connection is made possible by the treatment of the
UC Swoosh as a special case of MD-based ER developed in
[Bertossi, Kolahi and Lakshmanan 2011, section 7].

7 Extensions

In this section we point to and present some ideas for inter-
esting extensions to our work that we are currently pursuing
or intend to develop.

7.1 Clean QA and manifold programs

In Section 4, on clean query answering, we described a way
to compute the clean answers to a query Q without a sep-
arate and off-line gathering of query answers from each of
the stable models for later combination via the glb. This was
achieved via the downward expanded programs. The mani-
fold programs (MF) [Faber and Woltran 2011] offer another
alternative for using a single ASP for the whole task, at least
conceptually, since implementation issues seem still to be
open.

Given a program Π, an MF program for Π, say MF (Π),
extends or subsumes Π by collecting atomic brave or skep-
tical consequences from what would have been Π -now a
part of MF (Π)- and using them for further processing by
MF (Π).

In our case, properly marked brave consequences
from Π(D,Σ,Q) of the form AnsQ(ā)

S , with S ∈
SM (Π(D,Σ,Q)), can be further used by MF (Π(D,Σ,Q))
to compute the mentioned glbs. For this latter task,
MF (Π(D,Σ,Q)) could include rules of the form (we give

4http://www.mat.unical.it/dlv-complex Cf. Appendix B. for
the DLV code.
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a high-level description of them):

glb≼(x̄, U) ← U = #Union({ȳ}, U ′), glb≼(ū, U
′),

x̄ = glbt≼(ū, ȳ).

glb≼(x̄, {x̄}) ←
PAnsQ(x̄) ← glb≼(x̄, {x̄1, . . . , x̄m}),AnsQ(x̄1)

S1,

. . . ,AnsQ(x̄m)Sm.

CAns(x̄) ← PAnsQ(x̄), not Dominatedp
Q(x̄).

Dominatedp
Q(x̄) ← PAnsQ(ȳ), x̄ ≼ ȳ, x̄ ̸= ȳ.

Here, glb≼(x̄, U) is a binary predicate that says that tuple x̄ is
the glb≼of set U . It is defined by recursion and associativity:
glb≼({ȳ} ∪ U ′) = glbt≼(ȳ, glb≼(U

′)). Here, glbt≼(ū, ȳ) is a
function that produces the glb≼ (as operation) of two tuples.
The first two rules use the extension of ASP with sets and
operations with them [Calimeri et al. 2009] that we saw in
Section 6.1. They recursively compute the glb of a set. The
third one computes the pre-answers by combination into the
glb x̄ of braves answers obtained from the AnsQ(x̄i)

Si . The
last one computes the clean answers by discarding the pre-
answers that are dominated by other pre-answers.

7.2 Swoosh with negative rules
In [Whang, Benjelloun and Garcia-Molina 2009], the origi-
nal Swoosh approach to ER is extended with negative rules,
that impose constraints on the merge results.

Example 8. Consider the instance D, subject to an ER pro-
cess under Swoosh’s union case:

R(D) name phone gender
t1 {Mishael} {7654321} {}
t2 {Michael} {} {M}
t3 {Mishael} {7654321} {F}

Without going into details, by using the original Swoosh, we
could obtain the following final result:

R(D2) name phone gender
t123 {Mishael, Michael} {7654321} {F,M}

However, a negative rule prohibiting for a person to be both
M and F , would avoid reaching this instance. This might
require, as done in [Whang, Benjelloun and Garcia-Molina
2009], to appeal at some points to an external expert, to
make the right merge decisions. �

As shown in Appendix D, it is possible to extend, our
ASP-based account of Swoosh by taking into consideration
negative rules, and also the use of external experts. The latter
is achieved via HEX programs, which are extensions of ASP
with calls to external sources [Eiter et al. 2005].

7.3 MDs and database repairs
The combination and interaction of database repairs, as
found in CQA [Bertossi 2011], and matching dependencies
has been initially investigated in [Fan et al. 2011].

The cleaning programs we have presented in this work
could be combined in different ways with repair programs.

The latter are disjunctive programs with stable model se-
mantics, and are used to specify -as stable models- the re-
pairs of a database that fails to satisfy a given set of integrity
constraints [Arenas, Bertossi, and Chomicki 2003; Barcelo,
Bertossi and Bravo 2003; Greco, Greco and Zumpano 2003;
Caniupan and Bertossi 2010].

Example 9. Consider a relational schema with a predicate
P (X,Y ), and the functional dependency (FD) X → Y ,
stating that the first attribute functionally determines the sec-
ond one. The instance D = {P (a, b), P (a, c), P (d, e)}
is an inconsistent w.r.t. FD. D has two repairs, i.e., in-
stances that satisfy FD, and make minimal, under set inclu-
sion, the sets of deleted tuples that are required to reestab-
lish consistency. They are D1 = {P (a, b), P (d, e)} and
D2 = {P (a, c), P (d, e)}.

The repairs of D w.r.t. FD can be specified as the stable
models of a logic program that contains a main rule of the
form

P (x, y, f) ∨ P (x, z, f)← P (x, y), P (x, z), y ̸= z.

