
Disjunctive Deductive Databases for Computing

Certain and Consistent Answers to Queries from

Mediated Data Integration Systems

Loreto Bravo1 and Leopoldo Bertossi2

1 Pontificia Universidad Catolica de Chile, Departamento de Ciencia de
Computación, Santiago, Chile. lbravo@ing.puc.cl

2 Carleton University, School of Computer Science, Ottawa, Canada.
bertossi@scs.carleton.ca

Abstract. We address the problem of retrieving certain and consistent
answers to queries posed to a mediated data integration system with open
sources under the local-as-view paradigm using conjunctive and disjunc-
tive view definitions. For obtaining certain answers a query program is
run on top of a normal deductive database with choice that defines the
class of minimal legal instances of the integration system under the cau-
tious stable model semantics. This methodology works for all monotone
Datalog queries. To compute answers to queries that are consistent wrt
given global integrity constraints, the specification of minimal legal in-
stances is combined with another disjunctive deductive database that
specifies the repairs of those legal instances. This allows to retrieve the
consistent answers to any Datalog¬ query, for any set of universal and
acyclic referential integrity constraints.

1 Introduction

When independent data sources are integrated, inconsistencies wrt to global
integrity constraints (ICs) are likely to occur, specially when the sources are
virtually integrated by means of a mediator, because the data sources are kept
completely independent. The mediator provides a global schema as an interface,
and is responsible for generating query plans to answer global queries by retriev-
ing data sets from the sources and combining them into a final answer set to be
given back to the user.

The “Local-As-View” (LAV) approach to virtual data integration requires
that each data source is described as a set of views over the global schema.
On the other side, the “Global-As-View” (GAV) approach, defines every global
relation as a view of the set of relations in the sources. Query answering is
harder in LAV [2] (see [30] for a survey on the these and mixed approaches, and
their complexity properties). On the other side, the LAV approach allows more
flexibility when new sources are integrated into an existing system. However, the
flexibility to add or delete sources, without having to consider the other sources
in the system, makes inconsistencies wrt global ICs even more likely.

Example 1. Consider the LAV based global integration system G1 with a global
relation R(X,Y) and two source relations v1 = {V1(a, b), V1(c, d)} and v2 =
{V2(a, c), V2(d, e)} that are described by the view definitions V1(X,Y)← R(X,
Y); V2(X,Y) ← R(X,Y). The global functional dependency (FD) R : X → Y
is violated through the pair of tuples {(a, b), (a, c)}. 2

Inconsistency is not an exclusivity of integration systems; for several reasons a
single database may become inconsistent wrt certain ICs. Restoring consistency
may be undesirable, difficult or impossible [9]. In such a situation, possibly most
of the data is still consistent and can be retrieved when queries are posed to the
database. In [3] consistent data in a stand alone relational database is character-
ized as the data that is invariant under all minimal restorations of consistency,
i.e. true in all repaired versions of the original instance (the repairs). In that
paper and others [15, 27, 4, 5], some mechanisms have been developed for consis-
tent query answering (CQA), i.e. for retrieving consistent answer when queries
are posed to such an inconsistent database. All those mechanisms, in different
degrees, work only with the original, inconsistent database, without restoring
its consistency. Repairs provide an auxiliary concept that allows defining the
right semantics for consistent query answers; and in some of the query evalua-
tion methodologies, also an auxiliary computational intermediate step that, for
reasons of performance, has to be reduced to a minimum.

In virtual data integration systems, there is also an intuitive notion of con-
sistent answer to a query.

Example 2. (example 1 continued) If we pose to the global system the query
Q : Ans(X,Y)← R(X,Y), we obtain the answers {Ans(a, b), Ans(c, d), Ans(a,
c), Ans(d, e)}. However, only the tuples Ans(c, d), Ans(d, e) should be returned
as consistent answers wrt the FD R : X → Y . 2

Several algorithms for deriving query plans to obtain query answers from
virtual data integration systems have been proposed in the last few years (see
[33] for a survey). However they are not designed for obtaining the consistent
answers to queries. Even more, some of those algorithms assume that certain ICs
hold at the global level [28, 19, 26]; what may not be a realistic assumption due
to the independence of the different data sources and the lack of a central, global
maintenance mechanism. Only a few exceptions, including this paper, consider
the problem of CQA in virtual integration systems [29, 8, 11, 14].

In a virtual data integration system, the mediator should solve potential
inconsistencies when the query plan is generated; again without attempting to
bring the whole system to a global consistent material state. This enhanced
query plan generator should produce query plans that are guaranteed to retrieve
all and only consistent answers to global queries.

In [8], in this spirit and under the LAV approach, a methodology for generat-
ing query plans to compute answers to limited forms of queries that are consistent
wrt an also restricted class of universal ICs was presented. This method uses the
query rewriting approach to CQA presented in [3]; and in consequence inher-
its its limitations in terms of the queries and ICs that can be handled, namely

queries that are conjunctions of tables and universal ICs . Once the query is
transformed, query plans are generated for the new query. However, [8] provides
the right semantics for CQA in mediated integrated systems (see Section 2).

In this paper, under the LAV approach and assuming that sources are open
(or incomplete) [2], we solve the problem of retrieving consistent answers to
global queries. We consider arbitrary universal ICs and acyclic referential ICs;
that is, the ICs that are most used in database praxis [1]. View definitions are
conjunctive queries, and disjunctions thereof. Global queries are expressed in
Datalog and its extensions with negation.

The methodology can be summarized as follows. In a first stage, we specify,
using a deductive database with choice operator [23] and stable model semantics
[22], the class of all minimal legal global instances. This database is inspired
by the inverse-rules algorithm [19], and uses auxiliary Skolem predicates whose
functionality is enforced with the choice operator.

In order to obtain answers to global queries from the integration system, a
query program has to be combined with the deductive database that specifies
the minimal instances, and then be run under the skeptical stable model se-
mantics. It turns out that, minimal answers, i.e. true in all minimal instances,
can be retrieved for Datalog¬ queries. The certain answers, i.e. those true in all
legal global instances, can be obtained for all monotone queries, a result that
generalizes those found so far in the literature.

In a second stage, we address the computation of consistent answers. We
first observe that an integration system is consistent if all of its minimal legal
instances satisfy the integrity constraints [8]. Consistent answers from an incon-
sistent integration systems are those that can be obtained from all the repairs
of all the minimal legal instances wrt the global ICs [3, 8]. In consequence, in
order to retrieve consistent answers, the specification deductive database has
to be combined with another, now disjunctive deductive database that specifies
the repairs of the minimal global instances. For this, we can use the deduc-
tive databases with annotations and stable model semantics that specify the
repairs of single relational databases [3], as presented in [6, 5]. We have experi-
mented with this query answering mechanism (and the computation of minimal
instances and their repairs) with the DLV [20, 32] system, which implements the
stable model semantics of disjunctive deductive databases, logic programs, and
answer sets programs.

The paper is structured as follows. In Section 2 we review some basic no-
tions we need in the rest of this paper. In Section 3, the minimal legal global
instances of a mediated system are specified by means of logic programs with a
stable model, or answer sets, semantics. In Section 4, the repairs of the minimal
global instances are specified as the stable models of disjunctive logic programs
with annotation constants, like those used to specify repairs of single relational
databases for CQA [6]. In Section 5, consistent answers to queries are obtained
by running a query program in combination with the previous two specification
programs. In Section 6 several issues and possible extensions around the spec-
ification presented in the previous sections are discussed in detail. Finally, in

Section 7, we draw some final conclusions, and we point to related and future
work. Appendix A.1 contains the proofs of the main results in this paper.

This paper is an extended version of [11] that now includes the most general
specification of minimal instances, the proofs, an extension to disjunctive view
definitions, and an analysis of: complexity, the underlying assumptions about
the domain, a comparison between the use of the choice operator and the use of
Skolem functions.

2 Preliminaries

2.1 Global schemas and view definitions

A global schema R consists of a finite set of relations {R1, R2, ..., Rm} over a
fixed, possibly infinite domain U . With these relation symbols and the elements
of U treated as constants, a first-order language L(R) can be defined. This
language can be extended with defined predicates and built-in predicates, like
(in)equality. In particular, we will extend the global schema with a local schema
S, i.e. a finite set of new view predicates V1, V2, ..., Vn, that will be used to
describe the relations in the local sources.

A view, denoted by a new predicate V , is defined by means of conjunctive
query [1], i.e. an L(R ∪ S)-formula ϕ

V
of the form V (t̄)← body(ϕ

V
), where t̄

is a tuple containing variables and/or constants, and body(ϕ
V
) is a conjunction

of R-atoms.
A database instance D over schema R can be considered as a first-order

structure with domain U , where the extensions of the relations Ri are finite.
The extensions of built-in predicates may be infinite, but fixed. A global integrity
constraint (IC) is an L(R)-sentence ψ. An instanceD satisfies ψ, denotedD |= ψ,
if ψ is true in D.

Given a database instance D over schema R, and a view definition ϕ
V
,

ϕ
V
(D) denotes the extension of V obtained by applying the definition ϕ

V
to

D. If the view already has an extension v (corresponding to the contents of a
data source), it is possible that v is incomplete and stores only some of the tuples
in ϕ

V
(D); and we say the view extension v is open wrt D [2]. Most mechanisms

for deriving query plans assume that sources are open, e.g. [19].
A source S is a pair 〈ϕ, v〉, where ϕ is the view definition, and v is an extension

for the view defined by ϕ. An open global system G is a finite set of open sources.
The global schema R consists of the relation names that do not have a definition
in the global system. The underlying domain U for R is a proper superset of
the active domain, which consists of all the constants appearing in the view
extensions vi of the sources, and in their definitions. A global system G defines
a set of legal global instances [30].

Definition 1. Given an open global system G = {〈ϕ1, v1〉, . . . , 〈ϕn, vn〉}, the set
of legal global instances is Linst(G) = {D instance over R | vi ⊆ ϕi(D), i =
1, . . . , n}. 2

Example 3. (example 2 continued) Let us denote by ϕ1, ϕ2 the view definitions
of V1, V2, resp. in G1. D = {R(a, b), R(c, d), R(a, c), R(d, e)} is a legal global
instance, because v1 = {V1(a, b), V1(c, d)} ⊆ ϕ1(D) = {V1(a, b), V1(c, d), V1(a,
c), V1(d, e)} and v2 = {V2(a, c), V2(d, e)} ⊆ ϕ2(D) = {V2(a, b), V2(c, d), V2(a,
c), V2(d, e)}. Supersets of D are also legal instances; but proper subsets are not.
2

The semantics of query answers in mediated integration systems is given by the
notion of certain answer. In this paper we will consider queries expressed in
Datalog and its extensions with negation.

Definition 2. [2] Given an open global system G and a query Q(X̄) to the
system, a ground tuple t̄ is a certain answer to Q in G if for every global instance
D ∈ Linst(G), it holds D |= Q[t̄].3 We denote with CertainG(Q) the set of
certain answers to Q in G. 2

The inverse-rules algorithm [19] for generating query plans under the LAV ap-
proach assumes that sources are open and each source relation V is defined as
a conjunctive view over the global schema: V (X̄)← P1(X̄1), . . . , Pn(X̄n), with
X̄ ⊆

⋃
i X̄i. Since the queries posed to the system are expressed in terms of the

global relations, that now appear in the bodies of the view definitions (contrary
to the GAV approach), those definitions cannot be directly applied. The rules
need to be “inverted”.

For j = 1, . . . n, Pj(X̄
′
j)← V (X̄) is an “inverse rule” for Pj . The tuple X̄j

is transformed to obtain the tuple X̄ ′j as follows: if X ∈ X̄j is a constant or is a

variable appearing in X̄, then X is unchanged in X̄ ′j . Otherwise, X is a variable

Xi that does not appear in X̄, and it is replaced by the term fi(X̄), where fi is
a fresh Skolem function. We denote the set of inverse rules of the collection V of
source descriptions in G by V−1.

