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Abstract

Consistent query answering is the problem of characterizing and computing the
semantically correct answers to queries from a database that may not satisfy cer-
tain integrity constraints. Consistent answers are characterized as those answers
that are invariant under all minimally repaired versions of the original database.
We study the problem of repairing databases with respect to denial constraints by
fixing integer numerical values taken by attributes. We introduce a quantitative
definition of database repair, and investigate the complexity of several decision and
optimization problems. Among them, DRP: deciding the existence of repairs within
a given distance to the original instance, and CQA: deciding consistency of answers
to simple and aggregate conjunctive queries under different semantics. We provide
sharp complexity bounds, identifying relevant tractable and intractable cases. We
also develop approximation algorithms for the latter. Among other results, we es-
tablish: (a) The Al-hardness of CQA. (b) That DRP is MAXSNP-hard, but has
a good approximation. (c) The intractability of CQA for aggregate queries for one
database atom denials (plus built-ins), and also that it has a good approximation.
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1 Introduction

Integrity constraints (ICs) are used to impose semantics on a database. In
this way, the database becomes an accurate model of an application domain.
Database management systems or application programs enforce the satisfac-
tion of the ICs by either rejecting undesirable updates or by executing ad-
ditional compensating actions. However, there are many situations where we
need to interact with a database that is inconsistent wrt certain desirable 1Cs.
An important problem in database research consists in characterizing and re-
trieving consistent data from inconsistent databases, in particular, consistent
answers to queries [4].

From the logical point of view, consistently answering a query on an inconsis-
tent database amounts to evaluating the truth of a formula against a particular
class of first-order relational structures [2]. This process is quite different from
usual truth or query evaluation on a single structure, namely the relational
database at hand. In our case, the class under consideration is formed by alter-
native instances that are consistent, i.e. satisfy the ICs, and minimally differ
from the original database, the so-called repairs of the latter. What is consis-
tently true in the original instance corresponds to what is classically true of
all repairs. Obviously, the notion of repair depends upon particular notions of
difference between database instances and minimality.

Certain database applications, such as census, demographic, financial, and ex-
perimental data, contain quantitative data usually associated to nominal or
qualitative data. For example, the number of children associated to a house-
hold identification code (or address); and the measurements associated to a
sample identifier. Often this kind of data contains errors or mistakes with
respect to certain semantic constraints. For example, a census form for a par-
ticular household may be considered incorrect if the number of children is
negative; or if the age of a mother is less than those of her offsprings. These
restrictions can be expressed with denial integrity constraints, which prevent
attributes from taking certain combinations of values [18]. Other restrictions
may be expressed with aggregation ICs. For example, the maximum concen-
tration of certain toxin in a sample may not exceed a known threshold; or the
number of married men and married women must be the same.

Inconsistencies in numerical data can be resolved by changing individual at-
tribute values, while keeping values in the keys, e.g. without changing the
household code, the number of children is decreased considering the admissi-
ble values. More precisely, we consider the problem of fixing integer numerical
data wrt certain constraints while (a) keeping the attribute values in the keys
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of the relations, and (b) minimizing the quantitative global distance between
the original and modified instances. Since the problem may admit several
global solutions, each of them involving possibly many individual changes, we
are interested in characterizing and computing data and properties that re-
main invariant under any of these repair processes. We concentrate on denial
constraints; and conjunctive queries, with or without aggregation.

Database repairs have been studied in the context of consistent query an-
swering (CQA), i.e. the process of obtaining the answers to a query that are
consistent wrt a given set of ICs [2] (cf. [4,5,13] for surveys). An answer to a
query is consistent if it can be obtained as a standard answer to the query
from every possible repair. In most of the research on CQA, a repair is a new
instance that satisfies the given ICs, but differs from the original instance by
a minimal set, under set inclusion, of (completely) deleted or inserted tuples.
Changing the value of a particular attribute can be modelled as a deletion
followed by an insertion, but this may not correspond to a minimum repair.

In certain applications it may make more sense to correct (update) values in
certain numerical attributes only. This requires a new definition of repair that
considers: (a) the quantitative nature of individual changes, (b) the association
of the numerical values to other key values; and (c) a quantitative distance
between database instances. We consider fixable attributes that take integer
values. Only in these fixable attributes we allow for changes of values with the
purpose of restoring consistency. In consequence, obtaining a repair becomes a
numerical constraint satisfaction problem, where the constraints are given by
the denials. The additional requirement in this problem is that the solutions,
i.e. instances, should stay close to the initial instance.

Example 1 Consider a network traffic database D storing flow measurements
of links in a network. This network has two types of links, labelled 0 and 1, with
maximum flows 1000 and 1500, resp. The following database D is inconsistent
wrt this constraint on the values that flows may take.

