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Abstract
We solve the problem of obtaining answers to
queries posed to a mediated integration system un-
der the local-as-view paradigm that are consistent
wrt to certain global integrity constraints. For this,
the query program is combined with logic program-
ming specifications under the stable model seman-
tics of the class of minimal global instances, and of
the class of their repairs.

1 Introduction
For several reasons a database may become inconsistent wrt
certain integrity constraints (ICs). In such a situation, possi-
bly most of the data is still consistent. In [Arenas et al., 1999]
consistent data in a single relational database is characterized
as the data that is invariant under all minimal restorations of
consistency, i.e. true in all repaired versions of the original
instance (the repairs). In that paper and others [Arenas et al.,
2000; Greco et al., 2001], some mechanisms have been devel-
oped for retrieving consistent answer when queries are posed
to such an inconsistent database.

When independent data sources are integrated, inconsisten-
cies wrt to global ICs are likely to occur, specially when the
sources are virtually integrated by means of a mediator, be-
cause the data sources are kept completely independent. The
mediator provides a global schema as an interface, and is re-
sponsible for generating query plans to answer global queries
by retrieving data sets from the sources and combining them
into a final answer set for the user.

“Local-as-view” (LAV) is a common paradigm for data in-
tegration that describes each data source as a set of views over
the global schema. Another one, “global-as-view” (GAV),
defines every global relation as a view of the set of relations
in the sources ([Lenzerini, 2002] is a good survey). Query
answering is harder in LAV [Abiteboul et al., 1998]. On the
other side, the LAV approach allows more flexibility when
new sources are integrated into an existing system. However,
the flexibility to add new sources, without having to consider
the other sources in the system, makes inconsistencies wrt
global ICs more likely.
Example 1 Consider the LAV based global integration sys-
tem G1 with a global relation R(X,Y ) and two source rela-
tions v1 = {V1(a, b), V1(c, d)} and v2 = {V2(a, c), V2(d, e)}

that are described by the view definitions V1(X,Y )← R(X,
Y ); V2(X,Y ) ← R(X,Y ). The global functional depen-
dency (FD) R : X → Y is violated through the pair of tuples
{(a, b), (a, c)}. 2

In a virtual integration system, the mediator should solve po-
tential inconsistencies when the query plan is generated. In
[Bertossi et al., 2002], under the LAV approach, a methodol-
ogy for generating query plans to compute answers to limited
forms of queries that are consistent wrt an also restricted class
of universal ICs was presented. The limitation comes from a
first step where a query transformation for consistent query
answering (CQA) is performed [Arenas et al., 1999]. Next,
query plans are generated for the transformed query. How-
ever, [Bertossi et al., 2002] provides the right semantics for
CQA in mediated integrated systems (see Section 2).
Example 2 (example 1 continued) If we pose to the global
system the query Q : Ans(X,Y ) ← R(X,Y ), we obtain
the answers {Ans(a, b), Ans(c, d), Ans(a, c), Ans(d, e)}.
However, only the tuples Ans(c, d), Ans(d, e) should be re-
turned as consistent answers wrt the FD R : X → Y . 2

In this paper, under the LAV approach and assuming that
sources are open (or incomplete) [Abiteboul et al., 1998], we
solve the problem of retrieving consistent answers to global
queries. We consider arbitrary universal ICs and referential
ICs, in consequence all the ICs that are used in database
praxis [Abiteboul et al., 1995]. View definitions are conjunc-
tive queries, and global queries are expressed in Datalog and
its extensions with negation. The methodology can be sum-
marized as follows. First, in Section 3, the minimal legal
global instances of a mediated system are specified by means
of logic programs with a stable model, or answer sets, seman-
tics. Next, in Section 4, the repairs of the minimal global in-
stances are specified as the stable models of disjunctive logic
programs. Those programs contain annotation constants, like
those used to specify repairs of single relational databases for
CQA [Barcelo et al., 2002]. Finally, in Section 5, consistent
answers to queries are obtained by running a query program
in combination with the previous two specification programs.