Example 4. Consider the integration system G2 with global schema R = {P,R}.
The set V of local view definitions consists of V1(X,Z) ← P (X,Y), R(Y,Z),
and V2(X,Y) ← P (X,Y). The set V−1 consists of the rules P (X, f(X,Z))
← V1(X,Z); R(f(X,Z), Z)← V1(X,Z); and P (X,Y)← V2(X,Y).

For a view deinition, we need as many Skolem functions as existential vari-
ables in it. For example, if instead of V1(X,Z) ← P (X,Y), R(Y,Z) we had,
say V1(X,Z) ← P (X,Y), R(Y,Z,W), we would need two Skolem functions for
that view, and the inverse rules arising from that view would be P (X, f(X,Z))
← V1(X,Z) and R(f(X,Z), Z, g(X,Z))← V1(X,Z). 2

The inverse rules are then used to answer Datalog queries expressed in terms
of the global relations, that now, through the inverse rules, have definitions in
terms of the sources. The query plan obtained with the inverse rule algorithm
is maximally contained in the query [19], and the answers it produces coincide
with the certain answers [2].

3 D |= Q[t̄] means that query Q(X̄) becomes true in instance D, when tuple of variables
X̄ is assigned the values in the tuple t̄ of database elements.

2.2 Global systems and consistency

We assume that we have a set of global integrity constraints IC that is consistent
as a set of logical sentences, and generic, in the sense that it does not entail any
ground database literal. ICs used in database praxis are always generic.

Definition 3. [8] (a) Given a global system, G, an instance D is minimal if
D ∈ Linst(G) and is minimal wrt set inclusion, i.e. there is no other instance
in Linst(G) that is a proper subset of D (as a set of atoms). We denote by
Mininst(G) the set of minimal legal global instances of G wrt set inclusion.
(b) A global system G is consistent wrt IC , if for all D ∈ Mininst(G), D |= IC.
2

Example 5. (example 4 continued) Assume that G2 has the source contents v1 =
{V1(a, b)}, v2 = {V2(a, c)}, resp. and that U = {a, b, c, u, ...}. Then, the elements
of Mininst(G2) are of the form Dz = {P (a, z), R(z, b), P (a, c)} for some z ∈ U .
The global FD P (X,Y) : X → Y is violated exactly in those minimal legal
instances Dz for which z 6= c. Thus, G2 is inconsistent. 2

Definition 4. [8] The ground tuple ā is a minimal answer to a query Q posed
to G if for every D ∈ Mininst(G), ā ∈ Q(D), where Q(D) is the answer set for
Q in D. The set of minimal answers is denoted by MinimalG(Q). 2

Clearly CertainG(Q) ⊆MinimalG(Q). For monotone queries [1], the two notions
coincide [8]. Nevertheless, in Example 5 the query Ans(X,Y) ← ¬P (X,Y) has
(b, a) as a minimal answer, but not as a certain answer, because there are legal
instances that contain P (b, a). Since consistency was defined wrt minimal global
instances, the notion of minimal answer is particularly relevant.

Given a database instance D, we denote by Σ(D) the set of ground atomic
formulas {P (ā) | P ∈ R and D |= P (ā)}.

Definition 5. [3] (a) LetD,D′ be database instances over the same schema and
domain. The distance, ∆(D,D′), between D and D′ is the symmetric difference
∆(D,D′) = (Σ(D) \ Σ(D′)) ∪ (Σ(D′) \ Σ(D)). (b) For database instances
D,D′, D′′, we define D′ ≤D D′′ if ∆(D,D′) ⊆ ∆(D,D′′). 2

Definition 6. (based on [3]) Let G be a global system and IC a set of global
ICs. A repair of G wrt IC is a global database instance D′, such that D′ |= IC
and D′ is ≤D-minimal for some D ∈ Mininst(G). 2

Thus, a repair of a global system is a global database instance that minimally
differs from a minimal legal global database instance. If G is already consistent,
then the repairs are the elements of Mininst(G). In Definition 6 we are not
requiring that a repair respects the property of the sources of being open, i.e.
that the extension of each view in the repair contains the corresponding view
extension in the source. Thus, it may be the case that a repair – still a global
instance – does not belong to Linst(G). If we do not allow this this flexibility, a
global system might not be repairable. Repairs are used as an auxiliary concept
to define the notion of consistent answer.

Example 6. (example 1 continued) The only element in Mininst(G1) is D0 =
{R(a, b), R(c, d), R(a, c), R(d, e)}, that does not satisfy IC. Then, G1 is inconsis-
tent. The repairs are the global instances that minimally differ from D0 and sat-
isfy the FD, namely D1

0 = {R(a, b), R(c, d), R(d, e)} and D2
0 = {R(a, c), R(c, d),

R(d, e)}. Notice that they do not belong to Linst(G1). 2

Definition 7. [8] (a) Given a global system G, a set of global integrity con-
straints IC, and a global first-order query Q(X̄), we say that a (ground) tuple t̄
is a consistent answer to Q wrt IC iff for every repair D of G, D |= Q[t̄]. (b)
We denote by ConsisG(Q) the set of consistent answers to Q in G. 2

Example 7. (example 6 continued) For the query Q1(X) : ∃Y R(X,Y), the
consistent answers are a, c, d. Q2(X,Y): R(X,Y) has (c, d), (d, e) as consistent
answers. 2

If G is consistent wrt IC, then ConsisG(Q) =MinimalG(Q). Furthermore, if the
ICs are generic, then for any G it holds ConsisG(Q) ⊆MinimalG(Q) [8]. Notice
also that the notion of consistent answer can be applied to queries expressed in
Datalog or its extensions with built-ins and negation.

3 Specification of Minimal Instances

The specification of the class Mininst(G) for system G is given using normal
deductive databases, whose rules are inspired by the inverse-rules algorithm.
They use auxiliary predicates instead of function symbols, but their functionality
is enforced using the choice predicate [24]. We consider global system all of whose
sources are open.

3.1 The Simple Program

In this section we will present a first approach to the specification of legal in-
stances. In Section 3.2 we present the definitive program, that refines the one
given in this section. We proceed in this way, because the program we give now,
although it may not be suitable for all situations (as discussed later in this sec-
tion), is simpler to understand than its refined version, and already contains the
key ideas.

Definition 8. Given an open global system G, the program, Π(G), contains the
following clauses:
1. Fact dom(a) for every constant a ∈ U ; and the fact Vi(ā) whenever ā ∈ vi
for some source extension vi in G.
2. For every view (source) predicate Vi in the system with description Vi(X̄)←
P1(X̄1), . . . , Pn(X̄n), the rules

Pj(X̄j)← Vi(X̄),
∧

Zl∈(X̄j\X̄)

F l
i (X̄, Zl), j = 1, . . . n.

3. For every predicate F l
i (X̄, Zl) introduced in 2., the rule

F l
i (X̄, Zl)← Vi(X̄), dom(Zl), choice((X̄), (Zl)). 2

In this specification, the predicate F l
i (X̄, Zl) replaces the Skolem function f li (X̄) =

Zl introduced in Section 2.1, and, via the choice predicate, it assigns values in
the domain to the variables in the head of the rule that are not in X̄. There is
a new Skolem predicate for each pair formed by a description rule as in item
2. above and a different existentially quantified variable in it. The predicate
choice((X̄), (Zl)) ensures that for every (tuple of) value(s) for X̄, only one (tu-
ple of) value(s) for Zl is non deterministically chosen between the constants of
the active domain.

Example 8. (examples 4 and 5 continued) Program Π(G2) contains the following
rules:
1. dom(a). dom(b). dom(c). dom(u). V1(a, b). V2(a, c).
2. P (X,Z)← V1(X,Y), F1(X,Y, Z).
R(Z, Y)← V1(X,Y), F1(X,Y, Z).
P (X,Y)← V2(X,Y).

3. F1(X,Y, Z)← V1(X,Y), dom(Z), choice((X,Y), (Z)).

In this section we will restrict ourselves to a finite domain U , what is nec-
essary to run the program in real implementations. In this example we have
U = {a, b, c, u} (the extension of predicate dom). In section 6.2 we study how to
handle infinite domains by adding to the active domain a finite number of extra
constants, like constant u here. 2

For every programΠ with the choice operator, there is its stable version, SV (Π),
whose stable models correspond to the so-called choice models of Π [24]. The
program SV (Π) is obtained as follows:

(a) Each choice rule r : H ← B, choice((X̄), (Y)) in Π is replaced by the rule
H ← B, chosenr(X̄, Y).
(b) For each rule as in (a), the following rules are added

chosenr(X̄, Y)← B,not diffChoicer(X̄, Y).

diffChoicer(X̄, Y)← chosenr(X̄, Y
′), Y 6= Y ′.

The rules defined in (b) ensure that, for every tuple X̄ where B is satisfied, the
predicate chosenr(X̄, Y) satisfies the functional dependency X̄ → Y .

Example 9. (example 8 continued) Program SV (Π(G2)) contains the following
rules:
1. dom(a). dom(b). dom(c). dom(u). V1(a, b). V2(a, c).
2. P (X,Z)← V1(X,Y), F1(X,Y, Z).

R(Z, Y)← V1(X,Y), F1(X,Y, Z).
P (X,Y)← V2(X,Y).

3. F1(X,Y, Z)← V1(X,Y), dom(Z), chosen1(X,Y, Z).
4. chosen1(X,Y, Z)← V1(X,Y), dom(Z), not diffChoice1(X,Y, Z).

diffChoice1(X,Y, Z)← chosen1(X,Y, Z
′), dom(Z), Z ′ 6= Z.

Its stable models are:

M1 = {dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c),
P (a, c), diffChoice1(a, b, a), chosen1(a, b, b), diffChoice1(a, b, c),
diffChoice1(a, b, u), F1(a, b, b), R(b, b), P (a, b)}

M2 = {dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c),
P (a, c), chosen1(a, b, a), diffChoice1(a, b, b), diffChoice1(a, b, c),
diffChoice1(a, b, u), F1(a, b, a), R(a, b), P (a, a)}

M3 = {dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c),
P (a, c), diffChoice1(a, b, a), diffChoice1(a, b, b), chosen1(a, b, c),
diffChoice1(a, b, u), F1(a, b, c), R(c, b)}

M4 = {dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c), P (a, c),
diffChoice1(a, b, a), diffChoice1(a, b, b), diffChoice1(a, b, c),
chosen1(a, b, u), F1(a, b, u), R(u, b), P (a, u)}.

The underlined elements of the models correspond to the elements in which we
are interested since they are the global relations of the integration system. 2

Definition 9. The global instance associated to a choice modelM of Π(G) is
DM = {P (ā) | P ∈ R and P (ā) ∈M}. 2

Example 10. (example 9 continued) DM1
, DM2

, DM3
, DM4

are the elements
of Mininst(G3), namely {P (a, b), R(b, b), P (a, c)}, {P (a, a), R(a, b), P (a, c)},
{P (a, c), R(c, b)}, {P (a, u), R(u, b), P (a, c)}, respectively. 2

Theorem 1. It holds that
Mininst(G) ⊆ {DM | M is a choice model of Π(G)} ⊆ Linst(G). 2

From the inclusions in the theorem it is clear that for monotone queries Q,
answers obtained using Π(G) under the skeptical or cautious stable model se-
mantics -that sanctions as true what is true of all the stable models of the
program- coincide with CertainG(Q) and MinimalG(Q). This may not be the
case for queries with negation, as pointed out in the remark after Definition 4.

In Example 10 the stable models are in a one to one correspondence with the
minimal legal instances, but this may not be always the case.

Example 11. Consider the integration system G3 with global schema R = {P}.
The set V of local view definitions consists of V1(X) ← P (X, Y), and
V2(X,Y) ← P (X,Y) with source contents v1 = {V1(a)}, v2 = {V2(a, c)}, resp.
We have that Mininst(G3) = {{P (a, c)}}. However, the global instances corre-
sponding to models of Π(G3) are of the form {{P (a, c), P (a, z)} | z ∈ U}. As
V2 is open, it forces P (a, c) to be in all legal instances, and with this, the same
condition on V1 is automatically satisfied, and no other values for Y are needed.
But the choice operator still has freedom to chose other values (the z ∈ U). This
is why we get more legal instances than the minimal ones. 2

Now we investigate sufficient conditions under which the simple program
captures the minimal instances. This is important because the general program
to be presented in Section 3.2 is much more complex that the simple version
presented so far.

