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Abstract. Matching Dependencies (MDs) are a relatively recent pralpts
declarative entity resolution. They are rules that spegiyen the similarities
satisfied by values in a database, what values should bedepediduplicates, and
have to be matched. On the basis of a chase-like procedukéda@nforcement,
we can obtain clean (duplicate-free) instances; actualbgiply several of them.
The resolved answers to queries are those that are invamaletr the resulting
class of resolved instances. In previous work we identif@destractable cases
(i.e. for certain classes of queries and MDs) of resolvedygaeswering. In this
paper we further investigate the complexity of this probleédentifying some
intractable cases. For a special case we obtain a dichotomplexity result.

1 Introduction

A database may contain several representations of the saimea entity. In this
sense it contains “duplicates”, which is in general congddo be undesirable. And
the database has to be cleaned. More precisely, the problelapticate- or entity-
resolution(ER) is about (a) detecting duplicates, and (b) mergingidag represen-
tations into single representations. This is a classic amaptex problem in data man-
agement, and in data cleaning in particular [9, 11, 4]. Is thork we concentrate on
the merging part of the problem, in a relational context.

A generic way to approach the problem consists in specifyihgt attribute val-
ues have to be matched (made identical) under what conslitfodeclarative language
with a precise semantics could be used for this purpose.isndibection, matching
dependencies (MDs) have been recently introduced [12]y Téeresent rules for re-
solving pairs of duplicate representations (considenvg tuples at a time). Actually,
when certain similarity relationships between attribuséues hold, an MD indicates
what attribute values have to be made the same (matched).

Example 1. The similarities of phone and address indicate that thestuggfer to the
same person, and the names should be matched. H&0583~ (750) 723-9583and
10-43 Oak Stx 43 Oak St. Ap. 10

People (P)] Name | Phone |  Address |
John Smitlh  723-9583 10-43 Oak St.
J. Smith |(750) 723-95833 Oak St. Ap. 1

An MD capturing this cleaning policy, could be the following
P[Phone] = P[Phone] A P[Address] = P[Address] —P[Name| = P[Name].

This MD involves only one database predicate, but in genarelMD may involve two
different relations. O

Here we report on new results (in Section 4) on the computatisesolved query an-
swers wrt. a set of MDs, i.e. of those answers that are invewiader the MD-based ER
process. We identify syntactic classes of MDs for which, pating resolved answers
to conjunctive queries in a syntactic classaliwaysintractable.



2 Preliminaries

We assume we are dealing with relational schemas and irestalatching dependen-
cies (MDs) are symbolic rules of the form:

/\ RIAi] ~i; S[B;] — /\ RIAx] = S[BY), (1)
k,l

whereR, S are relati}J)naI predicates, and tHé, ... are attributes for them. The LHS
captures similarity conditions on a pair of tuples beloggdim the extensions ok and

S in an instanceD. We abbreviate this formula as?[4] ~ S[B] — R[C] = S[E].
MDs have adynamic interpretatiomequiring that those values on the RHS should be
updated to some (unspecified) common value. Those attsilome@ RHS of an MD are
calledchangeable attributes

The similarity predicates: (there may be more than one in an MD depending on
the attributes involved) are treated here as built-insabeitassumed to satisfy: (sym-
metry if z ~ y, theny ~ x; and (b)equality subsumptiarif =z = y, thenz = y.
However transitivity is notassumed (and in some application it may not hold).

MDs are to be “applied” iteratively until duplicates are\sad. In order to keep
track of the changes and comparing tuples and instancessevglabal tuple identi-
fiers, a non-changeable surrogate key for each databasegieethat has changeable
attributes. The auxiliary, extra attribute (when showmeso's as the first attribute in a
relation, e.g¢ is the identifier inR(¢, z). A positionis a pair(¢, A) with ¢ a tuple id,
and A an attribute (of the relation wheteis an id). Theposition’s valugt[A], is the
value forA in tuple (with id)z.

