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Abstract

Consistent query answering is the problem of characterizing and computing the semantically correct answers to queries
from a database that may not satisfy certain integrity constraints. Consistent answers are characterized as those answers
that are invariant under all minimally repaired versions of the original database. We study the problem of repairing
databases with respect to denial constraints by fixing integer numerical values taken by attributes. We introduce a
quantitative definition of database repair, and investigate the complexity of several decision and optimization problems.
Among them, Database Repair Problem (DRP): deciding the existence of repairs within a given distance to the original
instance, and CQA: deciding consistency of answers to simple and aggregate conjunctive queries under different semantics.
We provide sharp complexity bounds, identifying relevant tractable and intractable cases. We also develop approximation
algorithms for the latter. Among other results, we establish: (a) The 45-hardness of CQA. (b) That DRP is MAXSNP-
hard, but has a good approximation. (¢) The intractability of CQA for aggregate queries for one database atom denials
(plus built-ins), and also that it has a good approximation.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Integrity constraints (ICs) are used to impose
semantics on a database. In this way, the database
becomes an accurate model of an application
domain. Database management systems or applica-
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tion programs enforce the satisfaction of the ICs by
cither rejecting undesirable updates or by executing
additional compensating actions. However, there
are many situations where we need to interact with a
database that is inconsistent wrt certain desirable
ICs. An important problem in database research
consists in characterizing and retrieving consistent
data from inconsistent databases, in particular,
consistent answers to queries [1].

From the logical point of view, consistently
answering a query on an inconsistent database
amounts to evaluating the truth of a formula
against a particular class of first-order relational
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structures [2]. This process is quite different from
usual truth or query evaluation on a single
structure, namely the relational database at hand.
In our case, the class under consideration is formed
by alternative instances that are consistent, i.c.
satisfy the ICs, and minimally differ from the
original database, the so-called repairs of the latter.
What is consistently true in the original instance
corresponds to what is classically true of all repairs.
Obviously, the notion of repair depends upon
particular notions of difference between database
instances and minimality.

Certain database applications, such as census,
demographic, financial, and experimental data,
contain quantitative data usually associated to
nominal or qualitative data. For example, the
number of children associated to a household
identification code (or address); and the measure-
ments associated to a sample identifier. Often this
kind of data contains errors or mistakes with respect
to certain semantic constraints. For example, a
census form for a particular household may be
considered incorrect if thc number of children is
negative; or if the age of a mother is less than those
of her offsprings. These restrictions can be ex-
pressed with denial ICs, which prevent attributes
from taking certain combinations of values [3].
Other restrictions may be expressed with aggrega-
tion ICs. For example, the maximum concentration
of certain toxin in a sample may not exceed a known
threshold; or the number of married men and
marricd women must be the same.

Inconsistencies in numerical data can be resolved
by changing individual attribute valucs, while
keeping values in the keys, c.g. without changing
the houschold code, the number of children is
decrcased considering the admissible values. More
preciscly, we consider the problem of fixing integer
numerical data wrt certain constraints while (a)
keeping the attribute values in the keys of the
relations, and (b) minimizing the quantitative global
distance between the original and modified in-
stances. Since the problem may admit several global
solutions, cach of them involving possibly many
individual changes, we are interested in characteriz-
ing and computing data and properties that remain
invariant under any of these repair processes. We
concentratc on denial constraints; and conjunctive
queries, with or without aggregation.

Databasc repairs have been studied in the context
of consistent query answering (CQA), i.c. the
process of obtaining the answers to a query that

are consistent wrt a given set of ICs (2] (cf. [1,4,5] for
surveys). An answer to a query is consistent if it can
be obtained as a standard answer to the query from
every possible repair. In most of the research on
CQA, a repair is a new instance that satisfies the
given ICs, but differs from the original instance by a
minimal set, under set inclusion, of (completely)
deleted or inserted tuples. Changing the value of a
particular attribute can be modelled as a deletion
followed by an inscrtion, but this may not
correspond to a minimum repair,

In certain applications it may make more sense to
correct (update) values in certain numecrical attri-
butes only. This requires a new definition of repair
that considers: (a) the quantitative nature of
individual changes, (b) the association of the
numerical values to other key values; and (c) a
quantitative distance between database instances.
We consider fixablc attributes that take integer
values. Only in these fixable attributes we allow for
changes of values with the purpose of restoring
consistency. In consequence, obtaining a rcpair
becomes a numerical constraint satisfaction pro-
blem, where the constraints are given by the denials.
The additional requirement in this problem is that
the solutions, i.c. instances, should stay close to the
initial instance.

Example 1. Consider a network traffic database D
storing flow measurements of links in a network.
This network has two types of links, labelled 0 and
1, with maximum flows 1000 and 1500, resp. The
following database D is inconsistent wrt this
constraint on the values that flows may take.

Traffic Time Link Type Flow

1.1 a 0 1100
1.1 b 1 900
1.3 b 1 850

Under the tuple and set oriented semantics of
repairs [2], there is a unique repair, namely deleting
tuple Traffic(1.1,4,0,1100). However, we have
two options that may make more sense than
deleting the flow measurement, namely updating
the violating tuple to Traffic(l.1,a,0,1000) or to
Traffic(1.1,a,1,1100). These altcrnatives would
satisfy the implicit requirement that the numbers
should not change too much.

In order to define a sensible distance function,
for comparing alternative repairs to the original
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instance, we think that the numerical nature and the
magnitude of these changes have to be considered.
In this paper we start from the assumption that
keeping the overall and absolute variation of values
small and in balance is something desirable. A
natural and usual way to achieve this goal consists
in minimizing the square distance between the initial
instance and a repair. For more flexibility, we allow
for different weights to be assigned to the fixable
attributes, and these weights are brought into the
distance formula. In the same spirit, other distances
between database instances, as an alternative to the
Euclidean or L, distance that we investigate in this
paper, could be considered (cf. Section 7.4). Specific
repairs and approximations may be different under
other distance functions, e.g. the “city distance™ L,
(the sum of absolute differences), but the general
(in)tractability and approximation results remain.

The problem of attribute-based correction of
census data forms is addressed in [3] using
disjunctive logic programs with stable model se-
mantics. Several underlying and implicit assump-
tions that are necessary for that approach to work
are made explicit and used here, extending the
semantic framework of [3]. However, in that work
the numerical nature of some attributes is not
brought into the model, and the distance just counts
the number of changes, no matter how big or small
they are.

Update-based repairs for restoring consistency
are also studied in [6], where changing values in
attributes in a tuple is made a primitive repair
action. Semantic and computational problems
around CQA are analyzed from this perspective.
However, peculiaritics of changing numerical attri-
butes are not considered, and more importantly, the
distance between databases instances used in [6,7] is
based on set-theoretic homomorphisms, but is not
quantitative, as in this paper.

We provide semantic foundations for repairs that
are based on changes on numerical attributes in the
presence of key dependencies and wrt denial
constraints, while keeping the numerical distance
to the original database to a minimum. This
framework introduces new challenging decision
and optimization problems, and many algorithmic
and complexity theoretic issues. We¢ concentrate in
particular on the *“Database Repair Problem”
(DRP) of determining the existence of a repair at
a distance not greater than a given bound. In
particular, we consider the problems of construction
and verification of such a repair. These problems are

highly relevant for large inconsistent databases. For
example, solving DRP can help us find the mini-
mum distance from a repair to the original instance.
This information can be used to prune impossible
branches in the process of materialization of a
repair. The CQA problem of deciding the consis-
tency of query answers is studied wrt decidability,
complexity, and approximation under several alter-
native semantics.

We prove that DRP is NP-complete for denial
constraints, which are enough to capture census-like
applications. CQA4 belongs to /75 and becomes 45-
hard. For a particular, simple, but relevant class of
denials we get tractability of CQA for a large and
relevant class of non-aggregate queries. For the
same class of denials, simple aggregations based on
acyclic conjunctive queries easily lead to intract-
ability of CQA.

Wrt approximation, we prove that DRP is
MAXSNP-hard in general; and for a relevant
subclass of denials, we provide a polynomial time
approximation within a constant factor. All the
algorithmic and complexity results, unless otherwise
stated, refer to data complexity [8], i.e. to the size of
the database that here includes a binary representa-
tion for numbers. For complexity theoretic defini-
tions and classical results we refer to [9).

Moving to the case of real numbers would
certainly bring new issues that would require
different approaches. They are left for ongoing
and future research. Actually, it would be natural to
investigate them in the richer context of constraint
databases [10].

For databases like those we are considering here,
aggregation constraints may also be relevant. Here
we briefly study the DRP and CQA problems when
repairs have to satisfy aggregation constraints. It
turns out that both problems become undecidable
when both the instance and the constraints are part
of the input.

This paper is structured as follows. Section 2
introduces basic definitions. Section 3 presents the
notion of database repair, several semantics for the
notion of consistent answer to a query; and some
relevant decision problems. Section 4 investigates
their complexity. In Section 5, approximation
algorithms for the problem of finding the minimum
distance to a repair are studied. We obtain nega-
tive results for the general case, but a good
approximation for the relevant class of local denial
constraints. Section 6 investigates tractability of
CQA for conjunctive queries and denial constraints
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containing one database atom plus built-ins. Section 7
contains extensions of the main framework, like a
bricf analysis of repairs that have to satisfy certain
statistical conditions, the above mentioned results
around aggregation constrains, and a discussion of
alternative distances. Section 8 presents some
conclusions and refers to related work.

2. Preliminaries

Consider a relational schema 2 = (%, &, 8), with
domain # that includes Z, # a sct of database
predicates, # a set of built-in predicates. If a
predicatc Re # has arity n>1, each of its n
arguments has associated a unique attribute name
that is not shared with other argument positions of
database predicates in the schema. This is not an
essential restriction, but it will make the formulation
of some definitions much simpler. The set of
attribute names (we will simply call them attributes)
in the schema is denoted with «/. According to this,
we usually denote a database predicate with
R(Ay,...,A,), with each A; e &f. /(R) denotes
the sct of attributes of R. It holds &/(R) € .

Each attribute 4 has a domain that is a subset of
9, where it can take values. Different attributes may
share the same domain and make take the same
values. Numerical attributes are those that have
domain Z. With denial constraints, we can make a
numerical attribute take values in a subset of Z,
e.g. in N or {0,1}. For the latter casc, we can use
denial constraints like Vx, y=(R(x,y) A x<0), Vx,
y=(R(x,p) Ax>1).

A database instance is a finite collection D of
database tuples, i.e. of ground atoms R(¢), with R €
# and ¢ a finite sequence of constants in #. If
R(Ay,...,A)) e R, t=R(c|,...,cn) €D, and S=
(Ai, ..., Ai,) is a subsequence of (4,,...,4y), then

f[Ai,, ..., Ai,) denotes the projection of tuple ton S,
ie. (cipy---s6i) For k=1, we simple writc
t{A) =c;.

There is a sct & C o containing all the fixable
attributes, those that take values in Z and are
allowed to be fixed. Attributes outside & are called
rigid. & need not contain all the numerical
attributes, that is, we may also have rigid numerical
attributes. More precisely, each predicatc R € # has
a set of fixable attributes, denoted by F(R). It holds
F(R) € #. Wealso have a set A of key constraints
expressing that predicates R € # have a primary
key Kg, with Kg € (&/(R\F(R)). Later on (cf.
Definition 2), we will assume that ¥ is satisfied

both by the initial instance D, denoted D E ", and
its repairs. In this sense, we say the elements of )"
are hard. Since F(R)NKg =0, values in rigid
attributes cannot be changed in a repair process. In
addition, there may be a separate set /C of flexible
ICs that may be violated, and it is the job of a
repair to restore consistency wrt them (while still
satisfying ).

A linear denial constraint [10] has the form
Vi-(Ay A---AA,), where the A; are databasc
atoms (i.e. with predicate in ), or built-in atoms
of the form xfc, where x is a variable, ¢ is a
constant, and f € (=, #, <, >, €, =}, or of the
form x=p. If x#y is allowed, we call them
extended linear denials. We¢ assume that all the
constants appearing in ICs belong to the domain %.
In a constraint, X denotes the sequence of variables,
say X = xy,...,Xp, that appear in the conjunction of
atoms. Since the order in which the variables appear
in the quantification does not matter, we usually
identify & with the set formed by its variables, say
(x1,...,%y}. Furthermore, in denials we usually
replacc A by a comma, and sometimes we use V
for the whole prefix of universal quantifications.
Unless otherwise stated, all the flexible ICs in this
paper are denial constraints, and sets of denials are
always finite.

Example 2. The following are linear denials: (a) No
customer is younger than 21: VId, Age, Income,
Status—(Customer{ld, Age, Income, Status), Age <21).
(b) No customer with income less than 60000 has
“silver”” status: VId, Age, Income, Status—(Customer
(Id, Age, Income, Status), Income < 60000, Status =
silver). () The constraint in Example 1, ie.
YT, L, Type, Flow—(Traffic(T, L, Type, Flow), Type=
0, Fiow> 1000).

In this cxample, in order to make the intuitive
contents of a denial constraint more clear, we have
used the attribute names as variables. Sometimes
this practice will allow us to simplify the formula-
tion of some definitions and results. This can always
be done, by introducing extra versions of the
attributes names if necessary; versions that are
not shared by other attribute names. For example,
for the predicate R(A4,B), the denial Vx,y,
2=(R(x,2), R(y,z),z = 1) can be rewritten as VA4,
A, B~(R(A,B),R(A',B),B=1).

We will consider aggregate queries containing
the aggregation functions sum, count, or average.
More precisely, an aggregate conjunctive query has
the form q(xh e ,xm;agg(z)) « B(XI, ceeyXmr 2y Vi
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...»Yn), Where agg is an aggregation function. The
non-aggregate matrix (NAM) of the aggregate query
is given by ¢(x1,...,%m) « B(x1,...,Xm, 2, )1»
.. +»Yp), Which is a usual first-order (FO) conjunctive
query with built-in atoms. In the query predicate g,
the aggregation attribute (or variable) z does not
appear among the x;. We use the set semantics for
aggregate queries. An aggregate conjunctive query
is cyelic (acyclic) if its NAM is cyclic (acyclic) [8].

Example3. ¢(x, y,sum(z)) « R(x,y), Q(y,z,w),w#3
is an aggregate conjunctive query, with aggregation
attribute z. Each answer (x,y) to its NAM, i.e. to
q(x,y) < R(x,y), Q(y,2,w),w#3, is expanded to
(x,y,sum(z)) as an answer to the aggregate query.
sum(z) is the sum of all the values for z having a w,
such that (x,y,z,w) makes R(x,y), Q(y,z,w), w3
true. In the database instance D = {R(l,2), R(2, 3),
0(2,5,9),0(2,6,7),0(3,1,1),0(3,1,5), 9(3, 8, 3)} the
answer sct for the aggregate query is {(1,2,
546),(2,3,1 4 1)}. In this example, the aggregate
query is a group-by query, because the query
predicate has free variables (x and y).