We define a section of a view Vi as a set Sl
i consisting either of all the

predicates in the body of its definition that share a same existential variable
Zl or all the atoms without existential variables in which case l = 0, i.e. the
view section is denoted with S0

i . For example, the view defined by V (X,Y) ←
P (X,Z1), R(Z1, Y), T (X,Y) has two sections: S1

1 = {P (X,Z1), R(Z1, Y)} and
S0
1 = {T (X,Y)}.
Given a view section Sl

i, we denote by Const(Sl
i), UV ar(S

l
i) and EV ar(S

l
i)

the sets of constants, universal variables and existential variables, respectively,
that occur in predicates in Sl

i.
Let µ, ε be two new constants, and L the following mapping from Const(S l

i)
∪ UV ar(Sl

i) ∪ EV ar(Sl
i to Const(Sl

i) ∪ {µ, ε}: (a) h(c) = c for every
c ∈ Const(Sl

i); (b) h(X) = µ for every X ∈ UV ar(Sl
i); (c) h(Z) = ε for every

Z ∈ EV ar(Sl
i).

For a view section Sl
i, an admissible mapping is any mapping h : Const(S l

i) ∪
UV ar(Sl

i) ∪ EV ar(Sl
i) → Const(Sl

i) ∪ {µ, ε}, such that: (a) h(c) = c for
every c ∈ Const(Sl

i); (b) h(X) = D with D ∈ Const(Sl
i) ∪ {µ} for every X ∈

UV ar(Sl
i); (c) h(Z) = F with F ∈ Const(Sl

i) ∪ {µ, ε} for every Z ∈ EV ar(S
l
i).

Notice that the mapping L above is admissible. For an admissible mapping h,
h(Sl

i) denotes the set of atoms obtained from S l
i by applying h to the arguments

in Sl
i. S denotes the set of all view sections for system G.

Theorem 2. Given an integration system G, if for every view section S l
i with

existential variables, there is no admissible mapping h for S l
i, such that h(Sl

i)
⊆

⋃
S∈(Sr{Sl

i
}) L(S), then the instances associated to the stable models of the

simple version of Π(G) are exactly the minimal legal instances of G. 2

Basically, the theorem says that if there is an admissible mapping, such that
h(Sl

i) ⊆
⋃

S∈(Sr{Sl
i
}) L(S), then it is possible to have some view contents for

which the openness will be satisfied by the other sections in S, and then it will
not be necessary to compute values for the existential variables in section S l

i.
Since the simple version will always compute values for them, it may specify
more legal instances than the minimal ones.

Example 12. (example 11 continued) The first view is defined by V1(X) ← P (X,
Y), and has only one section SY

1 = {P (X,Y)}. For the admissible mapping h
defined by h(X) = h(Y) = µ, we have that h(SY

1) = {P (µ, µ)} ⊆ L(S0
2). The

conditions of the theorem are not satisfied, and there is no guarantee that the
simple version will calculate exactly the minimal instances of G3. Actually, we
already know that this is not the case. 2

Example 13. (examples 4 and 5 continued) There are two view sections: SZ
1 =

{P (X,Z), Q(Z, Y)} and S0
2 = {P (X,Y)}, whereX and Y are universal variables

and Z is an existential variable. It is easy to see that there is no mapping h
for which h(SZ

1) ⊆ L(S0
2) nor h(S0

2) ⊆ L(SZ
1). In consequence, for any source

contents, the simple version ofΠ(G2) will calculate exactly the minimal instances
of G2. 2

3.2 The Refined Program

In the general case, if we want to compute only the elements of Mininst(G), we
need to refine the program Π(G) given in the previous section. For this we will
introduce the auxiliary annotation constants that will be used as extra argu-
ments in the database predicates. They and their intended semantics are given
in the following table

annotation atom the tuple P (ā) is ...
td P (ā, td) an atom of the minimal legal instances
to P (ā, to) is an obligatory atom in all the minimal legal instances
vi P (ā, vi) an optional atom introduced to satisfy the openness of

view vi
nvi P (ā, nvi) an optional atom introduced to satisfy the openness of

view that is not vi

Definition 10. Given an open global system G, the refined program Π(G), con-
tains the following clauses:

1. Fact dom(a) for every constant a ∈ U

2. Fact Vi(ā) whenever ā ∈ vi for some source extension vi in G.

3. For every view (source) predicate Vi in the system with description Vi(X̄)←
P1(X̄1), . . . , Pn(X̄n):

(a) For every Pk with no existential variables, the rules

Pk(X̄k, to)← Vi(X̄).

(b) For every set Sij of predicates of the description’s body that are related
by common existential variables {Z1, . . . , Zm}, the rules,

Pk(X̄k, vij)← addvij
(X̄ ′),

∧
Zl∈(X̄k\X̄′) F

l
i (X̄

′, Zl), for Pk ∈ Sij .

addvij
(X̄ ′)← Vi(X̄), not auxvij

(X̄ ′), where X̄ ′ = X̄ ∩ {
⋃

Pk∈Sij
Xk}.

auxvij
(X̄ ′)←

∧m
i=1 varvijZl

(X̄Zl
).

varvijZl
(X̄Zl

)←
∧

Pk∈Sij∧Zl∈X̄k
Pk(X̄k, nvij), where X̄Zl

=

{
⋃

Pk∈Sij∧Zl∈X̄k
Xk}, for l = 1, . . .m.

4. For every predicate F l
i (X̄

′, Zl) introduced in 3.(b), the rules,

F l
i (X̄

′, Zl)← addvijZl
(X̄ ′), dom(Zl), choice((X̄

′), (Zl)).

addvijZl
(X̄ ′)← addvij

(X̄ ′), not auxvijZl
(X̄ ′), for l = 1, . . .m.

auxvijZl
(X̄ ′)← varvijZl

(X̄Zl
),

∧
Zk 6=Zl∧Zk∈X̄Zl

F k
i (X̄

′, Zk),

for l = 1, . . . m.

5. For every global relation P (X̄) the rules

P (X̄, nvij)← P (X̄, vhk), for {(ij, hk)|P (X̄) ∈ Sij ∩ Shk}.

P (X̄, nvij)← P (X̄, to), for {(ij)|P (X̄) ∈ Sij}.

P (X̄, td)← P (X̄, vij), for {(ij)|P (X̄) ∈ Sij}.

P (X̄, td)← P (X̄, to). 2

Example 14. (example 11 continued) The refined program Π(G3) is:

dom(a). dom(c). (1)

v1(a). v2(a, c). (2)

P (X,Z, v1)← addv1
(X), Fz(X,Z). (3)

addv1
(X)← v1(X), not auxv1

(X). (4)

auxv1
(X)← varv1z(X,Z). (5)

varv1z(X,Z)← P (X,Z, nv1). (6)

Fz(X,Z)← addv1
(X), dom(Z), chosenv1z(X,Z). (7)

chosenv1z(X,Z)← addv1
(X), dom(Z), not diffchoicev1z

(X,Z). (8)

diffchoicev1z
(X,Z)← chosenv1z(X,Z

′), dom(Z), Z ′ 6= Z. (9)

P (X,Y, to)← v2(X,Y). (10)

P (X,Y, nv1)← P (X,Y, to). (11)

P (X,Y, td)← P (X,Y, v1). (12)

P (X,Y, td)← P (X,Y, to). (13)

Rules (3) to (6) ensure that if there is an atom in source V1, e.g. V1(ā), and
if an atom of the form P (ā, Z) was not added by view V2 then it is added by
rule (3) with a Z value given by the function predicate Fz(ā, Z). This function
predicate is calculated by rules (7) to (9). Rule (10) enforces the satisfaction of
the openness of V2 by adding obligatory atoms to predicate P and rule (11) stores
this atoms with the annotation nv1 implying that they were added by a view
different from V1. The last two rules gather with an annotation td the elements
that were generated by both views and that are in the minimal legal instances.
The stable model of this program is {dom(a), dom(c), v1(a), v2(a, c), P (a, c, td),
P (a, c, to), P (a, c, nv1), auxv1

(a)}, which corresponds to the only minimal legal
instance {P (a, c)}. 2

Theorem 3. If M is a stable model of SV (Π(G)), then DM := {P (ā) | P ∈
R and P (ā, td) ∈ M} ∈ Mininst(G). Furthermore, the minimal legal instances
obtained in this way are all the minimal legal instances of G. 2

The program Π(G) (or its stable version) can be used to computeMinimalG(Q),
where Q is a query expressed as a, say Datalog¬ program Π(Q). This can be
done by running the combined program under the skeptical stable model seman-
tics. The following corollary for monotone queries, e.g. a Datalog queries, can
be immediately obtained from Theorem 3 and the fact that for those queries
CertainG(Q) =MinimalG(Q).

Corollary 1. The certain answers to monotone queries posed to an open inte-
gration system G can be computed by running, under the skeptical stable model
semantics, the query program in combination with the program Π(G) that spec-
ifies the minimal legal instances of G. 2

We know that under the hypothesis of Theorem 2, the simple and refined pro-
grams compute exactly the same legal database instances, namely the minimal
ones. Beyond this, it is worth mentioning that, under the same hypothesis, there
is a simple mechanical, syntactic transformation of the refined program into a
simple program (in the sense of Section 3.1) that has the same stable models,
and then, in particular, produces the same database instances (see Appendix
A.2).

4 Specification of Repairs of a Global System

In [6], repairs of single relational databases are specified using disjunctive logic
programs with stable model semantics. That approach works for arbitrary uni-
versal and acyclic referential ICs, in the sense that the repairs of the database
correspond to the stable models of the program. We briefly explain those pro-
grams, because they will be used to specify repairs of instances of integration
systems.

First, the database predicates are expanded with an extra argument to be
filled with one of a set of new annotation constants. An atom inside (outside) the
original database is annotated with td (fd). Annotations ta and fa are considered
advisory values, to solve conflicts between the database and the ICs. If an atom
gets the derived annotation fa, it means an advise to make it false, i.e. to delete
it from the database. Similarly, an atom that gets the annotation ta, this is seen
as an advice to insert it into the database.

Example 15. Consider the integrity constraint ∀x(P (x)→ R(x)), and the incon-
sistent database instance r = {P (a)}. The logic program should have the effect
of repairing the database. Single, local repair steps are obtained by deriving the
annotations ta or fa. This is done when each IC is considered in isolation, but
there may be interacting ICs, and the repair process may take several steps and
should stabilize at some point. In order to achieve this, we use annotations t?,
f?. The latter, for example, groups together the annotations fd and fa for the
same atom (rules 1. and 4. below). These derived annotations are used to give
a feedback to the bodies of the rules that produce the local, single repair steps,
so that a propagation of changes is triggered (rule 2. below). The annotations
t?? and f?? are just used to read off the literals that are inside (resp. outside)
a repair. This is achieved by means of rules 6. below, that are used to interpret
the models as database repairs. The following is the program:

1. P (x, f?)← P (x, fa). P (x, t?)← P (x, ta).
P (x, t?)← P (x, td). (similarly for R)

2. P (x, fa) ∨R(x, ta) ← P (x, t?), R(x, f?).
3. P (a, td)←.
4. P (x, f?)← not P (x, td). R(x, f?)← not R(x, td).
5. ← P (x̄, ta), P (x̄, fa). ← R(x̄, ta), R(x̄, fa).
6. P (x, t??)← P (x, ta). P (x, f??)← P (x, fa).

