
Tractable vs. Intractable Cases of Query Answering
under Matching Dependencies

Leopoldo Bertossi Jaffer Gardezi
Carleton University, SCS University of Ottawa, SITE.

Ottawa, Canada Ottawa, Canada

Abstract. Matching Dependencies (MDs) are a recent proposal for declarative
entity resolution. They are rules that specify, on the basis of similarities satisfied
by values in a database, what values should be considered duplicates, and have
to be matched. On the basis of a chase-like procedure for MD enforcement, we
can obtain clean (duplicate-free), and possibly several, resolved instances. The
resolved answers to a query are invariant under the class of resolved instances.
Previous work identified classes of queries and sets of MDs for which resolved
query answering is tractable, with special emphasis on cyclic sets of MDs. In
this work we further investigate the complexity of this problem, identifying in-
tractable cases, and exploring the frontier between tractability and intractability.
We concentrate mostly on acyclic sets of MDs. For a special case we obtain a
dichotomy result relative to NP-hardness.

1 Introduction

A database may contain several representations of the same external entity, i.e. “dupli-
cates”, which may be undesirable; and the database has to be cleaned. The problem of
duplicate- or entity-resolution (ER) is about (a) detecting duplicates, and (b) merging
duplicate representations into single representations. It is a classic and complex prob-
lem in data management and data cleaning, in particular [7, 9, 3]. In this work we deal
with the merging part of the problem, in a relational context.

The problem can be approached by specifying what attribute values have to be
matched (made identical) under what conditions. For this, a declarative language with
a precise semantics can be used. In this direction, matching dependencies (MDs) have
been recently introduced [10, 11]. They represent rules for resolving pairs of duplicate
representations (two tuples at a time). When certain similarity relationships between
attribute values hold, an MD indicates what attribute values have to be made the same.
Example 1. The similarities of phone and address indicate that the tuples refer to the
same person, and the names should be matched. Here, 723-9583 ≈ (750) 723-9583 and
10-43 Oak St. ≈ 43 Oak St. Ap. 10.

People Name Phone Address
John Smith 723-9583 10-43 Oak St.

J. Smith (750) 723-9583 43 Oak St. Ap. 10

This MD captures this resolution policy: (with P standing for predicate People):
P [Phone] ≈ P [Phone]∧P [Address] ≈ P [Address] → P [Name]

.
= P [Name]. It

involves only one database predicate, but an MD may involve two different relations.
We can also have several, interacting MDs on the schema. �

The framework for MD-based ER we use was introduced in [12], with a precise, chase-
based semantics for the MDs originally introduced in [11]. The problem of resolved
query answering (RQA) was introduced in [12]. For a fixed set of MDs, and a fixed

query, it is about deciding, given an “unresolved” instance, and a candidate query an-
swer ā, whether ā is an answer to the query under all admissible ways of resolving the
duplicates as dictated by the MDs. This problem is generally intractable [12].

The RQA problem was studied further in [14, 13]. A class of tractable cases of RQA
was identified [14], for which a technique based on query rewriting into stratified Dat-
alog with aggregation was developed [13]. In those tractable cases, we find conjunctive
queries with certain restrictions on joins, and sets of MDs that cyclically depend on each
other. These are the (cyclic) HSC sets identified in [14]. It was shown that, in general,
cyclic dependencies on MDs make the problem tractable, because the requirement of
chase termination imposes a relatively simple structure on the clean instances [14].

We concentrate here on acyclic sets of MDs, which completely change the picture
wrt. previous work. As just mentioned, for HSC sets, tractability of RQA holds [14].
This is the case, e.g., for the cyclic M = {R[A] ≈ R[A] → R[B]

.
= R[B], R[B] ≈

R[B] → R[A]
.
= R[A]}. However, as we will show, for the following acyclic, somehow

syntactically similar example, M ′ = {R[A] ≈ R[A] → R[B]
.
= R[B], R[B] ≈

R[B] → R[C]
.
= R[C]}, RQA can be intractable. This example, and our general

results, show that, possibly counter-intuitively, the presence of cycles in sets of MDs
tends to make resolved query answering easier in comparison with the acyclic case.

We further explore the complexity of RQA. Instead of considering isolated in-
tractable cases as in [12, 14], we take a more systematic approach, developing syn-
tactic criteria on sets of two MDs that, when satisfied by a given pair of MDs, implies
intractability of RQA. We show, under an additional assumption about the similarity
operators, that RQA is tractable for sets of MDs not satisfying these criteria, leading to
a dichotomy result. We extend these results also considering (in)tractability of sets of
more than two MDs. All the results apply to acyclic sets of MDs, and are complemen-
tary to those in [14, 13], providing a broader picture of the complexity of RQA.

Summarizing, in this paper, we undertake a systematic investigation of the data
complexity of the problems of deciding and computing resolved answers to conjunc-
tive queries under MDs. This sheds light on the intrinsic computational limitations of
retrieving, from a database with unresolved duplicates, the information that is invariant
under the ER process as captured by MDs. Our contributions are the following:

1. We identify a class of conjunctive queries that are relevant for the investigation of
tractability vs. intractability of RQA. Intuitively, these queries return data that can be
modified by application of the MDs. We call them changeable attribute queries.

2. Having investigated in [13, 14] cases of cyclic sets of MDs, we complement these
results by studying the complexity of RQA for sets of MDs that do not have cycles.

3. For certain pairs of MDs that satisfy a syntactic condition, we establish an intractabil-
ity result, proving that deciding resolved answers to changeable attribute queries is NP -
hard in data.

4. For similarity relations that are transitive (a special case), we establish that the con-
ditions for hardness mentioned in the previous item, lead to a dichotomy result: pairs of
MDs that satisfy them are always hard, otherwise they are always easy (for RQA). This
shows, in particular, that the result mentioned in item 3. cannot be extended to a wider
class of MDs for arbitrary similarity relations. We also prove that the dichotomy result
does not hold when the hypothesis on similarity is not satisfied.

5. Relying on the results for pairs of MDs, we consider acyclic sets of MDs of arbitrary
size. In particular, we prove intractability of the RQA problem for certain acyclic sets
of MDs that have the syntactic property of non-inclusiveness.