An aggregate comparison query is a sentence of
the form g(agg(z)) A agg(2)0k, where g(agg(2)) is the
head of a scalar aggregate conjunctive query (i.e.
with no free variables, or cquivalently, without
group-by), 6 is a comparison operator, and k is an
integer number. For example, the following is
an aggregate comparison query asking whether
the aggregated value obtained via g(sum(z)) is
greater than 5. Q: q(sum(z)) A sum(z)>S5, with
g(sum(z)) < R(x,y), 0(y,z,w),w#3. We can see
that aggregate comparison queries are boolean, i.e.
they have a true or false answer in a database
instance. An  aggregate comparison query
q(agg(2)) A agg(2)0k is (a)cyclic if the NAM of the
query that defines g(agg(z)) is (a)cyclic.

3. Least squares repairs

When we update numerical values to restore
consistency, it is desirable to make the smallest overall
variation of the original values, while considering the
relative relevance or specific scale of each of the fixable
attributes. Since the original instance and a repair will
share the same rigid values (cf. Definition 2), we can
use them to compute variations in the numerical
values. Now, we make this idea more precise.

We say that instances D, D' over X are rigid-
comparable if for every tuple t = R(¢) € D, for some
R € A, there is a unique tuple ' = R(¢) € D’ such

that ([&/(R\F (R)] = ([ (R\F(R)], and vice ver-
sa. In this case, we write ¢ = m(f), indicating that
tuple ¢ € D’ is the corresponding version of ¢ € D,
possibly modified at its fixable attributes. That is,
tuples 7 and ¢ coincide on the values of their rigid
attributes.

Definition 1. For rigid-comparable instances D and D'
over schema X, their square distance is 4;(D,D’) =
ZteD.Ae.ﬂ'aA - (((A) - m(’)(A))zr and & = (24) ge-

Definition 2. Let D, D’ be instances over the same
schema Z, such that DE o and D' kE J)¢; and IC be
a set of flexible ICs. D' is a repair for D wrt IC if: (a)
D, D’ are rigid-comparable; and (b) D' F IC. A least
squares repair (LS-repair) for D is a repair D’ that
minimizes the square distance 4z(D, D’) over all the
instances that satisfy (a) and (b).

The conditions in this definition make D and D’
rigid-comparable, and Definition 1 can be applied.
In general, we are interested in LS-repairs, but (not
necessarily minimum) repairs will be useful auxiliary
instances.

Example 4 (Example 1 continued). ® = {Traffic),
o ={Time, Link, Type, Flow}, K rropic = { Time,Link},
F = {Type, Flow), with weights & = (1073, 1), resp.
A repair of the original instance D is D =
{Traffic(1.1,a,0,1000), Traffic(1.1,b,1,900), Traffic
(1.3, 5,1,850)}. In this case, m(Traffic(l.1,a,0,
1100)) = Traffic(1.1,4a,0, 1000), etc. Another repair
is  Dy={Traffic(1.1, a,1,1100), Traffic(1.1,b,
1,900), Traffic(1.3,5,1,850)}. The distances are
Ag(D,Dy) = 100° x 107> =10~ and 44D, D,) =
12 x 1. Dy is the only LS-repair.

The coefficients a4 can be chosen in many
different ways depending on factors like relative
relevance of attributes, actual distribution of data,
measurement scales, etc. In the rest of this paper we
will assume, for simplification, that a4, =1 for all
Ae %, and 45(D,D’) will be simply denoted by
4(D, D').

Example 5. Databasc D has predicates
Client(ID, A, C), with attributes for identification
(the key), age and credit line of the client; and
Buy(ID1,1, P), with key (ID!,I} and containing
clients buying items at certain prices. There are two
denial ICs ic):VID!, P,A,C—~(Buy(iDi,I,P),
Client(ID, A, C),ID! = ID,A< 18, P>25) and icy:
VID, A, C —(Client(ID, A, C), A <18, C> 50), requir-
ing that people younger than 18 cannot spend more
than 25 on one item nor have a credit line higher
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than 50 in the store. The following table shows the
database contents. We added an extra column to be
able to refer to the tuples.

D:

Client ID A C Buy IDI 1 P

I 15 52 4 1 CD 27 4
2 16 51 o 1 DVD 26 s
3 60 900 1, 3 DVD 40 ¢

We can see that ic is violated by {¢,, 24} and {1, t5},
and ic; by {7} and ({#}). Assuming that
ay =ac =ap = |, we have two LS-repairs, D', D",
at a distance 10 from the original instance.

D’

Client ID 4 C Buy ID! 1 P

1 15 50 ¢ I CD 25 ¢
16 50 ¢, I DVD 25 /
360 900 1 3  DVD 40

D"

Client ID A C Buy IDI I P

1 18 52 ¢ I CD 27 4
2 16 50 £ I  DVD 26 i
360 900 1 3 DVD 40

In this example, it was possible to obtain LS-fixes by
performing direct, local changes in the original
conflictive tuples alone. No new, intermediate
inconsistencies are introduced in the repair process.
The following example shows that this may not be
always the case.

Example 6. Consider a database D with relations
P(A4,B,C) and Q(D, E) with Kp = {4}, Ko = (D}
and & = (B, C, E}; and linear denials ic| : Vx, y,z,
w=(P(x,y,2), Q(x,w), y>3,w>5) and ic; : Vx, p,z=
(P(x,y,2),y<5, z<4). The following instance is
inconsistent, because {{,, fz} violates ic,.

P 4 B C 0 D E

a 6 1 Ly a 9 12

If we tried to find a repair by making the smallest
change that restores consistency, £(B) would be

replaced by 3 (the alternative of replacing #2(E) by §
is more expensive):

P A B C Q D E

a 3 1 4 a 9 1

This new instance is still inconsistent since {¢|}
violates ic;. Now, if we tried to solve this new
inconsistecncy by making the smallest variation,
f,(B) would be replaced by 5, which violates ic,
again. Actually, the only LS-repair is

P A4 B C Q0 D E

!
a 6 1 1 a 5 5

We can see that new inconsistencies can be
introduced by local changes, and that an LS-repair
is not neccssarily a scquence of minimum local
changes,

The numerical values in the denial constraints
define threshold values that may determine their
satisfaction by a database instance.

Definition 3. Let IC be a set of extended linear
denials. The sct of borders of IC is Borders(IC) =
{c| there is ic € IC and a variable x in ic, such that x
appears in the position of fixable attribute in a
predicate in ic and either (x<c¢), (x>¢), (x<c - 1),
(xz2c+1), (x=c-=1), (x=c+1), or (x#¢c) ap-
pears as a comparison in ic}.

When comparisons of the type x = y or x#y, and
joins involve only rigid attributes, the built-in atoms
in extended linear denials determine a solution space
for repairs as an intersection of semi-spaces. LS-
repairs can be found taking values from the borders
of the ICs (cf. previous examples). However, if
comparisons of the type x = y or x#y, or joins in
the denials involve fixable attributes, then the
attribute values in LS-repairs can be found in
intervals around borders, as defined by the denials,
and around values in tuples of the inconsistent
database.

Lemma 1. Let D' be an LS-repair of D wrt a set IC
of extended linear denial constraints. Let a = |s/|.
For each tuple t € D' and fixable atiribute A of 1, it
holds 1(A) € [v—a,v+ a), for some integer v in a
tuple in D, or {(A)e[c—a,c+a), for some
¢ € Borders(IC). Furthermore, if IC is such that
equality and # atoms between attributes, and joins



L. Bertossi et al. | Information Systems 33 (2008) 407434 413

involve only rigid attributes, then either ((A)=
m=Y(O)(A) or t(A) € Borders(IC).!

If there are equalities, non-equalities or joins
involving fixable attributes, the LS-repairs can take
values that are not borders nor values from the
inconsistent database. The following examples show
such cases and illustrate Lemma 1.

Example 7. Consider a predicate 7(X,, Y), with only
Y fixable, and the instance D = {T(3, 3)}, which is
inconsistent wrt JC = {¥Vx,y=(T(x,»),x=»)}. In
this case, Borders(IC)=@. There are two LS-
repairs: D' ={T(3,2)} and D" ={T(3,4)}. The
values for attribute Y in both LS-repairs can be
found in the interval [v— |o/|,v + |&/|], with v =3
and || = 2.

Example 8. Consider a predicate R(4, B, C, D), with
only B fixable, and a set of ICs IC = {Vx,y,z,w—
(R(x, y,z,w), y<6),¥x, y, z, v—(R(x, y, 2, W), y=2), VX,
¥,z,w =(R(x,y,2z,w),z = w)). The instance D = {¢}
with ¢:R(1,5,6,7) is inconsistent. Here,
Borders(IC) = {6). The inconsistency wrt the first
IC can be solved by changing #(B) from 5 to 6. This
new value violates the second constraint. So now, to
stay as close as possible to the original instance, we
replace ¢(B) by 7. This value now violates the third
constraint, By increasing the value by one once
more, we get an LS-repair D' = {R(1,8,6,7)}. The
value taken by B is a border value plus 2.

Proof of Lemma 1. First we will concentrate in the
case where IC is such that the attributes participat-
ing in equality atoms between attributes or in joins
are all rigid. Let us assume, by contradiction, that
there cxists a tuple 1 € D’ and a fixable attribute 4,
for which A)=k and k#m(@)4) and
k¢ Borders(IC). Without loss of generality, assume
that k <m(t)(4). Let D" be the same as D’ except
that ¢(4) is changed from k&£ to A-—1. Since
k¢ Borders(IC), no new inconsistencies can be
added since the built-ins that were (or were not)
satisfied before, will continue in the same state.
Thus, D" also satisfies /C and is rigid-comparable to
D. However, D" is closer to D than D'. Thus, D' is
not an LS-repair. We have a contradiction.

In the general case, ICs may have fixable
attributes participating in (non-)equality atoms
between attributes or in joins. In this case, the
value of such an attribute in a tuple might be

"We recall that m(s) € D', with 2 a repair of D, is the tuple that
results from modifying ¢ € D.

changed to satisfy a constraint, so that the equality
does not hold. As before, we assume there exists an
LS-repair D’ and an attribute A4 such that ¢((4) = k
and k is not in [v — a, v + 4] for each numerical value
v in a tuple in D, nor in [c—a,c+a] for each
¢ € Borders(IC). In a similar way as in the proof for
the case with equalitiecs and joins between rigid
attributes, a contradiction can be reached. O

It is easy to construct examples with an exponen-
tial number of repairs. For the kind of repairs and
ICs we are considering, it is possible that no repair
exists, in contrast to [2,11], where, if the set of ICs is
consistent as a set of logical sentences, a repair for a
database always exists.

Example 9. R(4, B) has key A, and B is fixable.
IC= {vxtha y-'(R(xl:}’): R(xz»}’): X1 = l9x2 = 2):
Vx1, X2, y~(R(x1, ), R(x2, ), X1 = 1, X2 = 3), ¥x), X3,
y-‘(R(xhy)v R(xzty)yxl =2,x= 3)9 Vx,)’"(R(x,}’),
y>13), ¥x,y~(R(x, y), y<2)} is consistent. The first
three ICs force attribute B to be different in every
tuple. The last two ICs requirc 2<B<3. The in-
consistent database D = {R(l, ~1), R(2,1), R(3, 5)}
has no repair.

Proposition 1. If D has a repair wrt IC, then it also
has an LS-repair wrt IC.

Proof. Let p be the square distance between D and
a repair D’ according to Definition 1. The circle of
radius p around D containing instances over the
same schema that share the rigid attribute values
with D intersects the non empty “consistent” region
that contains the database instances with the same
schema and rigid values as D and satisfy IC. All the
instances within that circle have their fixable
numerical values bounded in absolute value by a
fixed function of p and the fixable values in D. In
consequence, the circle has a finite number of
instances, and the distance takes a minimum in the
consistent region. O

4. Decidability and complexity

In applications where repairs are based on
changes of numerical values, computing concrete
repairs is a relevant problem. In databases contain-
ing census forms, correcting the latter before doing
statistical processing is a common problem [3]. In
databases with experimental samples, we can fix
certain erroneous quantities as specified by linear ICs.
In these cases, the repairs are relevant objects to
compute explicitly, which contrasts with CQA [2),
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where the main motivation for introducing repairs is
to formally characterize the notion of a consistent
answer to a query, as an answer that persists under
all possible repairs. In consequence, we now
consider some decision problems related to exis-
tence and verification of LS-repairs, and to CQA
under different semantics.

Definition 4. For an instance D and a set /C of ICs:

(a) Rep(D,IC)=(D'|D’ is an LS-repair of D wrt
IC), the repair checking problem.

(b) Rep(IC) = {(D, D')|D’ € Rep(D, IC)}.

(c) NE(IC) = {D|Rep(D,IC)#0), for non-empty
sct of repairs, i.e. the problem of checking existence
of LS-repairs.

(d) DRP(IC) = {(D,k)| there is D' € Rep(D, IC)
with A(D, D')<k}, the DRP, i.e. the problem of
checking cxistence of LS-repairs within a given
positive distance k.

(¢) DROP(IC) is the optimization problem of
finding the minimum distance from an LS-repair
wrt IC to a given input instance.

Notice that, by Proposition 1, DRP(IC) could
also be defined as ((D,k)| there is a repair D’ of
D with A(D, D')<k}.

Definition 5. Let D be a database, IC a set of ICs,
and Q a conjunctive query.2 (a) A finite sequence &
of constants in % is a consistent answer to Q(X)
under the: (al) skeptical semantics if for every
D' € Rep(D,IC), D' E Q(o); (a2) brave semantics if
there exists D' € Rep(D,IC) with D'k Q(¢);* (a3)
majority semantics if {D'|D' € Rep(D,IC) and D'
Q@M >|(D'\D € Rep(D, IC) and D' ¥ Q).

(b) That ¢ is a consistent answer to Q in D under
semantics & is denoted by DEgQ[é]. If Q is boolean
(i.c. a sentence) and DFEg(Q, we say that yes is a
consistent answer, meaning that @ is true in the
repairs of D as prescribed by semantics &.
CA(Q, D, IC,S) is the set of consistent answers to
Q in D wrt IC under semantics S. For a boolean Q,
if CA(Q, D, IC, &)+ (yes}, CA(Q, D, IC, &) = {no}.

