PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
FACULTAD DE MATEMATICAS

FACTUAL PROBABILITY AND BROWNIAN MOTION

by
Leopoldo Bertossi (*)

PUC/FM~82/12

V¥

INFORME TECNICO

CASILLA 114 - D
SANTIAGO DE CHILE




DEPARTAMENTO DE MATEMATICA

FACTUAL PROBABILITY AND BROWNIAN MOTION

by
Leopoldo Bertossi (*)

PUC/FM-82/12

Pontificia Universidad Catdlica de Chile
Facultad de Matemiticas
Casilla 114-D, Santiago de Chile




I.

FACTUAL PROBABILITY AND BROWNIAN MOTION

Leopoldo Bertossi (*)

Introduction

In the framework of a factual definition of probability-presented
originally by Chuaqui in [2] ,[3] and modified in [4] - a for-
mulation of the Brownian Motion process was given In [11. That
formulation, which used some non-standard concepts and techniques,
has the advantage of considering Brownian Motion as a "fast" ran-
dom walk., Nevertheless, a formal translation of that formulation
to "classical" terms may appear rather obscure for those who have
never worked with these techniques,

In this paper I adopt a quite different and . classical ﬁoint of
view in order to formulate Brownian motion in the general frame-

work of [3] where causal structures are introduced- for the study

of compound random phenomena,

Our purpose 1is to present a model which determines a probability
measure, more precisely, a non probabilistic structure which gives
rise to a probability space and a Brownian Motion defined on it.
In this sense our prohlem consists in the non probabilistic repre
sentation of a probability space,

We will consider only a one dimensional Brownian motion., A gen-
eralization to more dimensions should not be difficult, Let us
first define a Brownian motion,

(*) Universidad Catdlica de Chile
Facultad de Matemiticas
Casilla 114-D , Santiago de Chile



a)

b)

c)

A Brownian motion is a stochastic process (Zt,0<t< 1 defined

on a probability space (Q,A,P) with independent increments,

i.e. for every choice of parameters t1<:t2<...'<tn, the in-
crements 2, -1 2, -2, , 00, 2, -1 are indepen

t, 4" Tty 4, "ty A -
dent,

If 0<s< t, the random variable Zt--Z6 is normally dis-

tributed with expectation 0 and variance oz(t-b)( o a fixed

positive number), i.e. . .
o
Pﬂt-26< x] = ! exp (- ———1] da
oV 2m(t-s) " ° 206 (2-4)

Usually the condition of the a.s. continuity of sample functions
(i.e. the real functions Zt(w) of t) is required [8]. In this

formulation of Brownian motion-as it was originally studied([6] - we

do not require this condition. Nevertheless we will show afterwards that it is

possible to construct a continuous version of this process.

We follow the notation and definitions in [3]. Some changes
were introduced in [4] but they are not important for our pur-
poses.




Simple Probability Structures and Normal Probability Law.

We intend to find a representation of the normal distribution
on ( R, B] in the framework of Chuaqui's simple probability
models.

As a motivation we notice that the uniform probability distri-

bution on { ,7} is the probability measure defined on ((0,1),§(0 7))

which is invariant under translations (the Lebesgue measure):

P(x + E} = P(E) ,¥yxe (0,1) ,VEe Bio 1]

( + :addition modulo 1).

The probability measure induced by the normal law is also invar-
iant under certain transformations: let ¢ be the function defined
by

b4 1 XZ
otz s [ Loexpl- rax

o VIT 1

The probability P arising from the normal law is such that
Ple™ (x + o(E))=PIE) » vy xe (0,11, VYEcgB.
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We shall call the function g : R + R defined by gly):-= ¢-1(x; d(y))
a ¢ - translation(in x) of the real line.

Let us consider the simple probability structure ﬁ = <K, £>where

L(_:{ah :’LER}, G.)L=<R,(I)1€:,,R,{/L}>,

J is the familly of intervals of the real line, £ =<R '(I)Ieﬂ >

is the intrinsic part and R is the binary operation such that
Rab = ¢'1(¢(a) + o(b)) and may be thought as the ¢ - translation

of a in ¢(b) (as ¢ is invertible from (0,7) into R we can repre-
sent each ¢ - translation in this way).

According with the definitions above, we have that the structural
part "‘;L,u. of each CL)Le,_IS is a.n’“:=<]R,R,{IL}>.