’ Traffic | Time | Link | Type | Flow
1.1 a 0 1100
1.1 b 1 900
1.3 b 1 850

Under the tuple and set oriented semantics of repairs [2], there is a unique
repair, namely deleting tuple Traffic(1.1, a, 0, 1100). However, we have two op-
tions that may make more sense than deleting the flow measurement, namely
updating the violating tuple to Traffic(1.1,a,0, 1000) or to Traffic(1.1,a,1,
1100). These alternatives would satisfy the implicit requirement that the num-
bers should not change too much. a

In order to define a sensible distance function, for comparing alternative re-
pairs to the original instance, we think that the numerical nature and the



magnitude of these changes have to be considered. In this paper we start from
the assumption that keeping the overall and absolute variation of values small
and in balance is something desirable. A natural and usual way to achieve this
goal consists in minimizing the square distance between the initial instance
and a repair. For more flexibility, we allow for different weights to be assigned
to the fixable attributes, and these weights are brought into the distance for-
mula. In the same spirit, other distances between database instances, as an
alternative to the Euclidean or L, distance that we investigate in this paper,
could be considered (c.f. Section 7.4). Specific repairs and approximations may
be different under other distance functions, e.g. the “city distance” L; (the
sum of absolute differences), but the general (in)tractability and approxima-
tion results remain.

The problem of attribute-based correction of census data forms is addressed
in [18] using disjunctive logic programs with stable model semantics. Several
underlying and implicit assumptions that are necessary for that approach to
work are made explicit and used here, extending the semantic framework of
[18]. However, in that work the numerical nature of some attributes is not
brought into the model, and the distance just counts the number of changes,
no matter how big or small they are.

Update-based repairs for restoring consistency are also studied in [34], where
changing values in attributes in a tuple is made a primitive repair action.
Semantic and computational problems around CQA are analyzed from this
perspective. However, peculiarities of changing numerical attributes are not
considered, and more importantly, the distance between databases instances
used in [34,35] is based on set-theoretic homomorphisms, but is not quantita-
tive, as in this paper.

We provide semantic foundations for repairs that are based on changes on
numerical attributes in the presence of key dependencies and wrt denial con-
straints, while keeping the numerical distance to the original database to a
minimum. This framework introduces new challenging decision and optimiza-
tion problems, and many algorithmic and complexity theoretic issues. We
concentrate in particular on the “Database Repair Problem” (DRP) of deter-
mining the existence of a repair at a distance not greater than a given bound.
In particular, we consider the problems of construction and verification of such
a repair. These problems are highly relevant for large inconsistent databases.
For example, solving DRP can help us find the minimum distance from a re-
pair to the original instance. This information can be used to prune impossible
branches in the process of materialization of a repair. The CQA problem of de-
ciding the consistency of query answers is studied wrt decidability, complexity,
and approximation under several alternative semantics.

We prove that DRP is NP-complete for denial constraints, which are enough
to capture census like applications. CQA belongs to I and becomes AZ-



hard. For a particular, simple, but relevant class of denials we get tractability
of CQA for a large and relevant class of non aggregate queries. For the same
class of denials, simple aggregations based on acyclic conjunctive queries easily
lead to intractability of CQA.

Wrt approximation, we prove that DRP is MAXSNP-hard in general; and for
a relevant subclass of denials, we provide a polynomial time approximation
within a constant factor. All the algorithmic and complexity results, unless
otherwise stated, refer to data complexity [1], i.e. to the size of the database
that here includes a binary representation for numbers. For complexity theo-
retic definitions and classical results we refer to [29].

Moving to the case of real numbers would certainly bring new issues that would
require different approaches. They are left for ongoing and future research.
Actually, it would be natural to investigate them in the richer context of
constraint databases [25].

For databases like those we are considering here, aggregation constraints may
also be relevant. Here we briefly study the DRP and CQA problems when
repairs have to satisfy aggregation constraints. It turns out that both problems
become undecidable when both the instance and the constraints are part of
the input.

This paper is structured as follows. Section 2 introduces basic definitions.
Section 3 presents the notion of database repair, several semantics for the
notion of consistent answer to a query; and some relevant decision problems.
Section 4 investigates their complexity. In Section 5, approximation algorithms
for the problem of finding the minimum distance to a repair are studied. We
obtain negative results for the general case, but a good approximation for the
relevant class of local denial constraints. Section 6 investigates tractability of
CQA for conjunctive queries and denial constraints containing one database
atom plus built-ins. Section 7 contains extensions of the main framework, like
a brief analysis of repairs that have to satisfy certain statistical conditions,
the above mentioned results around aggregation constrains, and a discussion
of alternative distances. Section 8 presents some conclusions and refers to
related work.

2 Preliminaries

Consider a relational schema ¥ = (U, R, B), with domain I/ that includes Z, R
a set of database predicates, B a set of built-in predicates. If a predicate R € R
has arity n > 1, each of its n arguments has associated a unique attribute name
that is not shared with other argument positions of database predicates in the
schema. This is not an essential restriction, but it will make the formulation
of some definitions much simpler. The set of attribute names (we will simply



call them attributes) in the schema is denoted with A. According to this, we
usually denote a database predicate with R(Ay,...,A,), with each A; € A.
A(R) denotes the set of attributes of R. It holds A(R) C A.