(c) CQA(Q.IC,S) = ((D,d)Ic e CA(Q, D, IC, S)}
is the decision problem of CQA, i.e. of checking
consistent answers.

2Whenever we say “conjunctive query”, we mean a non-
aggregate query.

3Skeplical and brave semantics are aka. certain and possible
semantics, resp.

In the literature on CQA, the notion of consistent
answer and the CQA problem usually refer to the
skeptical semantics,

Proposition 2. NE(IC) can be reduced in polynomial
time to the complements of CQA(False,
IC, Skeptical) and CQA (True, IC, Majority), where
False, True are ground queries that are always false,
resp. true.

Proof. First for the skeptical semantics. Given a
database instance D, consider the instance (D,no)
for CQA(False, IC, Skeptical), corresponding to the
question “Is there an LS-repair of D wrt IC that
does not satisfy False?” has answer yes iff the class
of LS-repairs of D is empty. For the majority
semantics, for the instance (D,no) for COQA(True,
IC, Majority), corresponding to the question “Is it
not the case that the majority of the LS-repairs
satisfy True?’, we get answer yes iff the set of
LS-repairs is empty. O

In Proposition 2, it suffices for queries True, False
to be true, resp. false, in all instances on the same
schema as the input database. The former can be
represented by (yes) <, a query with empty body;
and the latter by (yes) « R(...,x,... ), x=Lx=2,
where variable x corresponds to a numerical
attribute.

Theorem 1. For every fixed set IC of linear denials:
(a) Deciding if for an instance D there is a repair D’
with A(D, D'Y<k, with positive integer k that is part
of the input, is in NP. (b) There is a fixed set IC of
denials for which DRP(IC) is NP-complete.

Proof. (a) First of all, we notice that a lincar denial
with implicit equalities, i.e. occurrences of a same
variable in two different database atoms, e.g.
vx,y,z~(R(x,y), Q(»,2),z>3), can be replaced by
its explicit version with cxplicit cqualities, e.g.
Vx, y, 2z, w=(R(x, y), Q(w, 2}, y = w, 2> 3).

Let »# be the number of tuples in the database, and
! be the number of attributes that appear in built-in
predicates in the explicit versions of the ICs. For
example, consider the denial Vx,y,z=(P(x,y),
0(z,x),y>2). The explicit version is Vx,y,z,
w=(P(x,y), Q(z,w),y>2,x = w) and / would be 3
(for x, y, w).

Notice that, by Proposition 1, there is a repair at
a distance not greater than k iff there is an LS-repair
at a distance not greater than k.

If there exists an LS-repair D' with 4(D, D)<k,
then no value in a fixable attribute for a tuple in D/
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differs from its corresponding value in D by more
than vk. In consequence, the sizc of an LS-repair
may not differ from the original instance by more
than ! x n x bin(k)/2, where bin(k) is the size of the
binary representation of k. Thus, the size of an LS-
repair is polynomially bounded by the size of D and
k. Since we can determine in polynomial time if D/
satisfies the ICs and if the distance is smaller than %,
we obtain the result.

(b) Membership: According to Proposition 1,
there is an LS-repair at a distance <k iff there is a
repair D’ at a distance <k. We use part (a) of this
proposition.

Hardness: We can reduce Vertex Cover to
DRP(ICy) for a fixed set of denials ICy. Given a
graph instance (¥',&), k for VC, consider a
database schema with a binary predicate E(X,Y)
with key {X, Y} for the edges of the graph, and a
predicate V(X'1, Chosen), with key X1 that takes
vertices as values. Attribute Chosen is the only
fixable attribute. The original database D contains
the tuples E(e;, e2), E(e2, €1) for {e),e2} € &, and the
tuples V(v,0) for ve¥. The constraint IC:
VX, D Cl,cz"(E(x:}’) A V(xa C]) A V(}’, CZ) A<l A
¢2 < 1) expresses that for any edge, at least one of the
incident vertices is covered. A vertex cover of size k
exists iff there exists an LS-repair of D wrt IC at a
distance <k. The encoding is polynomial in the size
of the original graph. O

By Proposition 1, there is a repair for D wrt IC at
a distance <k iff there is an LS-repair at a distance
<k. So, a test for the former, that is analyzed in
Theorem 1(a), can be used for the latter. Actually, if
we happen to know, c.g. by using the test in
Theorem 1(a), that there is a repair at a distance
<k, then the minimum distance between D and a
repair (i.e. the distance between D and any LS-
repair) can be found by binary search in the distance
interval [0, k] in log(k) steps, using at each of them
the test in Theorem 1(a).

If an LS-repair exists, its square distance to D is
polynomially bounded by the size of D (cf. Lemma 2
below). Since D and a repair have the same number
of tuples, only the size of their values in a repair
matter, and they are constrained by a fixed set of
linear denials and the condition of minimality.

Lemma 2. Given a database D and a set of extended
denials IC, the size of an LS-repair D' is polynomial
in the size of D and the numerical constants in the
ICs. This is also true if D' is a repair obtained from
D by replacing values of fixable attributes by values

at the intervals around numerical values in D or
the borders determined by the ICs (according to
Lemma 1).

Proof. The proof of the first claim follows immedi-
ately from: (a) The LS-repair D' has the same
number of tuples as D, and (b) by Lemma 1, in an
LS-repair, the value for cach attribute and in each
tuple falls in an interval of the form
[c — ||, ¢ + | &), where c is either a value of D or
a border. For the second claim, the proof is similar,
since D' has the same number of tuples as D. O

Theorem 2. For a fixed set IC of extended linear
denials: (a) The problem NE(IC) of deciding if an
instance has an LS-repair wrt IC is NP-complete, and
(b) CQA under the skeptical and the majority
semantics is coNP-hard.

Proof. (a) For hardness, it suffices to consider linear
denials. We reduce 3-Colorability to NE(IC,), for a
fixed set ICy of ICs. Let ¥=(¥,&) be an
undirected graph with set of vertices ¥~ and set of
edges &. Consider the following database schema,
instance D, and set ICy of ICs:

1. Predicate Vertex(Id, Red, Green, Blue), with key
Id, and domain N for the last three attributes,
actually the only three fixable attributes in the
schema. For each v € ¥", we have Vertex(v,0,0,0)
in D (and no other Vertex tuple in D).

2. Predicate Edge(ld!,Id2), with no fixablc attri-
butes. For each e={v,15} € & Edge(v,,v,),
Edge(v,,v)) € D.

3. Predicate Tester(Redl, Greenl, Bluel), with no
fixable attributes, and extension
Tester(1,0,0), Tester(0, 1,0), Tester(0,0, 1) in D.

4. ICs:

Vi, x,y,z=(Vertex(i, x, y, 2), x< 1, y<1,z2< 1),

Vi, x, y, z=(Vertex(i, x, y, z), x > 1) (the same (or y, z);

Vi, x,y,z=(Vertex(i,x,y,z),x =1,y =1L,z = 1),
Vi, x, y,z=(Vertex(i, x, y,2), x = 1,y = 1); et¢.

Vi, j, x,y, z—~(Vertex(i, x, y, z), Vertex(j, x, y, 2),
Edge(i,)), Tester(x, y, 2)).

If there is an LS-repair wrt ICy of the gencrated
instance, then the graph is 3-colorable. If the graph
is 3-colorable, then therc is a consistent instance
with the same rigid values as the original instance.
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Thus, by Proposition 1, there is an LS-repair. The
reduction is polynomial in the size of the graph.

Now we prove membership. By Proposition | and
Lemma 1, the existence of a repair is equivalent to
the existence of an LS-repair; and the latter is
equivalent to the existence of a repair that has its
modified fixable values taken at the intervals around
the borders of the corresponding attributes or
around the values in the tuples of D (cf. Lemma
1). So, we can concentrate on the latter problem. An
NP algorithm for this problem is as follows: (1) For
the positive cases D, guess a witness, i.e. a repair D’
of D that shares the values of non-fixable attributes
with D, and the modificd values of the fixable
attributes taken from intervals of the form
[c— /], ¢ + 11), for ¢ a value in D or a border.
(2) Check that D,D’ are rigid-comparable. (3)
Check that D’ satisfies the ICs. This test is
polynomial in the size of D,D’. By Lemma 2, the
size of D' is polynomial in the size of D.

(b) coNP-hardness follows from Proposition 2
and part (a). O

For hardness in (a) and (b) in Theorem 2, linear
denials suffice. Membership in (a) can be obtained
for any fixed finite set of extended denials.

Theorem 3. For a fixed set IC of linear denials: (a)
The problem Rep(IC) of checking if an instance is an
LS-repair is coNP-complete, and (b) CQA under
skeptical semantics is in I}, and, for ground atomic
queries, AY-hard.

Proof. (a) We reduce 3-SAT’s complement to
Rep(IC) for a fixed schema and set /C of denials.
We have a predicate Lit(/, ) whose extension stores
complementary literals (only), e.g. Lit(p, —p) when p
is one of the variables in the instance @ of SAT.
Also a predicate C/ for tuples of the form Cl(o, /, k),
where ¢ is a clause of @ (we assume, wlog. that all
clauses have exactly three literals), /is a literal in the
clause, and & takes value 0 or | (for the truth value
of /in ¢). The first two arguments are the key of CI.
Finally, we have a predicate Aux(K, N), with key K
and fixable numerical attribute N, and a predicate
Num(N1) with a rigid numerical attribute N1.
Consider an instancc & = ¢, A--- A @, for 3-
SAT. We produce an instance D for the predicates
as indicated above, assigning arbitrary truth values
to the literals in C/, but making sure that, in the
whole set of Cl-tuples, a literal takes only one truth
value, and complementary literals take complemen-
tary truth values. We also have Aux(0,0), and

Num([v/s+11) in D, where s is the number of
different pairs of the form (¢,, /), with / a literal that
appears in ¢;. Therc are no other Aux- or Num-
tuplesin D, 0O

Consider now the following set of denials:

(a) Y_'(Cl((p$ 1’ ll), u> I); V- (CI((p! Iv U), u <0)'

(b) Y=(Cl(g,1,u), Cl(},1, v), u#v).

(©) Y=~(Cl(o,1,w), CI(Y, ', v), Lit(, I'), u = v).

(d) Y~(Cl(o, },u), Cl(@, 1, v), Cl(@,I", W), Aux(k, n),
I_;él',laél",l’;él",u =v=w=0,n=0).

(€) Y=(Num(z), Aux(k,n),n#0,n+#:z).

Denial (a) indicates that 0,1 are possible truth
values. Denial (b), that a literal takes only one truth
value in the whole set of Cl-tuples. Denial (c)
indicates that complementary literals take different
truth values. Denial (d), that each clause becomes
true, and then also @, or Aux takes a value other
than 0 in its second attribute. Finally, denial (e)
indicates that the value in the second attribute of
Aux has to be 0 or [/5+ 1]. Attribute K in Aux is
introduced just to have a key. Other than this, it is
not relevant.

If & is unsatisfiable, then the original instance is
inconsistent, because (d) is violated. Even more, in
this case there is no repair that can be obtained by
changing truth values only, because (d) would still
be violated. In this case, in order to make (d) true,
only the value of the second attribute of Aux has to
be changed, from 0 to [+/s+ 1], as prescribed by
(e). The distance between this repair and D is
([v/5+ 11)%, which is greater than s. This is the
closcst repair to D we can have when @ is not
satisfiable.

When @ is satisfiable, it may be the case that D
alrcady encodes a satisfying truth assignment. In
this case, D is consistent and it is only LS-repair, at
a distance 0. If D does not encodc a satisfying
assignment, but there is one, we can change the
truth values in the C/-tuples in D in order to encode
in a rcpair D’ of D the satisfying assignment. In this
case, the distance between D and D' is at most s (this
generous upper bound is reached only if all literals
have to change their truth values).

It holds that @ is unsatisfiable iff the instance D’
that coincides with D except for Aux, that now
contains only Ans(0, [+/s+ 17) instead, is an LS-
repair of D wrt IC. Thus, checking D’ for LS-repair
of D suffices to check unsatisfiability.
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For membership to coNP, for an initial instance
D, instances D’ in the complement of Rep(IC) have
witnesses D” that can be checked in polynomial
time, namely instances D” that have the same rigid
values as D, satisfy the ICs, but 4(D, D")< 4(D, D).

(b) For the first claim on CQA, let /C and a query
O be given. The complement of CQA is in NP<VF;
Given an instance D, nondeterministically choose
an instance D’ with D' ¥ Q and a repair D’ of D. The
latter test can pe done in coNP (by part (a)). But
NPN?P = NPEi = 2%, In consequence, CQA be-
longs to coZ§ = I15.

For the second claim, we prove hardness of CQA
by a LOGSPACE-reduction from the following
problem [12, Theorem 3.4 Given a Boolean
formula in 3CNF &(p,,...,p,), decide if the last
variable p, is equal to 1 in the lexicographically
maximum satisfying assignment (the answer is No if
& is not satisfiable).

We consider a fixed database schema containing
predicate Var(V, T, Weight), with key V and fixable
attributes 7, taking values 0 or 1, and Weight. It
also contain predicate CI(C, Var,, Val,, Var,, Val,,
Vars, Vals), with key C and no fixable attributes,

Now, if @ is ¢ A--- A @,,, with each ¢; a clause,
we create an instance D as follows. For each
variable p,, Var(p;,0,2"") goes into D. In binary
encoding, the values 2"~° are polynomial in the
size of original formula. For each clause ¢, =
Il| v 11'2 V’I:p C{(‘phpllrlippiz’1i29pl3)113) is inserted
into D, where /;; is equal to 1 in case of positive
occurrence of variable Py, in ¢, and equal to 0 for a
negative occurrence. For example, for ¢4 = pg v
=Py VP12, Cl@g, P 1,P9,0,p13, 1) is inserted.

We consider the following ICs*:

(a) Vv, t—~(Var(v,1, ) A t<0);
Yo, t—~(Var(v,t, I A t>1),

(b) Yo, , w=(Var(v,t,w) At =0 Aw>0),

(c) Ve, vy, X1, 02, X2, 03, X3,
uy, 42, u3—(Cl(c, vy, x1,v2, X2, 03, X3)A
Var(vy,uy, ) A Var(va,ua, ) A Var(vs, 13, A
X # Uy A X3F U A X35 U3).

The idea is that the 3rd, 5th and 7th arguments in
Cl-tuples contain the truth value that makes the
propositional variable in the preceding argument
true. According to denial (c), the truth values in the

“In underscore, _, in an argument of an atom means that any
fresh variable may appear at its place.