The structure of the paper is as follows. Section 2 introduces notation, terminology,
and previous results. Section 3 identifies classes of MDs, queries and assumptions that
are relevant for this research. Sections 3.1 and 4 investigate the complexity of the prob-
lem of computing resolved answers for sets of two MDs. Section 5 extends those results
to sets of MDs of arbitrary size. Section 6 summarizes results, and makes comparisons
with consistent query answering. Full proofs of our results can be found in [6].

2 Preliminaries
In this work we consider relational database schemas and instances. Schemas are usu-
ally denoted with S, and contain relational predicates. Instances are usually denoted
with D. Matching dependencies (MDs) are symbolic rules of the form:∧

i,j

R[Ai] ≈ij S[Bj] →
∧
k,l

R[Ak]
.
= S[Bl], (1)

where R,S are relational predicates in S, and the Ai, ... are attributes for them. The
LHS captures similarity conditions on a pair of tuples belonging to the extensions of R
and S in an instance D. We abbreviate (1) as: R[Ā] ≈ S[B̄] → R[C̄]

.
= S[Ē].

The similarity predicates (or operators) ≈ are domain-dependent and treated as
built-ins. For them we assume symmetry and reflexivity, but not transitivity.

MDs have a dynamic interpretation requiring that those values on the RHS should
be updated to some arbitrary value in common (of the database domain). Attributes on a
RHS of an MD are called changeable. MDs are expected to be “applied” iteratively until
duplicates are solved, through chase sequences. In order to keep track of the changes
and comparing tuples and instances, we use global tuple identifiers, a non-changeable
surrogate key for each database predicate. The auxiliary, extra attribute (when shown)
appears as the first attribute in a relation, e.g. t is the identifier in R(t, x̄). A position is
a pair (t, A) with t a tuple id, and A an attribute (of the relation where t is an id). The
position’s value, t[A], is the value for A in tuple (with id) t.

2.1 MD semantics
The semantics of MDs acting on database instances [12] is based on a chase procedure
that is iteratively applied to the original instance D. A resolved instance D′ is obtained
from a finitely terminating sequence of database instances:

D =: D0 7→ D1 7→ D2 7→ · · · 7→ Dn =: D′. (2)
D′ satisfies the MDs as equality generating dependencies [1], i.e. replacing .

= by =.
The semantics specifies the one-step transitions or updates applied to go from Di−1

to Di, i.e. “ 7→” in (2). Only modifiable positions within the instance are allowed to
change their values in such a step, and as forced by the MDs. Actually, the modifiable
positions syntactically depend on the set M of MDs and the instance at hand; and can
be recursively defined (see [12, 14] for the details).1 Intuitively, a position (t, A) is
modifiable iff: (a) There is a t′ such that t and t′ satisfy the similarity condition of an
MD with A on the RHS; and (b) t[A] has not already been resolved (it is different from
one of its other duplicates).

1 As a consequence, a changeable attribute may not necessarily give rise to a corresponding
modifiable position for a given instance at hand.

Example 2. For schema R(A,B), consider the MD R[A] = R[A] → R[B]
.
= R[B],

and the instance R(D) below. The positions of the underlined values in D are modifi-
able, because their values are unresolved (wrt the MD and instance R(D)).

R(D) A B
t1 a b
t2 a c

7→
R(D′) A B
t1 a d
t2 a d

D′ is a resolved instance since it satisfies
the MD interpreted as the FD R : A → B.
Here, the update value d is arbitrary.

D′ has no modifiable positions with unresolved values: the values for B are already the
same, so there is no reason to change them (and we don’t). �
More formally, the single step semantics (7→ in (2)) is as follows. Each pair (Di, Di+1)
in an update sequence (2), i.e. a chase step, must satisfy the set M of MDs modulo
unmodifiability, denoted (Di, Di+1) |=um M , which holds iff: (a) For every MD in
M , say R[Ā] ≈ S[B̄] → R[C̄]

.
= S[D̄] and pair of tuples tR and tS , if tR[Ā] ≈ tS [B̄]

in Di, then tR[C̄] = tS [D̄] in Di+1; and (b) The value of a position can only differ
between Di and Di+1 if it is modifiable wrt Di. Accordingly, in (2) we also require
that (Di, Di) ̸|=um M , for i < n, and (Dn, Dn) |=um M (the stability condition).2

This semantics captures as close as possible the spirit of MDs as originally, and
rather informally introduced in [11], and also uncommitted in the sense that the MDs
do not specify how the matchings have to be realized (also as in [11]).

Example 3. Consider the instance R(D) below and the set of MDs: {R[A] = R[A] →
R[B]

.
= R[B]; R[B] = R[B] → R[C]

.
= R[C]}. Attribute R(C) is changeable.

Position (t2, C) is not modifiable wrt. M and D: There is no justification to change its
value in one step on the basis of an MD and D. Position (t1, C) is modifiable. D has
two resolved instances, R(D1) and R(D2). R(D1) cannot be obtained in a single (one
step) update (the underlined value is for a non-modifiable position). But R(D2) can.

R(D) A B C
t1 a b d
t2 a c e
t3 a b e

R(D1) A B C
t1 a b d
t2 a b d
t3 a b d

R(D2) A B C
t1 a b e
t2 a b e
t3 a b e �

For arbitrary sets of MDs, some (admissible) chase sequences may not terminate. How-
ever, it can be proved that there are always terminating chase sequences. As a conse-
quence, for some sets of MDs, there are both terminating and non-terminating chase
sequences. In any case, the class of resolved instances is always well-defined.

We prefer resolved instances that are the closest to the original instance. A mini-
mally resolved instance (MRI) of D is a resolved instance D′ whose number of changes
of attribute values wrt. D is a minimum. In Example 3, instance D2 is an MRI, but not
D1 (2 vs. 3 changes). We denote with Res(D,M) and MinRes(D,M) the classes of
resolved, resp. minimally resolved, instances of D wrt M .

Infinite chase sequences may occur when the MDs cyclically depend on each other,
in which case updated instances in a such a sequence may alternate between two or
more states [14, Example 6]. However, for the chase sequences that do terminate in
a minimally resolved instance, the chase imposes a relatively easily characterizable
structure [14, 13], allowing us to obtain a query rewriting methodology. So, cycles help
us achieve tractability for some classes of queries [13] (cf. Section 2.2).