Each attribute A has a domain that is a subset of U, where it can take val-
ues. Different attributes may share the same domain and make take the same
values. Numerical attributes are those that have domain Z. With denial con-
straints, we can make a numerical attribute take values in a subset of Z,
e.g. in N or {0,1}. For the latter case, we can use denial constraints like
Vo, y—(R(x,y) ANz <0), Vo, y—(R(xz,y) Az > 1).

A database instance is a finite collection D of database tuples, i.e. of ground
atoms R(¢), with R € R and ¢ a finite sequence of constants in U. If R(A, ...,
A,) €R, t=R(cr,...,cy) € D,yand S = (A, ..., A;) is a subsequence of
(Ay,...,A,), then t[A;, ..., A;, ] denotes the projection of tuple t on S, i.e.
(Ciyy- .-, ). For k=1, we simple write t(4;) = ¢;.

There is a set F C A containing all the fizable attributes, those that take
values in Z and are allowed to be fixed. Attributes outside F are called rigid.
F need not contain all the numerical attributes, that is, we may also have
rigid numerical attributes. More precisely, each predicate R € R has a set of
fixable attributes, denoted by F(R). It holds F(R) C F. We also have a set K
of key constraints expressing that predicates R € R have a primary key Kg,
with K C (A(R) \ F(R)). Later on (cf. Definition 2), we will assume that K
is satisfied both by the initial instance D, denoted D |= K, and its repairs. In
this sense, we say the elements of K are hard. Since F(R) N Kr = (), values in
rigid attributes cannot be changed in a repair process. In addition, there may
be a separate set IC of flexible ICs that may be violated, and it is the job of
a repair to restore consistency wrt them (while still satisfying K).

A linear denial constraint [25] has the form VZ—(A; A...AA,,), where the A;
are database atoms (i.e. with predicate in R), or built-in atoms of the form
xfc, where x is a variable, ¢ is a constant, and 6 € {=, #, <, >, <, >}, or of
the form x = y. If © # y is allowed, we call them eztended linear denials. We
assume that all the constants appearing in ICs belong to the domain /. In a
constraint,  denotes the sequence of variables, say ¥ = z1, ..., x,, that appear
in the conjunction of atoms. Since the order in which the variables appear in
the quantification does not matter, we usually identify z with the set formed
by its variables, say {z1,...,x,}. Furthermore, in denials we usually replace
A by a comma, and sometimes we use V for the whole prefix of universal
quantifications. Unless otherwise stated, all the flexible ICs in this paper are
denial constraints; and sets of denials are always finite.

Example 2 The following are linear denials: (a) No customer is younger than
21: VId, Age, Income, Status—(Customer(Id, Age, Income, Status), Age <
21). (b) No customer with income less than 60000 has “silver” status: V1d, Age,
Income, Status—( Customer(Id, Age, Income, Status), Income < 60000, Status



= silver). (c) The constraint in Example 1, i.e. VT, L, Type, Flow—( Traffic(T,
L, Type, Flow), Type = 0, Flow > 1000). O

In this example, in order to make the intuitive contents of a denial constraint
more clear, we have used the attribute names as variables. Sometimes this
practice will allow us to simplify the formulation of some definitions and
results. This can always be done, by introducing extra versions of the at-
tributes names if necessary; versions that are not shared by other attribute
names. For example, for the predicate R(A, B), the denial Vx,y, z—(R(z, z),
R(y,z),z = 1) can be rewritten as VA, A", B-(R(A, B), R(A’,B),B =1).

We will consider aggregate queries containing the aggregation functions sum,
count, or average. More precisely, an aggregate conjunctive query has the form

q(z1,. .. Tm; agg(2)) «— B(1, ..., Tm, 2,Y1,---, Yn), Where agg is an aggre-
gation function. The non aggregate matriz (NAM) of the aggregate query is
given by ¢'(z1,...xy) <« B(z1,...,Tm, 2, Y1,---, Yn), Which is a usual first-

order (FO) conjunctive query with built-in atoms. In the query predicate g,
the aggregation attribute (or variable) z does not appear among the z;. We
use the set semantics for aggregate queries. An aggregate conjunctive query is
cyclic (acyclic) if its NAM is cyclic (acyclic) [1].

Example 3 ¢(z,y, sum(z)) «— R(z,y),Q(y, z,w), w # 3 is an aggregate con-
junctive query, with aggregation attribute z. Each answer (z,y) to its NAM,
ie. to q(x,y) « R(z,y),Q(y,z,w),w # 3, is expanded to (z,y,sum(z))
as an answer to the aggregate query. sum(z) is the sum of all the val-
ues for z having a w, such that (x,y, z,w) makes R(z,y),Q(y, z,w),w # 3
true. In the database instance D = {R(1,2), R(2,3), Q(2,5,9),Q(2,6,7),
Q(3,1,1),Q(3,1,5), Q(3,8,3)} the answer set for the aggregate query is {(1, 2,
5+6),(2,3,141)}. In this example, the aggregate query is a group-by query,
because the query predicate has free variables (z and y). a