2nd argument of Var-tuples associated to a same
clause cannot differ all from the right value
prescribed by the corresponding Cl-tuple. In this
way we make the clause true. The extended denial
constraint in (c) could be replaced by eight non-
extended denial constraints.

Instance D is inconsistent due to (b). Each repair
of D represents a satisfying assignment for @. If @ is
not satisfiable, there is no repair of D. If it is, in
order to obtain a satisfying assignment, the values in
the 2nd argument of Var have to be changed to
obtain a repair.

Let us now consider the square distance from a
repair to D. Each repair D' is associated to a
satisfying truth assignment S={s),...,8,) for
P1s.spp). If iy < - -+ <, is the sequence of all the
indices in S associated to 0’s in S, the square
distance from D' to D is 22" 4 %= 4 ..
+2%7=#) 4 (1 - r), because due to (b) we have to
give value 0 to Weight for each variable that retains
the value 0 it had in D. The term (n — r) comes from
the truth values that were changed from 0 to 1.

Assume that S = (s,...,5,) and ' = {1),..., )
are satisfying truth assignments (for (p,...,p,))
with § < S’ under the lexicographical order. In this
case, there exists an integer m such that
0=sm<im=1, while for all k<m, sy =4 =0.
We can compare the square distances to D from the
repairs D(S), D(S’), associated to S,S’, resp. Since
for m it holds s, =0 and ¢, =1, the tuple
Var(p,,0,2°™) in D has to be changed to
Var(p,,,0,0) in D(S), contributing to the square
distance with 22"=™ 4 |, which is greater than the
sum of terms for higher indices (and smaller
exponents) with which S’ may contribute to the
distance 4(D, D(S")). Notice that for both D(S) and
D(S’), the sums of the first m—1 terms of the
distance (corresponding to the first (m — 1) indices)
are the same, namely X122,

We can sce that S§ < S’ implies 4(D, D(S'))< 4
(D, D(S)). In consequence, the closest repair to D in
square distance (i.c. the only LS-repair if any)
corresponds to the maximum satisfying assignment
for & in the lexicographical order. It is good cnough to
check if this repair has p, taking value 1: The consistent
answer to the ground atomic query Var(p,, 1, 1) is yes
iff p, takes the value 1 in the lexicographically maxi-
mum satisfying truth assignment.

Membership in Theorem 3(a) can be obtained for
any set of extended denials. It is still open to close
the gap between the lower and upper data complex-
ity bounds for CQA.
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Theorem 4. For aggregate comparison queries using
sum, CQA under linear denials and brave semantics is
coNP-hard,

Proof. A reduction from Vertex Cover can be
cstablished with a fixed set /Cy of ICs. Given an
undirected graph 4 = (¥, #), consider a database
with predicates Ver(V, Z), Edge(V 1, V2), where Vis
a key for Ver, and Z is the only fixable attribute,
that takes values in {0, 1}, which can be enforced
by including in ICp the linear denials VYx,z-
(Ver(x,z),z> 1), ¥x,z=(Ver(x,z),z<0). Intuitively,
Z indicates with 1 if the vertex Vis in the cover, and
with 0 otherwise. The values for the attributes of
Edge are vertices and then, non-numerical.

In the original databasc D we have the tuples
Ver(e,0), for ee¥’; and also the tuples
Edge(e,, e2), Edge(es, e)) for {e;, ez} € &. Putting into
ICo the linecar conmstraint  Vx;,zp,Xx3,23—
(Ver(xy, z1), Ver(xz,z2), Edge(x\,x2),21<1,22<1),
the LS-repairs of the database are in one-to-one
correspondence with the vertex covers of minimum
cardinality.

For the query Q% : g(sum(z)) A sum(z) <k, with
q(sum(z)) « Ver(x,z), the instance (D, yes) for CQA
under brave semantics has answer No, (i.e. % is
false in all LS-repairs) only for every k smaller than
the minimum cardinality ¢ of a vertex cover. O

5. Approximation for the DRP

We consider the problem of finding a good
approximation for the optimization problem
DROP(IC).

Proposition 3. For a fixed set IC of linear denials,
DROP(IC) is MAXSNP-hard.

Proof. By reduction from the MAXSNP-hard
problem B-Minimum Vertex Cover (BMVC) which
asks for a minimum vertex cover in a graph whose
nodes have a bounded degree [13, Chapter 10]. We
encode the graph as in the proof of Theorem 4. We
also use the same initial database D. Every LS-
repair D’ of D corresponds to a minimum vertex
cover ¥ for ¥ and vice versa, and it holds
|¥”| = A(D, D). This gives us an L-reduction from
BMVC to DRP(IC)[9]. O

As an immediate consequence [9], we obtain that
DROP(IC) cannot be uniformly approximated
within an arbitrarily small constant factor.

Corollary 1. There is a set IC of linear denials for
which, unless P = NP, there is no Polynomial Time
Approximation Schema for DROP(IC).

This negative result does not preclude the possibility
of finding an efficient algorithm for approximation
within a constant factor for DROP. Actually, in the
following we do this for a restricted but still useful and
interesting class of denial constraints.

5.1. Local denials

Definition 6. A sct of linear denials /C is local if*: (a)
Attributes participating in equality atoms between
attributes or in joins are all rigid. (b) There is a
built-in atom with a fixable attribute in each element
of IC. (c) No element of /C contains # involving a
fixable attribute. (d) No attribute A appears in IC
both in comparisons of the form 4<c¢) and A>cs.

Without loss of generality and for simplicity of
the presentation, we assume in what follows that
cach local constraint contains (a) < and >, but not
< or 2% (b) at most one comparison of the type
AOc per attribute A4, for 8 either > or <.

Example 10. The denial Vx,y,z-(R(x,y,2),
y>3,y>5,2<7) has the second attribute compared
more than once, and the third attribute is compared
with a <. The denial can be replaced by Vx,y,
z=(R(x,y,2),y>5,2<8).

In Example 5, IC is local. In Example 6, the set of
ICs is not local since attribute B of rclation P is
compared through both < and >. In Example 9,
IC is not local for the same reason. Local
constraints have the property that by solving a
particular inconsistency, no new inconsistencies are
generated as shown in the following example.

Example 11 (Example 5 continued). The ICs are
local. IC ic is violated by {¢#, ¢4} and (¢, 5}, and ic;
by {#1} and {#2}. The first inconsistency can be solved
by updating ((P) from 27 to 25. The resulting
instance is such that ic| is violated by (¢, t5}, and ic2
by {11} and {;}. No new inconsistency is introduced.

Example 12. Consider a predicate R(A4, B, C), where
A is the key and C is the fixable attribute; and
the local ICs ic) :Vx,p,z=(R(x,y,2),2>4), and

*We assume here that attributes or versions thercof are used as
variables in the ICs.

%The comparisons x < c and x3 ¢ can be cxpressed as x<c + |
and x>c¢ -1, resp.
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ica : ¥x,y,z—(R(x,y,2),z>2). The instance D that
contains only the tuple 7 : R(a, 1, 5) violates both ic|
and ic;. The inconsistency wrt icy can be solved by
replacing #(C) by 4. In the new database, the
updated tuple 7 is still inconsistent wrt ic, but no
new inconsistencies arise from the update.

Lemma 3. Given an instance D and a set IC of local
denial constraints, there always exists an LS-repair of
D wrt IC.

Proof. Since IC is local, in each denial in it, there is
at least one fixable attribute involved in a built-in.
Changing its value, the comparison atom can be
falsified and the whole constraint can be satisfied.
We have to show that such a change can be made
for the whole set of ICs. For each fixable attribute A
in IC, we are able to derive an interval [c4,00) or
(—00, c4] such that if we pick up the value of 4 from
it, all the ICs involving A4 in a built-in are satisfied.
An interval of the form [c4, 00) can be found if 4 is
compared with <, and of the form (—~o0, ¢4] if it is
compared with >. Let &2 be the set of fixable
attributes that are in a built-in atom in at least one
element of IC.

An instance D’ can be constructed from D by
replacing the value of every fixable attribute 4 €
Z g in every tuple ¢ € D by c,4. This new instance
satisfies the constraints, therefore it is a repair of D
wrt JC. By Proposition 1, there is an LS-repair. O

Locality is a sufficient, but not necessary condi-
tion for existence of LS-repairs. This can be seen
with the database D = {P(a,2)}, whose first attri-
bute is the key, and the non-local set of denials
{Vx, y=(P(x, ),y <3),¥x,y=(P(x,p),y>5)). D has
{P(a, 3)} as LS-repair. In the rest of Section 5 we will
assume that the sets of flexible denials associated to a
schema are local.

Proposition 4. There is a set IC of local denials, such
that DRP(IC) is NP-complete, and DROP(IC) is
MAXSNP-hard.

Proof. For the first claim, membership follows from
Theorem 1(b). For hardness, we can do the same
reduction as in Theorem 1(b), because the ICs used
there are local denials. For the second claim, we can
proceed as in the proof of Proposition 3, but instead
of using the non-local denials in that proof, we
can use the single local denial ic:Vx;,z,x3, 22—
(Ver(x1,21), Ver(xz,22), Edge(x),x3),z1<1,22<1).
We need no denials that restrict the attributes to
take values in (0,1}, because in the tuples in D,

attribute Z takes value 0. By minimality of LS-
repairs, when restoring consistency wrt ic, Z will
only be modified to take value 1. O

This proposition tells us that the problem of
finding good approximations in the case of local
denials is still relevant. Local constraints do not
make our decision problems easier. For example,
Theorem 4 still holds for them, because in its proof
the first denial in /Cj can be eliminated, and the two
remaining form a local set. This is due to the
contents of the initial instance and the minimality
imposed on value changes.

Definition 7. Let ic € IC be denial constraint of the
form

VI~ (A1(ZDA o A Ap(Zm) A Bi(Ripg1)
Aces A Bgs(Zmas)) )

where % =, % 2 Ujsiry1 % the 4; are database
predicates and the B; are built-in predicates.

(@) A set I={(Ay@),...,A.(&)} of (ground)
database atoms is a violation set for ic in instance D
iff: (al) 4@)eD, j=1,...,k. (a2) There is a
substitution 0: % — %, such that {4,(%)),..., 4
E)0=1,and, fori=m+1,...,m+s, Bi(x)0 is
true in %.

(b) The set of labeled violation sets of IC in D is
F(D,IC) = {(1,ic)lic € IC and [ is a violation set for
ic).

Here, A(X)8, with & C %, is the ground atom that
results from applying 6 to the variables in A(X'); and
{Ar(®1),..., Am(Zm)}0 = {4)(21)0, ..., An(%m)8). In
consequence, the substitution @ in the definition is a
unifier of {A4,(%),..., An(%n)} and I. So, k<m, and
the predicates A4; must be among the A4; in (1).
Notice that a violation set makes the conjunction in
(1) true in D, and then ic becomes false in D.
J(D, IC) contains the violation sets together with
the constraintthey violate, which is used as a label.
In this way, the same set of tuples can be associated
to different constraints. Elements (7, ic) of #(D, IC)
will still be called violations sets. Notice that the
definition of violation set can be applied to any
extended denial.

Example 13 (Example 5 continued). A violation set
for icy is {t),1a} since, for 6(/D) =1, 8(4) =15,
NC)=125 6(I)=CD and 6(P)=27, it holds
{Buy(ID1, 1, P), Client(ID, A, C)}0 = {1),t4}, and both
(A<18)8 and (P> 25)0 are truc. Similarly, {¢,,¢s} is
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also a violation set for ic|, and {f;} and {¢,} are both
violation sets for fc;. In consequence, £(D,IC)=

[(“19 ’4)a iC|), (“l ’ 15}! iC[), ({tl )’ icZ)s (“2}! icz)}'

Notice that the conflict hypergraph introduced in
[14] for studying classic CQA wrt denial constraints
has as vertices the database tuples in D; and as
hyperedges, the violation scts for elements ic of IC.
In our case, each hyperedge is labelled with its
corresponding ic. If the denial constraints are func-
tional dependencies, we obtain conflict graphs [11].

Example 14 (Example 13 continued). The conflict
hypergraph as shown in Fig. 1 contains four hyper-
cdges, those corresponding to the violation sets
((ll,l4},i€|), (“htS}’ iC|), (“l}’iCZ) and ({12}’ ic2)‘

Definition 8. (a) Consider an instance D and a set
IC of ICs. Let t be a tuple in D such that te 7 C D,
where (/,ic) is a violation set for ice IC in D. A
database tuple ¢ is a local repair of t (wrt I and ic) if:
(al) ¢ uses the same database predicate as 1. (a2) ¢
has the same values as ¢ in all the attributes but one
fixable attribute. (a3) Replacing ¢ by ¢ solves the
inconsistency wrt ic, i.e. (I\(1))U {f'},ic) is not a
violation set of IC in (D\{#}) U {#'}. (ad4) There is no
tuple ¢’ that simultancously satisfies (al)-(a3),
differs from ¢ on the same attribute as ¢, and
A1, ("N < A((1), (1)), where 4 denotes quadratic
distance.

(b) S(t, ) = {(, ic)lic € IC,t € I and (1\(1}) U(r'})
is not a violation set for ic in (D\{¢t) U {f'}}.

A local repair ¢ of ¢ solves the violation of at least
one IC where ¢ participates, minimizes the distance
from ¢, and differs from ¢ in the value of only one
attribute. Thus, if a tuple ¢ is consistent, i.c. it does
not belong to any violation set, then it has no local
repairs. It holds S(1,¢) € #(D,IC), and the former
sct contains the violation sets that include ¢ and are
solved by replacing ¢ by 1. We will usually apply the
notation S(¢,¢) to a tuple ¢ and one of its local
repairs f'.

Fig. 1. Conflict hypergraph.

The attribute that has been changed by a local
repair ¢ of t is denoted by adiff(t,¢).] In the
examples, we will usually write in bold the attribute
values that are modified by local repairs.

Example 15 (Example 13 continued). Tuple ¢ :
Client(1,15,50) is a local repair of ¢, because: (a)
it modifies only the value of the fixable attribute C
in £;; (b) for ic,, replacing f; by £ solves the
violation set ({1}, ic2); and (c) there is no other tuple
that solves the same violation set and is closer to /.
In this case, adiff(t,t})=C, and S(n,f)=
{{u}, ic2)).

Tuple ¢} : Client(1,18,52) is also a local repair
of 4, with S(’l’t’[’)= {([119t4}v iC|), ({“115}’ iCl),
({t1}, éc2)). Tuples ¢, ¢4 and ¢s have one local repair
each, namely 4 : Client(2,16,50), £, : Buy(l,CD,
25), and ¢ : Buy(1,DVD,25), respectively, with
S(t2, 1) = ({2}, i)}, SUa, 83) = ([0, ta}y ic))})
and S(ts, £5) = {({t1, ts), ic)}), respectively. The con-
sistent tuple f3 has or needs no local repair.

