

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

FACULTAD DE MATEMATICAS

FACTUAL PROBABILITY AND BROWNIAN MOTION

by Leopoldo Bertossi (*)

PUC/FM-82/12

INFORME TECNICO

CASILLA 114 - D SANTIAGO DE CHILE

DEPARTAMENTO DE MATEMATICA

FACTUAL PROBABILITY AND BROWNIAN MOTION

by Leopoldo Bertossi (*)

PUC/FM-82/12

Pontificia Universidad Católica de Chile Facultad de Matemáticas Casilla 114-D, Santiago de Chile

FACTUAL PROBABILITY AND BROWNIAN MOTION

Leopoldo Bertossì (*)

I. Introduction

In the framework of a factual definition of probability-presented originally by Chuaqui in [2], [3] and modified in [4] - a formulation of the Brownian Motion process was given in [1]. That formulation, which used some non-standard concepts and techniques, has the advantage of considering Brownian Motion as a "fast" random walk. Nevertheless, a formal translation of that formulation to "classical" terms may appear rather obscure for those who have never worked with these techniques.

In this paper I adopt a quite different and classical point of view in order to formulate Brownian motion in the general framework of [3] where causal structures are introduced for the study of compound random phenomena.

Our purpose is to present a model which determines a probability measure, more precisely, a non probabilistic structure which gives rise to a probability space and a Brownian Motion defined on it. In this sense our problem consists in the non probabilistic representation of a probability space.

We will consider only a one dimensional Brownian motion. A generalization to more dimensions should not be difficult. Let us first define a Brownian motion.

^(*) Universidad Católica de Chile Facultad de Matemáticas Casilla 114-D , Santiago de Chile

- a) A Brownian motion is a stochastic process $(z_t)_0 < t < 1$ defined on a probability space $(\Omega, \underline{A}, P)$ with independent increments, i.e. for every choice of parameters $t_1 < t_2 < \ldots < t_n$, the increments $z_t z_t$, $z_t z_t$, $z_t z_t$, $z_t z_t$, are independent, dent,
- b) $Z_0 = 0$ a.s.,
- If $0 \le s < t$, the random variable $Z_t Z_s$ is normally distributed with expectation 0 and variance $\sigma^2(t-s)$ (σ a fixed positive number), i.e. $P(Z_t Z_s < x) = \frac{1}{\sigma \sqrt{2\pi(t-s)}} \int_{-\infty}^{x} exp(-\frac{\alpha^2}{2\sigma^2(t-s)}) d\alpha$

Usually the condition of the a.s. continuity of sample functions (i.e. the real functions $Z_{t}(w)$ of t) is required [8]. In this formulation of Brownian motion-as it was originally studied[6] - we do not require this condition. Nevertheless we will show afterwards that it is possible to construct a continuous version of this process.

We follow the notation and definitions in [3]. Some changes were introduced in [4] but they are not important for our purposes.

II. Simple Probability Structures and Normal Probability Law.

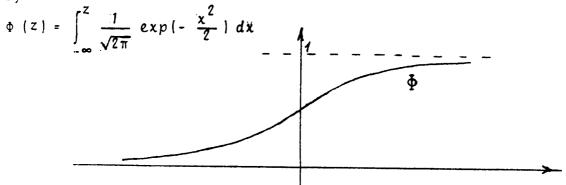
We intend to find a representation of the normal distribution on (R. B) in the framework of Chuaqui's simple probability

on $(\mathbb{R}, \underline{B})$ in the framework of Chuaqui's simple probability models.

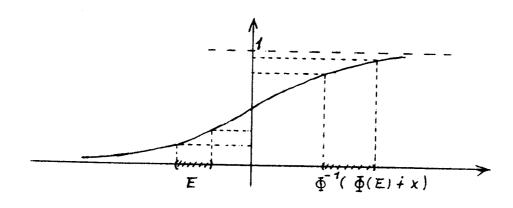
As a motivation we notice that the uniform probability distribution on (,,1) is the probability measure defined on ((0,1), $\underline{B}_{\{0,1\}}$) which is invariant under translations (the Lebesgue measure): P(x + E) = P(E), $\forall x \in (0,1)$, $\forall E \in \underline{B}_{\{0,1\}}$

(: addition modulo 1).

The probability measure induced by the normal law is also invariant under certain transformations: let Φ be the function defined by



The probability P arising from the normal law is such that $P(\Phi^{-1}(x + \Phi(E)) = P(E)$, $\forall x \in (0,1)$, $\forall E \in \underline{B}$.



