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Abstract

A database D may be inconsistent wrt a given set IC
of integrity constraints. Consistent Query Answering is
the problem of computing from D the answers to a query
that are consistent wrt IC . Consistent answers have been
characterized as those that are invariant under certain
minimal forms of restoration of the consistency of the
database. In this paper we investigate algorithmic and
complexity theoretic issues of CQA under database re-
pairs that minimally depart −wrt the cardinality of the
symmetric difference− from the original database. Re-
search on this kind of repairs had been suggested in the
literature, but no systematic study had been done. Here
we obtain first tight complexity bounds.

1. Introduction

Integrity constraints (ICs) are expected to be satis-
fied by a database in order to keep its semantic corre-
spondence with the outside reality it is modelling. How-
ever, it is often the case that IC satisfaction cannot be
guaranteed, and inconsistent database states are com-
mon, e.g. in integrated databases, census databases,
legacy data, etc. [7].

Consistent Query Answering (CQA) is the problem
of computing from a database those answers to a query
that are consistent with respect to certain ICs that the
database as a whole may fail to satisfy. Consistent an-
swers have been characterized as those that are invari-
ant under minimal forms of restoration of the consis-
tency of the database [2]. From this perspective, CQA
is a form of cautious reasoning from a database un-
der integrity constraints.

The notion of minimal restoration of consistency was
captured in [2] in terms of database repairs, i.e. new
database instances that share the schema with the orig-
inal database, but differ from the latter by a minimal

set of whole tuples under set inclusion (the S-repairs be-
low). That is, the symmetric difference D∆D′ is mini-
mized wrt set inclusion between the original instance D
and a repaired version D′. In [7, 17, 2, 9, 4, 10] complex-
ity bounds for CQA under this repair semantics have
been given (c.f. [11] for a survey). However, the seman-
tics of CQA based on cardinality-based repairs of the
original database that minimize the number of whole tu-
ples by which the instances differ (C-repairs below) has
received less attention.

Example 1. Consider a database schema P (X,Y,Z)
with the functional dependency X → Y . The inconsis-
tent instance D = {P (a, b, c), P (a, c, d), P (a, c, e)} has
two repairs wrt set inclusion, namely {P (a, b, c)} and
{P (a, c, d), P (a, c, e)}, because the symmetric set dif-
ference with the original instance is minimal under set
inclusion. However only the latter is a cardinality-based
repair, because the cardinality of the symmetric set dif-
ference becomes a minimum. �

In this paper we address the problem of obtain-
ing complexity bounds for CQA under the semantics
given by cardinality-based repairs, and we do this by
introducing some graph theoretic techniques and re-
sults that, apart from being interesting by themselves,
have a wider applicability in the context of CQA. Al-
though research on cardinality- and tuple-based repairs
had been proposed and started before in the context of
CQA [7, 3], no detailed analysis of their complexity the-
oretic properties has been provided.

Our emphasis is on CQA, as opposed to comput-
ing or checking repairs under the cardinality semantics.
This is because we are usually not interested in comput-
ing specific repairs (there are exceptions though, e.g. in
census-like data [6]), but in characterizing and comput-
ing consistent answers to queries. However, the repair
semantics we choose will have an impact on CQA.

Example 2. (example 1 continued) The query
P (x, y, x)? has (a, c, d) and (a, c, e) as consistent an-
swers under the cardinality semantics (the classic



answers in the only repair), but none under the set in-
clusion semantics (there is no classic answer shared by
the two repairs). �

We extend our analysis of cardinality-based re-
pairs by considering the natural generalization where
database tuples have possibly different weights that
have to be taken into account when repairing the
database. Such an extension of the minimum cardi-
nality semantics is useful for consistency handling
in data integration systems [5], because we can im-
pose different preferences on the data sources, to cap-
ture different degrees of trust among them [18];
and also in census applications [16], where prefer-
ences are imposed depending on the kinds of data at
hand.

The cardinality-based CQA as studied in this pa-
per has interesting properties that make it useful as a
semantics for CQA. First of all, as illustrated in Ex-
ample 1, it is clearly the case that every cardinality-
based repair is also a set inclusion-based repair, but
not necessarily the other way around. In consequence,
the consistent query answers under cardinality repairs
form a superset of the consistent answers under the
set inclusion-based semantics. Actually, in situations
where the latter does not give any answers (c.f. Exam-
ple 2), the former does return answers. These answers
could be further filtered out according to other crite-
ria at a post-processing phase. In extreme cases, when
there is only one database tuple in semantic conflict
with the rest of a possible large set of other tuples,
the existence of a set inclusion-based repair contain-
ing the only conflicting tuple would easily lead to an
empty set of consistent answers. The cardinality-based
semantics would not allow such a repair.