3.2. DRP as a set cover problem

For a fixed sets IC of local denials, we can solve
the instances of DROP(IC) by transforming them
into instances of a minimum weighted set cover
optimization problem (MWSCP). This problem is
MAXSNP-hard [9,15], and its general approxima-
tion algorithms approximate within a logarithmic
factor [15,16). By concentrating on local denials, we
will be able to generate versions of the MWSCP
that can be approximated within a constant factor
(cf. Section 5.3).

Definition 9. For a database D and a set IC of local
denials, the instance (U, %, w) for the MWSCP,
where U is the underlying set, & is the collection of
subscts of U, and w is the weight function,? is given
by: (a) U = #(D,IC); (b) & = (S, )|t is a local
repair for a tuple (e D); and (c) w(S(,1)) =
A, 1.

By construction, all the S(¢, #') in the MWSCP are
non-empty. Also, since the ICs are local, the union
of & is U. This holds since for each (,ic) € U, ic
contains at least onc fixable attribute 4 in a built-in,

"We recall that an atlribute is associated to a unique database
predicate and only one of ils arguments.

81n the corresponding MWSCP, we try to find (the weight of) a
€ € &, such that, forevery u ¢ U, thereiss € ¥ withu e s{ie. a
set cover for U), and € has minimum weight (given by the sum of
the weights of its elements).
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and there is tuple ¢ € I such that, by modifying ¢(4)
we can get a local repair ¢ of ¢ such that I € S(¢, 7).

Example 16 (Examples 5 and 15 continued). We
illustrate this reduction from DROP to MWSCP, and
give an idea about how we are going to use minimum
set covers to obtain LS-repairs. Here, U = {({#, ta),
iC]), ({tly 15): iC[), ({tl }; icZ)’ (“2}’ icZ)L and & = {S(tls
1), S(t1, 1)), S(t2, £5), S(ta, t3), S(¢s, £5)}. The contents
of each of the elements in & is shown in the table
below. Elements of & are the columns, and their
elements, the rows. An entry 1 means that the set of &
contains the corresponding eclement in the first
column; and a 0, otherwise.

Set S(t, 1) S(n, &) S(t2, 15) S(ta, 14) S(ts, £5)

Weight 4 9 1 4 1

({0, ta},ic1) O
({n)ic) 1
(“h‘il'icl)o
({r2),ic;) O

O - -
-_-_—0 00
[ ]
O -0 0

A minimum set cover for this problem is
€ = {S(t, 1)), S(12, 1)}, with total weight 10. It is
a minimum cover, because the union of its elements
is U, and there is no other cover with less weight. @,
shows that, by replacing ¢, by ¢} and 1, by 4, all the
violation sets are solved, i.e. they are no violation
sets for the same constraint anymore. Actually, the
database D’ obtained from D by replacing #, by ]
and #, by £ is an LS-repair of D. These replace-
ments lead to a consistent database for two reasons:
(1) Since S(11, £7) and S(12, 1;) together form a cover,
all the inconsistencies are solved in D’; and (2) Since
the constraints are local, no new inconsistencies are
generated by these replacements. If the constraints
were not local, the replacements would solve the
initial inconsistencics, but might introduce new
ones. Cf. Definition 11 and Lemma 5 below for a
formal treatment of this idea.

Another minimum cover, therefore also with
weight 10, is @2 = {S(t1, 1), S(t2, 1), S(ts, 13),
S(ts,£5)). The database D" obtained from D by
replacing 71 by £}, 12 by 3, 14 by ¢, and 5 by £ is
also an LS-repair,

As we can see, we could think of constructing an
LS-repair by replacing each inconsistent tuple 1 € D
by a local repair ¢ with S(t,f') € €, where € is a
minimum set cover for the corresponding instance
(U, &, w) of the MWSCP. The problem is that for a

tuple ¢, it might be the case that S(¢, ') and S(s, ")
belong both to the minimum set cover €. In that
case, it is not clear how to construct the LS-repair
by replacing ¢.

Example 17. Consider a schema with a predicate
R(4,B,C,D), with Kgzp=(A4}, F(R)=|(B,C).
The set IC of local denials contains ic:
Y=(R(x,y,z,w) y>3),  icy:V=(R(x,y,2,w),y>5,
w>T), and ic3 : V-(R(x, y, z, w), z<4). The database
instance D containing only the tuple ¢: R(1,6,1,8)
is inconsistent. Here, #(D, IC) = {({¢}, icy), ({1}, ic2),
({t},ic3)}. There are three local fixes, namely,
t1: R(1,3,1,8), t2: R(1,5,1,8) and 13 : R(1,6,4,8).
For them, S(‘!’l) = {({l},i(']), ({’}’ ic2)}, S(1,82) =
{({2}, ic2)} and S(t,t5) = {({1}, ic3)}). The instance of
MWSCP is

Set S, n) S(2, 1) S(2,13)
Weight 9 1 9

(e}, icr) 1 0

(e}, ic2) 1 1 0
({1}, ic3) 0 0 ]

The only minimum cover is € = {S(¢, ;), S(¢, 13)}. In
this case, we could attempt to obtain an LS-repair
by replacing ¢ by both ¢, and 13, but this would
result in a violation of the key constraint on R.
However, the local repairs ¢, and ¢ can be
combined into a new tuple £, = R(1,3,4,8), which
is not a local repair, but solves all the inconsisten-
cies. The database D' obtained by replacing ¢ by 1, is
an LS-repair.

Our next results tells us that the replacement we
made in the previous example is always possible.

Lemma 4. Let € be a minimum cover for instance
(U, &, w) of the MWSCP associated to D and IC.
For different local repairs t,t" of t such that
S, 1), S(t,t") € 8, it holds adiff (1, V') # adiff (1, t").

Proof. Let us assume, by contradiction, that there
are  S(.,¢),S(t,t"Ye € such that adiff(1,!) =
adiff (1,4") = A and ¢(4)<1'(A). Since the ICs are
local, either A is compared in all ICs in /C with
either < or >. Without loss of generality, we
assume the latter. Since #(4) <”(A4), it is easy 1o see
that S(,,7") € S(1, 7). Thus, €\[S(, ")} is also a
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cover. This implies that € is not minimum, and we
have a contradiction. O

This result may not hold if the cover is not
minimum. This lemma allows us to combine in one
tuple the local repairs that participate in a minimum
cover. These combined tuple repairs will be used to
construct a new consistent database.

Definition 10. Let 4 be a minimum cover for
instance (U, %,w) of the MWSCP associated to
D, IC. (a) Let t),...,t, be the local repairs of t € D,
such that S(1,4) € 4, for i € [1,n). The combined
local repair of t, denoted ¢*, is such that *(4) =
t{A) when 4 = adiff (1, 4;), and (*(A4) = (A), other-
wise,

(b) If T*={(¢, *)| therc is ¢’ such that S(¢,¢) € ¥},
then we define D(¥) = U(“,,)GT- [(D\{(eH L {e*}])-

D(%) is the database instance obtained from D by
replacing ¢ by 1* whenever (¢,1*) € T*. Notice that 1*
may not be a local repair of ¢, because it may change
more that one attribute. However, ¢* is obtained
from a set of tuples that modify only one attribute of ¢
cach. Whenever we have a cover ¥ € &, where all
the local repairs ¢ in the elements S(¢, ') of € change
different attributes values of ¢, we may compute the
t*’s, no matter if € is minimum or not. After that, T*
and its corresponding new instance D(%) can be
computed as in Definition 10(b).

Example 18 (Example 17 continued). The combined
local repair ¢* for ¢ is obtained from the local repairs
represented in € = {S(t,11), S(t,13)}: ¢* becomes
R(1,3,4,8). Thus, T*={(t,R(1,3,4,8))), and
D(%) = {R(1,3,4,8)}, which is in fact the only LS-
repair of D.

Now we can establish that there is a one-to-one
correspondence between the minimum covers of the
MWSCP and the LS-repairs.

Theorem 5. If € is a minimum cover for instance
(U, &, w) of the MWSCP associated to D,IC, then
D(%®) is an LS-repair of D wrt IC, and A(D, D(€)) =
w(%). Furthermore, for every LS-repair D' of D wrt
IC, there exists a minimum cover € for the instance
(U, &, w) of the MWSCP associated to D and IC,
such that D' = D(%).

In order to prove this theorem we need first some
auxiliary concepts and technical lemmas. First, we
will prove that local repairs do not introduce new
inconsistencies when the denials are local.

Definition 11. Consider an instance D and a set of
local denials IC:

(a) For (1,ic) a violation set for D and IC, definc
I[\F] = (R, [ (R\F(R)))| there are Re &
and ¢ with 1 = R(é) € I).

(b) AD, IO A\F)=((I[\F),ic)I(1,ic)e #(D,IC)).

(c) Let ¢, ¢ be database tuples such that {¢} and {¢'}
are rigid-comparable as instances, and 7€ D.
Replacing ¢ by ' in D does not generate new
inconsistencies if S(D',IC)A\F] \ F(D,IC)
[Z\F] =9, where D' = (D\(¢}) U (7}

I[\F] denotes the sct of tuples of constants
obtained from database tuples ¢ in / by projecting
the £'s on their rigid attributes, and then annotating
them with their predicate names R (to keep track of
their origin).

Example 19 (Example 12 continued). In this case,
IC = lic\,ic3}, t is R(a,1,5), ¢ is R(a,l,4),
H(D,IC) = {({R(a, 1,7)}, ic1),({R(a, 1, 7)}, ic2)}. For
D= {R(a,1,4)}, J(Dl;lC) = {({R(a, 1,4)), ic2)}.

To check if new inconsistencies are generated, we
compute the difference between S(D', IC)[F\F] =
{{(R, (@, )}, ic2)} and  F(D,IOF\F] = ((I(R,
(a, D)}, ict), ({(R,(a,1))},ic2)}. Since the difference
is empty, replacing ¢ by its local repair ¢ does not
generate new inconsistencies.

Lemma 5. If ¢ is a local repair of a tuple t wrt
instance D and a set of local denials IC, then
replacing t by ' in D does not generate new
inconsistencies.

Proof. Let adiff (1,f) = A. Since IC is local, attri-
bute A4 can only appear in /C in <- or >-atoms, but
not both. Without loss of generality, assume the
latter is the case. So, £(A4)<t(A).

For D' = (D\{¢})U (¢}, we need to prove that
(S, ICOANFNF (D, IC) | A\F)) = 8. By contra-
diction, assume that for ic € IC, there is a violation
set (I',ic) € #(D', IC) such that there is no (1,ic) €
F(D, IC) with I[#\F) = I'[#\F]. Since the rigid
values are kept in a repair, this is equivalent to
saying that there is a violation set (I, ic) € #(D',IC)
for which (m~='(l"), ic)¢ #(D', IC). Since 7 is the only
difference between D and D', it holds el
But #(A)<t(A), the only differcncc between D
and D' is attribute 4, and in all the constraints
attribute A is compared only with >. Therefore, il
(I',ic) € £(D', IC), then (m(I'),ic) € #(D,IC). We
have a contradiction. O
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The following lemma justifies that an LS-repair
can always be constructed from a set of local repairs
that are combined as described in Definition 10.
This lemma will allow us to prove later that, for
every LS-repair D', there is minimum cover € such
that D' = D(%).

Lemma 6. Consider an LS-repair D' of D wrt IC,
and L(D,D’) = {(1,)|t, ' are R-tuples for some R €
R,t € D,and there are an R-tuple t" € (D'\D) and
A € S(R) such that t = m~'(t"), t'(A) #1(A), '(4) =
t"(A); and, for each B+ A, ' (B) = t(B)). It holds: (a)
For each (1,V) e L(D, D), t is a local repair of t.
(b) €D, D) ={St, )N, 1) e L(D,D')} is a cover
of the MWSCP associated to D and IC. (c)
D(€D,D))= D'

For each tuple ¢ € D, the tuple m(¢) in D' (the ¢’ in
the definition of L(D, D')) may differ in more than
one attribute value from 1. The set L(D, D’) contains
the pairs (¢, '), such that # coincides with the modified
version of ¢, i.e. m(f), in repair D' in exactly one
modified attribute value, but coincides with ¢ at the
other attributes. That is, we are decomposing the
modified versions of tuples in D into its “local repair
components”. Thus, L(D, D’) traces back and finds
the set of local repairs that can transform D into D'.

There will be as many local repairs of ¢ in L(D, D')
as attribute values in 7 have been changed by m(¢). If
the local repairs obtained from L(D,D’) are
combined as described in Definition 10, we would
obtain a set T* that is needed to transform D into
D'. For different local repairs ¢ and ¢” such that
@0, @, ")Ye L(D,D), it holds adiff(t,t)+
adiff (1,¢"). Thus, it is possible to compute
D(€4(D, D)), even without proving that the cover
%(D,D') is minimum. However, later on we will
show it actually is (cf. proof of Theorem 5).

Example 20 (Example 18 continued). The only LS-
repair of D, that contains only tuple ¢ : R(1,6, 1, 8),
wrt IC is D' = {R(1, 3,4, 8)}. This repair is obtained
from D by two local repairs: one changing attribute
B from 6 to 3 and another changing attribute C
from 1 to 4. Thus, L(D,D’) = ((1, 1), (1, ")}, with ¢ :
R(1,3,1,8) and ¢’ : R(1,6,4,8).

The repair D' can be reconstructed from L(D, D)
by combining the local repairs as described in
Definition 10. In fact, ¥(D, D) = {S(@1, 1), S(t, ")},
and T* = {(s, ")}, with 1* = R(1, 3,4, 8). Therefore,
D(¢(D,D')) = {R(1,3,4,8)} = D'

Proof of Lemma 6. (a) Let (4,¢) € L(D, D). By the
minimality of D’ as an LS-repair, the change of

value in attribute 4 = adiff(t,) has to solve some
inconsistency. More precisely, there are ic € /C and
I € D, such that (/,ic) is a violation set wrt D and
IC, tel, and ¢ solves the violation set, i.e.
({(I\{thu{r},ic) is not a violation set wrt
(D\{1}) L {F). We collect in a set all these violation
sets. So, consider S = S(s,r), the set of all the
violation sets that are solved by replacing t by /', S'is
non-empty, because (/,ic) € S. Furthermore, ¢
clearly satisfies conditions (al)-(a3) for being a local
repair of ¢ through every (,ic) in S. We have to
check that (ad) holds for at least one element of S.