An aggregate comparison query is a sentence of the form ¢(agg(2)) A agg(z)0k,
where ¢(agg(z)) is the head of a scalar aggregate conjunctive query (i.e. with
no free variables, or equivalently, without group-by), # is a comparison op-
erator, and k is an integer number. For example, the following is an ag-
gregate comparison query asking whether the aggregated value obtained via
q(sum(z)) is greater than 5: Q: q(sum(z)) A sum(z) > 5, with g(sum(z)) <
R(z,y),Q(y, z,w),w # 3. We can see that aggregate comparison queries are
boolean, i.e. they have a true or false answer in a database instance. An ag-
gregate comparison query q(agg(z)) A agg(2)0k is (a)cyclic if the NAM of the
query that defines ¢(agg(2)) is (a)cyclic.



3 Least Squares Repairs

When we update numerical values to restore consistency, it is desirable to
make the smallest overall variation of the original values, while considering
the relative relevance or specific scale of each of the fixable attributes. Since
the original instance and a repair will share the same rigid values (cf. Definition
2), we can use them to compute variations in the numerical values. Now, we
make this idea more precise.

We say that instances D, D’ over ¥ are rigid-comparable if for every tuple
t = R(¢) € D, for some R € R, there is a unique tuple t' = R(¢') € D’ such
that t{A(R) ~ F(R)] = t'[A(R) \ F(R)], and viceversa. In this case, we write
t" = m(t), indicating that tuple ¢’ € D’ is the corresponding version of ¢t € D,
possibly modified at its fixable attributes. That is, tuples ¢ and ¢’ coincide on
the values of their rigid attributes.

Definition 1 For rigid-comparable instances D and D’ over schema X, their
square distance is Ag(D,D') = X, ), .o, (H(A) — m(t)(A))?, and a =
() ae- O

Definition 2 Let D, D’ be instances over the same schema ¥, such that D |=
K and D' = K; and IC be a set of flexible ICs. D’ is a repair for D wrt IC
if: (a) D, D" are rigid-comparable; and (b) D' = IC. A least squares repair
(LS-repair) for D is a repair D’ that minimizes the square distance Az (D, D’)
over all the instances that satisfy (a) and (b). O

The conditions in this definition make D and D’ rigid-comparable, and Defi-
nition 1 can be applied. In general, we are interested in LS-repairs, but (not
necessarily minimum) repairs will be useful auxiliary instances.

Example 4 (example 1 cont.) R = {Traffic}, A = {Time, Link, Type,
Flow}, Kpage = {Time, Link}, F = {Type, Flow}, with weights a =
(107°,1), resp. A repair of the original instance D is Dy = { Traffic(1.1,a,0,
1000), Traffic(1.1,b,1,900), Traffic(1.3,b, 1,850)}. In this case, m( Traffic(1.1,
a,0,1100)) = Traffic(1.1,a,0,1000), etc. Another repair is Dy = { Traffic(1.1, a,
1,1100), Traffic(1.1,b,1,900), Traffic(1.3,b, 1,850)}. The distances are A4(D,
D) =100 x 107> =107 and A4(D, Ds) = 12 x 1. Dy is the only LS-repair.
O

The coefficients o, can be chosen in many different ways depending on factors
like relative relevance of attributes, actual distribution of data, measurement
scales, etc. In the rest of this paper we will assume, for simplification, that
a, =1forall Ae F, and As(D, D’) will be simply denoted by A(D, D’).

Example 5 Database D has predicates Client(ID, A, C'), with attributes for
identification (the key), age and credit line of the client; and Buy(ID1,1, P),
with key {ID1, I} and containing clients buying items at certain prices. There



are two denial ICs ic, : VIDI1,P, A, C—~( Buy(ID1,I,P), Client(ID, A,C),
ID1 = ID,A < 18, P > 25) and ic,: VID, A, C—( Client( ID,A,C), A < 18,
C' > 50), requiring that people younger than 18 cannot spend more than 25
on one item nor have a credit line higher than 50 in the store. The following
table shows the database contents. We added an extra column to be able to
refer to the tuples.

D: [ Client | ID| A | C | Buy ID1| I | P
1 |15 [ 52 [ @ 1 CD [ 27 [ &4
2 |16 | 51 | & 1 |[DVD | 26 |t
3 |60 [900 | 3 | DVD | 40 [

We can see that ic, is violated by {t1,t4} and {¢;,t5}, and ic, by {t;} and
{t2}. Assuming that o, = a, = a, = 1, we have two LS-repairs, D', D", at a
distance 10 from the original instance.

D:|[ Client | ID| A | C | Buy ID1| I | P
1 [ 15 |50 [ # 1 CD |25 [t/
16 | 50 [ &/ 1 |[DVD | 25 |t
3 | 60 [900 | ¢ 3 | DVD| 40 [ t

D":[ Client | ID| A | C Buy ID1| I | P
1 |18 [ 52 [#” 1 CD | 27 [t
2 [ 16 | 50 [ & 1 |[DVD| 26 |t
3 |60 [900 | ¢ 3 | DVD| 40 [t

In this example, it was possible to obtain LS-fixes by performing direct, local
changes in the original conflictive tuples alone. No new, intermediate incon-
sistencies are introduced in the repair process. The following example shows
that this may not be always the case.