Kgt 7 {an,ét 2 eR } determines the group Gy of permutations

of R under which the probability measure has to be invariant;
<R ’(I)Ie:I > determines the o - algebra Bk of events. In this

case, BK contains all Borelian subsets of R,

We are interested in the group of permutations GK since, accord-

ing with the general definition, for each B, ,B2 EBK one has

B, n 82 (B, symmetric with BZ) iff there exists some {e GK such
_6- . . ' . * =—

that B,=B8," = {d e K : exists @ € B, with § |{ azt ) azt },

and the probability measure u determined by 5 has to be such
that, for B, v B, , wiB,) = u(BZ).
For a permutation § of R to be in GK it is necessary that
" 2
§ an,ét ) = ax,bt for some teR if n.iR , 4.0,
%
<R, § R, {gr}> = <R, R, {£}>. Since § <R,R>=<R, R>,{

has tc be a ¢ - translation of the real line, and therefore the
probability measure u agrees with that provided by the normal

law, that is, u(B'}) = I exp (- %T Jdx , where

g VT



!

B = {aﬁ_e5,= neB) , and B is a Borelian subset of R.

In order to represent the probability measure corresponding
to the normal law N{u, 02), it suffices to replace the opera

tion R = R¢ by RF where F is the function defined by

Flz) = —— JZ exp |- ‘—"—'z“—’—z) dx
Ving -0 o
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Causality and Brownian motion.

Let I be the closed unit interval [0,1];

B = {SU{0}:SC rand 1<|S-{0}]< o),
the family of finite subsets of (0,11 which contains 0 ; and
let R denote the usual order relation < in {0,71. Thus, our
compound causal structure is T =< F,&,R >(cf. [3]). If
X € -F', then < X, R > is a finite causal tree.

Now, we have to define our compound probability structure.

In order to do this we will define the set ¥ of outcomes
and associate to each tel0,1] a family of simple probability
stru.ctures. The union of the members of this family may be
interpreted as the totality of possible simple outcomes at
time £ (cf. (21,031,411 ).

Associate to to *= 0 the simple probability structure
Ky = {{{0},{0})}. 1In this structure we have probability Pe 71
— 0"
1. Definitions: The function § is an outcome, that is,
§ e H , iff
i) there exists X € & such that Dom { =X and 6(0)5:50
ii) if Dom §{=X and X-= {to, PPN tn} with
0 =t0 < t, < ... < tn , then for each k=1, ..., n-1
6(tk+1)€.52+1 , for some 2 € R (which may be different for

each k) ; where EZ+7 1s the simple probability structure

)L . - .

5k+1 t= (R, {8}) : & ¢ R},

(IR, {8} ) is only an abbreviation for < R ,(I)IEJ,RF,{A} >

where RF 1s the operation in section Il corresponding to

the normal distribution function F)



n

Then the probability P on K is given b
P tk*’ » L —k+1 g y
1 1 (x-)?
P (E) = exp(- o —————— ) dx
Lhoy o2 1) T e -t
\/Z“Qk‘_l’tk E k"’, k
2
_n
(let p {x) = ’ exp (- ! 15——1————)
ther » 1 J T -t
ZW(I’Z""-tk) k+1 k

be the density function).

where E ¢ B, is a Borel subset of the line (we assume o= 1),
That is, the probabilities on Eéﬂ; are distributed according

to a normal probability law with mean 2 and variance tk+1 -, .
At t,, flt,) ¢ E? , the simple probability structure 52 ! s

{{R, {s}) :8 ¢ R} where the probability Pt 0 on K? is
1» -

2
. ! 1 x
P’tl 0 (E) — }E exp (- '{T;- Jdx , E € 81
' JZWI,
1 ! xz
(let Pt (x): = ———— expl- 7 F ]} be the density function)
1,0 e 1
JZnt,

(the Brownian particle starts from the origin).

iii) 6(th) = { R, {&}) implies

A
6(tk+1) e ¥ , kR =0,..., n-1.

2. Remarks:

1) Though the mathematical problem of representation of the nor
mal probability law through the simple probability structures
is solved in section Il a characterization of this law from

factual considerations, e.g. symmetries, would be very inter
esting.




2) Clearly H ; =< r, H > is a compound probability struc-
ture (see [3]1 ). We can, for example, show the following:
if 4§ €M and Domg = T (,4i.e. if f ¢ HT), then

H(§,t): = {glt)l:g € HT and g th = § I Tt} is a simple

probability structure. In fact, suppose T = {tO'II""'tn}

and t=%t,.; then T, = {to,....,tk} and H(ﬂ,tk+1)

{glt,, ) g € Hy and g F{t,, ..., t,} = RCPPRRRNE IR L
§lt,)

= Kt

3) The functions Py n (+) are the transition probability func

tions and play a similar role to that of transition proba-
bilities in discrete Markov chains (see [11) The basic i-
dea is the following: at t=,tk+1 and in Ez+1 we have all

possible simple outcomes (positions at time th+1) given that
at time tk we had position 2 . Then the conditional mean val
ue at %, is n and the corresponding conditional variance

is the time £, ;- t, between kiﬁ and (Iz+1)’-z"--‘1 steps.