This feature of the cardinality-based repair seman-
tics comes at a a price. Actually, we prove here that
CQA has a higher data complexity than the clas-
sic, set inclusion-based semantics, actually PNP(log(n))-
hard vs. PTIME for denial constraints [10]. On the
other side, the cardinality-based semantics has the in-
teresting property that CQA, a form of cautious (or
certain) reasoning (true in all repairs) and its brave
(or possible) version, i.e. true in some repair, are mu-
tually poly-time reducible and share the same com-
plexity. This is established by first proving some use-
ful graph theoretic lemmas about maximum indepen-
dent sets. This result may not hold for classic CQA.

We concentrate on the class of denial integrity con-
straints, which includes most of the constraints found
in applications where inconsistencies naturally arise,
e.g. census-like databases [6], experimental samples
databases, biological databases, etc. Complexity results
refer to data complexity [1]. For complexity theoretic
definitions and classic results we refer to [22], to [1]

for foundations of databases. The proofs of all the re-
sults in this paper can be found in [21].

2. Repair Semantics and CQA

A relational database instance D can be identified
with a finite set of ground atoms of the form R(t̄),
where R is a relation in the database schema D, and
t̄ is a finite sequence of constants taken from the un-
derlying database domain U . The ground atom R(t̄) is
also called a database tuple.1

The relational schema D determines a first-order
language L(D) based on the relation names, the ele-
ments of U , and extra built-in predicates. In that lan-
guage, integrity constraints are sentences, and queries
are formulas, usually with free variables. We assume
in this paper that sets IC of ICs are always consis-
tent in the sense that they are simultaneously satisfi-
able as first-order sentences. A database is consistent
wrt to a given set of integrity constraints IC if the sen-
tences in IC are all true in D, denoted D |= IC . An
answer to a query Q(x̄), with free variables x̄, is a tu-
ple t̄ that makes Q true in D when the variables in
x̄ are interpreted as the corresponding values in t̄, de-
noted D |= Q(t̄).

For a database D, possibly inconsistent with respect
to IC , the consistent answers to a query Q from D wrt
IC are characterized as those answers that are invari-
ant under all minimal forms of restoration of consis-
tency for D, where minimality refers to some sort of
distance between the original instance D and alterna-
tive consistent instances.

Definition 1. For a database D, integrity constraints
IC and a partial order �D,S over databases depend-
ing on the original database D and a repair semantics
S, a repair of D wrt IC under S is an instance D′ such
that: (a) D′ has the same schema and domain as D;
(b) D′ |= IC ; and (c) there is no D′′ satisfying (a) and
(b), such that D′′ ≺D,S D′. The set of all repairs is de-
noted with Rep(D, IC ,S). �

The class Rep(D, IC ,S) depends upon the seman-
tics S, which determines the partial order (or distance)
� (c.f. Definition 3) and the way repairs can be ob-
tained, e.g. by allowing both insertions and deletions
of whole tuples [2], or deletions only [10], or changes of
attribute values only [23, 6, 15], etc.

Definition 2. Let D be a database, IC a set of ICs,
and Q a query. (a) A ground tuple t̄ is a consistent
answer to Q wrt IC under semantics S if for every

1 We also use the term tuple to refer to a finite sequence
t̄ = (c1, . . . , cn) of constants of the database domain, but a
database tuple is a ground atomic sentence with predicate in D
(excluding built-ins predicates, like comparisons).



D′ ∈ Rep(D, IC ,S), D′ |= Q(t̄).
(b) Cqa(Q,D, IC ,S) is the set of consistent answers
to Q in D wrt IC under semantics S. If Q is a sen-
tence (a boolean query), Cqa(Q,D, IC ,S) := {yes}
when D′ |= Q for every D′ ∈ Rep(D, IC ,S), and
Cqa(Q,D, IC ,S) := {no}, otherwise.
(c) CQA(Q, IC ,S) := {(D, t̄) | t̄ ∈ Cqa( Q,D, IC , S)},
is the decision problem of CQA. �

In the literature different notions of distance have
been considered, they give rise to different repair se-
mantics. We summarize here the most common ones,
those that we will investigate in this work.