2 The case D′ = D0 occurs only when D is already resolved.

On the other side, it has been shown that if a set of MDs satisfies a certain acyclicity
property, then all chase sequences terminate after a number of iterations that depends
only on the set of MDs and not on the instance [12, Lemma 1] (cf. Theorem 1 below).
But the number of resolved instances may still be “very large”. Sets of MDs considered
in this work are acyclic.

2.2 Resolved query answers
Given a conjunctive query Q, a set of MDs M , and an instance D, the resolved answers
to Q from D are invariant under the entity resolution process, i.e. they are answers to
Q that are true in all MRIs of D:

ResAnsM (Q, D) := { ā | D′ |= Q[ā], for every D′ ∈ MinRes(D,M)}. (3)
The resolved query answering (RQA) corresponding decision problem is RA(Q,M) :=
{(D, ā) | ā ∈ ResAnsM (Q, D)}.

In [13, 14], a query rewriting methodology for computing resolved answers to
queries under MDs was presented. In this case, the rewritten queries turn out to be
Datalog queries with counting, and can be obtained for two main kinds of sets of
MDs: (a) MDs do not depend on each other, i.e. non-interacting sets of MDs [12];
(b) MDs that depend cyclically on each other, e.g. R[A] ≈ R[A] → R[B]

.
= R[B] and

R[B] ≈ R[B] → R[A]
.
= R[A] (or relationships like this by transitivity).

For these sets of MDs, a conjunctive query can be rewritten to retrieve, in polyno-
mial time in data, the resolved answers, provided the queries have no joins on existen-
tially quantified variables corresponding to changeable attributes. The latter form the
class of unchangeable attribute join conjunctive (UJCQ) queries [14].

For example, for the MD R[A] = R[A] → R[B,C]
.
= R[B,C] on schema

R[A,B,C], Q : ∃x∃y∃z(R(x, y, c)∧R(z, y, d)) is not UJCQ; whereas Q′ : ∃x∃z(R(x,
y, z) ∧ R(x, y′, z′) is UJCQ. For queries outside UJCQ, the resolved answer problem
can be intractable even for one MD [14].

The set of MDs (4), which is neither non-interacting nor cyclic, is not covered by
the positive cases for Datalog rewriting above.

R[A] ≈ R[A] → R[B]
.
= R[B], (4)

R[B] ≈ R[B] → R[C]
.
= R[C],

Actually, for this set RQA becomes intractable for very simple queries, like Q(x, z) :
∃yR(x, y, z), that is UJCQ [12]. Sets of MDs like (4) are the main focus of this work.

3 Intractability of RQA

We just briefly described classes of queries and MDs for which RQA can be done in
polynomial time in data (via the Datalog rewriting). We showed that there are intractable
cases, by pointing to a specific query and set of MDs. Natural questions that we start
addressing are: (a) What is the complexity of RQA outside the Datalog rewritable
cases? (b) Do the exhibited query and MDs fall into a more general intractable class?

For all sets M of MDs we consider below, we assume that at most two relational
predicates, say R,S, appear in M , e.g. as in M = {R[A] ≈ S[B] → R[C]

.
= S[E]}.

In same cases we assume that there are exactly two predicates. The purpose of this
restriction is to simplify the presentation. All results can be generalized to sets of MDs
with more than two predicates. To do this, definitions and conditions concerning the
two relations in the MDs can be extended to cover the additional relations as well.

At the other extreme, when a single predicate occurs in M , say R, as in Example
3, the results for at most two predicates can be reformulated and applied by replacing
S with R′. Although R and R′ are the same relation in this case, the prime is used to
distinguish between the two tuples to which the MD refers.

All the sets of MDs considered below are both interacting (non-interaction does not
bring complications) and acyclic. Both notions and others can be captured in terms of
the MD graph, MDG(M), of M . It is a directed graph, such that, for m1,m2 ∈ M ,
there is an edge from m1 to m2 if there is an overlap between RHS (m1) and LHS (m2)
(the right- and left-hand sides of the arrows as sets of attributes) [12]. Accordingly, M
is acyclic when MDG(M) is acyclic. In fact, the sets of MDs in this work satisfy a
stronger property, defined below, which we call strong acyclicity.

Definition 1. [12] 1. Let M be a set of MDs on schema S. (a) The symmetric binary
relation .

=r relates attributes R[A], S[B] of S whenever there is m ∈ M in which
R[A]

.
= S[B] occurs. (b) The attribute closure of M is the reflexive and transitive

closure of .
=r. (c) ER[A] denotes the equivalence class of attribute R[A] in the attribute

closure of M .
2. The augmented MD-graph of M , denoted AMDG(M), is a directed graph with a
vertex labeled with m for each m ∈ M , and with an edge from m to m′ iff there is an
attribute, say R[A], with R[A] ∈ RHS (m) and ER[A] ∩ LHS (m′) ̸= ∅.
3. M is strongly acyclic if AMDG(M) has no cycles. �
Because R[A] ∈ ER[A], for any set M of MDs, all edges in MDG(M) are also edges
in AMDG(M). So, strong acyclicity implies acyclicity, but the converse is not true.

Example 4. The set M of MDs m1 : R[F] ≈ S[G] → R[A]
.
= S[H]; m2 : R[A] ≈

S[B] → R[C]
.
= S[E]; m3 : R[C] ≈ S[E] → R[I]

.
= S[H] is acyclic but not

strongly acyclic. MDG(M) has three vertices, m1,m2,m3, and edges (m1,m2) and
(m2,m3). AMDG(M) has the additional edge (m3,m2), because ER[I] = {R[I],
S[H], R[A]} ∩ LHS (m2) = {R[A]}. �
In this work, we consider strongly acyclic sets of MDs. In particular, two interesting and
common kinds that form large classes of sets M of MDs: linear pairs, which consist
of two MDs such that MDG(M) contains a single edge from one to the other (c.f.
Definition 5); and acyclic sets that are pair-preserving (c.f. Definition 7). From the
definitions of these two kinds of sets of MDs it will follow that they are strongly acyclic.
Theorem 1. [12] Let M be a strongly acyclic set of MDs on schema S, and D an
instance for S. Every sequence of M -based updates to D as in (2) terminates with a
resolved instance after at most d+ 1 steps, where d is the maximum length of a path in
AMDG(M). �
As mentioned previously, there may be infinite chase sequences when M is not acyclic.
For the cyclic case, Theorem 1 only tells us about the chase termination and lengths, but
not about the data; and does not guarantee tractability for RQA. This leaves room for
tractable and intractable cases. Actually, it can still be the case that there are exponen-
tially many MRIs. A reason for this is that the application of an MD to an instance may
produce new similarities among the values of attributes in RHS (m1) that are not strictly
required by the chase, but result from a particular choice of update values. Such “acci-
dental similarities” affect subsequent updates, resulting in exponentially many possible
update sequences. This is illustrated in the next example.