P (x, t??)← P (x, td), not P (x, fa).
P (x, f??)← not P (x, td), not P (x, ta). (similarly for R)

Only rules 2. depend on the ICs. They say how to repair them when violations
are found. Rules 3. contain the database atoms. Rules 4. capture the closed

world assumption (CWA) [36]. Rules 5. are denial program constraints to discard
models that contain an atom annotated with both ta and fa. The program has
two stable models: {P (a, td), P (a, t

?), R(a, f?), R(a, ta), P (a, t
??), R(a, t?),

R(a, t??)}, and {P (a, td), P (a, t
?), P (a, f?), R(a, f?), P (a, f??), R(a, f??), P (a,

fa)}, the first one saying (look at underlined atoms) that R(a) is inserted into
the database; the second one, that P (a) is deleted. 2

In can be proved [6] in the contenxt of single relational databases that the
stable models of these disjunctive programs are in a one to one correspondence
with the repairs of the original database, for any combination of universal and
acyclic referential integrity constraints (the latter are of the form ∀x̄(P (x̄) →
∃yQ(x̄′, y)), with x̄′ ⊆ x̄). This property will be inherited by our application of
this kind of programs to the specification of the repairs of the minimal instances
of an integration system. If there are cycles between the referential ICs, then
the specification programs may produce a class of stable models that properly
extends the class of repairs [10].

The next definition combines into one program the refined version that spec-
ifies the minimal legal instances and the specification of the repairs of those
minimal instances.

Definition 11. The repair program, Π(G, IC), of G wrt IC contains the follow-
ing clauses:

1. The same rules as in Definition 10.
2. For every predicate P ∈ R, the clauses

P (X̄, t?)← P (X̄, td), dom(X̄).4

P (X̄, t?)← P (X̄, ta), dom(X̄).
P (X̄, f?)← P (X̄, fa), dom(X̄).
P (X̄, f?)← dom(X̄), not P (X̄, td).

3. For every first-order global universal IC of the form ∀(Q1(ȳ1) ∨ · · · ∨ Qn(Ȳn)
← P1(x̄1) ∧ · · · ∧ Pm(x̄m) ∧ ϕ), where Pi, Qj ∈ R, and ϕ is a conjunction of
built-in atoms, the clause:∨n

i=1 Pi(X̄i, fa)
∨m

j=1Qj(Ȳj , ta) ←
∧n

i=1 Pi(X̄i, t
?),

∧m
j=1Qj(Ȳj , f

?),

dom(X̄), ϕ;
where X̄ is the tuple of all variables appearing in database atoms in the rule.

4. For every referential IC of the form ∀x̄(P (x̄) → ∃yQ(x̄′, y)), with x̄′ ⊆ x̄,
the clauses
P (X̄, fa) ∨Q(X̄ ′,null , ta)← P (X̄, t?),not aux(X̄ ′), not Q(X̄ ′,null , td),

dom(X̄).
aux(X̄ ′)← Q(X̄ ′, Y, td), not Q(X̄ ′, Y, fa), dom(X̄ ′, Y).
aux(X̄ ′)← Q(X̄ ′, Y, ta), dom(X̄ ′, Y).

4 If X̄ = (X1, . . . , Xn), we abbreviate dom(X1) ∧ · · · ∧ dom(Xn) with dom(X̄).

5. For every predicate P ∈ R, the interpretation clauses:
P (ā, f??) ← P (ā, fa).
P (ā, f??) ← not P (ā, td), not P (ā, ta).
P (ā, t??) ← P (ā, ta).
P (ā, t??) ← P (ā, td), not P (ā, fa). 2

Rules 4 repair referential ICs by deletion of tuples or insertion of null values that
are not propagated through other ICs [6]. For this purpose, we consider that the
new constant null /∈ U , in particular dom(null) is not a fact. Optimizations of
the repair part of the program, like avoiding the materialization of the CWA,
are presented in [6].

The choice models of program Π(G, IC) that do not contain a pair of lit-
erals of the form {P (ā, ta), P (ā, fa)} are called coherent models. Only coherent
models can be obtained for the program if the denial constraints of the form
← P (x̄, t??), P (x̄, f??) are included in the program.

Definition 12. The global instance associated to a choice modelM of Π(G, IC)
is DM = {P (ā) | P ∈ R and P (ā, t??) ∈M}. 2

The repair program can be split [34] into the specification of the minimal in-
stances and the specification of their repairs. Therefore, the minimal legal in-
stances can be calculated first, and then the repairs of them. Each minimal
model calculated by the first part of Π(G, IC) can be seen as a simple, relational
database, which is repaired afterwards by the second part of Π(G, IC). This
gives us the following theorem straightforwardly.

Theorem 4. Let IC be an arbitrary class of universal and acyclic referential
integrity constraints. IfM is a coherent choice model of Π(G, IC), then DM is
a repair of G wrt IC. Furthermore, the repairs obtained in this way are all the
repairs of G wrt IC. 2

5 Consistent Answers

Now, we can obtain the answers to queries posed to a system G that are consistent
wrt to IC . We do the following:

1. We start with a queryQ that is expressed, e.g. as a stratified Datalog program,
Π(Q), whose extensional predicates are elements of the global schema R. Each
positive occurrence of those predicates, say P (t̄), is replaced by P (t̄, t??); and
each negative occurrence, say not P (t̄), by P (t̄, f??). This query program has
a query predicate Ans that collects the answers to Q. In particular, first order
queries can be expressed as stratified Datalog programs [1].
2. Program Π(Q) is appended to the program SV (Π(G, IC)), the stable version
of the repair program.
3. The consistent answers to Q are the ground Ans atoms in the intersection of
all stable models of Π(Q) ∪ SV(Π(G, IC)).

Example 16. (example 9 continued) Consider the global symmetry integrity con-
straint sim : ∀x∀y(R(x, y) → R(y, x)) on G2. We want the consistent answers
to the query Q : P (x, y). First, the query is written as the query program clause
Ans(X,Y) ← P (X,Y, t??). This query program, Π(Q), is run with the revised
version of SV (Π(G3, sim)) that has the following rules written in DLV syntax:

%begin subprogram for minimal instances

dom(a). dom(b).

dom(c). dom(u).

v1(a,b). v2(a,c).

P(X,Y,nv1) :- P(X,Y,to).

P(X,Y,nv2) :- P(X,Y,v1).

P(X,Y,td) :- P(X,Y,v1).

P(X,Y,td) :- P(X,Y,to).

R(X,Y,td) :- R(X,Y,v1).

%Specification of V1

P(X,Y,v1) :- addv1(X,Z), fv1y(X,Z,Y).

R(Y,Z,v1) :- addv1(X,Z), fv1y(X,Z,Y).

addv1(X,Z) :- v1(X,Z), not auxv1(X,Z).

auxv1(X,Z) :- varv1y(X,Y,Z).

varv1y(X,Y,Z) :- P(X,Y,nv1),R(Y,Z,nv1).

fv1y(X,Z,Y) :- addv1y(X,Z), dom(Y), chosenv1(X,Z,Y).

chosenv1(X,Z,Y) :- addv1y(X,Z), dom(Y),not diffchoicev1(X,Z,Y).

diffchoicev1(X,Z,Y) :- chosenv1(X,Z,YY), dom(Y), YY!=Y.

addv1y(X,Z):- addv1(X,Z), not auxY(X,Z).

auxY(X,Z):- varv1y(X,Y,Z).

%Specification of V2

P(X,Y,to) :- v2(X,Y).

%begin repair subprogram

P(X,Y,ts) :- P(X,Y,ta), dom(X), dom(Y).

P(X,Y,ts) :- P(X,Y,td), dom(X), dom(Y).

P(X,Y,fs) :- dom(X), dom(Y), not P(X,Y,td).

P(X,Y,fs) :- P(X,Y,fa), dom(X), dom(Y).

R(X,Y,ts) :- R(X,Y,ta), dom(X), dom(Y).

R(X,Y,ts) :- R(X,Y,td), dom(X), dom(Y).

R(X,Y,fs) :- dom(X), dom(Y), not R(X,Y,td).

R(X,Y,fs) :- R(X,Y,fa), dom(X), dom(Y).

R(X,Y,fa) v R(Y,X,ta) :- R(X,Y,ts), R(Y,X,fs), dom(X), dom(Y).

P(X,Y,tss) :- P(X,Y,ta), dom(X), dom(Y).

P(X,Y,tss) :- P(X,Y,td), dom(X), dom(Y), not P(X,Y,fa).

P(X,Y,fss) :- P(X,Y,fa), dom(X), dom(Y).

P(X,Y,fss) :- dom(X), dom(Y), not P(X,Y,td), not P(X,Y,ta).

R(X,Y,tss) :- R(X,Y,ta), dom(X), dom(Y).

R(X,Y,tss) :- R(X,Y,td), dom(X), dom(Y), not R(X,Y,fa).

R(X,Y,fss) :- R(X,Y,fa), dom(X), dom(Y).

R(X,Y,fss) :- dom(X), dom(Y), not R(X,Y,td), not R(X,Y,ta).

:- R(X,Y,ta), R(X,Y,fa).

:- P(X,Y,ta), P(X,Y,fa).

This program has five stable models with the following associated repairs: (a)
DMr

1
= { P (a, b), R(b, b), P (a, c) }, corresponding to the already consistent

minimal instance DM1
in Example 10; (b) DMr

2
= { P (a, a), P (a, c) } and

DMr
3
= { R(a, b), R(b, a), P (a, a), P (a, c) }, the repairs of the inconsistent

instance DM2
; (c) DMr

4
= { P (a, c) } and DMr

5
= { R(c, b), R(b, c), P (a, c) },

the repairs of instance DM3
; and (d) DMr

6
= { P (a, u), P (a, c) } and DMr

7
= {

R(u, b), R(b, u), P (a, u), P (a, c) }, the repairs of DM4
.

The corresponding stable models of Π(Q) ∪ SV (Π(G3, sim)) are: (a)M
r

1

=Mr
1 ∪ {Ans(a, b), Ans(a, c)}; (b)M

r

2 =Mr
2 ∪ {Ans(a, a), Ans(a, c)};M

r

3

= Mr
3 ∪ {Ans(a, a), Ans(a, c)}; (c) M

r

4 = Mr
4 ∪ {Ans(a, c)}; M

r

5 = Mr
5 ∪

{Ans(a, c)}; (d) M
r

6 = Mr
6 ∪ {Ans(a, u), Ans(a, c)}; M

r

7 = Mr
7 ∪ {Ans(a,

u), Ans(a, c)}. Ans(a, c) is the only query atom in all stable models, then the
tuple (a, c) is the only consistent answer to the query. 2

If G is consistent, then the consistent answers to Q computed with this method
coincide with the minimal answers to Q, and then to the certain answers if Q is
monotone.

6 Further Analysis, Extensions and Discussion

6.1 Complexity

The complexity analysis of consistent query answering in integration of open
sources under the LAV approach can be split according to the main two layers
of the combined program, namely, the specification of minimal instances and the
specification of the repairs of those minimal instances.

Query evaluation from the program Π(G) with choice under the skeptical
stable model semantics is in coNP (the case singularized as certainty semantics

in [37]). Actually, if the choice operator program is represented in its “classical”
stable version (see Section 3.1), we are left with a normal (non-disjunctive), but
non-stratified program whose query answering complexity under the skeptical
stable model semantics is coNP-complete [17, 32] in data complexity [1], in our
case, in terms of the combined sizes of the sources. This complexity of computing
minimal answers is inherited by the computation of certain answers when the two
notions coincide, e.g. for monotone queries like Datalog queries. This complexity

result is consistent and matches the theoretical complexity lower bound on com-
puting certain answers to Datalog queries under the LAV approach [2]. With
disjunctive views, as considered in Section 6.4, the complexity of the program
goes up to being ΠP

2 -complete.
The complexity of query evaluation wrt the disjunctive normal program

Π(G, IC) that specifies the repair of minimal instances is ΠP
2 -complete in data

complexity [17], what matches the complexity of consistent query answering [9].
There are some cases studied in [6], e.g. only universal ICs, where the repair

part of the program for CQA is head-cycle free (HCF) and therefore the complex-
ity is reduced to coNP [7, 31]. This coNP-completeness result can be extended
to some cases where both universal and RICs are considered. It is possible to
show [10] that the program Π(G, IC) is HCF for a combination of: (a) Denial

constraints, i.e. formulas of the form
∨n

i=1 pi(t̄i) → ϕ, where pi(t̄i) is an atom
and ϕ is a formula containing built-in predicates only; (b) Acyclic referential in-
tegrity constraints, i.e. formulas of the form ∀x̄(p(x̄)→ ∃yq(x̄′, y)), with x̄′ ⊆ x̄,
but without cycles in the dependency graph.