It specifies that whenever the FD is violated, which is cap-
tured by the body of the rule, then (only) one of the two tu-
ples involved in the violation has to be deleted (made false),
which is captured by the disjunctive head. �

Other repair policies, e.g., changes of attribute values as
opposed to tuple deletions, can also be expressed via repair
programs. Repair and cleaning programs could interact in
different ways.

7.4 ER and virtual data integration
Doing entity resolution on a virtual data integration system
is a challenging problem. A user may not have access to
the data sources, and the matchings can be applied only on-
the-fly, at query answering time. Something similar happens
with violations of global ICs and database repairs.

Actually, this idea was developed in [Bravo and Bertossi
2003], as follows. First, leaving the ICs aside, the legal, in-
tended global instances of a virtual data integration system
[Lenzerini 2002] can be specified as the stable models of an
answer set program. On top of that program, a repair pro-
gram, fully combined with the former into a single program,
computes the repairs of the global instances. In this way,
the consistent answers from the integration system can be
computed.

A similar approach could be attempted with ER via global
MDs. The cleaning program can be combined with the pro-
gram that specifies the intended instances of the integration
system.

8 Conclusions
In this work we have introduced and developed a declara-
tive approach to entity resolution (ER). It is based on match-
ing dependencies (MDs), that can be used to specify details
related to ER objectives, like matchings of attribute values
when other values are similar. Our work provides a declara-
tive, model-theoretic specification of the process of enforce-
ment of those MDs. The intended clean instances obtained
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from a given, dirty instance, become the stable models of a
specification that takes the form of an answer set program
(ASP), a so-called cleaning program.

We have provided some first ideas and techniques on how
to do clean query answering using the cleaning program.
This is a subject that requires more investigation. In gen-
eral, implementation issues are quite open. We have used
the DLV system and its extension with sets to run our ex-
amples. As with repair programs for consistent query an-
swering, there is room for many optimizations [Caniupan
and Bertossi 2010; Eiter et al. 2008] that still have to be
investigated.

We have pointed to important extensions and research di-
rections, most importantly to applications in virtual data in-
tegration systems, where the system can be specified declar-
atively using ASP-based specifications. Indeed, explicitly
computing clean instances is not practical, rather comput-
ing clean query answers on the fly from the ASP is the only
realistic option.
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A Proofs
Those auxiliary technical results that are stated in this ap-
pendix, but not in the main body of the paper, are numbered
in the form A.n, e.g., Lemma A.1.
Proof of Proposition 1: Let Dk be a (D0,Σ)-clean instance.
That is, there are instances D1, . . . , Dk−1 such that, for ev-
ery j ∈ [1, k], (Dj−1, Dj)[t1,t2] |= φ, for some φ ∈ Σ and
tuple identifiers t1, t2. We construct SDk

, a set of atoms over
relations of the logic program Π(D0,Σ), as follows.

• For every instance Dj , j ∈ [0, k] and every tuple iden-
tifier t of relation Ri, SDk

contains an atom R′
i(t, ā),

where tDj = ā.

• For every tuple identifier t of relation Ri, SDk
contains

an atom Rc
i (t, ā), where tDk = ā for clean instance

Dk.

• For every instance Dj , j ∈ [0, k − 1] and every tuple
identifier t of relation Ri such that tDj ̸= tDk , SDk

contains an atom OldVersioni(t, ā), where tDj = ā.

• For every j ∈ [0, k], tuple identifiers t1, t2 and MD
φ, such that (Dj−1, Dj)[t1,t2] |= φ, SDk

contains an
atom Matchφ(t1, ā1, t2, ā2), where t

Dj−1

1 = ā1 and
t
Dj−1

2 = ā2. If the two relation names appearing in φ
are the same, SDk

also contains Matchφ(t2, ā2, t1, ā1).

• For every j, l ∈ [0, k], tuple identifiers t1, t2 and MD φ,
such that tDj

1 = ā1, tDl
2 = ā2, tDj

1 , tDl
2 satisfy the left-

hand side similarity of φ but do not satisfy the right-
hand side equality, and Matchφ(t1, ā1, t2, ā2) ̸∈ SDk

,
SDk

contains NotMatchφ(t1, ā1, t2, ā2).

• For every j, l ∈ [0, k], tuple identifiers t1, t2, t3
and MDs φ1, φ2, such that (Dj−1, Dj)[t1,t2] |= φ1,
(Dl−1, Dl)[t1,t3] |= φ2, and j ≤ l, SDk

contains an
atom prec(t1, ā1, t2, ā2, t1, ā

′
1, t3, ā3), where t

Dj−1

1 =

ā1, tDj−1

2 = ā2 t
Dl−1

1 = ā′1, and t
Dl−1

3 = ā3.

It is easy to observe that SDk
is a stable model for the pro-

gram Π(D0,Σ). �

Proof of Proposition 2: Let S be a stable model for the
logic program Π(D0,Σ). For every relation Ri and every
tuple identifier t of relation Ri such that Rc

i (t, ā) ∈ S, we
let tDS = ā. To show that DS is a (D0,Σ)-clean instance,
we need to construct instances D1, . . . , Dk = DS , such that,
for every j ∈ [1, k], (Dj−1, Dj)[t1,t2] |= φ, for some φ ∈ Σ
and tuple identifiers t1, t2. We use the following lemma.