We shall call the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(y):=\Phi^{-1}(x + \Phi(y))$ a Φ - translation(in x) of the real line.

Let us consider the simple probability structure $\underline{K} = \langle \underline{K}, L \rangle$ where $\underline{K} = \{ \Omega_{\chi} : n \in \mathbb{R} \}$, $\Omega_{\eta} = \langle \mathbb{R}, (1)_{1 \in \mathcal{J}}, R, \{n\} \rangle$,

 $\mathcal J$ is the familly of intervals of the real line, $\mathcal L=<\mathcal R$, $(I)_{I\in\mathcal J}>$ is the intrinsic part and $\mathcal R$ is the binary operation such that $\mathcal Rab=\Phi^{-1}(\Phi(a)+\Phi(b))$ and may be thought as the Φ -translation of a in $\Phi(b)$ (as Φ is invertible from (0,1) into $\mathcal R$ we can represent each Φ -translation in this way).

According with the definitions above, we have that the structural part $\alpha_{r,\delta t}$ of each $\alpha_r \in \underline{K}$ is $\alpha_{r,\delta t} = < \mathbb{R}$, R, $\{r\} > .$

 $\underline{K}_{\delta t} := \{\alpha_{n,\delta t} : n \in \mathbb{R} \}$ determines the group $G_{\underline{K}}$ of permutations of \mathbb{R} under which the probability measure has to be invariant; $< \mathbb{R}$, $(1)_{1 \in \mathcal{J}} >$ determines the σ -algebra $B_{\underline{K}}$ of events. In this case, $B_{\underline{K}}$ contains all Borelian subsets of \mathbb{R} .

We are interested in the group of permutations $G_{\underline{K}}$ since, according with the general definition, for each B_1 , $B_2 \in B_{\underline{K}}$ one has $B_1 \sim B_2$ (B_1 symmetric with B_2) iff there exists some $\delta \in G_{\underline{K}}$ such that $B_2 = B_1 \stackrel{\delta}{=} \{ \alpha \in \underline{K} : \text{exists } \alpha' \in B_1 \text{ with } \delta' \{ \alpha'_{\underline{\delta}\underline{L}} \} = \alpha'_{\underline{\delta}\underline{L}} \}$, and the probability measure μ determined by \underline{K} has to be such that, for $B_1 \sim B_2$, $\mu(B_1) = \mu(B_2)$.

For a permutation f of \mathbb{R} to be in $G_{\underline{K}}$ it is necessary that $f^*(\Omega_{n,\delta t}) = \Omega_{t,\delta t}$ for some $t \in \mathbb{R}$ if $r \in \mathbb{R}$, i.e. $< \mathbb{R}$, $f \in \mathbb{R}$

 $B' = \{\Omega_{\pi} \in \underline{K} : \pi \in B\}$, and B is a Borelian subset of \overline{R} . In order to represent the probability measure corresponding to the normal law $N(\mu, \sigma^2)$, it suffices to replace the operation $R = R_{\Phi}$ by R_F where F is the function defined by $F(z) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{z} \exp\left(-\frac{(x-\mu)^2}{\sigma^2}\right) dx$.

III. Causality and Brownian motion.

Let I be the closed unit interval [0,1];

$$I = \{S \cup \{0\} : S \subseteq I \text{ and } 1 < |S - \{0\}| < X_0\},$$

the family of finite subsets of [0,1] which contains 0; and let R denote the usual order relation \leq in [0,1]. Thus, our compound causal structure is $T = \langle T, T, R \rangle$ (cf. [3]). If $X \in T$, then $\langle X, R \rangle$ is a finite causal tree.

Now, we have to define our compound probability structure. In order to do this we will define the set \mathbb{H} of outcomes and associate to each $t \in [0,1]$ a family of simple probability structures. The union of the members of this family may be interpreted as the totality of possible simple outcomes at time $t \in [2]$, [3], [4]).

Associate to $t_0:=0$ the simple probability structure $\underline{K}_0:=\{(\{0\},\{0\})\}$. In this structure we have probability $p_{t_0,0}:=1$.