This case includes the usual integrity constraints found in database practice,
like (non cyclic) foreign key constraints. This result can be further extended [10],
but there are theoretical limits. In [16, 13] some cases where functional depen-
dencies and referential integrities coexist are presented, for which the problem
of CQA becomes ΠP

2 -complete.

6.2 Infinite vs. Finite Domain

In Section 2.1 we considered the possibility of having an infinite underlying
domain U . At the purely specification level there is not problem in admitting,
in the first item of Definition 8, an infinite number of facts. Our soundness and
completeness theorems hold. However, in the logic programs we have presented
in the examples we had a finite domain, c.f. Example 8 (the finite domain is
specified by the dom predicate), but also an extra constant u that does not
appear in the active domain of the integration system, that consists of all the
constants in the sources plus those that appear in the view definitions. The reason
is that we need a finite domain to run the programs, but at the same time we
need to capture the potential infiniteness of the domain and the openness of the
sources. Furthermore, we should not be forced to use only the active domain,
because doing so might assign the wrong semantics to the integration system.

Example 17. Consider an integration system G4 with one source defined by the
view V (X) ← R(X,Y) and the query Q(Y) ← R(X,Y). If the view extension
has only one tuple, say {(a)}, we have that the active domain is {a} and that
R(a, a) is in all the legal instances of G4 if only this domain is used; and we
would have CertainG4

(Q) = {a}. Now, if the view extension becomes {(a), (b)},
the active domain is {a, b}, and there is a global instance containing just the
tuple R(a, b), and another containing just {R(a, a)}. In consequence, there will
be no certain answers. This simple example shows that a positive query may
have an undesirable non-monotonic behavior 2

In Example 8, introducing one extra constant (u) is good enough to correctly
answer conjunctive queries (see below). In the general case, the number of extra
constants may vary depending on the situation.

It is necessary to make all these considerations, because, the set of minimal
legal instances may depend on underlying domain, as we saw in Example 5,
where Mininst(G2) = {{P (a, c), P (a, z), R(z, a)} | z ∈ U = {a, b, c, ...}}.

Since we want only the certain answers, those that can be obtained from all
the stable models, it is easy to see that the values taken by the “free variables”,
like z above, will not appear in a certain answer. However, the absence of the
extra, new constants may sanction as certain some answers that are not if the
domain is restricted to the active domain (see Example 17). In consequence,
we need a larger domain, with enough variables to represent the relations and
differences between the free variables. Depending on the query, there is a finite
domain that generates the same certain and minimal answers as the infinite
domain. It can be shown that if the query is conjunctive, then adding only one
new constant to the active domain is good enough (see Example 8).

If the query is disjunctive, then the smallest “equivalent” finite domain is
the active domain plus n new constants, where n is the maximum number of
instantiations of existential variables in a minimal legal instance. This number
of instantiations cannot be obtained from the view definitions alone, because it
also depends on the number of elements in the sources associated to the Skolem
predicates. An upper bound on the number of constants to be added to the
active domain to correctly answer disjunctive queries is the sum over all sources
of the product of the number of existential variables in a view definition with
the number of atoms in the corresponding source.

Example 18. Given an integration system G5:
V1(X,Y)← P (X,Z0), R(Z0, Y). {V1(a, b)}
V2(X,Y)← P (X,Z1), R(Z2, Y). {V2(a, b), V2(c, d)}

The set of minimal legal instances is {{P (a, z1), R(z1, b), P (c, z2), R(z3, d)} | z1,
z2, z3 ∈ U}. By looking at this representation, we see that in order to obtain cor-
rect certain answers to disjunctive queries, it is good enough to add to the active
domain {a, b, c, d} three extra constants, obtaining, say U = {a, b, c, d, e, f, g}, a
finite domain that is able to simulate an infinite domain wrt disjunctive queries.
Instead of inspecting the minimal instances to determine the number of new
constants, we can use an upper bound, in this case, five, which can be computed
as: 1 existential variable times 1 atom plus 2 existential variables times 2 atoms.
So, we could use a domain U with five extra constants. 2

6.3 Choice Models vs. Skolem Functions

In this paper we have used the choice operator to replace the Skolem functions
used in the inverse rules algorithm. In this way we were able to specify the
minimal global instances, which was one of our original goals, is interesting in
itself, and allows us to specify the repairs of the integration system wrt the ICs.
However, if we are interested in query answering only, it becomes relevant to

analyze if it is possible to retrieve the minimal, certain and consistent answers
by keeping the Skolem functions in the program, evaluating it, and then filtering
out the final answers that contain those functions (as done in [19]).

We first analyze the case of the simple program (see Section 3.1), in which we
want to consider using the Skolem functions instead of the functional predicate
together with the choice operator. For example, we would have P (X, f(X)) ←
V (X) instead of the couple of rules P (X,Y)← V (X), F (X,Y) and F (X,Y)←
V (X), dom(Y), choice((X), (Y)).

In this case, the program will have the same rules V−1 as in the inverse rules
algorithm. The resulting definite program is positive and, therefore, its stable
model corresponds to the minimal model. That model will have atoms with
instantiated Skolem functions, and can be seen as a compact representation of
the collection of stable models of the choice program, in the sense that the latter
can be recovered by considering the different ways in which the Skolem functions
can be defined in the underlying domain.

If a query is posed to the program with Skolem functions, the answer set
may contain or not answers with Skolem functions. Those answers with Skolem
functions correspond to answers that would be different in different stable models
of the choice program, because in a sufficiently rich domain (see Section 6.2) the
functions may be defined in different ways. This is why if we delete those answers
with functions, we get the same answers as from the choice program Π(G) under
the cautious stable model semantics. In consequence, for computing the certain
answers to a monotone query, we can indistinctly use the program with Skolem
functions (pruning the answers with Skolem functions at the end) or the choice
program.

Let us now consider the refined program (see Section 3.2). In this case, if
Skolem functions are used instead of the choice operator, the resulting program
is a normal program that may have several stable models.

Example 19. Consider an integration system G with
V1(X)← P (X1, Y1, Z1), S(Y1) V1(a)
V2(X,Y)← P (X2, Y2, Z2) V2(a, e)

The following is the program with Skolem functions in DLV syntax:5

%V1

P(X,f2(X),f3(X),v1) :- addv11(X), addv1y(X),addv1z(X).

S(Y,v1) :- addv11(X), fv1y(X,Y).

addv11(X) :- v1(X), not auxv11(X).

auxv11(X) :- varv1y(X,Y,Z),varv1z(X,Y,Z).

varv1y(X,Y,Z) :- P(X,Y,Z,nv1),S(Y,nv1).

varv1z(X,Y,Z) :- P(X,Y,Z,nv1).

addv1y(X):- addv11(X), not auxY(X).

auxY(X):- varv1y(X,Y,Z),fv1z(X,Z).

addv1z(X):- addv11(X), not auxZ(X).

5 Except for the function symbols, which are not supported by DLV.

auxZ(X):- varv1z(X,Y,Z),fv1y(X,Y).

%V2

P(X,Y,f1(X,Y),v2) :- addv21(X,Y), addv2z(X,Y).

addv21(X,Y) :- v2(X,Y),not auxv21(X,Y).

auxv21(X,Y) :- varv2z(X,Y,Z).

varv2z(X,Y,Z) :- P(X,Y,Z,nv2).

addv2z(X,Y):- addv21(X,Y), not auxv2Z(X,Y).

auxv2Z(X,Y):- varv2z(X,Y,Z).

P(X,Y,Z,nv1) :- P(X,Y,Z,v2).

P(X,Y,Z,nv2) :- P(X,Y,Z,v1).

P(X,Y,Z,td) :- P(X,Y,Z,v1).

P(X,Y,Z,td) :- P(X,Y,Z,v2).

S(Y,td):- S(Y,v1). 2

The stable models of the refined program with Skolem functions are calculated
under the unique names assumption [36]. As a consequence of this, the program
may not be able to distinguish those cases where the openness condition for a
source can be satisfied because the condition already holds for another source
(see the discussion at the end of Section 3.1). For example, if two atoms, say
P (a, f1(a), f2(a)) and P (a, e, f3(a, e)), are added to the stable models in or-
der to satisfy the openness conditions for two different views, the program will
treat those two atoms as different, what may not be the case when the Skolem
functions are interpreted. As a consequence, stable models that are larger than
needed might be produced. If each of these stable models is seen as a com-
pact representation of a set of intended global instances, which can be recovered
through all possible instantiations of the Skolem functions in the model, we may
end up generating global instances that are not minimal. In other words, the
class of stable models of the refined program with Skolem functions represents a
class that possibly properly extends the one of minimal instances, by including
global instances that are legal but not minimal.

Example 20. (example 19 continued) The minimal instances of this integration
system can be represented by {{P (a, e, f1(a, e)), P (a, f2(a), f3(a)), S(f2(a))} |
f1(a, e) ∈ U , f3(a) ∈ U , f2(a) ∈ U r {e}}

⋃
{{P (a, e, f1(a, e)), S(e)} | f1(a, e) ∈

U}. By interpreting the Skolem functions in the underlying domain, we obtain
all and only the minimal instances. Notice that in this case, it is necessary to
give all the possible values in the domain to the existential variables (or function
symbols), the only exception being when the existential variable Y1 is made equal
to e. In that case it is good enough to give values to Z1 or Z2 in order to satisfy
the openness conditions for V1 and V2.

In the context of the refined program with function symbols, due to the
unique names assumption, f2(a) will always be considered different from e, and
therefore the program will not realize that there is a minimal model that does
not contain the tuple P (X, f2(X), f3(X), v1). In consequence, the program will
generate the stable model {P (a, e, f1(a, e)), P (a, f2(a), f3(a)), S(f2(a))}, that
represents a proper superclass of the minimal legal instances. 2

The possibly strict superset of the minimal instances that is represented by
the models of the program with functions can be used to correctly compute the
minimal and certain answers to monotone queries (in this case it is better to use
the simple program though), but not for queries with negation.

We now consider the repair program. In those cases where the stable models
of the simple or revised programs with Skolem functions do not represent the
minimal legal instances, it is clear that it is not possible to compute their re-
pairs. When the stable models do represent the minimal legal instances, it is not
possible for the repair program to detect all the inconsistencies in them because
of the underlying unique names assumption.

Example 21. (examples 4 and 5 continued) The minimal legal instances are
represented via Skolem functions by M = {P (a, f(a, b)), R(f(a, b), b), P (a, c)},
which can be obtained as a model of by the simple program with Skolem func-
tions. This model is inconsistent wrt IC : ∀x∀y(R(X,Y)→ R(Y,X)).

The repair program Π(G, IC) has the rule

R(X,Y, fa) ∨R(Y,X, ta)← R(X,Y, ts), R(Y,X, fs),

that will produce the set of repairs DBM1
= {P (a, f(a, b)), P (a, c)} andDBM2

=
{P (a, f(a, b)), R(f(a, b), b), R(b, f(a, b)), P (a, c)}, which represent a superset of
the real repairs of the minimal legal instances. Because of the unique names
assumption, the program will not detect that for f(a, b) = b the instance is
consistent wrt IC. 2

6.4 Disjunctive Sources

In Section 3 we considered sources defined as conjunctive views only. If sources
are now described as disjunctive views, i.e. with more than one conjunctive
rule [18], then the program Π(G) has to be extended in order to capture the
minimal instances. In this case, a source Si is a pair 〈Φi, vi〉, where Φi is a set
of conjunctive rules defining the same view, say ϕi1, . . . , ϕim, and vi is the given
extension of the source.