Lemma A.1. The relation prec is a partial order
on the set of atoms M = {Matchφ(t1, ā1, t2, ā2) |
Matchφ(t1, ā1, t2, ā2) ∈ S}. �

The lemma easily follows from rules 6, 7, and 9.
Let ≤ be any linear order on M that pre-

serves prec. That is, for every two match atoms
Matchφj (t1, ā1, t2, ā2) and Matchφl

(t3, ā3, t4, ā4),
we have Matchφj

(t1, ā1, t2, ā2) ≤ Matchφl
(t3, ā3, t4, ā4)

whenever prec(t1, ā1, t2, ā2, t3, ā3, t4, ā4) holds, and
equality holds only when the two atoms are identical.

For every i ∈ [1, k], k = |M|, we construct instance Di

as follows. Let Matchφ(t1, ā1, t2, ā2) be the ith smallest
atom in the linear order ≤. For every tuple identifier t, we
let tDi = tDi−1 if t ̸= t1, t2, and we let tDi

1 , tDi
2 be the

result of enforcing φ on ā1, ā2. Due to minimality of S,
Matchφ(t1, ā1, t2, ā2) exists only if the left-hand side simi-
larities of the MD φ hold for ā1, ā2, and the right-hand side
equality does not hold. We thus have (Di−1, Di)[t1,t2] |= φ.
It remains to show that Dk is a stable instance, and it is ac-
tually equal to DS .

Lemma A.2. Let SR′ contain all the R′ atoms from the
stable model S, i.e., SR′ = {R′

j(t, ā) | R′
j(t, ā) ∈ S}.

Let DR′ be a set of R′ atoms constructed from in-
stances D0, . . . , Dk above, defined as DR′ = {R′

j(t, ā) |
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t is an Rj-tuple, and tDi = ā for some i ∈ [1, k]}. �

Then it holds SR′ = DR′ .
Using Lemma A.2 we can easily show that if Dk is not a

stable instance, then S cannot be a stable model of the pro-
gram. Moreover, since Dk and DS collect the largest ver-
sion of each tuple identifier, w.r.t. ≼, from the identical sets
of atoms SR′ and DR′ , the two instances should be equal.
�

Proof of Proposition 5: Let us suppose that
Π(D,Σ) is not HCF. Then the program Π(D,Σ)
has a directed cycle in its dependency graph that
goes through Matchϕj (T1, X̄1, Y1, T2, X̄2, Y2) and
NotMatchϕj (T1, X̄1, Y1, T2, X̄2, Y2) (the atoms
that appear in the only disjunctive head), but
NotMatchϕj (T1, X̄1, Y1, T2, X̄2, Y2) cannot be involved in
a directed cycle since there is no rule in Π(D,Σ) in which
NotMatchϕj (T1, X̄1, Y1, T2, X̄2, Y2) appears in the body
of a rule having heads, a contradiction. �

Definition A.1. A model M of a normal program Π is stable
iff M is a minimal model of ΠM , where ΠM is obtained
from the ground instantiation of Π by (i) deleting all rules
having a negative literal C such that M |= C; (ii) deleting
all negative literals form the remaining rules. �

From a database instance we can define a structure.

Definition A.2. For a database instance D, MER(D) is the
Herbrand structure ⟨U , IP , IB⟩, where U is the domain of
the database and IP , IB are the interpretations defined as
follows:

1. If attributes values a1 and a2 match, then
Match(a1, a2) ∈ IP .

2. If R(s̄) ∈ D̄, then R(s̄) ∈ IP .
3. If R(s̄1), R(s̄2) ∈ D̄, s̄1 ̸= s̄2 and s̄2 = s̄2 ∪ s̄1, then

Dominated(s̄1) ∈ IP .
4. If R(s̄) ∈ IP and Dominated(s̄) /∈ IP , then Er(s̄) ∈

IP

The interpretation for IB is defined as expected: if Q is a
built-in predicate, then Q(a) ∈ IB iff Q(a) is true in classi-
cal logic, and Q(a) /∈ IB iff Q(a) is false. �

Notice that the merge closure D̄ is obtained using the
match and merge functions in the union class for Swoosh
and since we have a reflexive and commutative match func-
tion, the ICAR properties are satisfied by the match and
merge functions. Then, merge domination order exists on
tuples [Benjelloun et al. 2009].

Lemma A.3. ERMER(D) = {Er(s̄) | Er(s̄) ∈MER(D)}
is the unique entity resolution instance of D. �
Proof: From [Benjelloun et al. 2009] we know that given
match and merge functions that satisfy ICAR properties,
any maximal derivation sequence starting from D computes
entity resolution ER(D). Therefore, we need to show

that we can construct a maximal derivation sequence from
MER(D) that computes ER(D) and ER(D) = ERMER(D)

(since the match and merge functions in the union class
stratify ICAR properties). Starting from D, perform all
necessary merge steps to generate tuples in ER(D). This
is possible form MER(D), since all the required tuples are
in merge closure D̄. Then, perform purge steps to remove
all records which are not in ER(D). Each step is a valid
purge one, since D̄ ≤ ER(D). No additional purge steps
are possible, since ER(D) does not contain dominated
tuples and no additional merge steps are possible, since
D̄ ≤ ER(D). Therefore, the derivation is maximal, and
it is clear that, according to construction of MER(D), we
have ER(D) = ERMER(D), since tuples in relation Er(s̄)
of MER(D) are tuples of D̄ such that are not dominated. �

Lemma A.4. If D′ is the unique entity resolution instance
of D, then there is a model M of the program ΠUC(D) such
that ERM = D′. Furthermore, MER(D) is this model. �
Proof: By Lemma A.3, we have that ERMER(D) = D′, so
we only need to show that MER(D) satisfies all the rules of
(ΠUC(D))M . It is clear that, by construction of MER(D),
rules 1 and 4 are satisfied by MER(D). There may exist a
set of rules of form 2. If the body of the rule is satisfied,
we have that R(s̄1), R(s̄2) ∈ MER(D), a1 ∈ s1

i , a2 ∈ s2
i

such that a1 and a2 match. It means that for two tuples
r1 = R(s̄1) and r2 = R(s̄2) we have M(r1, r2) = true
(since this rule exists when two tuples in ℜ match by
having a pair of Ai values from them that match for some
attributes Ai of R, 1 ≤ i ≤ n). Therefore, merge closure
of instance D should contain R(s̄3) such that s̄3 = s̄1 ∪ s̄2.
Since in the construction of MER(D), R(s̄) ∈ MER(D)
iff R(s̄) ∈ D̄, the head of the rule is also satisfied and the
whole rule is satisfied. Moreover, there is a set of rules
of form 3. If the body of the rule is true in MER(D), it
means that R(s̄1), R(s̄2) ∈ MER(D), s̄2 = s̄1 ∪ s̄2, and
for some si, s1

i ̸= s2
i . We know that R(s̄) ∈ MER(D) iff

R(s̄) ∈ D̄. Therefore, R(s̄1), R(s̄2) ∈ D̄. By construction
of MER(D) this implies that Dominated(s̄1) ∈ MER(D)
(since s̄2 = s̄1 ∪ s̄2 and µ(r1, r2) = r2). Therefore, the rule
is satisfied. �

B DLV Code
Example 3:
%extensional database
r(t1,a1,b1).
r(t2,a2,b2).
r(t3,a3,b3).

%domain of database
dom(a1). dom(a2). dom(a3). dom(b1).
dom(b2). dom(b3). dom(b12). dom(b23).
dom(b123).

%existing similarities
att(a1,a2). att(b2,b3).
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%matching functions
ma(b1,b2,b12). ma(b2,b3,b23).
ma(b1,b23,b123).

%rules related to match functions and
%similarity relations
attmatch(X,Y) :- attmatch(Y,X).
ma(Y,X,Z) :- ma(X,Y,Z).
attmatch(X,X) :- dom(X).
ma(X,X,X) :- dom(X).
ma(X,S,V) :- ma(X,Y,Z), ma(W,Z,V),

ma(Y,W,S).
ma(Z,W,V) :- ma(Y,W,S), ma(X,S,V),

ma(X,Y,Z).

%rules for obtaining clean solutions
match(T1,X1,Y1,T2,X2,Y2) v

notmatch(T1,X1,Y1,T2,X2,Y2) :-
r(T1,X1,Y1), r(T2,X2,Y2),
att(X1,X2), Y1!=Y2, T1!=T2.

:- notmatch(T1,X1,Y1,T2,X2,Y2),
not old(T1,X1,Y1),
not old(T2,X2,Y2).

old(T1,X1,Y1):- r(T1,X1,Y1),
r(T1,X1,Y2), ma(Y1,Y2,Y2), Y2!=Y1.

match(T2,X2,Y2,T1,X1,Y1) :-
match(T1,X1,Y1,T2,X2,Y2).

r(T1,X1,Y3) :-
match(T1,X1,Y1,T2,X2,Y2),
ma(Y1,Y2,Y3).

match(T1,X1,Y1,T2,X2,Y2) v
notmatch(T1,X1,Y1,T2,X2,Y2) :-
r(T1,X1,Y1), r(T2,X2,Y2),
att(Y1,Y2), Y1!=Y2,T1!=T2.

:- notmatch(T1,X1,Y1,T2,X2,Y2),
not old(T1,X1,Y1),
not old(T2,X2,Y2).

old(T1,X1,Y1) :- r(T1,X1,Y1),
r(T1,X1,Y2), ma(Y1,Y2,Y2), Y2!=Y1.

prec(T1,X1,Y1,T2,X2,Y2,
T1,X1,Y3,T4,X4,Y4) :-
match(T1,X1,Y1,T2,X2,Y2),
match(T1,X1,Y3,T4,X4,Y4),
ma(Y1,Y3,Y3), Y3!=Y1.

prec(T1,X1,Y1,T2,X2,Y2,
T1,X1,Y1,T4,X4,Y4) :-
match(T1,X1,Y1,T2,X2,Y2),
match(T1,X1,Y1,T4,X4,Y4),
ma(Y1,Y4,Y3),Y1!=Y3.

prec(T1,X1,Y1,T2,X2,Y2,
T1,X1,Y1,T2,X2,Y2) :-
match(T1,X1,Y1,T2,X2,Y2).