Example 6 Consider a database D with relations P(A, B,C) and Q(D, F)
with Kp = {A}, Ko = {D} and F = {B,C, E}; and linear denials ic; :
Va,y, z,w(P(z, y, 2), Q(xz,w), y > 3, w > 5) and icy: Va,y, 2-(P(z,y, 2),
y < 5, z < 4). The following instance is inconsistent, because {t,t5} violates
1Cq.

P| A| B]| C Q | D| E
| |
a 6 1 tl a 9 tQ

If we tried to find a repair by making the smallest change that restores con-
sistency, t;(B) would be replaced by 3 (the alternative of replacing t3(E) by
5 is more expensive):

| P| A|B]|C | Q D | E
a | 3 | 1 |t a |9 |t

This new instance is still inconsistent since {t}} violates icy. Now, if we tried



to solve this new inconsistency by making the smallest variation, t|(B) would
be replaced by 5, which violates icy again. Actually, the only LS-repair is:

| P| A|B]|C | Q D | E
a | 6 | 1 |t a | 5 ||t

We can see that new inconsistencies can be introduced by local changes, and
that an LS-repair is not necessarily a sequence of minimum local changes. O

The numerical values in the denial constraints define threshold values that
may determine their satisfaction by a database instance.

Definition 3 Let IC be a set of extended linear denials. The set of borders
of IC'is Borders(IC) = {c | there is ic € IC and a variable z in ic, such that
x appears in the position of fixable attribute in a predicate in ic and either
(x<c),(z>c),(r<c—1),(x>c+1),(x=c—1), (x=c+1),or (z # c)
appears as a comparison in ic}. O

When comparisons of the type x = y or x # y, and joins involve only rigid
attributes, the built-in atoms in extended linear denials determine a solution
space for repairs as an intersection of semi-spaces. LS-repairs can be found
taking values from the borders of the ICs (cf. previous examples). However, if
comparisons of the type x = y or x # y, or joins in the denials involve fixable
attributes, then the attribute values in LS-repairs can be found in intervals
around borders, as defined by the denials, and around values in tuples of the
inconsistent database.

Lemma 1 Let D’ be an LS-repair of D wrt a set IC of extended linear denial
constraints. Let a = |A|. For each tuple ¢ € D’ and fixable attribute A of ¢,
it holds t(A) € [v — a,v + al, for some integer v in a tuple in D, or t(A) €
[c—a, c+al, for some ¢ € Borders(1C). Furthermore, if 1C'is such that equality-
and #-atoms between attributes, and joins involve only rigid attributes, then
either t(A) = m~'(t)(A) or t(A) € Borders(IC).! O

If there are equalities, non-equalities or joins involving fixable attributes, the
LS-repairs can take values that are not borders nor values from the inconsistent
database. The following examples show such cases and illustrate Lemma 1.

Example 7 Consider a predicate T'(X,Y), with only Y fixable, and the in-
stance D = {T'(3, 3)}, which is inconsistent wrt IC = {Vz,y=(T(z,y),xz = y)}.
In this case, Borders(IC) = (). There are two LS-repairs: D' = {T'(3,2)} and
D" = {T(3,4)}. The values for attribute Y in both LS-repairs can be found
in the interval [v — |A|,v + |A|], with v = 3 and |A| = 2. O

Example 8 Consider a predicate R(A, B,C, D), with only B fixable, and a
set of ICs IC = {Vz,y,z,w~(R(z,y,z,w),y < 6), Vz,y, 2z, w-(R(x,y, z,w),

1 We recall that m(t) € D', with D’ a repair of D, is the tuple that results from
modifying t € D.

10



y = z2),VYa,y,z,w =(R(x,y,z,w), 2 = w)}. The instance D = {t} with ¢:
R(1,5,6,7) is inconsistent. Here, Borders(IC) = {6}. The inconsistency wrt
the first IC can be solved by changing ¢(B) from 5 to 6. This new value
violates the second constraint. So now, to stay as close as possible to the
original instance, we replace t(B) by 7. This value now violates the third
constraint. By increasing the value by one once more, we get an LS-repair
D" = {R(1,8,6,7)}. The value taken by B is a border value plus 2. O

Proof of Lemma 1 First we will concentrate in the case where IC is such
that the attributes participating in equality atoms between attributes or in
joins are all rigid. Let us assume, by contradiction, that there exists a tuple
t € D' and a fixable attribute A, for which t(A) = k and k # m(t)(A) and
k & Borders(1C). Without loss of generality, assume that k < m(t)(A). Let
D" be the same as D’ except that ¢(A) is changed from k to k — 1. Since
k & Borders(IC), no new inconsistencies can be added since the built-ins that
were (or were not) satisfied before, will continue in the same state. Thus, D"
also satisfies IC'and is rigid-comparable to D. However, D" is closer to D than
D’'. Thus, D' is not an LS-repair. We have a contradiction.