2 Preliminaries
2.1 Global schemas and view definitions
A global schema R is modeled by a finite set of relations
{R1, R2, ..., Rn} over a fixed domain U . With these relation



symbols and the elements of U treated as constants, a first-
order language L(R) can be defined. This language can be
extended with new defined predicates and built-ins. In partic-
ular, we will extend the global schema with a local schema
S, i.e. a finite set of new view predicates V1, V2, ..., that will
be used to describe the relations in the local sources.

Each view, denoted by, say a new predicate V , is defined
by means of conjunctive query [Abiteboul et al., 1995], i.e.
an L(R ∪ S)-formula of the form ϕ

V
: V (t̄) ← body(ϕ

V
),

where t̄ is a tuple containing variables and/or constants, and
body(ϕ

V
) is a conjunction ofR-atoms.

A database instance D over schema R can be considered
as a first-order structure with domain U , where the extensions
of the relationsRi are finite. (The extensions of built-in pred-
icates may be infinite, but fixed.) A global integrity constraint
(IC) is an L(R)-sentence ψ. An instance D satisfies ψ, de-
noted D |= ψ, if ψ is true in D.

Given a database instance D over schema R, and a view
definition ϕ

V
, ϕ

V
(D) denotes the extension of V obtained

by applying the definition ϕ
V

toD. If the view already has an
extension v (corresponding to the contents of a data source),
it is possible that v is incomplete and stores only some of the
tuples in ϕ

V
(D); and we say the view extension v is open wrt

D [Abiteboul et al., 1998]. Most mechanisms for deriving
query plans assume that sources are open, e.g. [Duschka et
al., 2000].

A source S is a pair 〈ϕ, v〉, where ϕ is the view definition,
and v is an extension for ϕ. An open global system G is a
finite set of open sources. The global schema R consists of
the relation names that do not have a definition in the global
system. The underlying domain U for R is a proper superset
of the “active” domain. The latter consists of all the constants
appearing in the view extensions vi of the sources, and in
their definitions. A global system G defines a set of legal
global instances [Lenzerini, 2002].

Definition 1 Given an open global system G = {〈ϕ1, v1〉,
. . . , 〈ϕn, vn〉}, the set of legal global instances is Linst(G)
= {D instance over R | vi ⊆ ϕi(D), i = 1, . . . , n}. 2

Example 3 (example 2 continued) Let us denote by ϕ1, ϕ2
the view definitions of V1, V2, resp. in G1. D = {R(a, b),
R(c, d), R(a, c), R(d, e)} is a legal global instance, because
v1 = {V1(a, b), V1(c, d)} ⊆ ϕ1(D) = {V1(a, b), V1(c, d),
V1(a, c), V1(d, e)} and v2 = {V2(a, c), V2(d, e)} ⊆ ϕ2(D)
= {V2(a, b), V2(c, d), V2(a, c), V2(d, e)}. Supersets of D
are also legal instances. 2

The semantics of query answers in mediated integration sys-
tems is given by the notion of certain answer. In this paper
we will consider queries expressed in Datalog and its exten-
sions with negation.

Definition 2 [Abiteboul et al., 1998] Given an open global
system G and a query Q(X̄) to the system, a tuple t̄ is
a certain answer to Q in G if for every global instance
D ∈ Linst(G), it holds D |= Q[t̄]. We denote with
CertainG( Q) the set of certain answers to Q in G. 2

The inverse-rules algorithm [Duschka et al., 2000] for gen-
erating query plans under the LAV approach assumes that
sources are open and each source relation V is defined as

a conjunctive view over the global schema: V (X̄) ←
P1(X̄1), . . . , Pn(X̄n), with X̄ ⊆

⋃
i X̄i.

Then, for j = 1, . . . n, Pj(X̄
′
j)← V (X̄) is an inverse rule

for Pj . The tuple X̄j is transformed to obtain the tuple X̄ ′j as
follows: if X ∈ X̄j is a constant or is a variable appearing in
X̄ , then X is unchanged in X̄ ′j . Otherwise, X is a variable
Xi that does not appear in X̄ , and it is replaced by the term
fi(X̄), where fi is a fresh Skolem function. We denote the
set of inverse rules of the collection V of source descriptions
in G by V−1.