:- prec(T1,X1,Y1,T2,X2,Y2,
T1,X1,Y3,T4,X4,Y4),

prec(T1,X1,Y3,T4,X4,Y4,
T1,X1,Y1,T2,X2,Y2),
Y1 !=Y3.

:- prec(T1,X1,Y1,T2,X2,Y2,
T1,X1,Y3,T4,X4,Y4),

prec(T1,X1,Y3,T4,X4,Y4,
T1,X1,Y1,T2,X2,Y2),
T2!=T4.

:- prec(T1,X1,Y1,T2,X2,Y2,
T1,X1,Y3,T4,X4,Y4),

prec(T1,X1,Y3,T4,X4,Y4,
T1,X1,Y1,T2,X2,Y2),
X2 != X4.

:- prec(T1,X1,Y1,T2,X2,Y2,
T1,X1,Y3,T4,X4,Y4),

prec(T1,X1,Y3,T4,X4,Y4,
T1,X1,Y1,T2,X2,Y2),
Y2 !=Y4.

:- prec(T1,X1,Y1,T2,X2,Y2,
T1,X1,Y3,T4,X4,Y4),

prec(T1,X1,Y3,T4,X4,Y4,
T1,X1,Y5,T6,X6,Y6),

not prec(T1,X1,Y1,T2,X2,Y2,
T1,X1,Y5,T6,X6,Y6).

rc(T1,X1,Y1) :- r(T1,X1,Y1),
not old(T1,X1,Y1).

Example 7: Since in this example we exploit built-in
predicates and functions from library of the system, the logic
program must contain, in the preamble, a line that tells the
system to include the library itself. Other used predicates
have the same meanings as mentioned before in the exam-
ple.

#include<ListAndSet>
%extensional database
r({a1},{b1}). r({a2},{b2}).
r({a3},{b3}).

%existing similarities
match(a1,a2). match(a2,a3). match(a3,a2).
match(a2,a1).

%rules for obtaining resolution instance
% #Union is a predicate with three
% arguments saying that the third
% argument is the union of two other
% arguments. Another predicate is #Member
% saying that the first argument is a
% value in the second argument which is
% a set

r(As3,Bs3) :- #union(As1,As2,As3),
#union(Bs1,Bs2,Bs3),
r(As1,Bs1),
r(As2,Bs2),
#member(S1,As1),
#member(S2,As2),
match(S1,S2).

dominated(As1,Bs1) :- r(As1,Bs1),
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r(As2,Bs2),
#union(As1,As2,As2),
As2!= As1,
#union(Bs1,Bs2,Bs2).

dominated(As1,Bs1) :- r(As1,Bs1),
r(As2,Bs2),
#union(As1,As2,As2),
Bs2!= Bs1,
#union(Bs1,Bs2,Bs2).

er(As1,Bs1) :- r(As1,Bs1),
not dominated(As1,Bs1).

C Cleaning programs for UC-Swoosh via
MDs

For this end, we can consider possibly denumerable domain
DAi

for each attribute Ai of R, 1 ≤ i ≤ n, and defines a
reflexive and symmetric similarity relation ≈Ai

for each do-
main. Then, the domain for each Ai becomes DomAi

such
that it is the union of all subsets of DAi

. Consequently, for
each R(s̄) ∈ R, si belongs to DomAi

. It also defines a
similarity relation ≈{Ai} which can be induced from ≈Ai

,
saying that s1 ≈{Ai} s2 holds iff there exists a1 ∈ s1 and
a2 ∈ s2 such that a1 ≈Ai

a2. Moreover, matching func-
tions m{Ai} on DomAi

× DomAi
are considered such that

m{Ai} (s1, s2) = s1 ∪ s2.
Based on these definitions, for union case of Swoosh

given r1 = R(s̄1), r2 = R(s̄2), M(r1, r2) holds iff for some
i, s1

i ≈{Ai} s2
i , and when M(r1, r2) = true, µ(r1, r2) =

R(m{A1}(s
1
1, s

2
1), ...,m{An}(s

1
n, s

2
n)).

On the other hand, we can consider the following set of
MDs ΣS for 1 ≤ i, j ≤ n with ≈{Ai} and matching func-
tions m{Ai} to reconstruct Swoosh framework under defined
M and µ. Moreover, it is also assumed that tuples have tuple
identifiers which are the first and extra attribute of relation
R:

R[Ai] ≈{Ai} R[Ai] −→ R[Aj ]
.
= R[Aj ]

Example 10. Consider the instance DID which differs from
D in having tuple identifiers and the following set of MDs
ΣS :

R(DID) A B
t1 {a1} {b1}
t2 {a2} {b2}
t3 {a3} {b3}

ϕ1 : R [A] ≈{A} R [A] −→ R [B]
.
= R [B]

ϕ2 : R [A] ≈{A} R [A] −→ R [A]
.
= R [A]

Assume b12 ≈ b2, b12 ≈ b3. Then, program Π(DID,ΣS)
contains rules as follows:

1. R′(t1, {a1}, {b1}). R′(t2, {a2}, {b2}).
R′(t3, {a3}, {b3}).

2.Matchϕ1(T1, X1, Y1, T2,X2, Y2) ∨
NotMatchϕ1(T1, X1, Y1, T2,X2, Y2) ←

R′(T1, X1, Y1), R
′(T2,X2, Y2),

X1 ≈{A} X2, Y1 ̸= Y2.