A semantics for MDs acting on database instances was prajpo§E3]. It is based
on achase proceduréhat is iteratively applied to the original instan£e A resolved
instanceD’ is obtained from a finitely terminating sequence of instansay

D> Dy Dy oo D (2)
terminating inD’, that satisfies the MDs axqjuality generating dependencids, i.e.
replacing= by equality.

The semantics specifies the one-step transitions or upalédegd to go fromD,
to D;, i.e. “="in (2). Only modifiable positionsvithin the instance are allowed to
change their values in such a step, and as forced by the MDsaly; the modifiable
positions syntactically depend on a whole 8étof MDs and instance at hand; and
can be recursively defined (see [13, 14] for the detailsyitiwely, a position(t, A) is
modifiable iff: (a) There is & such that and¢’ satisfy the similarity condition of an
MD with A on the RHS; or (b}[A] has not already been resolved (it is different from
one of its other duplicates).

Example 2. Consider the MDR[A] = R[A] — R[B] = R[B], and the instanc&(D)
below. The positions of the underlined valuedirare modifiable, because their values
are unresolved (wrt the MD).

R(D)|A|B]| R(D')|A|B| D’ is a resolved instance since it satisfies
(31 albl — tH a d‘ the MD interpreted as an FD (the update
Lo alc Lo ald valued is arbitrary).

D’ has no modifiable positions with unresolved values: theasfar B are already the
same, so there is no reason to change them. O



More formally, thesingle step semantids a follows. Each paiD;, D;; in an up-
date sequence (2), i.e. a chase step, massfythe setM of MDs, modulo unmod-
ifiability, denoted (D;, D;11) Fum M, which holds iff: (a) For every MD, say
R[A] = S[B] — R[C] = S[D] and pair of tuplesr andtg, if tr[A] ~ ts[B] in D;,
thent[C] = ts[D] in D;,1; and (b) The value of a position can only differ between
D; and D, ifitis modifiable wrt D;,.

This semantics stays as close as possible to the spirit D& as originally in-
troduced [12], and alsoncommittedn the sense that the MDs do not specify how the
matchings have to be realizéd.

Example 3. Consider the following instance and set of MDs. Here, aitgR(C') is
changeable. Positioft,, C') is not modifiable wrt)/ and D: There is no justification

to change its valua one stepn the basis of an MD anB. However, positior{t;, C)
is modifiable. We obtain two resolved instancesfor D; and D, below.

R(D1)|A|B|C|  R(D2)|A|B|C] D; cannot be obtained in a single (one
t1 albld] alble step) update since the underlined value is
ta albid t alble for a non-modifiable position. However,

t3 albld t3 alble

Dy can. O
Among theresolved instancese prefer those that are closest to the original instance.
Accordingly, aminimally resolved instanc@MRI) of D is a resolved instancB’ such
thatthe number of changes of attribute valumsmparingD with D’ is a minimum.

In Example 3, instanc®, is an MRI, but notD; (2 vs. 3 changes). We denote with
Res(D, M) and MinRes(D, M) the classes of resolved, resp. minimally resolved, in-
stances oD wrt M.

Given a conjunctive querg, a set of MDsM, and an instanc®, theresolved an-
swersto Q from D are those that are invariant under the entity resolutiocgss, i.e.
they are answers tQ that are true in all MRIs oD: ResAnsy (Q, D) :={¢| D' =
Qle], foreveryD’ € MinRes(D, M)}. We denote withRA(Q, M) the decision prob-
lem{(D,¢) | ¢ € ResAnsp(Q, D)}.

The definition of resolved answer is reminiscent of that afgistent query answers
(CQA) in databases that may not satisfy given integrity t@amsts (ICs) [2, 5]. Much
research in CQA has been about developing (polynomialhyiuery rewriting method-
ologies. The idea is to rewrite a query, say conjunctivey amhew query such that the
new query on the inconsistent database returns as usua¢emthe consistent answers
to the original query. In all the cases identified in the tere on CQA (see [6] for
a survey, and [17] for recent results) depending on the dassnjunctive query and
ICs involved, the rewritings that produce polynomial tim@A& have been first-order.