- 1. Definitions: The function f is an outcome, that is, $f \in \mathbb{H}$, if
 - i) there exists $X \in \mathbb{R}^{n}$ such that Dom f = X and $f(0) \in \underline{K}_{0}$
- ii) if $\operatorname{Dom} \ \delta = X$ and $X = \{t_0, t_1, \ldots, t_n\}$ with $0 = t_0 < t_1 < \ldots < t_n$, then for each k = 1, ..., n-1: $\delta(t_{k+1}) \in \underline{K}_{k+1}^n$, for some $x \in \mathbb{R}$ (which may be different for each k); where \underline{K}_{k+1}^n is the simple probability structure $\underline{K}_{k+1}^n := \{(\mathbb{R}, \{s\}) : s \in \mathbb{R}\}.$ ($(\mathbb{R}, \{s\})$) is only an abbreviation for $(\mathbb{R}, \{s\})$ where \mathbb{R}_F is the operation in section. If corresponding to the normal distribution function F)

Then the probability $P_{t_{k+1}}$, h on $\frac{K^{n}}{k+1}$ is given by

$$P_{t_{k+1}, r}(E) = \frac{1}{\sqrt{2\pi(t_{k+1} - t_k)}} \int_{E} \exp(-\frac{1}{2} \frac{(x-r)^2}{t_{k+1} - t_k}) dx$$

(let
$$p_{t_{k+1}}$$
, $r(x) = \frac{1}{\sqrt{2\pi(t_{k+1} - t_k)}} exp(-\frac{1}{2} \frac{(x-r)^2}{t_{k+1} - t_k})$

be the density function).

where $E \in \mathcal{B}_1$ is a Borel subset of the line (we assume $\sigma = 1$). That is, the probabilities on \underline{K}_{k+1}^{h} are distributed according to a normal probability law with mean h and variance $t_{k+1} - t_k$. At t_1 , $\{(t_1) \in \underline{K}_1^0$, the simple probability structure $\underline{K}_1^0 : = \{(R, \{s\}) : s \in R\}$ where the probability $P_{t_1, 0}$ on \underline{K}_1^0 is

$$P_{t_{1,0}}(E) = \frac{1}{\sqrt{2\pi t_{1}}} \int_{E} \exp(-\frac{1}{2} \frac{x^{2}}{t_{1}}) dx$$
, $E \in B_{1}$

(let
$$p_{t_1,0}(x) := \frac{1}{\sqrt{2\pi t_1}} \exp\left(-\frac{1}{2} \frac{x^2}{t_1}\right)$$
 be the density function)

(the Brownian particle starts from the origin).

iii)
$$f(t_k) = (R, \{s\})$$
 implies
$$f(t_{k+1}) \in \mathbb{R}^{s}, \quad k = 0, ..., n-1.$$

2. Remarks:

1) Though the mathematical problem of representation of the normal probability law through the simple probability structures is solved in section II a characterization of this law from factual considerations, e.g. symmetries, would be very interesting.

- 2) Clearly \mathbb{H} ; = $\langle \mathbb{F}, \mathbb{H} \rangle$ is a compound probability structure (see [3]). We can, for example, show the following: if $\delta \in \mathbb{H}$ and $Dom\delta = T$ (,i.e. if $\delta \in \mathbb{H}_T$), then $\mathbb{H}(\delta,t) := \{g(t) : g \in \mathbb{H}_T \text{ and } g \nmid T_t = \delta \mid T_t \}$ is a simple probability structure. In fact, suppose $T = \{t_0, t_1, \ldots, t_n\}$ and $t = t_{k+1}$, then $T_t = \{t_0, \ldots, t_k\}$ and $\mathbb{H}(\delta, t_{k+1}) = \{g(t_{k+1}) : g \in \mathbb{H}_T \text{ and } g \nmid \{t_0, \ldots, t_k\} = \delta \mid \{t_0, \ldots, t_k\} \} = \delta \mid \{t_0, \ldots,$
 - The functions $p_{k,h}$ (*) are the transition probability functions and play a similar role to that of transition probabilities in discrete Markov chains (see [1]). The basic idea is the following: at $t=t_{k+1}$ and in $\frac{k}{k+1}$ we have all possible simple outcomes (positions at time t_{k+1}) given that at time t_k we had position t_k . Then the conditional mean value at t_{k+1} is t_k and the corresponding conditional variance is the time $t_{k+1} t_k$ between $k + t_k$ and $t_k + t_k$ steps.
 - 4) H determines a measure μ on subsets of H, the set of compound outcomes. In order to have "natural" outcomes we could redefine compound outcomes as subsets A of H with the following properties: (a) if g, (ε H, then g U (is a function (compatibility condition), and (b) A is maximal with respect to (a). In this case, only few changes in the definition of compound outcomes in [3] should be necessary.

 We shall see in the following how Brownian motion appears.