Example 4 Consider the mediated data integration system
G3 with global schema R = {P,R}. The set V of local
view definitions consists of V1(X,Z)← P (X,Y ), R(Y,Z),
and V2(X,Y ) ← P (X,Y ). The set V−1 consists of the
rules P (X, f(X,Z)) ← V1(X,Z); R(f(X,Z), Z) ←
V1(X,Z); and P (X,Y )← V2(X,Y ). 2

The inverse rules are then used to answer queries expressed
in terms of the global relations, that now have definitions
in terms of the sources. The answers obtained with the in-
verse rule algorithm are maximally contained in the queries
[Duschka et al., 2000], and coincide with the certain answers
[Abiteboul et al., 1998].

2.2 Global systems and consistency
We assume that we have a set of global integrity constraints
IC that is consistent as a set of logical sentences, and generic,
in the sense that it does not entail any ground database literal.
ICs used in database praxis are always generic.

Definition 3 [Bertossi et al., 2002] (a) Given a global sys-
tem, G, an instance D is minimal if D ∈ Linst(G) and is
minimal wrt set inclusion, i.e. there is no other instance in
Linst(G) that is a proper subset of D (as a set of atoms).
We denote by Mininst(G) the set of minimal legal global in-
stances of G wrt set inclusion. (b) A global system G is
consistent wrt IC , if for all D ∈ Mininst(G), D |= IC. 2

Example 5 (example 4 continued) Assume that G3 has the
source contents v1 = {V1(a, b)}, v2 = {V2(a, c)}, resp. and
that U = {a, b, c, u}. Then, the elements of Mininst(G3)
are of the form Dz = {P (a, z), R(z, b), P (a, c)} for some
z ∈ U . The global FD P (X,Y ): X → Y is violated exactly
in those minimal legal instances Dz for which z 6= c. Thus,
G3 is inconsistent. 2

Definition 4 The ground tuple ā is a minimal answer to a
queryQ posed to G if for everyD ∈ Mininst(G), ā ∈ Q(D),
where Q(D) is the answer set for Q in D. The set of minimal
answers is denoted by MinimalG(Q). 2

Clearly CertainG(Q) ⊆ MinimalG(Q). For monotone
queries [Abiteboul et al., 1995], the two notions coincide
[Bertossi et al., 2002]. Nevertheless, in Example 5 the query
Ans(X,Y )← ¬P (X,Y ) has (b, a) as a minimal answer, but
not as a certain answer, because there are legal instances that
contain P (b, a). Since consistency was defined wrt minimal
global instances, the notion of minimal answer is particularly
relevant.

Given a database instance D, we denote by Σ(D) the set
of ground formulas {P (ā) | P ∈ R and D |= P (ā)}.



Definition 5 [Arenas et al., 1999] (a) LetD,D′ be database
instances over the same schema and domain. The distance,
∆(D,D′), between D and D′ is the symmetric difference
∆(D,D′) = (Σ(D) \ Σ(D′)) ∪ (Σ(D′) \ Σ(D)). (b)
For database instances D,D′, D′′, we define D′ ≤D D′′ if
∆(D,D′) ⊆ ∆(D,D′′). 2

Definition 6 (based on [Arenas et al., 1999]) Let G be a
global system and IC a set of global ICs. A repair of G wrt
IC is a global database instance D′, such that D′ |= IC
and D′ is ≤D-minimal for some D ∈ Mininst(G). 2

Thus, a repair of a global system is a global database instance
that minimally differs from a minimal legal global database
instance. If G is already consistent, then the repairs are the
elements of Mininst(G). In Definition 6 we are not requir-
ing that a repair respects the property of the sources of being
open, i.e. that the extension of each view in the repair con-
tains the corresponding view extension in the source. Thus, it
may be the case that a repair – still a global instance – does
not belong to Linst(G). If we do not allow this, a global sys-
tem might not be repairable. Repairs are used as an auxiliary
concept to define the notion of consistent answer.