4) H determines a measure u on subsets of M , the set of com
pound outcomes. In order to have ''matural' outcomes we could
redefine compound outcomes as subsets A of H with the follow-
ing properties :(8) if g, §eH , then gV § is a function
(compatibility condition), and (b) A is maximal with respect
to (a). In this case, only few changes in the defini-
tion of compound outcomes in [3] should be necessary.

We shall see in the following how Brownian motion appears.

3. Befinitibn:

1

Let < X,R > be any of our finite causal trees, say



1)

Z)

x-{to,t, , ...,tn} with t, <%, < cee <2

0 !
We define a function Fx from R" into R

b)’ Fx(x10""xn’: - u(‘ eﬂx:6(ot,) < x, pe e, ‘(tn’<xn }

Remarks:
To be precise, we should write var. 6(t£)'<x£ instead of

6(111 < X; where var. 6(t£) is the variable part of the
var.§(t.)

model in K; " which equals 5(t£), i.e.

var. §(t ) =4 if {lt;) = (R, {s])). Nevertheless we make

the identification.

Sometimes we write F(tl' el 2 )'(x,, ...,xn) instead gf

n
FX(X1, ...,x,)

to make explicit the dependence on the parameters t, ,...,tn

Theorem:
If < X,R > is a finite tree, say X-{to,t,,...,tn} with

t0<t1<...<tn,ﬂwn
X, X
Fx‘x1'c."xn’ L J-... [-

n
p (u,)p ugleos
L1071 Tt 0y 200

o p lu )du,...du
tn,un-l n' 1 n

Proof: we prove the theorem for n = 2; the general case
may be obtained by induction on n. X-= Lto,tl,tz}'

F(t,,tz)(xl’XZ) *ru{f e H : Dom § =X and {(2,)< x;,§(£,]<x,}

We denote by A the event on the right side.



10.

The measure p on H 1is defined by induction on the ordinals.

We recall some definitions from [3] : for a tree < T,R > and
teT , T,:={seT: sRtand s+ ¢}, ?t :e{s € T : Rt}

1

T, 1is the set of all minimal elements of T-U{Té : B C a}’Ta=
O{Té: BCal, ?a= U{Té :B Ca}, AIS] = {§ F S:§ e A} with

A E_HT and S c T.

In our case, A CH (X, ) = {§ X, :§eH and Dom § =X},
- X tz ZZ

>
t

- ' = = = = X
Ke, T X X T B Xyt e Xy s (g <Xy

prtg}d =X

>
t

p = ULty =X, Xps (2,1 )

and tz . X% = {fZ}' The measure on MX(XIZ) is‘ﬁiz and is
given by W, (AIX, )] = j oo, (ALg,£,) ) dy (*)
t, 4y 8,2y Y
A(th)
where My is measure given by
2

= . ' Fa—
utz =7 < W, ¢ b€ X, , & < tz > utl (cf. [31]) and

u is the measure in the simple probability structure
£, ¢,

§le,)

As A(;¥2) = A, from (*) we have ul(A) = J u6,tz(A(6’t2))dﬁt1’
E

Ee= (g P Ly, 2.} 6l2)) < xp,6(2,)< x, , § €M}, but

A(g,tz) = {glt,) : ge A, g ¢ (%) = § I {zo,t,}} =

{g(tz) : g e A and g(t,) = 6(11)}=(-”, xz) - KZ



11.

then ué{iz(A(é'tz)) M (-, x,]) =

2
2
1 Xo =
Z 7 t, -1 dx
JZn(tz-tI)
|
y | ;
L |
F\\:M/,\\gxz
_ _,(/.4 . -\\.w "\.z_, -
L %, )
Y 2
Ll 1 (x-f 20
' = ] by * ®
(A = j j e P dx dut (**)
@ ieo Nm(t,- t] z ’
¢ ~? 1
Now, U17 = < o, 1 4 £ XO s < t, >
= u, =W
Ty T
- 1 ; (the measure in H(é,tol = (00},{0}) )
it is the probability until (£, (included £,).
1
If suffices to show that Ei coincides with the probability
1
in E? , i.e. it is given through the transition density
P o In fact,

1 ’
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(BU§, 2,01 dyp (***)

for any B € H_ . But B(X, | = B({to})
1

H4

= {§ = 0} and B(f,%,) = {glt;) iglt,) - 6(10). g € B} =R

then din (**¥) ﬁk (B)