In the general case, integrity constraints may have fixable attributes partici-
pating in (non-)equality atoms between attributes or in joins. In this case, the
value of such an attribute in a tuple might be changed to satisfy a constraint,
so that the equality does not hold. As before, we assume there exists an LS-
repair D’ and an attribute A such that ¢(A) = k and k is not in [v — a,v + a]
for each numerical value v in a tuple in D, nor in [¢ — a,c + a] for each
¢ € Borders(I1C). In a similar way as in the proof for the case with equalities
and joins between rigid attributes, a contradiction can be reached. a

It is easy to construct examples with an exponential number of repairs. For
the kind of repairs and ICs we are considering, it is possible that no repair
exists, in contrast to [2,3], where, if the set of ICs is consistent as a set of
logical sentences, a repair for a database always exists.

Example 9 R(A, B) has key A, and B is fixable. IC' = {Vx1, 22,y =(R(z1,y),
R(zo,y), x1=1,20=2) Va1, 29,y 7(R(x1,y), R(x2,y), v1=1, 29 =3), V21, 22,y
_|(R($1, y)a R(an y)? T = 27 Tog = 3)a Vx, Yy _\(R(ﬂf, y)a y> 3)7 vxa Yy _'< R(:U7 y)a
y < 2)} is consistent. The first three ICs force attribute B to be different in
every tuple. The last two ICs require 2 < B < 3. The inconsistent database
D = {R(1,-1), R(2,1), R(3,5)} has no repair. O

Proposition 1 If D has a repair wrt IC, then it also has an LS-repair wrt

IC.

Proof: Let p be the square distance between D and a repair D’ according
to Definition 1. The circle of radius p around D containing instances over
the same schema that share the rigid attribute values with D intersects the
non empty “consistent” region that contains the database instances with the
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same schema and rigid values as D and satisfy IC. All the instances within
that circle have their fixable numerical values bounded in absolute value by
a fixed function of p and the fixable values in D. In consequence, the circle
has a finite number of instances, and the distance takes a minimum in the
consistent region. O

4 Decidability and Complexity

In applications where repairs are based on changes of numerical values, com-
puting concrete repairs is a relevant problem. In databases containing census
forms, correcting the latter before doing statistical processing is a common
problem [18]. In databases with experimental samples, we can fix certain er-
roneous quantities as specified by linear ICs. In these cases, the repairs are
relevant objects to compute explicitly, which contrasts with CQA [2], where
the main motivation for introducing repairs is to formally characterize the
notion of a consistent answer to a query, as an answer that persists under
all possible repairs. In consequence, we now consider some decision problems
related to existence and verification of LS-repairs, and to CQA under different
semantics.

Definition 4 For an instance D and a set IC of 1Cs:

(a) Rep(D,IC) = {D' | D" is an LS-repair of D wrt IC}, the repair checking
problem.

(b) Rep(IC) = {(D, D') | D' € Rep(D, IC)}.

(¢) NE(IC) = {D | Rep(D,IC) # ()}, for non empty set of repairs, i.e. the
problem of checking existence of LS-repairs.

(d) DRP(IC) ={(D, k) | there is D" € Rep(D, IC) with A(D,D’) < k}, the
database repair problem, i.e. the problem of checking existence of LS-repairs
within a given positive distance k.

(e) DROP(IC) is the optimization problem of finding the minimum distance
from an LS-repair wrt /C to a given input instance. a

Notice that, by Proposition 1, DRP(IC) could also be defined as {(D, k) | there
is a repair D" of D with A(D, D") < k}.

Definition 5 Let D be a database, IC a set of ICs, and () a conjunctive
query.? (a) A finite sequence ¢ of constants in U is a consistent answer
to Q(Z) under the: (al) skeptical semantics if for every D' € Rep(D, IC),
D' E Q(¢). (a2) brave semantics if there exists D' € Rep(D, IC) with D' |=
Q(e).®  (a3) majority semantics if |{D’ | D' € Rep(D, IC) and D' = Q(¢)}|
> [{D" | D' € Rep(D,IC) and D' [~ Q(¢)}|.

(b) That ¢ is a consistent answer to () in D under semantics S is denoted by

2 Whenever we say “conjunctive query”, we mean a non aggregate query.
3 Skeptical and brave semantics are aka. certain and possible semantics, resp.
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D s Qlc]. If Q is boolean (i.e. a sentence) and D =g @), we say that yes is
a consistent answer, meaning that () is true in the repairs of D as prescribed
by semantics &. CA(Q, D, IC,S) is the set of consistent answers to @ in D
wrt IC' under semantics &. For a boolean @, if CA(Q, D, IC, &) # {yes},
CA(Q, D, IC;S) = {no}.

(c) CQA(Q,IC.6) = {(D,¢) | ¢ € CA(Q, D, IC,&)} is the decision problem

of consistent query answering, i.e. of checking consistent answers. a

In the literature on consistent query answering, the notion of consistent answer
and the CQA problem usually refer to the skeptical semantics.