Example 6 (example 1 continued) The only element in
Mininst(G1) is D0 = {R(a, b), R(c, d), R(a, c), R(d, e)},
that does not satisfy IC. Then, G1 is inconsistent. The re-
pairs are the global instances that minimally differ from D0

and satisfy the FD, namely D1
0 = {R(a, b), R(c, d), R(d, e)}

and D2
0 = {R(a, c), R(c, d), R(d, e)}. Notice that they do

not belong to Linst(G1). 2

Definition 7 [Bertossi et al., 2002] (a) Given a global sys-
tem G, a set of global integrity constraints IC, and a global
first-order query Q(X̄), we say that a (ground) tuple t̄ is a
consistent answer to Q wrt IC iff for every repair D of G,
D |= Q[t̄]. (b) We denote by ConsisG(Q) the set of consis-
tent answers to Q in G. 2

Example 7 (example 6 continued) For the queryQ1(X): ∃Y
R(X,Y ), a is a consistent answer. Q2(X,Y ): R(X,Y ) has
(c, d), (d, e) as consistent answers. 2

If G is consistent wrt IC, then ConsisG(Q) =MinimalG(
Q). Furthermore, if the ICs are generic, then for any G it
holdsConsisG(Q) ⊆MinimalG(Q) [Bertossi et al., 2002].
Notice also that the notion of consistent answer can be ap-
plied to queries written in Datalog or its extensions with built-
ins and stratified negation.

3 Specification of Legal Instances
The specification of the class Mininst(G) for system G is
given using normal logic programs, whose rules are inspired
by the inverse-rules algorithm. They use auxiliary predi-
cates instead of function symbols, but their functionality is
enforced using the choice predicate [Giannotti et al., 1991].

Definition 8 Given an open global system G, the program,
Π(G), contains the following clauses:
1. Fact dom(a) for every constant a ∈ U; and the fact
V (ā) whenever V (ā) ∈ vi for some source extension vi in G.
2. For every view (source) predicate V in the system with

description V (X̄)← P1(X̄1), . . . , Pn(X̄n), the rules
Pj(X̄j)← V (X̄),

∧
Xi∈(X̄j\X̄) Fi(X̄,Xi), j = 1, . . . n.

3. For every predicate Fi(X̄,Xi) introduced in 2., the rule
Fi(X̄,Xi)← V (X̄), dom(Xi), choice((X̄), (Xi)). 2

The predicate Fi(X̄,Xi) is replacing the Skolem function
fi(X̄) = Xi introduced in Section 2.1, and, through the
choice predicate, it assigns values in the domain to the vari-
ables in the head of the rule that are not in X̄ . There is a
new Skolem predicate for each pair formed by a description
rule as in item 2. above and a different existentially quanti-
fied variable in it. The predicate choice((X̄), (Xi)) ensures
that for every (tuple of) value(s) for X̄ , only one (tuple of)
value(s) for Xi is non deterministically chosen between the
constants of the active domain.

Example 8 (examples 4 and 5 continued) Program Π(G3)
contains the following rules:
1. dom(a). dom(b). dom(c). dom(u). V1(a, b). V2(a, c).
2. P (X,Z)← V1(X,Y ), F1(X,Y, Z).
R(Z, Y )← V1(X,Y ), F1(X,Y, Z).
P (X,Y )← V2(X,Y ).

3. F1(X,Y, Z)← V1(X,Y ), dom(Z),
choice((X,Y ), (Z)). 2

For every program Π with the choice operator, there is its
stable version, SV (Π), whose stable models correspond to
the so-called choice models of Π [Giannotti et al., 1991]. The
program SV (Π) is obtained as follows: (a) Each choice rule
r : H ← B, choice((X̄), (Y )) in Π is replaced by the rule
H ← B, chosenr(X̄, Y ). (b) For each rule as in (a), the
following rules are added

chosenr(X̄, Y )← B,not diffChoicer(X̄, Y ).
diffChoicer(X̄, Y )← chosenr(X̄, Y

′), Y 6= Y ′.