Definition 13. Given an open global system G = {〈Φ1, v1〉, . . . , 〈Φn, vn〉}, the
set of legal global instances is Linst(G) = {D instance over R | vi ⊆

⋃
k ϕik(D),

for i = 1, . . . , n}. 2

Example 22. Consider the global integration system G7 with global relations
{R(X,Y), S(X), T (X,Y)} and two source relations v1 and v2 with the following
view definitions and extensions:

Source Extension View Definitions
v1 {V1(a, b), V1(c, d)} V11 : V1(X,Y)← R(X,Y), S(Y)

V12 : V1(X, d)← T (X, d)
v2 {V2(b), V2(a)} V21 : V2(X)← S(X)

Examples of legal instances are {S(b), S(a), R(a, b), T (c, d)}, {S(b), S(a), R(a, b),
R(c, d), S(d)} and {S(b), S(a), R(a, b), T (c, d), T (a, b)}. 2

If we have disjunctive view definitions, in order to satisfy the openness of a
source, it is necessary that one or more views generate each of its tuples. To
capture this, in [18] the concepts of truly disjunctive view and witness are intro-
duced, together with an exclusion condition. Informally, a set of views is truly
disjunctive if there is a tuple t̄ that can be generated by any of the views. This
tuple is called a witness. The exclusion condition is a constraint on the witness
that determines for which tuples the truly disjunctive views are the most general.

Example 23. (example 22 continued) The atoms of v1 that have the constant
d as the second attribute can be generated either by V11 or V12. On the other
hand, if the second attribute is not d, the atom can only be generated by V1.
This is expressed in terms of truly disjunctive views, most general witness and
exclusion condition by the following table:

truly disjunctive most general exclusion condition
views witness
V1 (X1, X2) second attribute 6= d
V1, V2 (X1, d) true

2

In order to extend the simple version of Π(G), incorporating disjunctive view
definitions, we need to take into account the different sets of truly disjunctive
views with their witnesses and exclusion conditions. For example, for the second
truly disjunctive set in Example 23, the following rule needs to be imposed

(R(X, d) ∧ S(d)) ∨ T (X, d)← V (X, d), (14)

which is equivalent to the pair of Disjunctive Datalog rules

R(X, d) ∨ T (X, d)← V (X, d) (15)

S(d) ∨ T (X, d)← V (X, d). (16)

For each set of truly disjunctive views, rules like (15) and (16) will have to be
satisfied by the legal instances. These remarks motivate the following program
as an specification of the minimal legal instances.

Definition 14. Given an open global system G, the program, Π∨(G), contains
the following clauses:
1. Fact dom(a) for every constant a ∈ U ; and the fact Vi(ā) whenever ā ∈ vi
for some source extension vi in G.
2. For every set of truly disjunctive views for a source Vi of the form
Vi1 : Vi(X̄1)← P11(X̄11), . . . , P1n(X̄1n1

)
· · ·

Vik : Vi(X̄k)← Pk1(X̄k1), . . . , Pkn(X̄knk
),

where the variables in each view are different (fresh), for its more general witness
W̄ and its most general exclusion condition ϕ, the rules

P1δ1(X̄
′
1δ1

) ∨ · · · ∨ Pkδk
(X̄ ′kδk

)← Vi(W̄) ∧ ϕ ∧
∧

Zl∈(X̄′\W̄) F
l
i (W̄ , Zl),

where X̄ ′ =
⋃k

j=1 X̄
′
jδj

and δl ∈ {1, . . . , nk} for l = 1, . . . , k.

The vectors X̄ ′1δ1 , . . . , X̄
′
kδk

are those obtained by the substitution of X̄i by W̄
in all the view definitions. These rules represent all the possible combinations of
k predicates where each of them is chosen from a different view definition.
3. For every predicate F l

i (X̄, Zl) introduced in 2., the rule
F l
i (X̄, Zl)← Vi(X̄), dom(Zl), choice((X̄), (Zl)). 2

Example 24. (example 23 continued) The program Π∨(G7) is:

dom(a). dom(b). dom(c). dom(d). (17)

R(X,Y)← V1(X,Y), Y 6= d. (18)

S(Y)← V1(X,Y), Y 6= d. (19)

T (X, d) ∨R(X,Y)← V1(X,Y). (20)

T (X, d) ∨ S(Y)← V1(X,Y). (21)

S(X)← V2(X). (22)

Rules (18)-(19) and (20)- (21) represent, respectively, the first and second truly
disjunctive set for source v1. The last rule is for the non-disjunctive source v2.
2

If all the sources are defined by conjunctive views then is easy to see that Π∨(G)
becomes the simple program Π(G) introduced in Section 3.1. As before, it holds
that

Mininst(G) ⊆ {DM | M is a stable model of Π∨(G)} ⊆ Linst(G).

For monotone queries Q, the answers obtained using Π∨(G) coincide with
CertainG(Q) andMinimalG(Q). This might not be the case of queries with nega-
tion. It is possible to give a refined version, corresponding to the non disjunctive
program in Section 3.2, for which Mininst(G) = {DM | M is a stable model
of Π∨(G)} also holds.

7 Conclusions

We have presented a general approach to specifying, by means of disjunctive
deductive databases with stable model semantics, the database repairs of a me-
diated integration system with open sources under the LAV approach. Then,
consistent answers to queries posed to such a system are computed by running
a query program together with the specification of database repairs under the
skeptical or cautious stable model semantics.

The specification of the repairs is achieved by first specifying the class of
minimal global legal instances of the integration system (without considering
any global ICs at this level yet). To the best of our knowledge, this is also
the first specification, under the LAV paradigm, of such global instances in a
logic programming formalism. The specification is inspired by the inverse rules
algorithms, where auxiliary functions are replaced by auxiliary predicates that
are forced to be functional by means of the non deterministic choice operator.

The specification of the minimal legal instances of the integration system al-
lows obtaining the minimal answers to arbitrary queries; and the certain answers
to monotone queries, what extends previous results in the literature related to
query plan generation under the LAV approach.

The methodology for specifying minimal legal instances, computing certain
answers and CQA works for conjunctive view definitions and disjunctions of
them. Wrt the ICs and queries this approach can handle, the solution is sound
and complete for combinations of universal ICs and non-cyclic referential ICs,
and queries expressed as Datalog¬ programs. In consequence, the current ap-
proach to consistent query answering (CQA) subsumes and extends the method-
ologies presented in [8] for integration systems, and the one in [6] for stand alone
relational databases. Also the complexity of query evaluation using the logic
programs presented here matches the theoretical lower bounds for computing
certain and consistent answers.

For reasons of space, we just mention a few optimizations of the specification
programs and their execution (more on optimization of repair programs can
be found in [6]). The materialization of the CWA present in Π(G, IC) can be
avoided by program transformation. We have identified classes of common ICs
for which SV (Π(G, IC)) becomes head-cycle-free, and in consequence, can be
transformed into a non disjunctive program [7, 31]. Transformations are shown
in [6].

The program for CQA can be split [34] into: (1) the program that specifies
minimal legal instances; (2) the program that specifies their repairs; and (3) the
query program. If the simple version can be used in (1), that layer is a stratified
program. Otherwise, if the refined version is used, that layer is not stratified, but
its models can be computed bottom-up as fixpoints of an iterative operator [25].
The second layer, i.e. the repair part, is locally stratified [35]. Finally, if the query
program is stratified, e.g. if the original query is first-order, then the consistent
answers can be eventually computed by a bottom-up evaluation mechanism.

For CQA from integration systems we have successfully experimented with
DLV [20, 32]. The current implementations of the disjunctive stable models se-
mantics would be much more effective in database applications if it were possible
to evaluate open queries in a form that is guided by the query rather than based
on, first, massive grounding of the whole program and, second, considering what
can be found in every (completely constructed) stable model of the program.
First optimizations of this kind have been reported in [21].

Wrt related papers, query answering in mediated integration systems under
the assumption that certain global ICs hold has been treated in [28, 19, 26, 12].
However, in CQA, we do not assume that global ICs hold. Logic programming
specifications of repairs of single relational databases have been presented in [4,
27, 5].

In [8], CQA in possibly inconsistent integration systems under the LAV ap-
proach is considered. There, the notion of repair of a minimal legal instance is
introduced. The algorithm for CQA is based on a query transformation mecha-
nism [3] applied to first-order queries. The resulting query may contain negation,

and is run on top of an extension of the inverse algorithm to the case of strati-
fied Datalog¬ queries. This approach is limited by the restrictions of the query
transformation methodology. In particular, it can be applied only to queries that
are conjunctions of literals and universal ICs.

Integration systems under the GAV approach that do not satisfy global key
dependencies are considered in [29]. There, legal instances are allowed to be more
flexible, allowing their computed views to accommodate the satisfaction of the
ICs. In this sense, the notion of repair is implicit; and the legal instances are
the repairs we have considered here. View definitions are expressed as Datalog
queries; and the queries to the global system are conjunctive. The “repairs” of the
global system are specified by normal programs under stable model semantics.
In [14] and still under the GAV approach, this work is extended by introducing
rewriting techniques to retrieve the consistent query answers without construct-
ing the “repairs”.

With respect to current and future work, apart from considering all kinds of
implementation and optimization issues around the programs and their interac-
tion with a database, we have extended our treatment of CQA in integration
systems to the mixed case where open, closed and sources that are both open
and closed (clopen) coexist; and to particular, but common and natural combi-
nations of them. We are working on identifying conditions on the view definitions
that make it possible to compute, from the program Π(G), the certain answers
to possibly non-monotonic queries.

Research related to the design of virtual data integration systems and its
impact on global query answering has been mostly neglected. Most of the re-
search in the area starts from a given set of view definitions, but the conditions
on them hardly go beyond classifying them as conjunctive, disjunctive, Datalog,
etc. However, other conditions, imposed when the systems is being designed,
could have an impact on, e.g. query plan derivation. Much research is needed in
this direction.

Acknowledgments: Research funded by DIPUC, CONICYT, Carleton Uni-
versity Start-Up Grant 9364-01, NSERC Grant 250279-02. L. Bertossi is Fac-
ulty Fellow of the IBM Center for Advanced Studies, Toronto Lab. We also
appreciate a CoLogNet Scholarship for Loreto Bravo to attend the Workshop on
Logic-Based Method for Information Integration (Vienna, August 2003). We are
grateful to Alberto Mendelzon, Pablo Barceló, Jan Chomicki, Enrico Franconi,
Andrei Lopatenko for useful conversations, and to the anonymous referees for
[11], a first version of this paper, for useful remarks.

References

1. Abiteboul, S.; Hull, R. and Vianu, V. Foundations of Databases. Addison-Wesley,
1995.

2. Abiteboul, A. and Duschka, O. Complexity of Answering Queries Using Materialized
Views. In Proc. ACM Symposium on Principles of Database Systems (PODS 98),
1998, pp. 254-263.

3. Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query Answers in Incon-
sistent Databases. In Proc. ACM Symposium on Principles of Database Systems
(PODS 99), 1999, pp. 68–79.

4. Arenas, M.; Bertossi, L.; and Chomicki, J. Answer Sets for Consistent Query An-
swers. Theory and Practice of Logic Programming, 2003, 3(4-5), pp. 393-424.

5. Barcelo, P.; and Bertossi, L. Logic Programs for Querying Inconsistent Databases. In
Proc. Fifth International Symposium on Practical Aspects of Declarative Languages
(PADL 03). Springer Lecture Notes in Computer Science 2562, 2003, pp. 208–222.

6. Barcelo, P., Bertossi, L. and Bravo, L. Characterizing and Computing Semanti-
cally Correct Answers from Databases with Annotated Logic and Answer Sets. In
‘Semantics of Databases’, Springer LNCS 2582, 2003, pp. 1–27.

7. Ben-Eliyahu, R. and Dechter, R. Propositional Semantics for Disjunctive Logic
Programs. Annals of Mathematics in Artificial Intelligence, 1994, 12:53-87.