Example 5. Consider the strongly acyclic set M : R[A] ≈ R[A] → R[B]
.
= R[B];

R[B] ≈ R[B] → R[C]
.
= R[C]. When the following instance is updated according to

M , the sets of value positions {t1[B], t2[B]} and {t3[B], t4[B]} must be merged.

R(D1) A B C
t1 a m e
t2 a d f
t3 b c g
t4 b k h

7→

R(D1) A B C
t1 a m e
t2 a m f
t3 b m g
t4 b m h

One possible update is as above. The similarities between the attribute B values of
the top and bottom pairs of tuples are accidental, because they result from the choice
of update values. In the absence of accidental similarities, there is only one possible
set of sets of values that are merged in the second update, namely {{t1[C], t2[C]},
{t3[C], t4[C]}}.

Accidental similarities increase the complexity of query answering over the instance
by adding another possible set of sets of merged values, {{t1[C], t2[C], t3[C], t4[C]}}.
More generally, for an instance with n sets of merged value positions in the B column,
the number of possible sets of sets of value positions in the C column that are merged
in the second update is Ω(2n

2

). �
We want to investigate the frontier between tractability and intractability. For this rea-
son, we make the assumption that, for each similarity relation, ≈, there is an infinite set
of mutually dissimilar values. Actually, without this assumption, the resolved answer
problem becomes immediately tractable for certain similarity operators (e.g. transitive
similarity operators). This is because, for these operators, the whole class of minimal
resolved instances of an instance can be computed in polynomial time.
Proposition 1. For strongly acyclic sets of MDs, if the similarity predicates are transi-
tive and there is no infinite set of mutually dissimilar values, the set of minimal resolved
instances for a an instance D can be computed in polynomial time in the size of D. �
Our next results require some terms and notation that we now introduce.
Definition 2. For a set M of MDs with predicates R and S, a changeable attribute
query Q is a (conjunctive) query in UJCQ, containing a conjunct of the form R(x̄) or
S(ȳ) all whose variables are free and none occur in another conjunct of the form R(x̄)
or S(ȳ). Such a conjunct is a join-restricted free occurrence of the predicate R or S.�
By definition, the class of changeable attribute queries (CHAQ) is a subclass of UJCQ.
Both depend on the set of MDs at hand. For example, for the MDs in (4), ∃yR(x, y, z) ∈
UJCQrCHAQ, but ∃w∃t(R(x, y, z)∧S(x,w, t)) ∈ CHAQ. We confine our attention

to UJCQ and subsets of it, because, as mentioned in the previous section, intractability
limits the applicability of the duplicate resolution method for queries outside UJCQ.

The requirement that the query contains a join-restricted free occurrence of R or
S eliminates from consideration certain queries in UJCQ for which the resolved an-
swer problem is immediately tractable. For example, for the MDs in (4), the query
∃y∃zR(x, y, z) is not CHAQ, and is tractable simply because it does not return the val-
ues of a changeable attribute (the resolved answers are the answers in the usual sense).
The restriction on joins simplifies the analysis while still including many useful queries.

In order to eliminate queries like ∃y∃zR(x, y, z) wrt M in (4), CHAQ imposes a
strong condition. Actually, the condition can be weakened, requiring to have at least

one of the variables satisfying the condition in the definition for CHAQ. Weakening the
condition makes the presentation much more complex since a finer interaction with the
MDs has to be brought into the picture. (We leave this issue for an extended version.)

Definition 3. A set M of MDs is hard if, for every CHAQ Q, RA(Q,M) is NP-hard.
M is easy if, for every CHAQ Q, RA(Q,M) is in PTIME. �
Of course, a set of MDs still may not be hard or easy. For the resolved answer problem,
membership of NP is open. However, for strongly acyclic sets, the bound on the length
of the chase implies an upper bound of ΠP

2 [12, Theorem 5].
In the following we give some syntactic conditions that guarantee hardness for

classes of MDs. To state them we need to introduce some useful notions first.

Definition 4. For an MD m, the symmetric binary relation LRel(m) (RRel(m)) re-
lates pairs of attributes R[A] and S[B] when R[A] ≈ S[B] (resp. R[A]

.
= S[B]) appears

in m. An L-component (R-component) of m is an equivalence class of the reflexive,
transitive closure LRel(m)=+ (resp. RRel(m)=+) of LRel(m) (resp. RRel(m)). �
Example 6. For R[A] ≈ S[B]∧R[A] ≈ S[C] → R[E]

.
= S[F]∧R[G]

.
= S[H], there

is only one L-component: {R[A], S[B], S[C]}; and two R-components: {R[E], S[F]}
and {R[G], S[H]}. �

3.1 Hardness of linear pairs of MDs
Most of the results that follow already hold for pairs of MDs.
Definition 5. A set M = {m1,m2} of MDs is a linear pair, denoted (m1,m2), if its
graph MDG(M) consists of vertices m1 and m2 with only an edge from m1 to m2. �
Notice that if (m1,m2) is a generic linear pair, say

m1 : R[Ā] ≈1 S[B̄] → R[C̄]
.
= S[Ē], (5)

m2 : R[F̄] ≈2 S[Ḡ] → R[H̄]
.
= S[Ī],

then, from the definition of the MD graph, it follows that (R[C̄] ∪ S[Ē]) ∩ (R[F̄] ∪
S[Ḡ]) ̸= ∅, whereas (R[H̄] ∪ S[Ī]) ∩ (R[Ā] ∪ S[B̄]) = ∅. In the following we have to
analyze other different forms of (non-)interaction between the attributes in linear pairs.