=\ (B) .
1 0,%,

is precise-
700

ly the probability density function which defines

Pt

"t

U0,+ ’ then d Uo’t (y)

3 Pg (y) dy

I 1,0

. 1 exp (- % %— ) dy
JZﬂI,

and in (**), as 6(t,) may be any real number in (-w,xl),

we have 9 2

I (x-y) ]
1ot 1 RETEET 1 _7%1_
ulA) = J [ e dx ———— ¢ dy
o0 oo \Qn(tz -z JZnt,

1 )

o
J ptyfo(y) Ptz,gtx) dx dy

-0 -0

X
2
J Pt1,0(wﬁ) ptz'“L(uz) du,duz ;

- 00 - 00

and the proof is complete.

Corollary:

For each X,Fx is a probability distribution function (in

=
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the usual sense) and determines probability measures PX

on OR‘Xl"I, le‘_1 ) in the natural way. (B denotes the

family of Borelian sets in Rr")

Froof: it may be shown directly that

XT xn
e e [ [ e i ey

- DO oo

.. )Ot (un)dul...du

n
n,un-l

defines an n-dimensional probability distribution function.
Once we have this distribution function @X in R" , we may

deline a prcbability measure P on Bn by extending uniquely
the (elementary) probability measure P(B) : = @X(xl"” xn),

where B = (-, x1)x...x(—W, xn], to all Borelian subsets of

R" (see [7] chap. 1)

Remark:

We shall see now how Brownian motion appears in a very natu-
ral way in a canonical probability space (Q,B,P) where P is
a unique ''extension'" of the measure u on H to © through the
distribution functions FX

Definition

Q= RI, the set of functions from the unit interval [0,]] into R.

B is the o - algebra generated by the cylinder sets, i.e, by

the subsets of Q of the form {w € Q:(w(t,),..,,w(zh)) € B}
with B € Bh . Define random variables Zt , £ e’ , to be
the coordinate functions, i.e. Z,(w) = w(t].

Fe
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i1)

10.

11.

14,

Remark:
The probability functions PX in corollary 6., or equiva-

lently, the P(tT""’ tn) s, are defined for t0<<tl<<...< In.

In order that the compability conditions

i -1
Ple. oot 181 P(zt,,..,zt y (m - S]

m
TTT n n

, S e Bn , lhere m denotes a permutation of 7, .,.,n and

also the bijection from R" into R" defined by n(x,,..,xn)

= Ixo e, X ) )
1 n
P (S) =P (s x "M
(t,,..., tn) (11,.., tn+m)
are satisficd, we consider (i) as a definition of P
('t,,oﬁ,’tn)’
where the ti'S , which are different, need not increase

with the subindex. The same holds for the distribution functions FX.

Lemma :
The probability functions PX satisfy the compatibility condi-
tions in 9.

Proof: (i) holds by definition; for (ii) it suffices to show
the compatibility conditions for the Fx’s . Condition (ii)

is satisfied by the @x's in 6.

Lemma:

There is a unique probability measure P on (Q,B} such that

Pl (2 )"'»Z ) € S]) = P
14 Z, (£,

Proof: it suffices to follow the proof of the well-known theo

ot )(S), S € Bn
n

rem of Kolmogorov about the existence of a family of random



12.

13.

14.

15,

variables on a common probability space corresponding to a
family of finite dimensional distributions (see, e.g.[7]
chap. 1).

The theorem, as it is usually presented, states only the
existence of a common probability space, but the usual proof
constructs the space precisely as we need it here.

Corollarx:

The finite dimensional joint distribution functions of the
random variables (Zt)t e T defined in (Q,B,P] are given by

P(Z < X,,.0004,12 < X = F Xy, 00, X |
x, ] z, n) (t,,...,tn)( A

Theorem:

The random variables (Zt)t e T defined in (Q,B;P] satisfy

I(a) - (c), that is, the stochastic process (Ztlt e T is

a Brownian motion,

Proof: One has only to use the joint distribution functions

X X
] n
¢ (X;000x | = j o J P (u,lp (up,leee p
(ft]'lo,’tn) ] n -0 - 00 tlto ] -tz'u-l 2 tn,un-J

(an)du,...dan

Remark:

Within this formulation it is not possible to obtain the

a.s. continuity of trajectories, Nevertheless it may be
obtained by considering a denumerable dense subset of [0,1],
showing that the restriction of Zt to this subset is unifor-
mly continous and extending Zt to the whole of [0,7] by

continuity (cf., [5] for separable random processes).
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