The rules defined in (b) ensure that, for every tuple X̄ where
B is satisfied, the predicate chosenr(X̄, Y ) satisfies the func-
tional dependency X̄ → Y . In (a) the choice operator is re-
placed by the new predicate chosenr that forces the expected
functional dependency.

Example 9 (example 8 continued) Program SV (Π(G3))
contains the following rules:
1. dom(a). dom(b). dom(c). dom(u). V1(a, b). V2(a, c).
2. P (X,Z)← V1(X,Y ), F1(X,Y, Z).

R(Z, Y )← V1(X,Y ), F1(X,Y, Z).
P (X,Y )← V2(X,Y ).

3. F1(X,Y, Z)← V1(X,Y ), dom(Z), chosen1(X,Y, Z).
4. chosen1(X,Y, Z)← V1(X,Y ), dom(Z),

not diffChoice1(X,Y, Z).
diffChoice1(X,Y, Z)← chosen1(X,Y, Z

′),
dom(Z), Z ′ 6= Z.

Its stable models are:
M1 = {dom(a), dom(b), dom(c), dom(u), V1(a, b),

V2(a, c), P (a, c), diffChoice1(a, b, a),
chosen1(a, b, b), diffChoice1(a, b, c),
diffChoice1(a, b, u), F1(a, b, b), R(b, b), P (a, b)}

M2 = {dom(a), dom(b), dom(c), dom(u), V1(a, b),
V2(a, c), P (a, c), chosen1(a, b, a),
diffChoice1(a, b, b), diffChoice1(a, b, c),
diffChoice1(a, b, u), F1(a, b, a), R(a, b), P (a, a)}



M3 = {dom(a), dom(b), dom(c), dom(u), V1(a, b),
V2(a, c), P (a, c), diffChoice1(a, b, a),
diffChoice1(a, b, b), chosen1(a, b, c),
diffChoice1(a, b, u), F1(a, b, c), R(c, b)}

M4 = {domd(a), domd(b), domd(c), domd(u), V1(a, b),
V2(a, c), P (a, c), diffChoice1(a, b, a),
diffChoice1(a, b, b), diffChoice1(a, b, c),
chosen1(a, b, u), F1(a, b, u), R(u, b), P (a, u)}. 2

Definition 9 The instance associated to a stable modelM of
Π(G) is DM = {P (ā) | P ∈ R and P (ā) ∈M}. 2

Example 10 (example 9 continued) DM1
, DM2

, DM3
,

DM4
are the elements of Mininst(G3), namely {P (a, b),

R(b, b), P (a, c)}, {P (a, a), R(a, b), P (a, c)}, {P (a, c),
R(c, b)}, {P (a, u), R(u, b), P (a, c)}, respectively. 2

Theorem 1 IfM is a stable model of program SV (Π(G)),
then DM ∈ Mininst(G). Furthermore, the minimal legal
instances obtained in this way are all the minimal legal in-
stances of G. 2

The program Π(G) (or its stable version) can be used to com-
pute MinimalG(Q), where Q is a query expressed as a, say
Datalognot program Π(Q). This can be done by running the
combined program under the skeptical or cautious stable sta-
ble model semantics, that sanctions as true wrt the program
what is true in all choice (resp. stable) models. If the query
Q is monotone, e.g. a Datalog query, then in the same way
CertainG(Q) can be computed.

4 Specification of Repairs of a Global System
In [Barcelo et al., 2002] repairs of single relational databases
are specified using disjunctive logic programs with stable
model semantics. The approach works for arbitrary universal
and referential ICs in the sense that the repairs of the database
correspond to the stable models of the program. We briefly
explain these programs, because they will be used to specify
repairs of integration systems.

First, the database predicates in the program are expanded
with an extra argument to be filled with one of a set of new an-
notation constants. An atom in (outside) the original database
is annotated with td (fd). Annotations ta and fa are consid-
ered advisory values, to solve conflicts between the database
and the ICs. If an atom gets the derived annotation fa, it
means an advise to make it false, i.e. to delete it from the
database. Similarly, an atom that gets the annotation ta must
be inserted into the database.