Consider
IC' = lic € IC| therc is I with (I,ic) € S}. Let us
assume that attribute A appears in /C in compar-
isons of the type > (the case of comparisons with <
is similar). Let ¢ be the smallest constant with which
A is compared through A>c in IC’. Let (I, ico) be
an element of S such that A>c appears in ico.
Notice that for ¢ to belong to the violation sets in S,
it must hold «(4)>c.

We have three cases: r(4A)>¢, f(4)<¢, and
£(A) = c. If £(A) > c, then (Iy, icy) cannot be solved
by replacing ¢ by ¢. Since (J,icy) € S, we have a
contradiction. If f(4)<c, we can construct the
instance D" = (D'\(/}) U {m(1)’}, where m(7)’ coin-
cides with m(f) (the modified version of ¢ in D)
except at attribute A4, for which m(1)(4) = ¢. The
same inconsistencies will be solved by D" since ¢ is
the smallest value that appears in a comparison
involving A. It holds A({D},{D"})<d({D},{D'));
which contradicts the LS-minimality of D’. Thus,
it must be #(4) = c¢. In this case condition (a4) holds
for (I, ico), because any tuple ¢ with "(4)>¢, i.c.
closer to the original instance, will not solve the
violation set (/y, icp). In consequence, ¢ is a local
repair of ¢ for (1o, icg).

(b) Now, we will prove that %(D,D)=
{S(t, N, 1) e L(D, D)) is a cover of the MWSCP,
We have already proven that every S(t,¢)e
¥(D, D) is such that ¢ is a local repair of 1. Since
D' is an LS-repair of D wrt IC, the set of local
repairs needed to construct it solve all the incon-
sistencies, and therefore €(D, D’) is a cover. O

Proof of Theorem 5. We start proving the first
statement, i.c. that the instance associated to a
minimum cover is an LS-repair. Since the union of
all the elements of a cover ¥ is U, the local repairs
represented by the cover solve all the violations sets
in D. By Lemma 5, no new inconsistencies are added
by applying the local repairs. Therefore, D(%) is a
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repair of D wrt IC. We need to prove that D(%) is an
LS-repair. By contradiction, assume it is not. In this
case, there exists an LS-repair D' for which
A(D, D'y < A(D, D(¥)).

Let €(D, D) be the cover defined as in Lemma 6.
It holds D(¥(D, D)) = D'. Also, for different local
repairs ¢ and ¢’ such that S(¢, ¢'), S(t, ¢") € €(D, D),
we have adiff (¢, t')#adiff (¢,"). Since all the local
repairs modify different values, w(%(D,D’)) =
A(D, D). But A(D,D')< A(D, D(%¥)) = w(¥). There-
fore, w(€(D, D')) <w(%). We obtain that Z is not a
minimum cover, and we have a contradiction.

Now we prove the second statement, i.e. that for
every LS-repair D there is a minimum cover € such
that D(¥)=D'. Let 4(D,D’) be defined as in
Lemma 6. By Lemma 6, €(D, D') is a cover of the
MWSCP for D and IC. We need to prove that
%(D,D’) is minimum. Let us assume, by contra-
diction, that there exists a minimum cover 4’ such
that w(%’)<w(¥(D, D")). By the first claim in this
theorem, D(%’) is an LS-repair. Since € is a
minimum cover, by Lemma 4, no two local repairs
of a tuple modify the same attribute. As a
conscquence, w(¥¢') = A(D, D(¥")).

By construction, ¥(D, D) is such that no two
local repairs of a tuple modify the same attribute.
Thus, it holds that w(€(D, D)) = A(D, D(¥)). This
implies that A(D, D(¢))<d4(D,D(#(D,D"))) =
A(D, D'), which contradicts the fact that D' is an
LS-repair. O

Example 21 (Example 16 continued). From the
minimum cover €| = {S(1, ), S(t2, 1)}, we get
tr = t] = Client(1,18,52), and 135 = ¢, = Client(2,
16,50), and therefore, D(%)) is instance D" in
Example 5. On the other hand, for the minimum
cover € = {S(11, 1)), S(t2, 5), S(14, 1), S(ts, £5)}, the
LS-repair D(%)) coincides with instance D’ in
Example 5.

Proposition 5. The transformation of an instance of
DROP(IC) into the instance of MWSCP, and the
construction of database instance D(%) from a cover
%€ for (U, %, w) can be done both in polynomial time
in the size of D.

Proof. It remains to verify that (U,%,w) can be
computed in polynomial time in the size of D. Let n
be the number of tuples in D. Notice that if m; is the
number of database atoms in i¢c; € IC, and m is the
maximum value of the m;, there are at most n™
violation sets associated to ic; € IC, each of them
having between | and m tuples. Therefore, the size

of U is O(n™ x |IC|). The size of each S(1,7) is
bounded by the size of U.

The size of &, i.e. the number of sets S(z, '), is
polynomially bounded by the size of D. In fact,
there is one S(4,#) for each local repair of ¢, and
each tuple may have no more than |#| x |IC| local
repairs, where & is the set of fixable attributes.
Therefore, (&) is O(F| x |IC| x |D|).

The weight of each S(t,f) is polynomially
bounded by the maximum absolute value in an
attribute in the database and the maximum absolute
value of a constant appearing in IC (by an analysis
similar to the one in Lemma 1).

With respect to D(¥), since €C &, € is
polynomially bounded by the size of D. The
generation of T* and the replacements in D are
easy. Therefore, the construction of D(%) can be
done in polynomial time on [D|. O

We have established that the transformation of
DROP into MWSCP is an L-reduction [9).

If we apply this reduction to D and IC when IC is
non-local, the instance D(%) for a cover € can still
be constructed, as above. However, it may not
satisfy JC, because rcpairing single inconsistent
tuples through local repairs solves only the initial
inconsistencies, but new inconsistencics can be
introduced. This is the case in Example 6, which
has a non-local set of denials.

5.3. Approximate LS-repairs via approximate
minimum covers

Now that we have transformed the database
repair optimization problem into a weighted mini-
mum sct cover problem, we can apply approxima-
tion algorithms for the latter to approximate the
former. Any cover €, even if not minimum, will .
generate a database D(¥) that is a repair of D. The
better the approximation, the closer will the repair
be to an LS-repair. For example, using a greedy
algorithm, MWSCP can be approximated within a
factor log(N), where N is the size of the underlying
set U[16). The approximation algorithm returns not
only an approximation # to the optimal weight w?,
but also a—not necessarily optimal—cover ¢ for
problem (U, &, w). As in Definition 10, the cover €
can be uscd to generatc a repair D(%¥) for D that
may not be LS-minimum,.

Example 22 (Examples 5 and 21 continued). We
show how to compute a solution to this particular
instance of DROP using the greedy approximation
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algorithm for MWSCP presented in [16]. We start
with @:=0, S(4, £)*>=S(t;, ) for each S(1,4) € &.
Then, we add to € the set S(#, ;) such that S(y, té)
has the maximum contribution ratio |S(4, 1)/
w(S(¢;, t’,)o). In this case, the alternatives are:

1S, /W (S, 1)) = 1/4,
IS, 1/ w(S(1, 1)) = 3/9,
1S(t2, )/ W(S(t2,55)) = 1,
|S(ta, )1/ W(S(ts, &) = 1/4,
|S(ts, 1)1 /W(S(ts, £5)) = 1.

The ratio is maximum for S(t3, ;) and S(t5, 5), so
we can add any of them to €. If we choose the first,
we get € = {S(12, 13)}. Now we compute the new sets
S(l;,t’,)'.:S(l;.,lj-)o\S(tz, t’z)o, and choose again an
S(t;,t}) for % such that S(4,f)' maximizes the
contribution ratio. Now S((s,75) is added to 4,
because S(ts, £;)' gives the maximum.

We repeat this process until we get all the
elements of U covered, i.c. all the sets S(t;, )
become empty at some iteration point k. We finally
obtain @ = (S(12, ), S(s, &), (1, 1,), S(t4,£)). In
this case, ¥ is an optimal cover, and therefore,
D(%) is an LS-repair, namely D’ in Example 5.

Since we are using a cover that is not necessarily
minimum, Lemma 4 may not hold. This means that,
for a tuple ¢, there might be two local repairs in the
cover that modify the value of the same attribute;
and ¢* cannot be computed as in Definition 10. This
situation is shown in the following example.

Example 23 (Example 18 continued). The greedy
algorithm in [16] returns the non-optimal cover
€ = (S(1, 11), S(t, 12), S(t, 13)}. Here 1 = R(1,3,1,8),
1 = R(1,5,1,8) and 13 = R(1,6,4,8) are all local
repairs for the same tuple 7, but now the first two of
them modify its second attribute B. The tuples ¢,
and f, solve different set of inconsistencies (viola-
tion sets); and those changes have to be made in
order to solve them. Picking up randomly one of the
two local repairs may leave the other set of
inconsistencies unsolved.

However, in this example, B always appears in the
denial constraints in comparisons of the form B>¢
for a certain constant ¢.” Furthermore, the values
for the attributes other than B are the same in ¢, and
t>. Therefore, we can construct the combined local
repair by taking only the smallest value assigned to

?Recall that since the constraints are local, a fixable attribute is
cither used with < or > in J/C but never both.

B in a local repair, namely 3 (the smallest constant ¢
appearing in the comparisons B> ¢ above). Thus,
the combined local repair would be in this
case t* = R(1,3,4,8), which solves all the violation
sets.

We need to modify Definition 10 to consider not
only minimum covers, but any cover that might be
returned by an approximation algorithm.

Definition 12. Let € be a (not necessarily minimum)
cover for instance (U,&,w) of the MWSCP
associated to D and /C. (a) For each tuple 1 € D,
and its local repairs #,,...,#, for which S(t,t;) e €
holds, the combined local repair t* is defined by the
following conditions: (al) ¢*[A] = #[A] if there
exists an i in [1,n] with 4 = adiff (¢, 1;); and there is
no other j in [l,n] with A =adiff(1,1;) and
4lA)<u{4] (4[A]> 6[A)) if A is compared with >
(resp. <)in IC. (a2) t*[A4] = {[A] for other attributes
A that are not involved in (al).

(b) T* and instance D(%) associated to € are
defined as in Definition 10.

This definition coincides with Definition 10 if € is
a minimum cover. Indeed, if we have a minimum
cover, Lemma 4 holds, and for each tuple there is a
unique local repair that modifies a specific attribute.

Example 24 (Example 23 continued). Applying De-
finition 12 to the non-minimum cover € = {S(, 1)),
S(t,82), S(1,63)), we obtain 1* = R(1,3,4,8), and
then D(¥) = {R(1, 3,4, 8)}, which is an LS-repair of
D wrt IC.

This example shows that even when the approx-
imation algorithm returns a non-minimum cover,
the repair associated to it may be minimum, i.e. an
LS-repair. However, non-minimum covers may also
lead to non-minimum repairs.

Example 25. Consider a schema with predicates
P(A,B,C), (D, E,F,G), and Kp = {4}, Kg = {D),
and & ={B,C,E,F). The instance D below is
inconsistent wrt the local ICs icy : V-(P(x,,2),
Q(x, w,v,u),y>7,w<7), icy:V=(P(x,y,2),O(x,w,
vu),y>9, w<6), icy:V=(P(x,y,2),y>7,2>2),
and icq : V=(P(x, ,2), Q(ut, w, v, x), y>9,w>2).
D:

P 4 B C 0 D E F G
a 11 4 a 4 5 f 4
b 5 7 2 c 4 8 a 17
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The violation sets arec ({¢1,13},ic1), ({11,183}, ic2),
({1}, éc3) and ((#1, ts},ics). The local repairs are:
) : Pa,1,4), (] : Pa94), ;: Pa75)) & : Pa,
6,5./), and ¢, : P(c,2,8,a). The instance of the
MWSCP is

Set S(t1, 1)) S, 1)) S(13,13) S(13, 13) S(ta, 1)
Weight 16 4 9 4 4

((1|,13},i€|) 1 0
({1, 83}, ic2) 1 1
((n}ic) 1 0
({1, ta), icq) 1 0

===

1
1
0
0

The only minimum cover for this problem is
€ = {S(11, 1))}, with weight 16. As expected, the
associated repair D(%) also has distance 16 to D.
However, a cover obtained by the greedy algorithm
in ['6] is €= {S((l,(’{),S(l},!&),S(’J, 3,)’8(’491:1)}9
with weight 21. The repair D(%) is

P A B C ¢ D E F G
a 9 4 a 7 5 f 4
b 5 7 4 c 2 8 a

This repair is not an LS-repair since the distance to
D is 17 instead of 16.

Notice that, as illustrated in the previous exam-
ple, for a cover ¥, it holds 4(D, D{(¥)) < w(¥), with
cquality for a minimum cover. This is because, to
obtain D(¥), we may eliminate elements from €.

Proposition 6. Given an instance D and a set IC of
local ICs, the instance D(@), obtained Jfrom the cover
& returned by the approximation algorithm, is a
repair. It also holds A(D, D(%)) < log(N) x 4(D, D),

where D' is any LS-repair of D wrt IC, and N is the
number of violation sets for D wrt IC.

Proof. Since % is a cover, the local repairs that it
represents solve all the violations sets in D. Since we
are dealing with local ICs, the set of updates defined
by T* still solves all the inconsistencies. By Lemma
5, no new inconsistencies are added by applying
the local repairs. Therefore, D(%) is a repair of D
wrt IC. .

We need to prove that A(D,D(%))<
log(N) x A(D,D’). By definition of the square
distance, it holds A(D, D(%)) Z,ep AW, ().
Let (#),..., 4} be the set of local repairs of ¢ such
that {S(,0),...,S(4,1,)} € . When computing ¢*

for ¢, some of the Sz, #) in € may not have been
used. Assume that {* is built using the local repairs
lipso sy, with {iy,..., ik} € (1,...,n). Thus, it
holds  A((1), (r*}y = Ty A1), (DS T, A(0),
(t}).In consequence, 3 ,.p A({‘}»“'})<ES(I,:‘)E'&
A({1}, (). Finally, we obtain A(D, D€)<
ZS(t.li)eG' A, () = Es«,q)e@ w(S(1, 1)) = W<
log(N) x w* = log(N) x 4(D,D’), for every LS-re-
pair D'of D, O

We have obtained that, for any set /C of local
denials, there is a polynomial time approximation
algorithm that solves DROP(IC) within an
O(log(N)) factor, wherc N is the number of
violation sets for D wrt /C. As mentioned before,
this number N is polynomially bounded by |Dj (cf.
Proposition 5). N may be small if the number of
inconsistencies or the number of database atoms in
the ICs are small, which is likely the case in real
applications.