3. <u>Definition</u>:

Let < X,R > be any of our finite causal trees, say

 $\begin{aligned} & X = \{t_0 \ , \ t_1 \ , \ \dots, t_n\} \text{ with } t_0 < t_1 < \dots < t_n \ . \end{aligned}$ We define a function F_X from \mathbb{R}^n into \mathbb{R} by $F_X(x_1, \dots, x_n) := \mu \{ \delta \in \mathbb{H}_X : \delta(t_1) < x_1 \ , \dots, \ \delta(t_n) < x_n \ \}$

4. Remarks:

- 1) To be precise, we should write var. $f(t_{i}) < x_{i}$ instead of $f(t_{i}) < x_{i}$, where var. $f(t_{i})$ is the variable part of the var. $f(t_{i})$ model in K_{i} which equals $f(t_{i})$, i.e. var. $f(t_{i}) = s$ if $f(t_{i}) = (R, \{s\})$. Nevertheless we make the identification.
- 2) Sometimes we write $F_{\{t_1,\ldots,t_n\}}$ $\{x_1,\ldots,x_n\}$ instead of $F_{X}(x_1,\ldots,x_1)$ to make explicit the dependence on the parameters t_1,\ldots,t_n .

5. Theorem:

If < X,R > is a finite tree, say $X = \{t_0,t_1,\ldots,t_n\}$ with $t_0 < t_1 < \ldots < t_n$, then

$$F_{X}(x_{1},...,x_{n}) = \int_{-\infty}^{x_{1}} ... \int_{-\infty}^{x_{n}} p_{\hat{x}_{1},...,q}(u_{1}) p_{\hat{x}_{2},u_{2}}(u_{2})...$$

$$..p_{\hat{x}_{n},u_{n-1}}(u_{n}) du_{1}...du_{n}$$

Proof: we prove the theorem for n=2; the general case may be obtained by induction on n. $X = \{t_0, t_1, t_2\}$.

 $F_{(t_1,t_2)}(x_1,x_2) = \mu\{f \in \mathbb{H} : Dom f = X \text{ and } f(t_1) \le x_1, f(t_2) \le x_2\}$ We denote by A the event on the right side. The measure μ on $\mathbb H$ is defined by induction on the ordinals. We recall some definitions from [3]: for a tree < T, R > and $t \in T$, $T_t := \{\delta \in T : \delta Rt \text{ and } \delta \neq t\}$, $\overline{T}_t := \{\delta \in T : \delta Rt\}$, T'_{α} is the set of all minimal elements of $T - \cup \{T'_{\beta} : \beta \subset \alpha\}$, $T_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\beta} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_{\alpha} : \beta \subset \alpha\}$, $\overline{T}_{\alpha} = \cup \{T'_$

In our case, $A \subseteq \mathbb{H}_X(X_{t_2}) = \{ \{ \{ \} \} X_{t_2} : \{ \} \in \mathbb{H} \text{ and } Dom \{ \} = X \},$ $= X_{t_2} = X_{t_2} , \quad X'_{i} = \{ \{ \} \}, \quad X_{0} = \emptyset_{0}, \quad X_{1} = \{ \{ \} \} = X_{0}_{0},$

$$X_{?} = \{t_{0}, t_{1}\} = \overline{X}_{1}, X_{3} = \{t_{0}, t_{1}, t_{2}\} = \overline{X}_{2}$$

and t_2 $X_2' = \{t_2\}$. The measure on $\mathbb{H}_X(X_{t_2})$ is $\overline{\mu}_{t_2}$ and is given by $\overline{\mu}_{t_2}(A(X_{t_2})) = \int \mu_{\ell_1, t_2}(A(\ell_1, t_2)) d\mu_{t_2}$ (*)

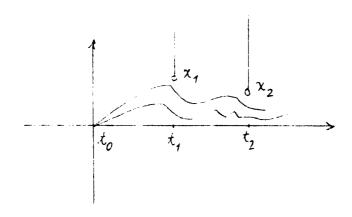
where μ_{t_2} is measure given by

 $\mu_{t_2} = \pi < \overline{\mu}_s : s \in X_1' , s < t_2 > = \overline{\mu}_{t_1} \quad \text{(cf. [3]) and}$ $\mu_{t_1}, t_2 \quad \text{is the measure in the simple probability structure}$ $H(t_1, t_2) = \underline{K}_2 \quad .$