Proposition 2 NE(IC) can be reduced in polynomial time to the comple-
ments of CQA(Fualse, IC, Skeptical) and CQA( True, IC, Majority), where False,
True are ground queries that are always false, resp. true.

Proof: First for the skeptical semantics. Given a database instance D, con-
sider the instance (D, no) for CQA(False, IC, Skeptical), corresponding to the
question “Is there an LS-repair of D wrt IC that does not satisfy False?” has
answer yes iff the class of LS-repairs of D is empty. For the majority seman-
tics, for the instance (D, no) for CQA(True, IC, Majority), corresponding to
the question “Is it not the case that the majority of the LS-repairs satisfy
True?”, we get answer yes iff the set of LS-repairs is empty. a

In Proposition 2, it suffices for queries True, False to be true, resp. false,
in all instances on the same schema as the input database. The former can
be represented by (yes) <, a query with empty body; and the latter by
(yes) «— R(...,z,...),x = 1,z = 2, where variable x corresponds to a nu-
merical attribute.

Theorem 1 For every fixed set IC' of linear denials: (a) Deciding if for an
instance D there is a repair D" with A(D, D’) < k, with positive integer k
that is part of the input, is in NP. (b) There is a fixed set IC of denials for
which DRP(IC) is NP-complete.

Proof: (a) First of all, we notice that a linear denial with implicit equali-
ties, i.e. occurrences of a same variable in two different database atoms, e.g.
Va,y, 2 (R(z,y), Q(y, z), z > 3), can be replaced by its explicit version with
explicit equalities, e.g. Vx,y, z, w—(R(x,y), Q(w, 2),y = w,z > 3).

Let n be the number of tuples in the database, and [ be the number of at-
tributes that appear in built-in predicates in the explicit versions of the ICs.
For example, consider the denial Vz,y, z—(P(z,y),Q(z,x),y > 2). The ex-
plicit version is Vz,y, z, w—(P(x,y), Q(z,w),y > 2,z = w) and [ would be 3
(for z,y, w).

Notice that, by Proposition 1, there is a repair at a distance not greater than
k iff there is an LS-repair at a distance not greater than k.
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If there exists an LS-repair D" with A(D, D’) < k, then no value in a fixable
attribute for a tuple in D’ differs from its corresponding value in D by more
than v/k. In consequence, the size of an LS-repair may not differ from the
original instance by more than [ x n x bin(k)/2, where bin(k) is the size of
the binary representation of k. Thus, the size of an LS-repair is polynomially
bounded by the size of D and k. Since we can determine in polynomial time
if D’ satisfies the ICs and if the distance is smaller than k, we obtain the result.

(b) Membership: According to Proposition 1, there is an LS-repair at a dis-
tance < k iff there is a repair D’ at a distance < k. We use part (a) of this
proposition.

Hardness: We can reduce Vertex Cover to DRP(1Cy) for a fixed set of denials
ICy. Given a graph instance (V, £), k for VC, consider a database schema with
a binary predicate F(X,Y") with key {X, Y} for the edges of the graph, and a
predicate V (X1, Chosen), with key X1 that takes vertices as values. Attribute
Chosen is the only fixable attribute. The original database D contains the tu-
ples E(eq, e3), E(eq, e1) for {e1,es} € &, and the tuples V(v,0) for v € V. The
constraint IC : Vz,y, c1,co(E(z,y) ANV (z,c1) AV(y,co) Nex < 1T Aey < 1)
expresses that for any edge, at least one of the incident vertices is covered.
A vertex cover of size k exists iff there exists an LS-repair of D wrt IC at a
distance < k. The encoding is polynomial in the size of the original graph. O

By Proposition 1, there is a repair for D wrt IC at a distance < k iff there is
an LS-repair at a distance < k. So, a test for the former, that is analyzed in
Theorem 1(a), can be used for the latter. Actually, if we happen to know, e.g.
by using the test in 1(a), that there is a repair at a distance < k, then the
minimum distance between D and a repair (i.e. the distance between D and
any LS-repair) can be found by binary search in the distance interval [0, k] in
log(k) steps, using at each of them the test in Theorem 1(a).

If an LS-repair exists, its square distance to D is polynomially bounded by the
size of D (cf. Lemma 2 below). Since D and a repair have the same number of
tuples, only the size of their values in a repair matter, and they are constrained
by a fixed set of linear denials and the condition of minimality.

Lemma 2 Given a database D and a set of extended denials IC, the size of
an LS-repair D’ is polynomial in the size of D and the numerical constants in
the ICs. This is also true if D’ is a repair obtained from D by replacing values
of fixable attributes by values at the intervals around numerical values in D
or the borders determined by the ICs (according to Lemma 1).

Proof: The proof of the first claim follows immediately from: (a) The LS-
repair D’ has the same number of tuples as D, and (b) By Lemma 1, in an
LS-repair, the value for each attribute and in each tuple falls in an interval of
the form [c — | A, ¢ + |A|], where ¢ is either a value of D or a border. For the
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second claim, the proof is similar, since D’ has the same number of tuples as
D. a

Theorem 2 For a fixed set IC of extended linear denials: (a) The problem
NE(IC) of deciding if an instance has an LS-repair wrt IC is NP-complete,
and (b) CQA under the skeptical and the majority semantics is coNP-hard.