Matchϕ2(T1, X1, Y1, T2,X2, Y2) ∨
NotMatchϕ2(T1, X1, Y1, T2,X2, Y2) ←

R′(T1, X1, Y1), R
′(T2,X2, Y2),

X1 ≈{A} X2, X1 ̸= X2.

Matchϕ1(T1,X1, Y1, T2, X2, Y2) ←
Matchϕ1(T2, X2, Y2, T1,X1, Y1).

(simmilarly for Matchϕ2)

← NotMatchϕ1(T2, X2, Y2, T1, X1, Y1),

not OldVersion(T1, X1, Y1),

not OldVersion(T2,X2, Y2).

(simmilarly for NotMatchϕ2)

OldVersion(T1, Z̄1) ← R′(T1, Z̄1), R
′(T1, Z̄

′
1),

Z̄1 ≼ Z̄′
1, Z̄1 ̸= Z̄′

1.

3. R′(T1,X1, Y3) ← Matchϕ1(T1, X1, Y1, T2, X2, Y2),

M{B}(Y1, Y2, Y3).

R′(T1, X3, Y1) ← Matchϕ2(T1,X1, Y1, T2, X2, Y2),

M{A}(X1, X2, X3).

4. Prec(T1, X1, Y1, T2, X2, Y2, T1,X1, Y
′
1 , T3, X3, Y3) ←

Matchϕ1(T1, X1, Y1, T2, X2, Y2),

Matchϕ2(T1, X1, Y
′
1 , T3,X3, Y3),

Y1 ≼ Y ′
1 , Y1 ̸= Y ′

1 .

Prec(T1, X1, Y1, T2,X2, Y2, T1, X1, Y
′
1 , T3, X3, Y3) ←

Matchϕ1(T1, X1, Y1, T2, X2, Y2),

Matchϕ2(T1, X
′
1, Y1, T3,X3, Y3),

X1 ≼ X ′
1, X1 ̸= X ′

1.

(similarly for other mentioned cases)

5. Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y1, T3, X3, Y3) ←
Matchϕ2(T1, X1, Y1, T2, X2, Y2),

Matchϕ1(T1, X1, Y1, T3, X3, Y3),

M{B}(Y1, Y3, Y4), Y1 ̸= Y4.

Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y1, T3, X3, Y3) ←
Matchϕ1(T1, X1, Y1, T2, X2, Y2),

Matchϕ2(T1, X1, Y1, T3, X3, Y3),

M{A}(X1, X3,X4), X1 ̸= X4.

(similarly for other mentioned cases)
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6. Prec(T1, X1, Y1, T2, X2, Y2, T1,X1, Y1, T2, X2, Y2) ←
Matchϕ1(T1, X1, Y1, T2,X2, Y2).

(similarly for Matchϕ2)

7. ← Prec(T1, X1, Y1, T2, X2, Y2, T1, X
′
1, Y

′
1 , T3,X3, Y3),

Prec(T1, X
′
1, Y

′
1 , T3, X3, Y3, T1,X1, Y1, T2, X2, Y2),

(T1,X1, Y1, T2, X2, Y2) ̸= (T1, X
′
1, Y

′
1 , T3, X3, Y3).

8. ← Prec(T1, X1, Y1, T2, X2, Y2, T1, X
′
1, Y

′
1 , T3,X3, Y3),

Prec(T1, X
′
1, Y

′
1 , T3, X3, Y3, T1,X

′′
1 , Y

′′
1 , T4, X4, Y4),

not Prec(T1, X1, Y1, T2, X2, Y2, T1, X
′′
1 , Y

′′
1 , T4, X4, Y4).

9. Rc(T1, X1, Y1) ← R′(T1,X1, Y1),

not OldVersion(T1,X1, Y1).

Then, it has one stable model which corresponds to the clean
instance Dm :

R(Dm) A B
t1 {a1, a2, a3} {b1, b2, b3}
t2 {a1, a2, a3} {b1, b2, b3}
t3 {a1, a2, a3} {b1, b2, b3}

�
As example 5 and 10 show in the union case of Swoosh

the entity resolution instance is equivalent to the clean
instance when we consider the instance containing tuples
without tuple identifiers and eliminating duplicated tuples.

It can be proved that given a clean instance Dm obtained
by enforcement of the above MDs ΣS from D and the
entity resolution instance DS obtained directly via union
case of Swoosh, (a) for every R(s̄) ∈ DS there is a tuple
R(t, s̄) ∈ Dm; (b) for every tuple R(t, s̄) ∈ Dm, there
is R(s̄′) ∈ DS such that R(s̄) ≤ R(s̄′). More precisely,
union case of Swoosh entity resolution is equivalent to a
clean instance resulting from a chase sequence with MDs
when eliminating tuple identifiers there exist no dominated
tuples in it [Bertossi, Kolahi and Lakshmanan 2011].