8. Bertossi, L., Chomicki, J., Cortes, A. and Gutierrez, C. Consistent Answers from
Integrated Data Sources. In Proc. Flexible Query Answering Systems (FQAS 02),
Springer LNAI 2522, 2002, pp. 71–85.

9. Bertossi, L.; and Chomicki, J. Query Answering in Inconsistent Databases. In
‘Logics for Emerging Applications of Databases’, J. Chomicki, G. Saake and R. van
der Meyden (eds.), Springer, 2003.

10. Bertossi, L. and Bravo, L. On Theoretical Aspects of Consistent Query Answering.
In preparation, 2003.

11. Bravo, L. and Bertossi, L. Logic Programs for Consistently Querying Data Sources
In Proc. of the Eighteenth International Joint Conference on Artificial Intellience
(IJCAI 03), Morgan Kaufmann, 2003, pp. 10–15.

12. Cali, A.; Calvanese, D.; De Giacomo, G. and Lenzerini, M. Data integration Un-
der Integrity Constraints. In Proc. Conference on Advanced Information Systems
Engineering (CAiSE 02), Springer LNCS 2348, 2002, pp. 262–279.

13. Cali, A., Lembo, D. and Rosati, R. On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In Proc. ACM Symposium
on Principles of Database Systems (PODS 03), 2003, pp. 260-271.

14. Cali, A., Lembo, D., and Rosati, R. Query Rewriting and Answering under Con-
straints in Data Integration Systems. In Proc. of the Eighteenth International Joint
Conference on Artificial Intellience (IJCAI 03). Morgan Kaufmann, 2003, 99. 16-21.

15. Celle, A.; and Bertossi, L. Querying Inconsistent Databases: Algorithms and Im-
plementation. In ‘Computational Logic - CL 2000’. Stream: 6th International Con-
ference on Rules and Objects in Databases (DOOD 00), Springer Lecture Notes in
Artificial Intelligence 1861, 2000, pp. 942–956.

16. Chomicki, J.; and Marcinkowski, J. Minimal-Change Integrity Maintenance Using
Tuple Deletions. arXiv.org paper cs.DB/0212004.

17. Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. Complexity And Expressive
Power Of Logic Programming. ACM Computer Surveys. 2001, 33(3), 374-425.

18. Duschka, O. Query Planning and Optimization in Information Integration. PhD
Thesis, Stanford University, December 1997.

19. Duschka, O., Genesereth, M. and Levy, A. Recursive Query Plans for Data Inte-
gration. Journal of Logic Programming, 2000, 43(1):49-73.

20. Eiter, T., Faber, W.; Leone, N. and Pfeifer, G. Declarative Problem-Solving in
DLV. In ‘Logic-Based Artificial Intelligence’, J. Minker (ed.), Kluwer, 2000, pp.
79-103.

21. Eiter, T., Fink, M., Greco, G. and Lembo, D. Efficient Efficient Evaluation of
Logic Programs for Querying Data Integration Systems. In Proc. 19th International
Conference on Logic Programming (ICLP 03), Springer LNCS, 2003.

22. Gelfond, M. and Lifschitz, V. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 1991, 9:365–385.

23. Giannotti, F., Greco, S., Sacca, D. and Zaniolo, C. Programming with Non-
determinism in Deductive Databases. Annals of Mathematics and Artificial In-
telligence, 1997, 19(1-2):97–125.

24. Giannotti, F.; Pedreschi, D.; Sacca, D. and Zaniolo, C. Non-Determinism in Deduc-
tive Databases. In Proc. International Conference on Rules and Objects in Databases
(DOOD 91), Springer LNCS 566, 1991, pp. 129–146.

25. Giannotti, F.; Pedreschi, D. and Zaniolo, C. Semantics and Expressive Power
of Nondeterministic Constructs in Deductive Databases. J. Computer and System
Sciences, 2001, 62(1):15–42.

26. Grant, J. and Minker, M. A Logic-based Approach to Data Integration. Theory
and Practice of Logic Programming, 2002, 2(3):323-368.

27. Greco, G., Greco, S. and Zumpano, E. A Logic Programming Approach to the
Integration, Repairing and Querying of Inconsistent Databases. In Proc. Interna-
tional Conference on Logic Programming (ICLP 01), Springer LNCS 2237, 2001,
pp. 348–364.

28. Gryz, J. Query Rewriting Using Views in the Presence of Functional and Inclusion
Dependencies. Information Systems, 1999, 24(7):597–612.

29. Lembo, D.; Lenzerini, M. and Rosati, R. Source Inconsistency and Incomplete-
ness in Data Integration. In Proc. Workshop on Knowledge Representation meets
Databases (KRDB 02), 2002.

30. Lenzerini, M. Data Integration: A Theoretical Perspective. In Proc. ACM Sympo-
sium on Principles of Database Systems (PODS 02), 2002, pp. 233-246.

31. Leone, N., Rullo, P. and Scarcello, F. Disjunctive Stable Models: Unfounded
Sets, Fixpoint Semantics, and Computation. Information and Computation, 1997,
135(2):69-112.

32. Leone, N. et al. The DLV System for Konwledge Representation and Reasoning.
arXiv.org paper cs.LO/0211004. To appear in ACM Transactions on Computational
Logic.

33. Levy, A. Logic-Based Techniques in Data Integration. Chapter in ‘Logic Based
Artificial Intelligence’, J. Minker (ed.), Kluwer, 2000, pp. 575-595.

34. Lifschitz, V. and Turner, H. Splitting a Logic Program. In Proc. International
Conference on Logic Programming (ICLP 94). The MIT Press, 1994, pp. 23–37.

35. Przymusinski, T. Stable Semantics for Disjunctive Programs. New Generation
Computing, 1991, 9(3/4):401–424.

36. Reiter, R. Towards a Logical Reconstruction of Relational Database Theory. In
‘On Conceptual Modeling’, M.L. Brodie, J. Mylopoulos, and J.W. Schmidt (eds.).
Springer-Verlag, 1984, pp. 191-233.

37. Wang, H. and Zaniolo, C. Nonmonotonic Reasoning in LDL++. In ‘Logic-Based
Artificial Intelligence’, J. Minker (ed.), Kluwer 2000, pp. 523-544.

A Appendix

A.1 Proof of Results

Proof of Theorem 1: The program SV (Π(G)) can be split [34] into the
bottom program ΠB , that contains the facts and rules in 1. and 3. in Definition
8, and the top program, ΠT , that contains the rules in 2.. If MB is a stable

model of ΠB and MB
T is a stable model of ΠMB

T (the program with the rules
in (2) that borrows the facts for its extensional, i.e. non defined predicates from
MB), then MB ∪M

B
T is a stable model of Π(G), and all the models of latter

can be obtained in this way. The bottom program contains the choice operator
and therefore its stable models will correspond to all the possible combinations
of values for the Skolem predicates subject to the condition of functionality [37].
Since ΠT is a positive program (without the choice operator), the stable models
of the programs ΠMB

T are their the minimal models.
We need to prove that the class of instances associated to models of the

formMB ∪M
B
T contains only legal instances and is a superclass of the class of

minimal instances. First we prove:

{DM | M is a choice model of Π(G)} ⊆ Linst(G). (23)

Assume that there is a stable modelM ofΠ(G) such that its associated database
DM is not a legal instance. Then there is a view Vi for which vi 6⊆ ϕi(DM), that
is, for some ā:

– ā ∈ vi, and then by 1. in Definition 8, Vi(ā) is true in any model of the
program, in particular, inM.

– ā /∈ ϕi(DM), i.e. inM, it holds ¬∃z̄(P1(ā
′
1, z̄1)∧. . .∧Pn(ā

′
n, z̄n)), for āi ⊆ ā,

and z̄i ⊆ z̄. This is equivalent to

∀z̄ (¬P1(ā
′
1, z̄1) ∨ . . . ∨ ¬Pn(ā

′
n, z̄n)) (24)

being true inM.

Since the stable models containing the extensions for the Pj are minimal models
(and then the Pjs can get their tuples from the bodies of the rules defining them
alone), from (24) we have that inM it holds

∀z̄ (¬Vi(ā) ∨
∨

il

¬F l
i (ā, zl)). (25)

(There may be several rules defining each predicate Pj , that is why may have
here Skolem functions coming from other view definitions.)

Since Vi(ā) ∈M, we can apply the rules 3. in Definition 8, and we get atoms
F l
i (ā, b) ∈M for some b’s in the domain. In consequence, (25) is false inM. We

have reached a contradiction; and (23) is established.
Now we want to prove:

Mininst(G) ⊆ {DM | M is a choice model of Π(G)}. (26)

We will now prove that every minimal legal D is of the form DM, whereM is of
the formMB ∪M

B
T withMB a stable model of ΠB andMB

T a minimal model
of ΠMB

T .
Let D be a minimal legal instance. It contains extensions for the global rela-

tions only. Let us define a Herbrand structure for the program Π(G) containing
the following ground atoms:

1. The atoms in D;

2. Vi(ā) whenever vi is a source extension in G and ā ∈ vi;

3. dom(a) for every constant a ∈ U ;

4. For each view Vi, consider the rules F l
i (x̄, zl) ← body(ϕ

Vi
), l = 1, . . ., eval-

uate the bodies according to the atoms in 1. When the body is true, add
toM the corresponding atom in the head. Due to the minimality of D, the
predicates become functional.

5. If for a view Vi, ā ∈ vi, then put choice(ā, b) intoM when F l
i (ā, b) belongs

toM.

Now we have to prove thatM is a stable model of Π(G). This can be shown
by proving, first, thatMB := (MrD) is a stable model of ΠB , and, next, that
the set containing the atoms in 1., 2. and 4. above is a minimal model of ΠMB

T .

MB will contain, by construction, all the facts of ΠB . Since D is legal, for
every view Vi, it holds vi ⊆ ϕ(D).

The minimality of D implies that for every Vi(ā) ∈MB , the body of the rule
defining Vi becomes true in D; then there is some value bli for which F

l
i (ā, b

l
i) is

an atom inMB (see item 4. above). Since the rules 3. of ΠB are defined using
the choice operator, there will be one choice model that produces the F l

i (ā, b) of
M.

Since the choice predicate chooses exactly one value for each element in the
view, and MB is a minimal model of the positive program obtained from ΠB

by adding as facts the atoms in the extension of the choice predicate inM, we
have thatMB is a choice model of ΠB .

Now we have to verify thatMB
T :=Mr (domM ∪ choiceM), where domM

and choiceM are the extensions in M of the predicates dom and choice, is a
minimal model of ΠMB

T . This is immediate by construction: the global atoms
obtained by applying the rules

Pj(X̄j)← Vi(X̄),
∧

Zl∈(X̄j\X̄)

F l
i (X̄, Zl),

are exactly those we put intoM. Then,MB
T is a minimal model of ΠMB

T . Fur-
thermore, DM = D. 2

Proof of Theorem 2: Each stable model of Π(G) generates a legal instance.
The only situation in which that instance may be non minimal instance occurs
when the openness of a source is satisfied by another source or a set of sources.
This can only happen if there is a way to generate a same global relation by more
than one view, i.e. if there is a way to establish a mapping from the universal
and existential variables to the constants and universal variables of other views.

We will prove that if, for a given stable modelM ofΠ(G),DM is not minimal,
then there is an admissible mapping h such that h(S l

i) ⊆
⋃

S∈(Sr{Sl
i
}) L(S). We

do this by contradiction, assuming there is no admissible mapping and that DM
is not minimal.

Under this assumption, there exists a stable model of Π(G), M′ such that
DM′ $ DM. More specifically, there is a global relation atom, P (ā), that belongs
toM, but not toM′.

The global relation P above cannot be a predicate without existential vari-
ables in every view definition where it appears in the body, otherwise its same
atoms will appear in all the legal instances. So, P must appear with existential
variables in at least one view definition.

Then for P (ā) there must be a view, say V1, that generated this atom un-
necessarily, because there was another atom P (ā′), generated by a view V2, that
had already forced the satisfaction of the openness of V1.