Definition 6. Let (m1,m2) be a linear pair as in (5). (a) BR is a binary (reflexive
and symmetric) relation on attributes of R: (R[U1], R[U2]) ∈ BR iff R[U1] and R[U2]
are in the same R-component of m1 or the same L-component of m2. Similarly for
BS . (b) An R-equivalent set (R-ES) of attributes of (m1,m2) is an equivalence class
of TC (BR), the transitive closure of BR, with at least one attribute in the equivalence
class belonging to LHS (m2). The definition of an S-equivalent set (S-ES) is similar,
with R replaced by S. (c) An (R or S)-ES E of (m1,m2) is bounded if E ∩LHS (m1)
is non-empty. �
Example 7. Consider the schema R[A,C, F,H, I,M], S[B,D,E,G,N], and the lin-
ear pair (m1,m2) with:
m1 : R[A] ≈ S[B] → R[C]

.
= S[D] ∧R[C]

.
= S[E] ∧ R[F]

.
= S[G]∧R[H]

.
= S[G],

m2 : R[F] ≈ S[E]∧R[I] ≈ S[E] ∧ R[A] ≈ S[E]∧R[F] ≈ S[B] → R[M]
.
= S[N].

It holds: (a) BR(R[F], R[H]) due to the occurrence of R[F]
.
= S[G], R[H]

.
=

S[G]. (b) BR(R[F], R[I]) due to R[F] ≈ S[E], R[I] ≈ S[E]. (c) BR(R[I], R[A])
due to R[I] ≈ S[E], R[A] ≈ S[E]. (d) {R[A], R[F], R[I], R[H]} is an R-ES, and
since {R[A], R[F], R[I], R[H]} ∩ LHS (m1) = {R[A]} ̸= ∅, it is also bounded. �

Theorem 2. Let (m1,m2) be a linear pair, with relational predicates R and S. Let ER,
ES be the sets of R-ESs and S-ESs, resp. The pair (m1,m2) is hard if RHS (m1) ∩
RHS (m2) = ∅, and at least one of (a) and (b) below holds: (a) All of the following
hold: (i) Attr(R) ∩ (RHS (m1) ∩ LHS (m2)) ̸= ∅. (ii) There are unbounded ESs in
ER. (iii) For some L-component L of m1, Attr(R)∩ (L∩LHS (m2)) = ∅. (b) Same
as (a), but with R replaced by S. �

Theorem 2 says that a linear pair of MDs is hard unless the syntactic form of the MDs
is such that there is a certain association between changeable attributes in LHS (m2)
and attributes in LHS (m1) as specified by conditions (ii) and (iii).

For pairs of MDs satisfying the negation of (a)(ii) or that of (a)(iii) (or the nega-
tion of (b)(ii) or that of (b)(iii)) in Theorem 2, the similarities resulting from apply-
ing m2 are restricted to a subset of those that are already present among the val-
ues of attributes in LHS (m1), making the problem tractable. However, when condi-
tion (ii) or (iii) is satisfied, accidental similarities among the values of attributes in
RHS (m1) cannot be passed on to values of attributes in RHS (m2).

Example 8. The linear pair (m1,m2), with m1 : R[A] ≈ S[B] → R[C]
.
= S[D];

m2 : R[C] ≈ S[D] → R[E]
.
= S[F], is hard. In fact, first: RHS (m1)∩RHS (m2) = ∅.

Now, it satisfies condition (a): Condition (a)(i) holds, because R[C] ∈ RHS (m1)∩
LHS (m2). Conditions (a)(ii) and (a)(iii) are trivially satisfied, because there are no
attributes of LHS (m1) in LHS (m2). �
As mentioned above, Theorem 2 generalizes to the case of more or fewer than two
database predicates. It is easy to verify, for the former case, that if there are more than
two predicates in a linear pair, then there must be exactly three of them, one of which
appears in both MDs. In this case, hardness is implied by condition (a) in Theorem 2
alone, with R the predicate in common.

Example 9. The linear pair (m1,m2) with three predicates m1 : R[A] ≈ S[B] →
R[C]

.
= S[E]; m2 : R[C] ≈ P [B] → R[F]

.
= P [G] is hard if it satisfies condition (a)

in Theorem 2, which it does: (i) Attr(R) ∩ (RHS (m1) ∩ LHS (m2)) = {R[C]}. (ii)
The ES {R[C]} is unbound. (iii) Part (iii) holds with L = {R[A], S[B]}. �
With only one predicate R in the linear pair, in order to apply Theorem 2, we need to
derive from it a special result, Corollary 1 below. It is obtained by first labeling the dif-
ferent occurrences of the (same) predicate in M , and then generating conditions (four of
them, analogous to (a) and (b) in Theorem 2) for the labeled version, M ′. When M ′ sat-
isfies those conditions, the original set M is hard. An algorithm, Conditions, (described
in detail in [6]) does both the labeling and the condition generation to be checked on
M ′. After the labeling, there is still only one predicate in M ′. The labeling simply pro-
vides a convenient way to refer to different sets of attributes. Example 10 demonstrates
in informal terms the use of the algorithm and the application of the corollary.

Corollary 1. A linear pair containing one predicate is hard if it satisfies RHS (m1) ∩
RHS (m2) = ∅ and at least one of the four sets of three conditions (i)-(iii) generated by
Algorithm Conditions. �
Example 10. Consider the linear pair M : m1 : R[A] ≈ R[B] ∧ R[C] ≈ R[E] →
R[F]

.
= R[G]∧R[B]

.
= R[G]; m2 : R[G] ≈ R[H]∧R[B] ≈ R[I]∧R[L] ≈ R[I] →

R[J]
.
= R[K]. Algorithm Conditions produces the following labeling:

m′
1 : R1

1[A] ≈ R2
1[B] ∧R1

1[C] ≈ R2
1[E] → R1

1[F]
.
= R2

1[G] ∧R1
1[B]

.
= R2

1[G],

m′
2 : R1

2[G] ≈ R2
2[H] ∧R1

2[B] ≈ R2
2[I] ∧R1

2[L] ≈ R2
2[I] → R1

2[J]
.
= R2

2[K].