Proposition 8. Given an instance D0, a set of MDs ΣS ,
stable models Ss of program ΠUC(D0) and Sm of program
Π(DID

0 ,ΣS), there is a one to one correspondence between
clean instance Dm constructed from Sm and entity resolu-
tion instance DS obtained from Ss. �

To highlight the power of the proposed logic program for
obtaining clean instances by enforcement of MDs we can
also show that the logic program ΠUC(D0) for obtaining
the entity resolution instance based on union case of Swoosh
can be as the particular case of the general logic program
Π(DID

0 ,Σ) for obtaining clean instances (D0 and DID
0 just

differ in having tuple identifiers). To obtain such logic pro-
gramming specification for union case of Swoosh frame-
work under defined M and µ we should consider the defined
set of MDs ΣS for 1 ≤ i, j ≤ n with ≈{Ai} and match-
ing functions m{Ai}. As mentioned earlier both programs
try to merge tuples that match based on their approaches.

In the case of Π(DID
0 ,ΣS) it does not allow old versions

of tuples in future matches, therefore it uses program de-
nial constraints which is what Swoosh doesn’t require. In-
deed, Swoosh does want to merge based on older version
of tuples. Consequently, by syntactic modification of rules
in Π(DID

0 ,ΣS) we can obtain ΠUC(D0). Particularly, we
should modify and eliminate rules in Π(DID

0 ,ΣS) related to
record the relative order of matching applications on each tu-
ple identifier. Example 11 shows how the program ΠUC(D)
in example 5 can be obtained from Π(DID,ΣS) in exam-
ple 10.

Example 11. In Π(DID,ΣS) by
• eliminating the denial constraint and rules for symme-

try of Match in 2
• modifying rules in 2 such that the relation NotMaatch

is eliminated from them
• eliminating rules related to the relation Prec

• renaming relations OldVersion and Rc by Dominated
and ErMD respectively, and

• combining the two following rules (similarly for
Matchϕ2

):

Matchϕ1(T1,X1, Y1, T2, X2, Y2) ←
R′(T1, X1, Y1), R

′(T2, X2, Y2),

X1 ≈{A} X2, Y1 ̸= Y2.

R′(T1, X1, Y3) ← Matchϕ1(T1, X1, Y1, T2, X2, Y2),

M{B}(Y1, Y2, Y3).

To get the rule:

R′(T1, X1, Y3) ← R′(T1,X1, Y1), R
′(T2, X2, Y2),

X1 ≈{Ai} X2, Y1 ̸= Y2,

M{B}(Y1, Y2, Y3).

we can obtain the following program that differs form
ΠUC(D) in having tuple identifiers.

1. R′(t1, {a1}, {b1}). R′(t2, {a2}, {b2}).
R′(t3, {a3}, {b3}).

2. R′(T1, X1, Y3) ← R′(T1, X1, Y1), R
′(T2, X2, Y2),

X1 ≈{A} X2, Y1 ̸= Y2,

M{B}(Y1, Y2, Y3).

R′(T1, X3, Y1) ← R′(T1,X1, Y1), R
′(T2, X2, Y2),

X1 ≈{A} X2, X1 ̸= X2,

M{A}(X1, X2, X3).

3. Dominated(T1, Z̄1) ← R′(T1, Z̄1), R
′(T1, Z̄

′
1),

Z̄1 ≼ Z̄′
1, Z̄1 ̸= Z̄′

1.

4. ErMD(T1, X1, Y1) ← R′(T1, X1, Y1),

not Dominated(T1, X1, Y1).
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In order to have a full correspondence, we have to add to
the general cleaning program above the rule 5 for pruning
dominated tuples. Consequently, relation ErS collects the
atoms of entity resolution instance.

5. ErS(X1, Y1) ← ErMD(T1, X1, Y1).

�
As seen in the above example, the logic program ΠUC(D)

for obtaining entity resolution instances via union case of
Swoosh can be obtained from the program Π(DID,ΣS) for
obtaining clean instances w.r.t. MDs. Actually, ΠUC(D) is
a particular case of general program Π(DID,ΣS).

D ASPs for Swoosh with Negative Rules
In practice ER instances may contain inconsistencies. Ac-
tually, the process for matching and merging tuples is most
often application-specific, complex, and error-prone and the
initial database instance may contain ambiguous data which
may be impossible to capture all the application nuances in
ER process.

To remove the inconsistencies [Whang, Benjelloun and
Garcia-Molina 2009] introduced negative rules that disallow
inconsistencies in the ER instance(ER-N). Indeed, [Whang,
Benjelloun and Garcia-Molina 2009] studied how to modify
the ER process, in light of some integrity constraints called
negative rules. Hence, a set of ER tuples satisfy the con-
straints. Furthermore, since in general there can be more
than one valid ER instances, it was discussed how a domain
expert can guide the ER process to capture a desirable and
valid set of tuples using various methods for resolving tu-
ples. Moreover, it was formally defined what is the valid
ER instance in the presence of such negative rules: Given an
instance D and the merge closure, D̄ , an ER-N of D̄ is a
consistent set of tuples D′ that satisfies the conditions: (1)
D′⊆ D̄. (2) ∀ r ∈ D̄ - D′: ∃ r′∈ D′ such that r ≼s r′ or
D′ ∪ {r} is inconsistent. (3) no strict subset of D′ satisfies
the first two conditions. (4) no other instances satisfying the
first three conditions dominate D′.