However, we can get an even better approxima-
tion via a cover € obtained with an approximation
algorithm for a special case of the MWSCP: When
the number of occurrences of an element of U in
elements of & (its frequency) is bounded by a
constant. For this case of the MWSCP there are
approximations based on “linear relaxation” that
provide a constant approximation factor [13,
Chapter 3]. This is clearly the case in our applica-
tion, being m x |#| x |[IC| a constant bound
(independent from (D|) on the frequency of ecach
clement of U, where m is the maximum number of
database atoms in an IC.

Theorem 6. There is a polynomial time approxima-
tion algorithm that, for a given instance D and a set
IC of local ICs, returns a repair D(@) of D wrt IC,
such that A(D,D(@)<c x A(D,D'), where ¢ is a
constant and D' is any LS-repair of D.

6. One atom denials and conjunctive queries

In this section we concentrate on the common
casc of one database atom denials (1AD), i.e. of the
form Y—(4, B), where atom A has a predicate in %,
and B is a conjunction of built-in atoms. One atom
denials are used in practice. For example, they
capturc range constraints. They can also be used as
constraints on census data, which is usually
represented as a single rclation [3].

It is not difficult to produce cxamples of instances
that have exponentially many LS-repairs wrt 1ADs.
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Thus, CQA is not necessarily easier under 1ADs.
Actually, we will see below that some decision
problems around CQA are NP-hard.

For 1ADs, we can identify tractable cases for
CQA under LS-repairs by reduction to CQA for
(tuple and set-theoretic) repairs of the form
introduced in [2] for key constraints. This is because
each violation set (cf. Definition 7) contains one
tuple, maybe with several local repairs, but all
sharing the same rigid values. So, now the problem
consists in choosing one from different tuples with
the same rigid values (cf. proof of Theorem 7
below). The transformation preserves consistent
answers to both ground and open queries.

The “classic”-tuple and set oriented—CQA pro-
blem as introduced in [2] has been studied in detail
for key dependencies in [14,17]. In particular, for
tractability of CQOA4 in our setting, we can use results
and algorithms obtained in [17] for the classic
framework.

The join graph 9(Q) [17] of a conjunctive
query without built-ins Q is a directed graph whose
vertices are the database atoms in Q. There is an
edge from L to L' if L# L’ and there is a variable w
that occurs at the position of a non-key attribute in L
and also occurs in L'. Furthermore, there is a self-
loop at L if there is a variable that occurs at the
position of a non-key attribute in L, and at least
twice in L.

For a conjunctive query without repeated data-
base predicates and without built-ins Q, we write
Q € Crorest if 9(Q) is a forest and every non-key to
key join of Q is full i.e. involves the whole key.
Classic CQA wrt key constraints is tractable for
queries in € ryres [17].

Theorem 7. For every fixed set of 1 ADs and query in
Croresi CQA under LS-repairs is in PTIME.

Proof. Based on the tractability results in [17), it
suffices to show that the LS-repairs for a database D
are in one-to-one and polynomial time correspon-
dence with the classic repairs based on tuple
deletions [2,14) for a database D’ wrt a set of key
dependencies.

Since we have 1ADs, the violation sets will have a
single element. Thus, for an inconsistent tuple ¢ wrt
a constraint ic € IC, it holds ({¢),ic) e #(D,IC).
Since all the violation sets arc independent, in order
to compute an LS-repair for D, we have to generate
independently all the local repairs ¢ for all incon-
sistent tuples ¢ such that therc exists and ic € IC
with ({¢},ic) € #(D,IC).

Those local repairs can be found by considering
all the candidate repairs (not necessarily LS-mini-
mum) that can be obtained by replacing, in cach
tuple, the flexible attributes that appear in the ICs
by all the values in the intervals around the borders
and around the values in D (cf. Lemma 1). Then,
one can check which of candidate repairs satisfy /C.
Finally, those that minimize A({1}, {¢'}) are chosen.
The number of repair candidates per tuple in
the database is O((|D| x |&/|? + |Borders(IC)| x
|Z1)®)), where & is the set of attributes and & is
the set of fixable attributes. Thus, the total number
of repair candidates is O(D|(ID| x |/ |*+
|Borders(IC)| x |s#1)'*"), which is polynomial in
the size of D.

Let us now define a database D’ consisting of the
consistent tuples in D, together with all the local
repairs of the inconsistent tuples. By construction,
D and D’ share the same rigid values. Since each
inconsistent tuple in D may have more than one
local repair, D' may become inconsistent wrt its
key constraints. Each classic repair of IV, i.¢. obtained
by tuple deletions, will choose one local repair
from D’ for each inconsistent tuple ¢ of D, and
therefore will determine an LS-repair of D wrt IC.
Conversely, every LS-repair can be obtained in this
way. O

For queries Q returning numerical values only, e.g.
scalar aggregate queries, which is common in our
framework, it is natural to use a range semantics for
CQA [11]. In this case, the consistent answer to Q is
the pair consisting of the max-min and min-max
answers, i.c. the infimum and supremum, resp., of the
set of answers to Q obtained from LS-repairs. In
other words, the consistent answer to a numerical
query @ is the shortest interval [max—min, min-max],
such that for every LS-repair D', Q(D)e
[max—min, min—max].

We can see that the max-min and min-max
answers to a query are the minimum and the
maximum answers, resp., considering all LS-repairs.
So, finding these values becomes a minimization
and a maximization problem, resp., over the class of
LS-repairs. Correspondingly, the decision problems
of CQA under the range semantics consist in
determining if a numerical query Q has its answer:
(a) <k, in some LS-repair (the max-min case); or
(b) >k, for some LS-repair (the min—max case).

Our next result exhibits, for each of the common
aggregate functions, a set of denials and a scalar
aggregate conjunctive query for which at least one
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of these two decision problems of CQA becomes
NP-complete.

Theorem 8. For each of the aggregation functions
sum, count, count distinct, and average, there is a
Jfixed set of 1ADs and a fixed aggregate acyclic
conjunctive query with one occurrence of the function,
such that CQA under the range semantics is NP-
complete.

For the proof of this thecorem we need a
preliminary result.

Lemma 7. Consider a regular undirected graph 4 =
(7, 8) of degree 3 (i.e. all the vertices have degree 3),
and a function F from sets of vertices S to nonnegative
integers defined as follows:

(1) For SC ¥, and v e ¥, F(S, v)=|T(S, v)?,
where

{VIvV e (P\S)and {v,v'} € &), veS,
(S, v):={ ﬁl: \ v¢S,

(2) F(S)=Y,.s F'(S,v).

The maximum value of F(S) over all possible sets
Scv is 3 x|, Jor I a maximal (wrt set
inclusion) independent set.

Proof. Let us first assume that S is an independent
set, not necessarily maximal. In this case the value
F(S) is 3% x|S|, because each clement ve S is
connected to three vertices in ¥"\S. Then, among
independent sets, the maximum value for F(S) is
3% x m, where m is the maximum cardinality of an
independent set.

For § € 77, let 9(S] denote the subgraph (S, £5),
where &5 are all the edges {v,¢'} € & such that
v, € S. Now, if S is not an independent set,
there exists a maximum independent set /s of 9[S].
Every v € (¥'\S) is adjacent to at least one vertex
in Ig, otherwise Is U {v} would be an independent
set contained in S which is a proper extension
of Ig, contradicting our choice of Is. Now, de-
fine Fex(S,v) = (F'(S,0) + T, 1ee F'(S.v)). Since
every edge v' € (S\/s) is adjacent to Ig, it is easy to
see that

F(S)< Y FerS,v). @)

vel

We want to prove that F(S)< F(Is). This, combined
with Eq. (2), shows that it suffices to prove that

Toers FexdS,0)<Fs).  Since  F(ls) = e

F!(Is,v), we need to prove that YvergFext(S, )<
Y1 FiIs,v). Tt is sufficient to prove that
Fou(S,0)< F(I5,v) is true for every v e Is. For v €
Is and §' = (S\/s), we have the following cases:

(1) If v is adjacent to one vertex in S’, then
Fexi(S,0)<2% + 23, and F/(Is,0) = 3°. In con-
sequence, Fe.(S, ) <(F!(Is,v) — 11).

(2) If v is adjacent to two vertices in S’, analogously
to (1), we get Fou(S,v)<(F'(Is,v) — 10).

(3) If v is adjacent to three vertices in §’, analo-
gously to (1), we get Fex(S, )< (F'(Is,v) ~ 3).

Thus, we have proved that Fe.(S, v)< F'(Is,v), and
therefore, that F(S)<F(Is). We also know that,
since /s is an independent set, that F(S)< F(Is)<
¥xm O

Proof of Theorem 8. In all the cases, membership to
NP is a conscquence of thc cxistence of a
polynomially bounded and polynomial-time verifi-
able certificate, as established in Theorem 1. Now
we consider hardness.

(a) For sum: By reduction from the NP-hard
problem Independent Set for Cubic Planar Graphs
[18], where the vertices of the graph have all degree 3.

Given an undirccted graph & = (¥, &) of degree
3, and a lower bound & for the size for a maximum
independent set, we create a predicate
Ver(V,C,, C;), where the key V takes vertices as
values, and C;, C; are fixable and may take values 0
or 1, but are all equal to 0 in the initial instance
D. This relation is subject to the denial ic:
Vv, ¢y, ca~{(Ver(v, ¢, ¢3),¢1 <1,c2<1). D is inconsis-
tent wrt this constraint, and, in any of its LS-
repairs, each vertex v will have associated a tuple
Ver(v,1,0) or Ver(v,0,1), but not both.

Each LS-repair D' of the database defines a
partition of ¥ into two subsets: S, with those v with
Ver(v,1,0) € D’; and ', with those v with Ver(v,0,
1Ye D'. Clearly SUS'=7" and SN =0 We
also use predicate Edge(V,,V,, W), with rigid
attributes only, whose extension contains
Edge(vy,v3,1) and Edge(vy,v,,1) for {v;,v;) € &.
So, every vertex v appears exactly 3 times in each
argument of Edge-tuples in D.

Consider the ground aggregate conjunctive query Q:

q(sum(wp)) < Ver(vi, cn, ci2),

cn = 1, Edge(v), va, wo), Ver(va, ca1, ¢22),

c21 = 0, Edge(vy, v3, w1), Ver(vs, c31,¢32),¢3 =0,
Edge(vy, v, w2), Ver(vs, ca1, ¢a2),ca1 = 0.
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Given an LS-repair as a partition of a set of vertices
into two subsets S and S, for each vertex v € S, the
body of Q will be satisfied m® times, where m is the
number of vertices of §' that are adjacent to elements
in S. This happens because the query has three pairs of
predicates Edge, Ver, each predicate can be satisfied m
times, and they are independent from each other (there
are no equality, non-equality or predicates connecting
them). In consequence, the whole body of the query
will be satisfied m* times. Each satisfying assignment
of the body of the query brings value 1 to the multiset
(wo) which is under the sum aggregation function.
That is, query Q computes the nonnegative integer
function F, such that F(S) gives the sum of cubes of
the number of vertices of ¥"\:S that are adjacent to
vertices in S. More precisely, F(S) = Q(D'), for D' €
Rep(D, IC) and S = {v|Ver(v,1,0) € D}.

Since this function is nonnegative and its value is
zero for S =0 and S = ¥, we have that its mini-
mum value in the repairs is zero. We are interested
in the maximum value for @ in Rep(D, IC), i.e. the
min—max answer introduced in [11].

From Lemma 7, we have that the answer to query
Q is at most 3° x |7), with I a maximum indepen-
dent set. In consequence, the min—-max answer for Q
is 3% x m, with m the cardinality of the maximum
independent set. Thus, there is an independent set of
size at least k iff min-max answer to 023° x k.

(b) For count. Basically the same proof as for (a)
applies. Only the query has to be changed to:

g(count) « Ver(v,cn,ci2),

et = 1, Edge(v1, v2, wo), Ver(va, ca1, ¢22),

ca1 = 0, Edge(vy, v3, wy), Ver(vs, ¢33, ¢32), ¢31 = 0,
Edge(vy, v4, w2), Ver(va, car, ca2),ca1 = 0, wp = 1.

(c) For count distinct. By reduction from MAX-
SAT. Assume that an instance for MAXSAT is
given. It consists of a set 2 of propositional
variables, a collection € of clauses over 2, and a
positive integer k. The question is whether at least k
clauses can be satisfied simultaneously. The answer
will be Yes exactly when a question of the form
countd <(k — 1), with countd defined by an aggre-
gate query over a database instance (both of them to
be constructed below), gets answer No under the
min-max semantics.

Define a predicate Var(U, V', V), being the first
attribute the key, and the second and third are
fixable (the denial below and the minimality
condition will make them take values 0 or 1). The
initial database contains Var(u, 0,0) for every u € 2.

Another predicate, Clause(u,c,s), has no fixable
attributes. Its extension contains Clause(u,c,s) for
every occurrence of variable # € 2 inaclausec € €,
where s an assignment for u satisfying clause c.
The IC is Yu,uv,va—=(Var(u,v, ), <lvn<l1).
The acyclic query is g(countd(c)} « Var(u,v,v2),
Clause(u,c,s),v; =s, where countd denotes the
“count distinct” aggregation function. Its answer
tells us how many clauses are satisfied in a given LS-
repair. The max value taken on a LS-repair, i.c. the
min-max answer, will be the maximum number of
clauses which may be satisfied for MAXSAT.

(d) For average: By reduction from 3-SAT. We
use the same predicate Var(U, V1, V3) and IC as in
(c). Now, we encode clauses as tuples in the
extension of a predicate Clause(Val, Var,,
Val,, Var,, Val,, Var;, Val;), which has no fixable
attributes. The extension contains tuples Clause
(val,var;,val,, var,, val,, var;), where var,,var,, var;
are the propositional variables in the clause (in
any order), val, val,,val; are all the possible
combinations of truth assignments to variables
(at most eight combinations per clause); and
val is the corresponding truth value taken by the
clause (0 or 1) given the values val;. Now, the acyclic

query

q(avg(v))
« Clause(v, uy, v, u2, v2, 43, v3),
Var(u, v, v)), Var(uz, vz, v3), Var(us, vs, v3)

takes a maximum value 1 in an LS-repair, i.e. the
min-max answer to ¢ is 1, iff the formula is
satisfiable. O

Notice that for the four aggregation functions
one lAD suffices (plus the 1ADs that force
numerical values not to be less that 0). For sum
and count we use a reduction from the Independent
Set Problem with bounded degrece 3 [18]. The
general Independent Set Problem has bad approx-
imation propertics [13, Chapter 10). The Bounded
Degree Independent Set has efficient approximations
within a constant factor that depends on the
degree [19).