With the above labeling, R1 (R2)-equivalent sets can be defined analogously to R (S)-
equivalent sets in the two relation case, except that they generally include attributes
from two “relations”, R1

1 and R1
2 (R2

1 and R2
2), instead of one. For example, in {m′

1,m
′
2},

one R1-ES is {R1
1[F], R1

1[B], R1
2[B], R1

2[L]}.
The conditions output by Conditions for the combination X = 1, Y = 2 is the

following: (i) Attr(R2
1) ∩ Attr(R1

2) ∩ (RHS (m1) ∩ LHS (m2)) ̸= ∅, (ii) There are
R1-equivalent sets that do not contain attributes in Attr(R2

1)∩ LHS (m1), and (iii) For
some L-component L of m1, Attr(R2

1) ∩Attr(R1
2) ∩(L ∩ LHS (m2)) = ∅.

These conditions are satisfied by M ′. In fact, for (i) this set is {R2
1[G]}; for (ii) the

R1-ES {R1
2[G]} satisfies the condition; and for (iii) L = {R1

1[C], R2
1[E]} satisfies the

condition. Thus, by Corollary 1, M is hard. �
Example 11. (example 5 cont.) M is hard by Corollary 1. In fact, Algorithm Conditions
produces the following labeled set M ′: R1

1[A] ≈ R2
1[A] → R1

1[B]
.
= R2

1[B]; R1
2[B] ≈

R2
2[B] → R1

2[C]
.
= R2

2[C], which satisfies the conditions (i)-(iii) for the choice X = 1,
Y = 2: for (i) this set is {R[B]}; for (ii) the R1-ES {R1

1[B], R1
2[B]} satisfies the

property; and for (iii) we use L = {R1
1[A], R

2
1[A]}.

As mentioned in Section 2.2, for the given M and the query Q(x, z) : ∃yR(x, y, z),
RQA is intractable [12]. This query is in UJCQ r CHAQ. Now, we have just obtained
that RQA for that M is also intractable for all CHAQ queries. �
Example 12. Consider M consisting of m1 : R[A] ≈ R[A] → R[B]

.
= R[B];

m2 : R[A] ≈ R[A] ∧ R[B] ≈ R[B] → R[C]
.
= R[C]. It does not satisfy the condi-

tions of Theorem 2 (actually, Corollary 1). The sole L-component of m1 is {R[A]}, and
all attributes of this set occur in LHS (m2). M is easy, because the non-interacting set
{R[A] ≈ R[A] → R[B]

.
= R[B], R[A] ≈ R[A] → R[C]

.
= R[C]} is equivalent to it

in the sense that, for any instance, the MRIs are the same for either set. This is because
applying m1 to the tuples of R and S results in an instance such that all pairs of tuples
satisfying the first conjunct to the left of the arrow in m2 satisfy the entire similarity
condition. �
Theorem 2 gives a syntactic condition for hardness. It is an important result, because it
applies to simple sets of MDs such as that in Example 5 that we expect to be commonly
encountered in practice. Moreover, in Section 5, we use Theorem 2 to show that similar
sets involving more than two MDs are also hard. The conditions for hardness in The-
orem 2 are not necessary conditions. Actually, the set of MDs in Example 13 below is
hard, but does not satisfy the conditions of this theorem.

4 A Dichotomy Result
All syntactic conditions/constructs on attributes above, in particular, the transitive clo-
sures on attributes, are “orthogonal” to semantic properties of the similarity relations.
When similarity predicates are transitive, every linear pair not satisfying the hardness
criteria of Theorem 2 is easy.
Theorem 3. Let (m1,m2) be a linear pair with RHS (m1) ∩ RHS (m2) = ∅. If the
similarity operators are transitive, then (m1,m2) is either easy or hard. More precisely,
if the conditions of Theorem 2 hold, M is hard. Otherwise, M is easy. �

This result does not hold in general when similarity is not transitive (c.f. Proposition 2
below). The possibilities for accidental similarities are reduced by disallowing that two
dissimilar values are similar to a same value. Actually, the complexity of the problem
is reduced to the point where the resolved answer problem becomes tractable.
Example 13. The linear pair M consisting of m1 : R[A] ≈ S[B] ∧ R[I] ≈ S[J] →
R[E]

.
= S[F]; m2 : R[E] ≈ S[F] ∧ R[A] ≈ S[J] ∧ R[I] ≈ S[B] → R[G]

.
=

S[H] does not satisfy the conditions of Theorem 2, because m1 has two L-components,
{R[A], S[B]} and {R[I], S[J]}. Since LHS (m2) includes one attribute of R and S
from each of these L-components, conditions (a)(iii) and (b)(iii) are not satisfied. Then,
by Theorem 3, M is easy when ≈ is transitive. �

Example 12 showed that a pair of MDs is easy for arbitrary ≈ by exhibiting an equiv-
alent non-interacting set. This method cannot be applied in Example 13, because the
similarity condition of m1 is not included in that of m2. The set of MDs in Example 13
can be hard for non-transitive similarity relations, as the following proposition shows.

Proposition 2. There exist (non-transitive) similarity operators ≈ for which the set of
MDs in Example 13 is hard. �

5 Hardness of Acyclic Sets of MDs

We consider now acyclic sets of MDs of arbitrary finite size, concentrating on a class
of them that is common in practice.

Definition 7. A set M of MDs is pair-preserving if for every attribute appearing in M ,
say R[A], there is exactly one attribute appearing in M , say S[B], such that R[A] ≈
S[B] or R[A]

.
= S[B] (or the other way around) occurs in M . �

It is easy to verify that pair-preserving, acyclic sets of MDs are strongly acyclic. Pair-
preservation typically holds in ER, because values for pairs of attributes are compared
only if they hold the same kind of information (e.g. both addresses or both names).
Example 14. M in Example 12 is pair-preserving. The set of MDs in Example 13 is
not pair-preserving, because S[B] is paired with both R[A] and R[C] in m1. It is also
possible for cyclic sets of MDs to be pair-preserving. For example, the set R[A] ≈
R[A] → R[B]

.
= R[B]; R[B] ≈ R[B] → R[A]

.
= R[A] is pair-preserving. �

Now, recall from the previous section that syntactic conditions on linear pairs (m1,
m2), like the absence of certain attributes in LHS (m1) from LHS (m2) (c.f. conditions
(a)(iii) or (b)(iii)), imply hardness. Non-inclusiveness wrt. subsets of M is a syntactic
condition on acyclic, pair-preserving sets M of MDs that generalizes those conditions
that ensure hardness for linear pairs.