Definition 3. (repair semantics) (a) S-repair seman-
tics [2]: D′ � D′′ is defined by D′ � D ⊆ D′′ � D.
(b) C-repair semantics: D′ � D′′ is defined by |D′ �
D| ≤ |D′′ � D|.
(c) A-repair semantics: It minimizes a numerical aggre-
gation function over attribute changes throughout the
database. �

Particular classes of A-repairs can be found in [16,
15], where the aggregation function to be minimized is
the number of all attribute changes; and in [6], where
the function is the overall quadratic difference obtained
from the changes in numerical attributes between the
original database and the repair. Complexity theoretic
results for A-repairs under denial constraints are re-
ported in [6]. Another notion of attribute-based repair,
not explored here and not included in Definition 3,
would minimize, set-theoretically, the set of attribute
changes.

Another dimension of the repair problem is related
to the allowed repair actions. In [2] they are inser-
tions and deletions of whole database tuples into/from
relations; in [10] only deletions are allowed; and in
[23, 6, 15], an A-repair semantics is used that accepts
only changes of values in attributes, so that tuples can-
not be deleted nor can they be inserted. We call the for-
mer tuple-based repairs, and the latter, attribute-based
repairs.

In this paper, unless otherwise stated, we as-
sume as usual that repairs are obtained through in-
sertions or deletions of whole database tuples. In this
framework, it is easy to prove that every C-repair is an
S-repair; and consequently every consistent query an-
swer under the S-repair semantics is a consistent query
answer under the C-repair semantics. However, as Ex-
ample 1 shows, not every S-repair is a C-repair.
In that example, attribute-based repairs could be
{P (a, c, c), P (a, c, d), P (a, c, e)}, suggesting that we
made a mistake in the second argument of the first tu-
ple, but also {P (a, b, c), P (a, b, d), P (a, b, e)}. If the
aggregate function in Definition 3(c) is the num-
ber of changes in attribute values, the former would be

a repair, but not the latter. These instances are nei-
ther S- nor C-repairs if the changes of attribute values
have to be simulated via deletions followed by inser-
tions.

Integrity constraints may be any first-order sen-
tences written in language L(D), but most of our re-
sults refer to denial constraints only.

Definition 4. Denial constraints are integrity con-
straints of the form ∀x̄¬(A1 ∧ . . . ∧ Am ∧ γ), where
each Ai is a database atom and γ is a conjunction of
comparison atoms. Binary denial constraints are denial
constraints with only two database atoms. �

Notice that functional dependencies, e.g.
∀x∀y∀z¬(R(x, y) ∧ R(x, z) ∧ y 
= z), are binary
denial constraints; and range constraints are one-
database atom denials. For denial ICs, tuple-based
repairs are obtained by tuple deletions only [10].

3. Complexity of CQA under C-Repairs

CQA under the C-repair semantics (mcss-repair se-
mantics in Definition 3(b)) has received less atten-
tion in the literature than the same problem under
the S-repair semantics. An exception is [3], where C-
repairs were specified using logic programs with non-
prioritized weak constraints under the skeptical stable
model semantics [8]. As a consequence, from results in
[8] (c.f. also [20]), we obtain that an upper bound on
the data complexity of CQA under the C-repair se-
mantics is the class ∆P

3(log(n)) of decision problems
that can be solved by a polynomial time machine that
makes a logarithmic number of calls to an oracle in ΣP

2 .
Also [16, 15] considers minimum cardinality-based re-
pairs, however not under a tuple-based semantics, but
under attribute-based changes. In [16] no complexity
issues are investigated; and [15] studies only aggrega-
tion constraints that impose restrictions on the values
taken by aggregation functions. In this section we in-
vestigate the static complexity of tuple-based CQA un-
der the C-repair semantics.

In [4], conflict graphs were first introduced to study
the complexity of CQA for aggregate queries wrt FDs.
They have as vertices the database tuples, and edges
connect two tuples that simultaneously violate a FD.
There is a one-to-one correspondence between S-repairs
of the database and the set-theoretically maximal inde-
pendent sets (simply called maximal independent sets)
in the conflict graph. Similarly, there is a one-to-one
correspondence between C-repairs and maximum inde-
pendent sets in the same graph (but now they are max-
imum in cardinality).

Conflict graphs for databases wrt general denial con-
straints become conflict hypergraphs [10] that have as
vertices the database tuples, and as hyperedges the (set



theoretically minimal) collections of tuples that simul-
taneously violate one of the denial constraints.

The correspondence for conflict graphs between re-
pairs and independent sets -maximum or maximal de-
pending on the semantics- still holds for hypergraphs,
where an independent set in an hypergraph is a set of
vertices that does not contain any hyperedges [10].