Theorem 9. For any set of 1ADs and conjunctive
query with sum over a non-negative attribute, there is
a polynomial time approximation algorithm with
constant factor for determining the min- max answer
Jor CQA.



430 L. Bertossi et al. | Information Systems 33 (2008) 407434

The factor in this theorem depends upon the ICs
and the query, but not on the size of the database.
The acyclicity of the query is not required. The
algorithm is based on a reduction of our problem to
satisfying a subsystem with maximum weight of a
system of weightcd algebraic equations over the
Galois ficld with two elements GF[2] (a general-
ization of problems in [20,21]). For the latter
problem, a polynomial time approximation similar
to the onc for MAXSAT can be given [21]). The
long proof of this theorem is given in Appendix A
in [22).

7. Extensions
7.1. Dependencies between attributes

The notion of LS-repair that we introduced can
be secen as a first approach to the problem of
defining and computing a semantically correct data
set that is close to the one at hand. Thinking of
census-like applications, the idea that key con-
straints are satisfied makes sense. Data forms
usually come partially filled out, with the data for
the identification fields already entered. It is the data
that is entered in situ the one that is subject to
errors. Considering the possible violation of the key
constraints in this picture would require much more
research. Our results rely on the hardness of the key
constraints.

We are also making the reasonable assumption
that the dependencies between fixable attributes are
captured by the denial constraints, but the crrors
that one can make when entering the individual
attribute values are independent from each other. A
more sophisticated model could consider some sort
of stochastic dependency between the errors made
in groups of attribute values. This dcpendency
should be captured by the distance function. This
is an interesting venue to explore that has to be left
for future research.

7.2, Minimum distribution-variation repairs

Repairing a database under minimization of the
square distance to the original database may not
preserve the statistical or aggregate properties of the
original data, which in some applications could be
relevant, like in census data. Given that there may
be several LS-repairs, we may prefer those that
prescrve the data distribution.

As a first step in this direction, one could choose
those LS-repairs such that, for each fixable attri-
bute, the frequency of values in the repair stay as
close as possible to the frequency of values in the
original database. This is one way of capturing the
prescrvation of the data distribution. This choice
assumes that the different attributes are stochasti-
cally independent. Without attempting to develop
this direction in full, we briefly investigate in the
following a first possible approach. A deeper
analysis of this class of LS-repairs under the
independence assumption, and also the study of
preservation of statistical properties when attributes
are stochastically correlated are both material for
future research.

Definition 13. Let D and D’ be instances over the
schema 2= (% &, 8,%), and Re R. (a) The
distribution distance between D and D' wrt attribute
A of Ris A54(D, D) = T e pomay (count(a, R.4, D)
—count(a, R.A, '))?, where count(a, R.A,D) gives
the number of occurrences of value a in 4 of R in
instance D.

(b) The distribution distance A4(D, D) between D
and D’ is the maximum of the distribution distances
over all relations and their attributes.

(c) Given set of ICs IC, D' is a minimum
distribution variation repair (MDV-repair) of D wrt
IC if D' is an LS-repair that also minimizes
44(D, D).

Example 26. Consider the IC VN,E,S-
(Emp(N,E, S), E<5,5>5), which requires that no
employee with experience shorter than 5 years gets a
salary higher than 5 thousand. The inconsistent
instance D = {Emp(Ann,4,6), Emp(Bill,3, 7), Emp
(Chris, 2,2), Emp(Dan, 6,6)} has the following LS-
repairs:

D\ = (Emp(Ann,4,5), Emp(Bill, 3, 5),

Emp(Chris, 2,2), Emp(Dan, 6, 6)},

Dy = (Emp(Ann,4,5), Emp(Bill, 5,7),
Emp(Chris, 2,2), Emp(Dan, 6, 6)},

D3 = {Emp(Ann, 5, 6), Emp(Bill, 3, 5),
Emp(Chris, 2,2), Emp(Dan, 6, 6)),

Dy = {Emp(Ann, 5,6), Emp(Bill, 5, 7),
Emp(Chris, 2,2), Emp(Dan, 6, 6)}.
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The distance is A(D,D)=1>+2*=5 for i=
1,2,3,4.

44(D, Dy) = Max{4} (D, Dy), 45(D, Dy), 45(D, D1)},
with 4¥(D,D))=0, 45(D,D;)=0, and 4
(D, Dy) = (count(5, S, D)— count(5, S, Dy))* + (count
(6, S, D) — count(6, S, Dv))* + (count(1, S, D) — count
(7,8, Dy))? =2% + 12 + 12 = 6. Thus, 44(D, D)) = 6.

A44(D, Dy) = Max{4) (D, D2), 45(D, D), 43(D, D2)},
with 4¥(D,Dy) =0, A%(D, Dy) = (count(3, S, D)~
count(3, S, Dz))2 + (count(5, S, D) — count(5, S, Dz))2
=12+ 12, and 43(D, D2) = (count(5, S) — count(5,
S, D2))? + (count(6, S, D)— count(6, S, D2))* = 1312,
Thus, 44(D, D;) = 2.

This shows that repair D, has a bigger impact
over the distribution than D,. Then, if we want to
keep the statistical properties of the database we will
prefer D, better than D,. Analogously, we can
obtain 44(D,D;)=2 and 44D,Ds) =6. Then,
44(D, D3} =A44(D, D3)< A4(D, Dy) = 44(D, D), and
the MDV-repairs are D, and Ds.

From Theorem 2 and the fact that for a database
there is an LS-repair if and only if there is a MDV-
repair, we obtain

Proposition 7. The problem of existence of MDV-
repairs under linear constraints is NP-complete.

7.3. Aggregation constraints

We may consider aggregation constraints (ACs)
[23] expressed in terms of aggregation functions, like
sum, count, average. It is natural and common to use
those functions when processing numerical data.

Filtering ACs impose conditions on the tuples
over which aggregation is applied, e.g. sum(4, :
Az = 3)>5 contains a sum over 4 of tuples with
Az =3, and checks if this sum is greater that 5.
Multi-attribute ACs allow for arithmetical combina-
tions of attributes as arguments for sum, e.g.
sum(A, 4+ A3)>5 and sum(A, x A2)>100. If an
AC has attributes from more than one predicate,
it is multi-relation, e.g. sumpg, (A1) = sumg,(4,),
otherwise it is single-relation.

Having aggrepation constrains together with
denial constrains has an impact on the class of
possible repairs. For example, consider the rela-
tional predicate R(A,B), with key A4 and fixable
attribute B. If we have IC = {V¥x,y~(R(x,y),
y>1),sum(B) = 10}, any database with less than
10 tuples has no repairs.

It is not difficult to see that for a fixed set /C of
ICs containing denials and aggregation constraints,
NE(IC) is decidable. Here we will investigate the
decision NE = {(D,IC)|Rep(D,IC)#8}, of exis-
tence of LS-repairs, whose instances in this case
consist both of a database instance and a set of
constraints (and a corresponding schema). We
consider the variant of CQA where ICs are also
part of the instances.

Theorem 10. Under extended linear denials and
complex, filtering, multi-attribute, single-relation,
aggregation constraints, the problems NE of ex-
istence of LS-repairs, and CQA under the skeptical
semantics are undecidable.

Proof (sketch). Hilbert’s 10th problem on existence
of integer solutions to diophantine equations can be
reduced to NE. More precisely, given a diophantine
equation, it is possible to construct a database D
and a set of ICs IC such that the existence of an LS-
repair for D wrt IC implies the existence of a
solution to the equation, and vice versa. An example
can be found in Appendix B in [22). For CQA,
apply Proposition 2. A more detailed sketch of the
proof for NE and a representative example is given
in Appendix Bin [22]. O

7.4. Other distances

Our results for the square distance rely basically
on the additivity of the distance on the tuples of
the database and its monotonicity on the absolute
values of the differences between values for the same
attribute. The property of polynomial-time comput-
ability of the distance function is also required.
Any distance that satisfies these properties can
be used instead of the L, distance, obtaining
the same complexity results. In particular, all the
results apply to the “city” distance (or L, distance)
given by the sum of those absolute differences. Of
course, when using the L, distance, we may get a
different set of repairs for the same database. The
approximation algorithm can also be used by
computing the weights using the L, instead of the
L, distance. Thus, the general complexity and
approximability results still hold. For example, the
optimization and implementation of the approx-
imation in [24] of the algorithm for the DROP
problem presented here uses the L, distance, with-
out any essential changes wrt the treatment based
on the L, distance,
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The edit distance (ED) between two strings is the
minimum number of substitutions, deletions and
insertions of characters that are needed to transform
one string into the other. The hamming distance
between two strings of the same length is the
number of positions that have different characters.
The hamming distance is an upper bound for the
edit distance. For example, HD(234, 345) = 3, but
ED(234,345) = 2. These distances are used in data
editing, but they are more appropriate for strings of
characters, and not for numerical data. Actually,
our results would not apply to the edit distance or
the hamming distance, because they do not mono-
tonically increase over the absolute value of the
differencc between two attributes. For example,
for the numbers 21, 30 and 31, ED(21,30)=
2>ED(21,31) = 1. However, since |21 —31|>
{21 — 30|, the edit distance does not monotonically
increase over the absolute value of the difference.
The same example can be used for the hamming
distance, because HD(21,30)= ED(21,30) and
HD(21,31) = ED(21,31).

Another problem with the edit and hamming
distance is that there are too many possible repairs
to consider. For example, the database D=
{P(a, 150)}, where the first attribute is the primary
key and the second attributc is fixable, is incon-
sistent wrt P(x,y) = y=200. There exists only one
LS-repair (under the quadratic distance): D' =
{P(a, 200)}. If instead, we consider the edit distance,
there arc more than 40 repairs at distance one. For
example: Dy = {P(a,250)}, D2 = {P(a, 350)}, D3 =
{P(a, 1050)}, D4 = (P(a,1530)}, Ds = {P(a, 1590)},
D¢ = {P(a, 6150)}, D; = (P(a, 1507)}, etc.

8. Conclusions

We have shown that fixing numerical values in
databascs poses many new computational chal-
lenges that had not been addressed before in the
context of CQA. These problems are particularly
relevant in census-like applications, where the
problem of statistical data editing [25,26) is a
common and difficult task. Also our concentration
on aggregate querics is particularly relevant for this
kind of statistical applications. In this paper we
havc just started to investigate some of the many
problems that appear in this context, and scveral
possible extensions deserve to be explored.

We concentrated on integer numerical values,
which provide a useful and challenging domain.
Considering real numbers in fixable attributes opens

many new issues, requires different approaches; and
must be left as a subject of future research. Some of
the results presented here carry over to the casc of
real numbers. However, apart from the technical
problems, the main complication is to come up with
a right repair semantics in the presence of real
numbers, in particular in comparisons of attributes.
For example, if two attributes 4, B take the same
value, but a constraint prevents this from happen-
ing, it is not clear what new valucs have to be given
to them in order to restore consistency. Most likely
making them differ by an infinitesimal quantity
would not make much sense in most of the
applications. We could accept an epsilon of error
in the distance, in such a way that if, for example,
the distance of a repair is 5 and the distance to
another repair is 5.001, we could take both of them
as (minimum) LS-repairs.

What is essential about the numerical domain, in
our case, the integers, is that we have a discrete
linear order and a numerical distance function that
is monotonic on the length of the interval between
two arbitrary elements. In conscquence, the frame-
work established in this paper could be applied to
qualitative attributes which have an implicit linear
order given by the application. Also numerical
distances, like the ones introduced here, could be
applied to domains other than numerical if their
elements can be naturally mapped to numbers.

The result we have presented for fixable attributes
that arc all equally rclevant (¢4 = | in Definitions 1
and 2) should carry over without much difficulty to
the general case of arbitrary weighted repairs. We
have shown how to extend our approach in order to
consider minimum distribution variation LS-repairs
that keep, in some sense, the overall statistical
propertics of the database.

Other open problems refer to the identification of
cases of polynomial complexity for linear denials
with more that onc database atom; approximation
algorithms for the DROP for non-local cases; and
approximations to CQA for other aggregate queries.
More research on the impact of aggregation
constraints on LS-repairs is needed.

For related work, we refer mainly to the literature
on CQA. In [I] an earlier survey with abundant
references can be found. Morc recent surveys can be
found in [4,5]. Most of the rescarch on CQA has
been carried out appealing to a tuple oriented repair
semantics, i.e. minimal repairs are obtained through
tuple insertions or deletions. Under the set-theore-
tic, tuple-based semantics, [14,17,27] present results
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on complexity of CQA for conjunctive queries,
functional dependencies and foreign key con-
straints. A majority semantics was studied in [28]
for database merging.

The range semantics for CQA of aggregate queries
was introduced and investigated in [11]. In that paper,
the NP-completeness of CQA for atomic aggregate
queries, tuple-based and set-oriented repairs, and
functional dependencies was established.

Previous research reported in [3,6] is the closest to
our work, because changes in attribute values are
basic repair actions. However, the peculiarities of
numerical values and quantitative distances between
databases are not investigated.

Recent research presented in [29] investigates the
complexity of repair checking and CQA wrt
aggregation constraints. In this case, the constraints
impose linear restrictions on summarizations. The
repair semantics is based on changes of numerical
attribute values, as in our case. However, the
distance between instances does not consider the
numerical values, but the set of changes wrt
cardinality or set inclusion. Querics are atomic,
without aggregation. Computational mechanisms
are not considered. However, in [30] the authors
present a system that uses linear programming
techniques for computing a repair wrt aggregation
constraints. The repair minimizes thc number of
changes of attribute values.

In [24], optimizations, the implementation, and
experiments of/with the approximation algorithm
for DROP are presented.

A repair semantic based on changes of attribute
values is also considered in [31]. The ICs considered
are functional and inclusion dependencies. Data-
base tuples have numerical weights that may reflect
provenance in data integration. In consequence, a
repair has a weight that reflects the weights of the
tuples modified by it. Except for these external
weights, numerical attributes values are not inves-
tigated. The authors concentrate of developing and
investigating heuristics for computing minimum
cost repairs, but CQA is not addressed.

There is interesting work in the arca of statistical
data editing [26]. Similar to integrity constraints,
edits are used to express conditions that a data set
should satisfy [32]. Edits can be expressed as linear
inequalities. There are scvcral alternative ways of
modifying the data so that edits arc satisfied
[25,32-34]. Those methods are tailored to finding a
single “repair”. CQA has not been considered in
that area, and, to the best of our knowledge, the

complexity of the problem has not been investi-
gated.
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