1 We have proposed and investigated other semantics. Onerafithas above, but with a modi-
fied chase conditions, e.g. applying one MD at a time. Anatinerimposes that previous res-
olutions cannot be unresolved. In [7, 8, 3] a semantics thasmatching functionso choose
a value for a match is developed.



Doing something similar for resolved query answering (RQA§er MDs brings new
challenges: (a) MDs contain the non-transitive similapitgdicates. (b) Enforcing con-
sistency of updates requires computing the transitivaucsf such operators. (c) The
minimality of value changegthat is not always used in CQA or considered for consis-
tent rewritings). (d) The semantics of resolved query amgsgegor MD-based entity
resolution is given, in the end, in terms of a chase procetiti@vever, the semantics
of CQA is model-theoretic, given in terms repairs that areaperationally defined, but
arise from set-theoretic conditioRs.

3 Tractability and Datalog Query Rewriting

In [14, 15], a query rewriting methodology for RQA under MDasypresented. In this
case, the rewritten queries turn out to be Datalog queriés @gunting, and can be
obtained for two main classes of sets of MDs: (a) MDs do noeddpon each other,
i.e. non-interactingsets of MDs [13]; (b) MDs depend cyclically on each other, a.g
set containingR[A] ~ R[A] — R[B] = R[B] andR[B] ~ R[B] — R[A] = R[A] (or
relationships like this by transitivity).

Here cycles help us, because the termination conditiorhfochase imposes a sim-
ple form on the minimally resolved instances (easier towapand characterize) [14].
For these sets of MDs a conjunctive query can be rewritteetiiere, in polynomial
time, the resolved answers, provided there are no joins istesially quantified vari-
ables corresponding to changeable attributeshangeable attribute join conjunctive
(UJCQ) queries [15]. For example, for the MRIA] = R[A] — R[B,C] = R[B, (]
on schemaR[A, B,C|, Q : JxJy3Iz(R(z,y,c) A R(z,y,d)) is not UICQ; whereas
Q' : Jz3z(R(z,y,2) A R(z,y', 2") is UICQ. For queries outside UJCQ, the resolved
answer problem can be intractable even for one MD [15].

The case of a set of MDs consisting of

R[A] = R[A] — R[B] = R[B] andR[B] = R[B] — R|[C] = R[C], (3)

which is neither non-interacting nor cyclic, is not covetedthe positive cases for
Datalog rewriting above. Actually, for this set RQA becorimgsactable for very simple
queries, likeQ(z, z): JyR(z,y, z), thatis UICQ [13].

4 Intractability of Computing Resolved Query Answers

In the previous section we briefly described classes of gaamd MDs for which RQA
can be done in polynomial time in data (via the Datalog remgjt We also showed that
there are intractable cases, by pointing to a specific quelget of MDs. The questions
that naturally arise are: (a) What happens outside the @atalvritable cases in terms
of complexity of RQA? (b) The exhibited query and MDs corr@s@to a more general
pattern for which intractability holds? We address thesestjans here.

For all setsM of MDs we consider below, at most two relational predicapgsear
in M, and when there are two predicates, both appear in all MDd i\ccording to
the syntactic restrictions for MDs in (1), those two pretiksaoccur in all conjuncts
of an MD in M. Furthermore, all the sets of MDs considered below will tat to

2 For some implicit connections between repairs and chaseegues, e.g. as used in data ex-
change see [16], and as used under database completiorCsitiee [10].

3 For additional discussions of differences and connectimtsreen CQA and resolved query
answering see [13, 15].



be, as previously announced, both interacting and acygtith notions and others can
be captured in terms of the MBraph, MDG (M), a directed graph, such that, for
my,ma € M, there is an edge from; to ms if there is an overlap betweeRHS (m,)

and LHS(ms) (the right- and left-hand sides of the arrows as sets ofbates) [13].