Example 11 Consider the integrity constraint ∀x(P (x) →
R(x)), and the inconsistent database instance r = {P (a)}.
The logic program should have the effect of repairing the
database. Single, local repair steps are obtained by deriv-
ing the annotations ta or fa. This is done when each IC is
considered in isolation, but there may be interacting ICs, and
the repair process may take several steps and should stabilize
at some point. In order to achieve this, we use annotations t

?,
f
?. The latter, for example, groups together the annotations

fd and fa for the same atom (rules 1. and 4. below). These
derived annotations are used to give a feedback to the bodies
of the rules that produce the local, single repair steps, so that

a propagation of changes is triggered (rule 2. below). The
annotations t

?? and f
?? are just used to read off the literals

that are inside (resp. outside) a repair. This is achieved by
means of rules 6. below, that are used to interpret the models
as database repairs. The following is the program:
1. P (x, f?)← P (x, fa). P (x, t?)← P (x, ta).

P (x, t?)← P (x, td). (similarly for R)
2. P (x, fa) ∨R(x, ta) ← P (x, t?), R(x, f?).
3. P (a, td)←.
4. P (x, f?)← not P (x, td). R(x, f?)← not R(x, td).
5. ← P (x̄, ta), P (x̄, fa). ← R(x̄, ta), R(x̄, fa).
6. P (x, t??)← P (x, ta). P (x, f??)← P (x, fa).
P (x, t??)← P (x, td), not P (x, fa).
P (x, f??)← not P (x, td), not P (x, ta). (similarly forR)

Only rules 2. depend on the ICs. They say how to repair them
when violations are found. Rules 3. contain the database
atoms. Rules 4. capture the CWA. Rules 5. are denial pro-
gram constraints to discard models that contain an atom an-
notated with both ta and fa. The program has two stable
models: {P (a, td), P (a, t?), R(a, f?), R(a, ta), P (a, t

??),

R(a, t
?), R(a, t??)}, and {P (a, td), P (a, t

?), P (a, f
?),

R(a, f?), P (a, f??), R(a, f??), P (a, fa)}, the first one say-
ing (look at underlined atoms) that R(a) is inserted into the
database; the second one, that P (a) is deleted. 2

The next definition combines into one program the specifica-
tion of the minimal legal instances and their repairs.

Definition 10 The repair program, Π(G, IC ), of G wrt IC
contains the following clauses:
1. Facts as in 1. in Definition 8.
2. Each of the rules 2. in Definition 8 is replaced by

Pj(X̄j , td)← V (X̄),
∧

Xi∈(X̄j\X̄) Fi(X̄,Xi).
3. Exactly the same rules as in 3. in Definition 8.
4. For every predicate P ∈ R, the clauses
P (X̄, t?)← P (X̄, td), dom(X̄).1

P (X̄, t?)← P (X̄, ta), dom(X̄).
P (X̄, f?)← P (X̄, fa), dom(X̄).
P (X̄, f?)← dom(X̄), not P (X̄, td).

5. For every first-order global universal IC of the form
∀(Q1(ȳ1)∨· · ·∨Qn(Ȳn)← P1(x̄1)∧· · ·∧Pm(x̄m)∧ϕ),

where Pi, Qj ∈ R, and ϕ is a conjunction of built-in atoms,
the clause∨n

i=1 Pi(X̄i, fa)
∨m

j=1Qj(Ȳj , ta) ←
∧n

i=1 Pi(X̄i, t
?),

∧m

j=1Qj(Ȳj , f
?), dom(X̄), ϕ;

where X̄ is the tuple of all variables appearing in database
atoms in the rule.
6. For every referential IC of the form ∀x̄(P (x̄) →
∃yQ(x̄′, y)), with x̄′ ⊆ x̄, the clauses
P (X̄, fa) ∨Q(X̄ ′,null , ta)← P (X̄, t?),not aux(X̄ ′),

not Q(X̄ ′,null , td), dom(X̄).
aux(X̄ ′)← Q(X̄ ′, Y, td), not Q(X̄ ′, Y, fa), dom(X̄ ′, Y ).
aux(X̄ ′)← Q(X̄ ′, Y, ta), dom(X̄ ′, Y ).
7. For every predicate P ∈ R, the interpretation clauses:
P (ā, f??) ← P (ā, fa).
P (ā, f??) ← not P (ā, td), not P (ā, ta).