Each of these global atoms has some attributes generated by the contents of
the views that have P in their definitions, and others by Skolem functions. The
first correspond to universal variables, and the second, to existential variables
in the view definitions. We distinguish those attributes by using the following
notation for an atom: P (āu, āe), P (ā

′
u, ā

′
e).

We will first restrict ourselves to a view that is defined only by the global
relation P , i.e. V1(x̄) ← P (x̄, z̄). Since P (ā′u, ā

′
e) satisfied the openness of V1, it

holds that āu ⊂ ā′u. Assume that P (āu, āe) and P (ā′u, ā
′
e) have (were derived

from) u1 and u2 many universal variables and e1 and e2 many existential vari-
ables. That is |āu| = u1, |ā

′
u| = u2, |āe| = e1, |ā

′
e| = e2. Now, there is a mapping

h of the view section of V1 that maps P (āu, āe) to P (µ
u2 , εe2) ⊆ L(P (ā′u, ā

′
e)).

6

Then we have reached a contradiction and the theorem holds in this case.
The proof, in the case where the view V1 contains more that one global rela-

tion in its definition, is similar, but more involved, but goes through making the
following considerations. For the openness of a view to be satisfied by another
view or set of other views, we have to consider the set of global relations with
a common existential variable in its view. In this case, the attributes generated
by the universal variables need to be a subset of the attributes generated by the
universal variables of the other view or the other set of views. This implies that
if DM is not minimal, there is an admissible mapping and therefore we reach a
contradiction as before. 2

The following intermediate results refer to the refined program introduced in
Section 3.2.

Lemma 1. If M is a stable model of SV (Π(G)), then DM is a legal instance
of G.

Proof. Assume that DM is not legal. Then there must be a view Vi, with def-
inition ϕ : Vi(x̄) ←

∧n
i=1 Pi(x̄i, z̄i), for which vi 6⊆ ϕ(DM). More specifically,

there is ā such that ā ∈ (vi r ϕ(DM)).
SinceM satisfies rules 3.(a) and 5. of the program Π(G) in Definition 10, the

global predicates in ϕ that do not contain existential variables get their values
from Vi. So, at least for one of the sections Sij there is no set of atoms inM such

6 Here, XY denotes that attribute X is repeated Y times.

that for a view VSij
(X̄ ′)←

∧
Pk∈Sij

Pk(X̄), where X̄ ′ are the universal variables

of Sij , it does not hold that ā′ is in the view.
Since the last three (sets of) rules in 3.(b) of Π(G) are satisfied by M and

the predicates of view Vi that belong to Sij are not satisfied by other views (this
is because Sij is not satisfied by M), we have addvij

(ā) ∈ M. This will open
two alternatives wrt the rules in 4.:

– If the atoms in the predicates containing an existential variable Z were al-
ready generated by other views, then the Skolem predicate F (ā′, Z) will not
be generated. Then the global predicates associated to Z will not be added
again by the first rule in 3.(b).

– If the extensions of the predicates associated to Z were already generated
by other views, then F (ā′, z) ∈ M for a constant of the domain. Then the
atoms in the predicates associated to Z will be added to the model by the
first rule in 3.(b).

Either way, the atoms in the global predicates in Sij were added by other views
or by view Vi toM. This implies that for the view VSij

(X̄ ′)←
∧

Pk∈Sij
Pk(X̄),

we have that ā′ is in the view. We have a contradiction. 2

Lemma 2. If D is a minimal instance of G, then there is a stable modelM of
SV (Π(G)), such that DM = D.

Proof. The idea of proof is similar to the proof of (26) for the simple program,
but its realization is more involved now due to the structural complexity of
the refined program. We need to define a Herbrand structure -now also with
extensions for all the new auxiliary predicates- that will be our candidate to be
the stable modelM that generates instance D. For doing this, we use the same
notation as in the Definition 10 of Π(G). We put the following facts intoM:

1. Pk(ā, td) for every global atom Pk(ā) ∈ D.
2. dom(a) for every constant a ∈ U .
3. Vi(ā) whenever Vi(ā) ∈ vi for some source extension vi in G.
4. For every view (source) predicate Vi in the system with description Vi(X̄)←
P1(X̄1), . . . , Pn(X̄n) and for every Pk with no existential variables, the facts
Pk(x̄k, to).

5. For every atom Pk(āk) ∈ D, where Pk(āk, to) 6∈ M, we will check which
views have Pk in its body and have a āk in its view extension with ā ⊆ āk.
After some considerations we will specify at the end of this item what new
atoms go intoM and which do not.
We have that for each view section Sl

i with an existential variable zl
7, such

that Pk ∈ S
l
i, define the following views:

Pk(X̄
′
k, S

l
i)←

∧

Pj(X̄j)∈Sl
i

Pj(X̄j) ∧ Vi(X̄),

7 The Sl
i are the view sections introduced in Section 3.1.

where Sl
i is considered as an annotation constant in the second argument of

head of the view.
Let P be the result of instantiating these views over the atoms in D and the
source extensions. We will define SPk = {Sl

i | Pk(āk, S
l
i) ∈ P}. A priority

relation will be defined between the view sections of SPk as follows:

(a) Each view section Sl
i ∈ S

Pk that does not have an admissible mapping
such that h(Sl

i) ⊆
⋃

S∈(Sr{Sl
i
}) L(S), where S is the set of all the view

sections of G, has the first priority.
(b) Each view section Sl

i ∈ S
Pk that does not have the first priority, and such

that there is an admissible mapping for which h(S l
i) ⊆

⋃
S∈(Sr{Sl

i
}) L(S),

where S is the set of view sections not necessarily from SPk that are in
the situation defined in (a), has the second priority.

(c) Each view section Sl
i ∈ S

Pk that does not have the first or second priority,
and such that there is an admissible mapping h 6= L for which h(S l

i)
⊆

⋃
S∈(Sr{Sl

i
}) L(S), where S is the set of view sections not necessarily

from SPk that are in the situation defined in (b), has the third priority.
(d) Each view section Sl

i ∈ SPk that does not have the first, second or
third priority, and such that the admissible mapping h = L, i.e L(S l

i)
$

⋃
S∈(Sr{Sl

i
}) L(S) where S is a set of view sections that are not in the

cases (a) and (b), has the fourth priority.

Let Sm
i be the the view section of SPk with the highest priority. If there

are two sections with the highest priority choose any of them. There is just
one Sij

8 in G such that Sij ⊇ Sm
i . For this set we have Pk(āk, vij) ∈

M, addvij
(ā′) ∈ M, Vi(ā) ∈ M, auxvij

(ā′) 6∈ M, varvijzl
(āzl

) 6∈ M,
auxvijZl

(ā′) 6∈ M, addvijzl
(ā′) ∈M. For all the rest of the views of SPk , e.g.

Sm
i , we have that the varvinzm

(āzm
) 6∈ M.

6. For every Pk(āk, vij) ∈ M, we add the fact Pk(āk, nvkm) to M for every
Skm 6= Sij .

7. For every addvij
(ā′), addvijzl

(ā′), Pk(āk, vij) ∈ M, add F l
i (X̄, zl) into M,

where zl is the value of that existential variable in Pk(āk, vij).

By construction M is a minimal model Π(G)M and therefore there is a stable
model ofΠ(G),M, such thatDM corresponds to the minimal legal instanceD. 2

Lemma 3. IfM is a stable model of SV (Π(G)), then DM is a minimal instance
of G.

Proof. The legality of DM was established in Lemma 1. Assume that that DM
is not a minimal instance of G. Then there must be a minimal instance D such
that D $ DM. By Lemma 2 we have that there is a model M′ such that
DM′ = D. Then, DM′ $ DM. In particular, we have that there is an atom of a
global relation, say Pk(ā, td), such that Pk(ā, td) ∈M and Pk(ā, td) 6∈ M

′. Since
Pk(ā, td) 6∈ M

′ and since we could delete that tuple from M without needing

8 Here the Sij are those appearing in Definition 10.

to add another tuple Pk(b̄, td) to M′, we have that M is not minimal and, in
consequence, it cannot be a stable model. 2

Proof of Theorem 3: Directly from Lemma 2 and 3 2

A.2 Obtaining the Simple Program from the Refined Program

Assume the hypothesis of Theorem 2 hold. We denote the view sections with S l
i

as in Section 3.1. The sections Sl
i are all associated to the definition of view Vi.

We show now a syntactic transformation of the refined version of the program
Π(G). We justify each step of the transformation, so that at the end it will be
clear that they have the same models.

Since there is no admissible mapping, each S l
i can only be generated by

view Vi. In consequence, for every modelM of the refined version of Pi(G), we
have that for all ā, varvijZl

(¯̄a) 6∈ M. This implies that for every modelM and
ā, auxvij

(ā) 6∈ M and auxvijZl
(ā) 6∈ M. Since those atoms will never appear

in a model of the refined version of Pi(G), we can delete the rules with those
predicates in their heads. We can also delete them from the bodies of the rules
where they appear negated. We obtain the following program:

1. Fact dom(a) for every constant a ∈ U .
2. Fact Vi(ā) whenever ā ∈ vi for some source extension vi in G.
3. For every view (source) predicate Vi in the system with description Vi(X̄)←
P1(X̄1), . . . , Pn(X̄n):
(a) For every Pk with no existential variables, the rules

Pk(X̄k, to)← Vi(X̄).
(b) For every set Sij of predicates of the description’s body that are related

by common existential variables {Z1, . . . , Zm}, the rules,
Pk(X̄k, vij)← addvij

(X̄ ′),
∧

Zl∈(X̄k\X̄′) F
l
i (X̄

′, Zl), for Pk ∈ Sij .

addvij
(X̄ ′)← Vi(X̄), where X̄ ′ = X̄ ∩ {

⋃
Pk∈Sij

Xk}.

4. For every predicate F l
i (X̄

′, Zl) introduced in 3.b., the rules,
F l
i (X̄

′, Zl)← addvijZl
(X̄ ′), dom(Zl), choice((X̄

′), (Zl)).
addvijZl

(X̄ ′)← addvij
(X̄ ′), for l = 1, . . .m.

5. For every global relation P (X̄) the rules
P (X̄, nvij)← P (X̄, vhk), for {(ij, hk)|P (X̄) ∈ Sij and Shk}.
P (X̄, nvij)← P (X̄, to), for {(ij)|P (X̄) ∈ Sij}.
P (X̄, td)← P (X̄, vij), for {(ij)|P (X̄) ∈ Sij}.
P (X̄, td)← P (X̄, to).

This is a positive program with choice. Because of the second rule in 3.(b)
and the second rule in 4., we can replace every occurrence of addvij

(X̄ ′) and
addvijZl

(X̄ ′) by Vi(X̄). Also from the third and fourth rules in 5., we can replace
every occurrence of P (X̄, to) and P (X̄, vij) by P (X̄, td). It is also easy to see that
the first two rules in 5. will generate atoms that are useless in the calculation
of the the global predicates; then these rules can be deleted. We obtain the
following program:

1. Fact dom(a) for every constant a ∈ U .
2. Fact Vi(ā) whenever ā ∈ vi for some source extension vi in G.
3. For every view (source) predicate Vi in the system with description Vi(X̄)←
P1(X̄1), . . . , Pn(X̄n):
(a) For every Pk with no existential variables, the rules

Pk(X̄k, td)← Vi(X̄).
(b) For every set Sij of predicates of the description’s body that are related

by common existential variables {Z1, . . . , Zm}, the rules,
Pk(X̄k, td)← Vi(X̄),

∧
Zl∈(X̄k\X̄′) F

l
i (X̄

′, Zl), for Pk ∈ Sij .

4. For every predicate F l
i (X̄

′, Zl) introduced in 3.b., the rules,
F l
i (X̄

′, Zl)← Vi(X̄), dom(Zl), choice((X̄
′), (Zl)).

By merging rules 3.(a) and 3.(b), the revised version of Π(G) is eventually syn-
tactically transformed to the simple version of the program.