Definition 8. Let M be acyclic and pair-preserving, B an attribute in M , and M ′ ⊆
M . B is non-inclusive wrt. M ′ if, for every m ∈ MrM ′ with B ∈ RHS (m), there is
an attribute C such that: (a) C ∈ LHS (m), (b) C ̸∈

∪
m′∈M ′ LHS (m′), and (c) C is

non-inclusive wrt. M ′. �
This is a recursive definition, with base case when C is not in RHS (m) for any m (then
is inclusive, i.e. not non-inclusive). Since C ∈ LHS (m) in the definition, for any m1

with C ∈ RHS (m1), there is an edge from m1 to m. Therefore, we are traversing an
edge backwards with each recursive step, and the recursion terminates by acyclicity.

Example 15. In the acyclic, pair-preserving set {m1 : R[I] ≈ S[J] → R[A]
.
= S[E];

m2 : R[A] ≈ S[E] → R[C]
.
= S[B]; m3 : R[G] ≈ S[H] → R[I]

.
= S[J]}, R[A] is

non-inclusive wrt. {m2} because R[A] ∈ RHS (m1) and there is an attribute, R[I], in
LHS (m1) that satisfies conditions (a), (b), and (c) of Definition 8. Conditions (a) and
(b) are obviously satisfied. Condition (c) is satisfied, because R[G] is non-inclusive wrt.
{m1}. This is trivially true, since R[G] ̸∈ RHS (m1) ∪ RHS (m3). �
Non-inclusiveness is a generalization of conditions (a) (iii) and (b) (iii) in Theorem 2 to
finite sets of MDs. It expresses a condition of inclusion of attributes in the LHS of one
MD in the LHS of another. In particular, suppose M = (m1,m2) is a pair-preserving
linear pair, and take M ′ = {m2}. It is easy to verify that the requirement that there is an
attribute in RHS (m1) that is non-inclusive wrt. M ′ is equivalent to conditions (a)(iii)
and (b)(iii) of Theorem 2. Theorem 4 tells us that a non-inclusive set of MDs is hard.

Theorem 4. Let M be acyclic and pair-preserving. Assume there is {m1,m2} ⊆ M ,
and attributes C ∈ RHS (m2), B ∈ RHS (m1)∩LHS (m2) with: (a) C is non-inclusive
wrt {m1,m2}, and (b) B is non-inclusive wrt {m2}. Then, M is hard. �

Example 16. (example 15 cont.) The set of MDs is hard. This follows from Theorem 4,
with {m1,m2} and C,B in Theorem 4 being {m1,m2} and R[C], R[A] in the example,
resp. Part (b) of Theorem 4 was shown in the first part of this example. Part (a) holds
trivially, since R[C] ̸∈ RHS (m3). �

Example 17. Consider M = {m1,m2,m3} with m1 : R[G] ≈ S[H] → R[I]
.
= S[J];

m2 : R[G] ≈ S[H] ∧ R[I] ≈ S[J] → R[A]
.
= S[E]; m3 : R[G] ≈ S[H] ∧ R[A] ≈

S[E] → R[C]
.
= S[B]. It does not satisfy the condition of Theorem 4. The only candi-

dates for {m1,m2} in Theorem 4 are {m1,m2} and {m2,m3} in this example, because
of the requirement that RHS (m1) ∩ LHS (m2) ̸= ∅. In the first case, B in the Theo-
rem 4 is R[I] (or S[J]), which does not satisfy (b) because LHS (m1)\LHS (m2) = ∅.
In the second case, B in Theorem 4 is R[A] (or S[E]). Because R[G] and S[H] are
in LHS (m3), R[A] can only satisfy (b) if R[I] does. R[I] does not satisfy (b), since
LHS (m1)\LHS (m3) = ∅.

Actually, M is easy, because it is equivalent to the non-interacting set m′
1 : R[G] ≈

S[H] → R[I]
.
= S[J]; m′

2 : R[G] ≈ S[H] → R[A]
.
= S[E]; m′

3 : R[G] ≈ S[H] →
R[C]

.
= S[B]. This can be shown as in Example 12. �

Our dichotomy result applies to linear pairs (and transitive similarities). However, trac-
tability can be obtained in some cases of larger sets of MDs for which hardness cannot
be obtained via Theorem 4 (because the conditions do not hold). The following is a
general result concerning sets such as M in Example 17.

Theorem 5. Let M be an acyclic, pair-preserving set of MDs. If, for each m ∈ M , all
changeable attributes A ∈ LHS (m) are inclusive wrt {m}, then M is easy. �

Example 18. (example 17 cont.) As expected, the set M of MDs {m1,m2,m3} satis-
fies the requirement of Theorem 5. To show this, the only attributes to be tested for in-
clusiveness wrt. an MD are R[A] and R[I]. Specifically, it must be determined whether
R[I] is inclusive wrt {m2} and whether R[A] is inclusive wrt {m3}. R[I] is inclusive
wrt {m2}, because all attributes in LHS (m1) are in LHS (m2). R[A] is inclusive wrt
{m3}, since R[G] ∈ LHS (m3) and R[I] is inclusive wrt {m3}. �

Example 19. (example 16 cont.) {m1,m2,m3} in Example 15 was shown to be hard
in Example 16. As expected, it does not satisfy the requirement of Theorem 5. This is
because R[A] is changeable, R[A] ∈ LHS (m2), and R[B] is non-inclusive wrt {m2}
since R[I] ∈ LHS (m1), R[I] ̸∈ LHS (m2), and R[I] is non-inclusive wrt {m2}. �
The conditions of Theorems 4 and 5 are mutually exclusive: B in Theorem 4 is change-
able (since B ∈ RHS (m1)), B ∈ LHS (m2), and B is non-inclusive wrt {m2}. To-
gether, they do not provide a dichotomy result, as the following example shows.
Example 20. The set formed by m1 : R[E] ≈ R[E] → R[B]

.
= R[B]; m2 : R[B] ≈

R[B] → R[C]
.
= R[C]; m3 : R[E] ≈ R[E] → R[C]

.
= R[C] does not satisfy the

condition of Theorem 5, because R[B] is changeable and non-inclusive wrt. {m2}. Nor
condition (a) of Theorem 4, because C is inclusive wrt. {m1,m2} (R[E] ∈ LHS (m1)).