M is acyclic whenM DG (M) is acyclic. Our results require several terms and notation
that we now define.

Definition 1. Consider a sed/ of MDs involving the predicate® andS. A change-
able attribute queng@ is a (conjunctive) query in UJCQ, containing a conjunct @& th
form R(z) or S(y) such that all variables in the conjunct are free and nonerdocu
another conjunct of the formR(z) or S(). Such a conjunct is calledjain-restricted
free occurrencef the predicate? or S. O

By definition, the class afhangeable attribute queri€HAQ) is a subclass of UJCQ.
Both classes depend on the set of MDs at hand. For exampléhdoMDs in (3),
JyR(x,y,z) € UICQ ~ CHAQ, but3w3t(R(z,y,z) A S(z,w,t)) € CHAQ. We
confine attention to UJCQ and subsets of it because, as medtino the previous sec-
tion, intractability limits the applicability of the dupate resolution method for queries
outside UJCQ. The requirement that the query contains arg@stricted free occur-
rence of R or S eliminates from consideration certain queries in UJCQ fbicl the
resolved answer problem is trivially tractable. For exaanpbr MDs in (3), the query
Jy3zR(z,y, z) is not in CHAQ), but is tractable simply because it does natrrethe
values of a changeable attribute (the resolved answerkadassic answers). The join
restriction simplifies the analysis while still includingamy useful queries.

Definition 2. A setM of MDs is hard if for every CHAQ Q, RA(Q, M) is NP-hard.
M is easyif for every CHAQ Q, RA(Q, M) is in PTIME. O

Of course, a set of MDs may not be hard or easy. In the followiegive some syntactic
conditions that guarantee hardness for classes of MDs.

Definition 3. Letm be an MD. The symmetric binary relatidrRel(m) (RRel(m)) re-
lates each pair of attributesand B such that a conjunct of the for®[A] ~ S[B] (resp.
R[A] = S|B]) appears inL.HS (m) (resp.RHS(m)). An L-componen{R-component
of m is an equivalence class of the reflexive and transitive c&duRel(m) (resp.
RRel(m)*?), of LRel(m) (resp.RRel(m)). O

The first results concerlinear pairs of MDs, i.e. those whose grapl DG(M)
consisting of the verticesi; andms, say

my: R[A] =1 S[B] — R[C] = S[E], andmy: R[F] ~ S|G] — R[H] = S[], (4)

with only an edge fromn; to mao, i.e. (R[C] U S[E]) N (R[F] U S[G]) # 0, whereas
(R[H] U S[I]) N (R[A] U S[B]) = 0. The linear pair is denoted kyn, mz).

Definition 4. Let (m1,m2) be alinear pair as in (4). (& is a binary (reflexive and
symmetric) relation on attributes @f: (R[U4], R[Uz]) € Bg iff R[U;] andR[U,]| are

in the same R-component of; or the same L-component ot,. Similarly for Bg.

(b) An R-equivalent se{R-ES) of attributes ofm., m2) is an equivalence class of
TC(Bg), the transitive closure oBp, with at least one attribute in the equivalence
class belonging td HS(m2). The definition of an5-equivalent sefS-ES) is the same,
with R replaced bys.

(c) An (R or S)-ES E of (m1, m2) isboundif E N LHS(m4) is non-empty. O



Theorem 1. Let (m4,m2) be a linear pair as in (4), witk and.S distinct predicates.
Assume that each similarity relation has an infinite set ofually dissimilar elements.
Let Er andEs be the classes d?-ESs andS-ESs, resp. The paiin,, ms) is hard if
RHS(m1) N RHS(m2) = (), and at least one of the followirdpes nohold:

(a) Atleast one of the following is true: (i) there are noibtites of R in RHS(m1) N
LHS(mg); (ii) all ESs in Er are bound; or (iii) for each L-componehtof m;,
there is an attribute aR in L N LHS (ms).