As $A(X_{t_2}) = A$, from (*) we have $\mu(A) = \int_{\mathcal{E}} \mu_{6,t_2}(A(6,t_2)) d\overline{\mu}_{t_1}$,

then
$$\mu_{6}, t_{2}(A(6, t_{2})) = \mu_{6}, t_{2}(-\infty, x_{2}) =$$

$$\frac{1}{\sqrt{2\pi(t_2-t_1)}} \int_{-\infty}^{x_2} e^{-\frac{1}{2}} \frac{(x-6(t_1))^2}{t_2-t_1} dx$$



$$\mu(A) = \int \int \frac{1}{\sqrt{2\pi(t_2 - t_1)}} e^{-\frac{1}{2}} \frac{(x - f(t_1))^2}{t_2 - t_1} dx d\overline{\mu}_{t_1}$$
 (**)

Now,
$$\mu_{t_1} = \pi < \overline{\mu}_s : s \in X'_0 \quad s < t_1 >$$

$$= \overline{\mu}_{t_0} = \mu_{\delta}, t_0$$

$$= 1 \; ; \; \text{(the measure in } \mathbb{H}(\delta, t_0) = \{\{0\}, \{0\}\}\} \; \text{)}$$

is the probability until t_1 (included t_1). If suffices to show that $\overline{\mu}_{t_1}$ coincides with the probability in \underline{K}_1^0 , i.e. it is given through the transition density

 p_{t_1} ,0 : In fact,

$$\bar{\mu}_{t_1}(B) = \int_{B(X_{t_1})} \mu_{\delta, t_1}(B(\delta, t_1)) d\mu_{t_1}$$
 (***)

for any $B \subseteq \mathbb{H}_{\overline{X}_{t_1}}$. But $B(X_{t_1}) = B(\{t_0\})$

then in (***) $\bar{\mu}_{t_1}(B) = \mu_{0,t_1}(B)$. $p_{t_1,0}$ is precisely the probability density function which defines

$$\mu_{0,t_{1}}$$
, then $d\mu_{0,t_{1}}(y) = p_{t_{1,0}}(y) dy$

$$= \frac{1}{\sqrt{2\pi t_{1}}} \exp(-\frac{1}{2} \frac{y^{2}}{t_{1}}) dy$$

and in (**), as $f(t_1)$ may be any real number in $(-\infty, x_1)$,

we have
$$u(A) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \frac{1}{\sqrt{2\pi(t_2 - t_1)}} e^{-\frac{1}{2} \frac{(x - y)^2}{t_2 - t_1}} dx \frac{1}{\sqrt{2\pi t_1}} e^{-\frac{1}{2} \frac{y^2}{t_1}} dy$$

$$= \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} p_{t_1,0}(y) p_{t_2,y}(x) dx dy$$

$$= \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} p_{t_1,0}(u_1) p_{t_2,u_1}(u_2) du_1 du_2 ;$$

and the proof is complete.

Corollary: 6.

For each X, F_{χ} is a probability distribution function (in

the usual sense) and determines probability measures P_{χ} on $(\mathbb{R}^{|X|-1}, B_{|X|-1})$ in the natural way. $(B_n$ denotes the family of Borelian sets in \mathbb{R}^n)

Troof: it may be shown directly that

$$\Phi(t_1,...,t_n)^{(x_1,...,x_n)} := \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_n} p_{t_1}, o^{(u_1)p_{t_2}}, u_1^{(u_2)}$$

$$\dots p_{t_n, u_{n-1}} (u_n) du_1 \dots du_n$$

defines an *n*-dimensional probability distribution function. Once we have this distribution function Φ_X in \mathbb{R}^N , we may define a probability measure P on B_n by extending uniquely the (elementary) probability measure $P(B) := \Phi_X(x_1, \dots, x_n)$, where $B = (-\infty, x_1]x \dots x(-\infty, x_n]$, to all Borelian subsets of \mathbb{R}^N (see [7] chap. 1)

7. Remark:

We shall see now how Brownian motion appears in a very natural way in a canonical probability space $(\Omega,\underline{\mathcal{B}},P)$ where P is a unique "extension" of the measure μ on \mathcal{H} to Ω through the distribution functions F_χ .

8. Definition

 $\Omega:=\mathbb{R}^T$, the set of functions from the unit interval [0,1] into \mathbb{R} . $\underline{\mathcal{B}}$ is the σ -algebra generated by the cylinder sets, i.e. by the subsets of Ω of the form $\{\omega \in \Omega: (\omega(t_1),\ldots,\omega(t_k)) \in \mathcal{B}\}$ with $\mathcal{B} \in \mathcal{B}_k$. Define random variables \mathcal{I}_t , $t \in \mathbb{T}_t$, to be the coordinate functions, i.e. $\mathcal{I}_t(\omega) = \omega(t)$.