The tractability of this case cannot be determined through the theorems above, but
it is easy, because, for any update sequence that leads to an MRI, each set of merged
duplicates must be updated to a value in the set (to satisfy minimality of change). It
is easily verified that, with this restriction, the second update to the values of R[C] is
subsumed by the first, and therefore this update has no effect on the instance. Thus, sets
of duplicates can be computed in the same way as with non-interacting sets. �
Notice that the condition of Theorem 2 that there exists an ES that is not bounded does
not appear in Theorem 4. This is because, for pair-preserving, acyclic sets of MDs, this
condition is always satisfied by any subset of the set that is a linear pair. Indeed, for such
a subset (m1,m2), if all its ESs are bounded, then by the pair-preserving requirement,
LHS (m2) ⊆ LHS (m1). Since (m1,m2) is a linear pair, LHS (m2) ∩ RHS (m1) ̸= ∅.
This implies LHS (m1)∩ RHS (m1) ̸= ∅, contradicting the acyclicity assumption.

For linear pairs, Theorem 4 becomes Theorem 2. For such pairs, condition (a) of
Theorem 4 is always satisfied. If the (acyclic) linear pair is also a pair-preserving, as
required by Theorem 4, the conditions of Theorem 2 reduce to conditions (a)(iii) and
(b)(iii), which, as noted previously, are equivalent to condition (b) of Theorem 4.

6 Conclusions
We have shown that RQA is typically intractable when the MDs have non-cyclic de-
pendencies on each. Our results depend on our chase-based semantics. Alternatives to
this chase have been considered [6]. A quite different chase, which applies one MD at
a time and uses matching functions, is presented in [5, 2].

The definition of resolved answer reminds us of consistent query answering (CQA)
[4], where much research has been about (polynomial-time) query rewriting method-
ologies. In all the cases identified in the literature (see [4, 18] for recent surveys), the
rewritings have been first-order. For MDs, the exhibited rewritings are in Datalog [13].

RQA brings many new challenges in comparison to CQA, and results for the latter
cannot be applied (at least not in an obvious manner): (a) MDs contain usually non-
transitive similarity relations. (b) Enforcing consistency of updates requires computing
the transitive closure of such relations. (c) Tuple-based repairs are usually considered
in CQA [4]. The minimality of value changes, not always used in CQA, has not been
considered for consistent rewritings. (d) The semantics of resolved query answering for
MD-based ER is given, in the end, in terms of a chase procedure.3 However, the se-

3 See [17] for some implicit connections between repairs and chase procedures, e.g. as used in
data exchange; and [8] for connections with the chase used for database completion with ICs.

mantics of CQA is model-theoretic, given in terms of non-operationally defined repairs
that arise from set-theoretic conditions. For additional discussions of differences and
connections between CQA and RQA, see [12, 14].

We have presented the first dichotomy result for the complexity of RQA. Its cases
depend on the set of MDs, for a fixed class of queries. In CQA with FDs, dichotomy
results have been obtained for limited classes of conjunctive queries [15, 16, 18]. How-
ever, in CQA the cases depend mainly on the queries, as opposed to FDs.

Some open problems for ongoing and future research are: (a) Extending the class of
CHAQ queries, considering additional projections, and also boolean queries. (b) Deriv-
ing a dichotomy result for acyclic, pair-preserving sets analogous to the one for linear
pairs. (c) Since, FDs (and other equality generating dependencies) can be expressed as
MDs, with equality as a transitive symmetry relation, applying the dichotomy result in
Theorem 3 to CQA under FDs under a value-based repair semantics [4].

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[2] Z. Bahmani, L. Bertossi, S. Kolahi and L. Lakshmanan. Declarative entity resolution via

matching dependencies and answer set programs. Proc. KR 2012.
[3] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. Euijong Whang, and J. Widom.

Swoosh: A generic approach to entity resolution. VLDB Journal, 2009, 18(1):255-276.
[4] L. Bertossi. Database Repairing and Consistent Query Answering, Morgan & Claypool,

Synthesis Lectures on Data Management, 2011.
[5] L. Bertossi, S. Kolahi and L. Lakshmanan. Data cleaning and query answering with match-

ing dependencies and matching functions. Theory of Computing Systems, 2013, 52(3):441-
482.

[6] L. Bertossi and J. Gardezi. Tractable vs. Intractable Cases of Matching Dependencies for
Query Answering under Entity Resolution. Corr ArXiv: 1309.1884, 2013.

[7] J. Bleiholder and F. Naumann. Data fusion. ACM Computing Surveys, 2008, 41(1):1-41.
[8] A. Cali, D. Lembo and R. Rosati. On the decidability and complexity of query answering

over inconsistent and incomplete databases. Proc. PODS 2003, pp. 260-271.
[9] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detection: A survey. IEEE

Trans. Knowledge and Data Eng., 2007, 19(1):1-16.
[10] W. Fan. Dependencies revisited for improving data quality. Proc. PODS 2008.
[11] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules. Proc. VLDB 2009.
[12] J. Gardezi, L. Bertossi, and I. Kiringa. Matching dependencies: semantics, query answering

and integrity constraints. Frontiers of Computer Science, Springer, 2012, 6(3):278-292.
[13] J. Gardezi, L. Bertossi. Query rewriting using datalog for duplicate resolution. Proc. Data-

log 2.0, 2012, Springer LNCS 7494, pp. 86-98, 2012.
[14] J. Gardezi and L. Bertossi. Tractable cases of clean query answering under entity resolution

via matching dependencies. Proc. SUM 2012, Springer LNAI 7520, pp. 180-193, 2012.
[15] P. Kolaitis and E. Pema. A dichotomy in the complexity of consistent query answering for

queries with two atoms. Information Processesing Letters, 2012, 112(3):7785.
[16] P. Koutris and D. Suciu. A dichotomy on the complexity of consistent query answering for

atoms with simple keys. Proc. ICDT 2014, pp. 165-176.
[17] B. ten Cate, G. Fontaine and P. Kolaitis. On the data complexity of consistent query an-

swering. Proc. ICDT 2012, pp. 22-33.
[18] J. Wijsen. A survey of the data complexity of consistent query answering under key con-

straints. Proc. FoIKS 2014, Springer LNCS 8367, 2014, pp. 62-78.