(b) Atleast one of the following is true: (i) there are noiatites ofS in RHS(m1) N
LHS(mg); (ii) all ESs in Es are bound; or (iii) for each L-componehtof m,
there is an attribute of in L N LHS (ms). O

Theorem 1 says that a linear pair of MDs is hard unless thastiotform of the MDs is

such that there is a certain association between changettiieites inZ S (m-) and

attributes inLHS (m,) as specified by conditions (ii) and (iii). When; is applied to

an instance, similarities can be produced among the valuatributes of RHS (m)

which are not required by the chase but result from a padiatiioice of update values.

Suchaccidental similaritiesaffect the subsequent updates made by applyingmak-

ing the query answering problem intractable [13]. For pafiis|Ds satisfying (a)(ii) or

(a)(iii) (or (b)(ii) or (b)(iii)) in Theorem 1, the similaties resulting from applying.

are restricted to a subset of those that are already prewsemiggthe values of attributes

in LHS(m4), making the problem tractable.

However, when condition (ii) or (iii) is satisfied, accidahsimilarities among the
values of attributes i® HS (m4 ) cannot be passed on to values of attribute® 415 (m.).

This result gives a syntactic condition for hardness. Ihigw@portant result, because
it applies to many cases of practical interest. For exantpélinear pair(m, ms) in
(3) turns out to be hard (for all CHAQ queries, in additiordtaR(x, y, 2)).

All syntactic conditions/constructs on attributes abameparticular, the transitive
closures on attributes, are “orthogonal” to semantic prigeeof the similarity relations.
When similarity predicates are transitive, every linear pat satisfying the hardness
criteria of Theorem 1 is easy.

Theorem 2. (dichotomy for transitive similarity) et (m1, m2) be a linear pair with
RHS(m1) N RHS(m2) = 0. If the similarity operators are transitive, them;, m») is
either easy or hard. O

The next result concerrmir-preservingacyclic sets of MDs, defined by} is pair-
preserving if, for any attribut&[A] occurring in a MD, there is only one attribuféB]
such thatR[A] ~ S[B] or R[A] = S[B] occur in an MD. These sets of MDs can be of
arbitrary size ( still subject to the condition of contaigiat most two predicates). The
pair-preserving assumption typically holds in a duplicasolution setting, since the
values of pairs of attributes are normally compared onljéythold the same type of
information (e.g. they are both addresses or both names).

Definition 5. Let M be pair-preserving and acycliB,an attribute in\/, andM’ C M.
B is non-inclusivewrt. M’ if, for everym € M~ M’ with B € RHS(m), there is an
attributeC' such that: (a)' € LHS(m), (b)C & U, cpr LHS(m'), and (c)C' is
non-inclusivenrt. M’. O

This is a recursive definition of non-inclusiveness. Theebease occurs whefl' is
not in RHS(m) for anym, and so must be inclusive (i.e. not non-inclusive). Because



C € LHS(m) in the definition, for anyn; such thatlC € RHS(m,), there is an edge
from m; to m. Therefore, we are traversing an edge backwards with eaxhsige
step, and the recursion terminates by the acyclicity assomp

Non-inclusiveness is a generalization of conditions (@)and (b) (iii) in Theorem
1 to a set of arbitrarily many MDs. It expresses a conditiomofusion of attributes in
the left-hand side of one MD in the left-hand side of anotfiGeorem 3 tells us that
a set of MDs that is non-inclusive in this sense is hard. Motiwat the condition of
Theorem 1 that there exists an ES that is not bound does neaappTheorem 3. This
is because, by the pair-preserving requirement, thereotdrera bound ES for any pair
of MDs in the set that is a linear pair. For linear pairs, Tleeoi8 becomes Theorem 1.

Theorem 3. Let M be pair-preserving and acyclic. Assume theréris;, mo} C M,
and attributes” € RHS(ms), B € RHS(m1)() LHS(ms2) with: (a) C is non-
inclusive wrt{my, ms}, and (b) B is non-inclusive wr{ mo}. Then,M is hard. [
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