Notice that every tuple in the original database be-
longs to an S-repair2, but not necessarily to some C-
repair. In consequence, testing membership of vertices
to some maximum independent set becomes a problem
that is relevant to address. In order to deal with this
problem, we will use some graph theoretic construc-
tions and lemmas about maximum independent sets in
them. The proofs of these results use in general a self-
reducibility property of independent sets that can be
expressed as follows: For any graph G and vertex v, ev-
ery maximum independent set that contains v (mean-
ing a maximum independent set that, in addition, con-
tains v) consist of vertex v together with a maximum
independent set of the graph G′ that is obtained from
G by deleting all vertices adjacent to v.

In order to make the presentation simpler, we will
concentrate mostly on conflicts graphs and FDs. How-
ever, the results obtained carry over to denial con-
straints (and their hypergraphs).

Lemma 1. Given a graph G and a vertex v in it, there
is a graph G′ extending G, obtained by adding a new
vertex v′ that is connected only to the neighbors of
v, such that in G′ the following properties are equiva-
lent: (a) There is a maximum independent set I of G
containing v. (b) v belongs to every maximum indepen-
dent set of G′. (c) The sizes of maximum independent
sets in G and G′ differ by one. �

Lemma 2. For every graph G and vertex v there is a
graph G′ extending G that can be constructed in poly-
nomial time in the size of G, such that v belongs to all
maximum independent sets of G iff v belongs to some
maximum independent set of G′. �

From the lemmas and the membership to
FPNP(log(n)) [22] of computing the size of a maxi-
mum clique in a graph [19], we obtain

Lemma 3. The problems of deciding for a vertex in a
graph if it belongs to some maximum independent set
and if it belongs to all maximum independent sets are
both in PNP(log(n)). �

Since a ground atomic query is consistently true
when it belongs, as a database tuple, i.e. as a vertex

2 Except when an IC forces one particular tuple not to belong
to the database, but we do not consider in this work such non
generic ICs [7].

in the conflict graph, to all the maximum independent
sets of the conflict graph, we obtain

Theorem 1. For functional dependencies and ground
atomic queries, CQA under the C-repair semantics be-
longs to PNP(log(n)). �

Lemmas 1, 2 and 3 still hold for hypergraphs, and
in consequence the polynomial time mutual reducibil-
ity between the certain and possible semantics for CQA
still holds for denial constraints and ground atomic
queries.

Theorem 2. For denial constraints and non-
existentially quantified conjunctive queries, CQA
under the C-semantics belongs to PNP(log(n)). �

Lemma 4. Deciding if a vertex belongs to all maxi-
mum independent sets of a graph is PNP(log(n))-hard.
�

Theorem 3. For denial constraints, CQA for ground
atomic queries under the C-semantics is PNP(log(n))-
hard. �

This theorem is interesting, because CQA under de-
nial constraints but S-repair semantics is in PTIME
for arbitrary ground atomic queries [10]; and also be-
cause query answering under the S-repair semantics in
the context of belief revision/update is more complex
than the same problem for S-repair semantics (assum-
ing the polynomial hierarchy does not collapse); more
precisely Winslett’s framework [12] (based on set inclu-
sion) is ΠP

2 -complete, while Dalal’s [13] (based on set
cardinality) is PNP(log(n))-complete [14].

Connections between CQA and belief revision were
already established in [2]. Notice that our complexity
results do not follow, at least not straightforwardly,
from the results for belief revision presented in [14].
They apply in the propositional setting, in combined
complexity (as opposed to data complexity), and the
revision formulas (in our case the constraints) and the
query do not necessarily satisfy our conditions.

The C-repair semantics can be extended in order to
consider weights on the tuples (in the original, non-
weighted case all of them would have weight 1).

Definition 5. Assume that every database tuple R(t̄)
in D has an associated numerical cost w(R(t̄)). D′ is
a repair of D under the weighted minimum cardinal-
ity set semantics if the order relation used in Definition
1 is given by D1 �D,w D2 :⇐⇒ |D�D1|w ≤ |D�D2|w,
where |S|w for a set of tuples S is the sum of the weights
of the elements of S. �

Theorem 4. CQA for ground atomic queries wrt de-
nial constraints under the weighted minimum cardinal-
ity set semantics belongs to PNP . �



We have provided tight complexity bounds for con-
sistent query answering under the (non-weighted) C-
repair semantics. With these results we have a much
more clear picture of the complexity of CQA under
the three main alternative semantics for database re-
pairs, namely those based on sets of tuples inclusion,
cardinality of set of tuples (this work), and changes of
attribute values (c.f. [21, 6] for more details). The re-
pairs, mainly under the first two approaches, depend
on the structure of the database. Recent and incipi-
ent work that could lead to a better understanding of
CQA under database normalization conditions is re-
ported in [24].
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