1If X̄ = (X1, . . . , Xn), we abbreviate dom(X1) ∧ · · · ∧

dom(Xn) with dom(X̄).



P (ā, t??) ← P (ā, ta).
P (ā, t??) ← P (ā, td), not P (ā, fa). 2

Rules 6. repair referential ICs by deletion of tuples or inser-
tion of null values that are not propagated through other ICs
[Barcelo et al., 2003]. For this purpose, we consider that the
new constant null /∈ U , in particular dom(null) is not a fact.
The choice models of program Π(G, IC ) that do not contain
a pair of literals of the form {P (ā, ta), P (ā, fa)} are called
coherent models.

Definition 11 The instance associated to a choice modelM
of Π(G, IC ) is DM = {P (ā) | P (ā, t??) ∈M}. 2

Theorem 2 IfM is a coherent choice model Π(G, IC ), then
DM is a repair of G wrt IC. Furthermore, the repairs ob-
tained in this way are all the repairs of G. 2

5 Consistent Answers
Now, we can obtain the answers to queries posed to a system
G that are consistent wrt to IC . We do the following:
1. We start with a query Q that is expressed as a stratified
Datalog program, Π(Q), whose extensional predicates are el-
ements of the global schema R. Each positive occurrence of
those predicates, say P (t̄), is replaced by P (t̄, t??); and each
negative occurrence, say not P (t̄), by P (t̄, f??). This pro-
gram has a query predicate Ans that collects the answers to
Q. In particular, first order queries can be expressed as strati-
fied Datalog programs [Abiteboul et al., 1995].
2. Program Π(Q) is appended to the program SV (Π(G,
IC )), the stable version of the repair program.
3. The consistent answers to Q are the ground Ans atoms in
the intersection of all stable models of Π(Q)∪SV(Π(G, IC )).

Example 12 (example 9 cont.) Consider the global symme-
try integrity constraint sim : ∀x∀y(R(x, y) → R(y, x))
on G3. We want the consistent answers to the query Q :
P (x, y). First, the query is written as the query program
clause Ans(X,Y ) ← P (X,Y, t??). This query program,
Π(Q), is run with SV (Π( G3, sim)), which on its turn has
five stable models with the following associated repairs: (a)
DMr

1
= { P (a, b), R(b, b), P (a, c) }, the repair of the al-

ready consistent minimal instances DM1
in Example 10; (b)

DMr
2

= { P (a, a), P (a, c) } and DMr
3

= { R(a, b), R(b, a),
P (a, a), P (a, c) }, the repairs of the inconsistent instance
DM2

; (c) DMr
4

= { P (a, c) } and DMr
5

= { R(c, b), R(b,
c), P (a, c) }, the repairs of instance DM3

; and (d) DMr
6

= {
P (a, u), P (a, c) } and DMr

7
= { R(u, b), R(b, u), P (a, u),

P (a, c) }, the repairs of DM4
.

The corresponding stable models of Π(Q) ∪ SV (Π( G3,

sim)) are: (a)M
r

1 =Mr
1 ∪ {Ans(a, b), Ans(a, c)}; (b)

M
r

2 = Mr
2 ∪ {Ans(a, a), Ans(a, c)}; M

r

3 = Mr
3 ∪

{Ans(a, a), Ans(a, c)}; (c) M
r

4 = Mr
4 ∪ {Ans(a, c)};

M
r

5 =Mr
5 ∪ {Ans(a, c)}; (d)M

r

6 =Mr
6 ∪ {Ans(a, u),

Ans(a, c)};M
r

7 =M
r
7 ∪ {Ans(a, u),Ans(a, c)}. Ans(a,

c) is the only query atom in all stable models, then the tuple
(a, c) is the only consistent answer to the query. 2

If G is consistent, then the consistent answers to Q computed
with this method coincide with the minimal answers toQ, and

then to the certain answers if Q is monotone. If we are inter-
ested in just the minimal answers to Q, without considering
consistency issues, then they can be computed as above, but
using Π(G) introduced in Definition 8 instead of Π(G, IC ).