9. Remark:

The probability functions P_X in corollary 6., or equivalently, the $P_{(t_1,\ldots,t_n)}$'s are defined for $t_0 < t_1 < \ldots < t_n$. In order that the compability conditions

- i) $P(t_{\pi_1}, \dots, t_{\pi_n})^{\{S\}} = P(t_1, \dots, t_n)^{\{\pi^{-1}S\}}$, $S \in \mathcal{B}_n$, (here π denotes a permutation of 1, ..., n and also the bijection from \mathbb{R}^n into \mathbb{R}^n defined by $\pi(x_1, \dots, x_n)$ $= (x_{\pi_1}, \dots, x_{\pi_n}).$
- ii) $P(t_1, \ldots, t_n)^{(S)} = P(t_1, \ldots, t_{n+m})^{(S \times \mathbb{R}^{m-n})}$ are satisfied, we consider (i) as a definition of $P(t_1, \ldots, t_n)$, where the t_i 's, which are different, need not increase with the subindex. The same holds for the distribution functions F_X .

10. <u>Lemma</u>:

The probability functions P_{χ} satisfy the compatibility conditions in 9.

Proof: (i) holds by definition; for (ii) it suffices to show the compatibility conditions for the F_{χ} 's . Condition (ii) is satisfied by the Φ_{χ} 's in 6.

11. Lemma:

There is a unique probability measure P on (Ω, \underline{B}) such that $P([(Z_{t_1}, \ldots, Z_{t_n}) \in S]) = P(t_1, \ldots, t_n)^{(S)}, S \in B_n$

Proof: it suffices to follow the proof of the well-known theorem of Kolmogorov about the existence of a family of random

variables on a common probability space corresponding to a family of finite dimensional distributions (see, e.g.[7] chap. 1).

The theorem, as it is usually presented, states only the existence of a common probability space, but the usual proof constructs the space precisely as we need it here.

12. <u>Corollary</u>:

The finite dimensional joint distribution functions of the random variables $(z_t)_{t \in \mathbb{T}}$ defined in $(\Omega, \underline{B}, P)$ are given by $P(z_{t_1} \leq x_1, \dots, z_n \leq x_n) = F_{(t_1, \dots, t_n)}(x_1, \dots, x_n)$,

13. Theorem:

The random variables $(Z_{t})_{t \in T}$ defined in $(\Omega, \underline{\mathcal{B}}, P)$ satisfy I(a) - (c), that is, the stochastic process $(Z_{t})_{t \in T}$ is a Brownian motion.

14. Remark:

Within this formulation it is not possible to obtain the a.s. continuity of trajectories. Nevertheless it may be obtained by considering a denumerable dense subset of [0,1], showing that the restriction of Z_{t} to this subset is uniformly continuous and extending Z_{t} to the whole of [0,1] by continuity (cf. [5] for separable random processes).

REFERENCES -

- [1] Bertossi, L. "Chuaqui's definition of probability in some stochastic processes", 1982, to appear in the proceedings of the V Latin American Symposium on Mathematical Logic, to be published by Marcel Dekker, New York.
- [2] Chuaqui, R. "A semantical definition of probability", 1977, in Non-Classical Logics, Model Theory and Computability, Arruda, da Costa, Chuaqui (eds.), North Holland Pub. Co., Amsterdam, pp. 135-167.
- [3] Chuaqui, R. "Foundations of statistical methods using a semantical definition of probability", 1980, in Mathematical Logic in Latin America, Arruda, Chuaqui, da Costa(eds.), North-Holland Pub. Co., Amsterdam, pp. 103-120.
- [4] Chuaqui, R. "Factual and cognitive probability", 1980, to appear in the Proceedings of the V Latin American Symposium on Mathematical Logic, to be published by Marcel Dekker, New York.
- [5] Doob, J. L. "Stochastic Processes", 1953, Wiley, New York.
- [6] Einstein, A., Annalen der Physik 17, p. 549, 1905 (reproduced as "On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat" in Investigations on the theory of the Brownian Motion, R. Fürth (ed.), Dover, 1956)
- [7] Lamperti, J. "Probability", 1966, Benjamin, New York.
- [8] Wiener, N. "Differential space", 1923, J. Math. Phys. MIT, VII, pp. 131-174.