Example 12. Consider the database instance D, shown
blow, which are to be resolved (to represent tuples better,
we are using ri with 1 ≤ i ≤ 3).

R(D) name phone gender
r1 {Mishael} {7654321} {}
r2 {Michael} {} {M}
r3 {Mishael} {7654321} {F}

Assume M(r1, r2) = true and M(r1, r3) = true . Suppose
first r1 and r2 are merged into new tuple r12.

R(D1) name phone gender
r12 {Mishael, Michael} {7654321} {M}
r3 {Mishael} {7654321} {F}

Now suppose that M(r12, r3) = true (since they have sim-
ilar names). The result is new tuple r123.

R(D2) name phone gender
r123 {Mishael, Michael} {7654321} {F,M}

D2 is the entity resolution instance for D. However, it
is easy to see that there are problems with this instance
which can be identified by negative rules. Consider we
have a negative rule saying that one person cannot have
two genders, and hence r123 variolates the constraint. To
resolve the gender inconsistency, say we unmerge r123 back
into {r12, r3}. Suppose we have a negative rule stating that
no two tuples in ER should have the same phone number.
So, the set {r12, r3} is still not a valid ER instance. In this
example, the problem occurred because r1 was initially
merged with r2 instead of r3. With the help of a domain
expert, we can handle this situation. �

[Whang, Benjelloun and Garcia-Molina 2009] followed
an approach in which with the help of a domain expert, it is
started identifying tuples that wanted to be in ER. Actually,
the expert looks at the tuples, and selects one that is consis-
tent, non dominated and more desirable to have in the final
instance in order to prevent inconsistencies.

The proposed logic program for specification of union
case for Swoosh can be extended such that it generates
consistent ER instances in the presence of negative rules.
Since for obtaining the most desirable consistent instances
we need an expert to make decisions when there is a choice
to be made, the program can have calls to external sources
to handle it. HEX programs, which are non-monotonic logic
programs admitting external atoms can be used for this pur-
pose [Eiter et al. 2005]. By means of HEX programs, the
new logic program delegates the task of identifying tuples
that is more desirable to be in the ER instance to an exter-
nal computational source (e.g., an external deduction sys-
tem). So, the new logic program significantly differs from
the one for union case of Swoosh without any negative rules.
The main reason is that in ER with negative rules an ex-
pert chooses more desirable tuples to be in ER instance, and
based on those tuples dominated and inconsistent tuples are
eliminated not to be chosen as a tuple in ER. In contrast, in
Swoosh we just focus on the merge closure and non domi-
nated tuples in it are chosen to be in ER without any needs
to look at which tuples are already in the ER instance.
Example 13. (Example 12 continued) We can have the
following HEX program for obtaining ER in presence of
the mentioned negative rules. As you can see the program
is using higher order and external atoms to delegate the
task of choosing more desirable tuples in ER. According
to [Whang, Benjelloun and Garcia-Molina 2009] an expert
chooses tuples from merge closure that wants to be in the ER
instance and then those tuples that are dominated and incon-
sistent w.r.t. tuples in ER would be removed (for simplicity
facts are not shown):

1. The following rule is related to generating merge clo-
sure of D:
R′(#Union(S1

1 , S
2
1),#Union(S1

2 , S
2
2),#Union(S1

3 , S
2
3))

← R′(S1
1 , S

1
2 , S

1
3), R

′(S2
1 , S

2
2 , S

2
3),#Member(A1, S

1
1),

#Member(A2, S
2
1), MatchA(A1, A2),

(S1
1 , S

1
2 , S

1
3) ̸= (S2

1 , S
2
2 , S

2
3).
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2. This rule checks if a tuple is inconsistent in terms of
having two genders:

Inconsistent(S̄) ← R′(S̄),#Member(A1, S3),

#Member(A2, S3), A1 ̸= A2.

3. We need a rule to determine tuples of merge closure
that are not dominated and inconsistent in order to be
selected by an expert to be located in ER instances as
more desirable ones:

Select(S̄) ← R′(S̄), not Inconsistent(S̄), ,

not Dominated(S̄), not Er(S̄).

4. The following rule computes the predicate Er taking
values from the predicate #External, which chooses
via #External[Select] more desirable tuples from tu-
ples in Select to be located in Er, delegating this task to
an external computational source to behave like a do-
main expert.

Er(S̄) ← #External[Select](S̄).

5. We also have an inconsistency if there are two tuples
with identical phone number. This rule determines
those tuples that are inconsistent with tuples in ER and
make them unavailable to be chosen as a tuple in ER.

Inconsistent(S̄) ← Er(S̄1), R′(S̄2),

S1
2 = S2

2 , S̄1 ̸= S̄2.

6. We need a rule to find dominated tuples w.r.t. tuples in
ER.

Dominated(S1
1 , S

1
2 , S

1
3) ← R′(S1

1 , S
1
2 , S

1
3), Er(S

2
1 , S

2
2 , S

2
3),

(#Union(S1
1 , S

2
1),#Union(S1

2 , S
2
2),#Union(S1

3 , S
2
3)) =

(S2
1 , S

2
2 , S

2
3), (S

1
1 , S

1
2 , S

1
3) ̸= (S2

1 , S
2
2 , S

2
3).

�
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