6 Conclusions
We have presented the most general approach so far to spec-
ifying, by means of disjunctive logic programs with a sta-
ble model semantics, the database repairs of a mediated in-
tegration system with open sources under the LAV approach.
Then, consistent answers to queries posed to such a system
are computed by running a query program together with the
specification of database repairs under the skeptical or cau-
tious stable model semantics. The specification of the repairs
is achieved by first specifying the class of minimal global le-
gal instances of the integration system. To the best of our
knowledge, this is also the first specification, under the LAV
paradigm, of such global instances in a logic programming
formalism. This specification is inspired by the inverse rules
algorithms, where auxiliary functions are replaced by auxil-
iary predicates that are forced to be functional by means of
the non deterministic choice operator.

The methodology works for conjunctive view definitions,
but can be extended to disjunctive views using the corre-
sponding extension of the inverse rules algorithm [Duschka,
1997]. Wrt the ICs and queries it can handle, the approach
works for arbitrary universal and referential integrity con-
strains and queries expressed as Datalognot programs. In
consequence, the current approach to consistent query an-
swering (CQA) subsumes and extends the methodologies pre-
sented in [Bertossi et al., 2002] for integration systems, and
the one in [Barcelo et al., 2002] for stand alone relational
databases.

For reasons of space, we just mention a few optimiza-
tions of the specification programs and their execution. The
materialization of the CWA present in Π(G, IC ) can be
avoided by program transformation. Classes of common
ICs can be identified for which SV (Π(G, IC )) becomes
head-cycle-free, and in consequence, can be transformed
into a non disjunctive program [Ben-Eliyahu et al., 1994;
Barcelo et al., 2003]. The program for CQA can be split [Lif-
schitz et al., 1994] into the program that specifies minimal
legal instances, the program that specifies their repairs and
the query program. The first is non stratified, but its models
can be computed bottom-up as fixpoints of an iterative op-
erator [Giannotti et al., 2001]; and the second one is locally
stratified [Przymusinski, 1991]. Finally, if the query program
is stratified, e.g. if the original query is first-order, then the
consistent answers can be eventually computed by a bottom-
up evaluation mechanism.

For CQA we have successfully experimented with DLV
[Eiter et al., 2000]. The current implementations of the dis-
junctive stable models semantics would be much more effec-
tive in database applications if it were possible to evaluate
open queries in a form that is guided by the query rather than
based on, first, massive grounding of the whole program and,
second, considering what can be found in every (completely
constructed) stable model of the program.



Wrt related papers, query answering in mediated integra-
tion systems under the assumption that certain global ICs
hold has been treated in [Gryz, 1999; Duschka et al., 2000;
Grant et al., 2002; Cali et al., 2002]. However, in CQA,
we do not assume that global ICs hold. Logic programming
specifications of repairs of single relational databases have
been presented in [Arenas et al., 2000; Greco et al., 2001;
Barcelo et al., 2002].

[Lembo et al., 2002] considers integration systems under
the GAV approach that do not satisfy global key dependen-
cies. There, legal instances are allowed to be more flexible,
allowing their computed views to accommodate the satisfac-
tion of the ICs. In this sense, the notion of repair is implicit;
and the legal instances are the repairs we have considered
here. View definitions are expressed as Datalog queries; and
the queries to the global system are conjunctive. The “re-
pairs” of the global system are specified by normal programs
under stable model semantics.

In [Bertossi et al., 2002], CQA in possibly inconsistent
integration systems under the LAV approach is considered.
There, the notion of repair of a minimal legal instance is in-
troduced. The algorithm for CQA is based on a query trans-
formation mechanism [Arenas et al., 1999] applied to first-
order queries. The resulting query may contain negation, and
is run on top of an extension of the inverse algorithm to the
case of stratified Datalognot queries. This approach is limited
by the restrictions of the query transformation methodology.
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