Proof: (a) For hardness, it suffices to consider linear denials. We reduce 3-
Colorability to NE(ICy), for a fixed set ICy of ICs. Let G = (V,€) be an
undirected graph with set of vertices V and set of edges £. Consider the fol-
lowing database schema, instance D, and set [Cy of ICs:

1. Predicate Vertex(Id, Red, Green, Blue), with key Id, and domain N for the
last three attributes, actually the only three fixable attributes in the schema.
For each v € V, we have Vertexz(v,0,0,0) in D (and no other Vertez tuple in
D).

2. Predicate Edge(Id1,1d2), with no fixable attributes. For each e = {vy,v,} €
E, Edge(vy,v9), Edge(vy,v1) € D.

3. Predicate Tester(Red1, Greenl, Bluel), with no fixable attributes, and ex-
tension Tester(1,0,0), Tester(0,1,0), Tester(0,0,1) in D.

4. Integrity constraints:

Vi, x,y, z=(Vertex(i,xz,y, z),x < 1,y < 1,2 < 1);

Vi, x,y, z—( Vertex (i, x,y, z),x > 1) (the same for y, z);

Vi, x,y, z=(Vertex (i, xz,y,z),x =1L,y =1,z = 1);

Vi, x,y, z=(Vertex( i, z,y,2),x = 1,y = 1); etc.

Vi, j, x,y, z—( Vertex (i, x,y, 2), Vertex(j, z,y, z), Edge(i, j), Tester(x,y, 2)).

If there is an LS-repair wrt IC of the generated instance, then the graph is
3-colorable. If the graph is 3-colorable, then there is a consistent instance with
the same rigid values as the original instance. Thus, by Proposition 1, there
is an LS-repair. The reduction is polynomial in the size of the graph.

Now we prove membership. By Proposition 1 and Lemma 1, the existence of a
repair is equivalent to the existence of an LS-repair; and the latter is equivalent
to the existence of a repair that has its modified fixable values taken at the
intervals around the borders of the corresponding attributes or around the
values in the tuples of D (cf. Lemma 1). So, we can concentrate on the latter
problem. An NP algorithm for this problem is as follows: (1) For the positive
cases D, guess a witness, i.e. a repair D’ of D that shares the values of non
fixable attributes with D, and the modified values of the fixable attributes
taken from intervals of the form [c¢ — |A|,¢ + |A]], for ¢ a value in D or a
border. (2) Check that D, D" are rigid-comparable. (3) Check that D’ satisfies
the ICs. This test is polynomial in the size of D, D’. By Lemma 2, the size of
D’ is polynomial in the size of D.

(b) coNP-hardness follows from Proposition 2 and part (a). O
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For hardness in (a) and (b) in Theorem 2, linear denials suffice. Membership
in (a) can be obtained for any fixed finite set of extended denials.

Theorem 3 For a fixed set IC of linear denials: (a) The problem Rep(IC) of
checking if an instance is an LS-repair is coNP-complete, and (b) CQA under
skeptical semantics is in 11, and, for ground atomic queries, A¥-hard.

Proof: (a) We reduce 3-SAT’s complement to Rep(IC) for a fixed schema
and set IC of denials. We have a predicate Lit(l,]) whose extension stores
complementary literals (only), e.g. Lit(p, —p) when p is one of the variables in
the instance ® of SAT. Also a predicate Cl for tuples of the form Cl(p,, k),
where ¢ is a clause of ® (we assume, wlog. that all clauses have exactly 3
literals), [ is a literal in the clause, and k takes value 0 or 1 (for the truth
value of [ in ). The first two arguments are the key of Cl. Finally, we have
a predicate Auz(K, N), with key K and fixable numerical attribute N, and a

predicate Num(N1) with a rigid numerical attribute N1.

Consider an instance ® = ¢y A - -+ A ¢, for 3-SAT. We produce an instance
D for the predicates as indicated above, assigning arbitrary truth values to
the literals in CI, but making sure that, in the whole set of Cl-tuples, a literal
takes only one truth value, and complementary literals take complementary
truth values. We also have Auz(0,0), and Num([+/s+ 1]) in D, where s is
the number of different pairs of the form (¢;,1), with [ a literal that appears
in ¢;. There are no other Auz- or Num-tuples in D.

Consider now the following set of denials:

(a) V=(Cl(p,l,u),u > 1); V=(Cl(p,l,u),u < 0).

(b) V=(Cl(p, 1, u), Cl(¥,1, v), u #v).

(c) V=(Cl(p, 1, u), Cl(, I, v), Lit(l,1'),u = v).

(d) V=(Cl(p, 1, u), Cl(p,l',v), Cl(p, ", w), Aux(k,n),l £ 1,1 #1",1' #1",
u=v=w=0,n=0).

(e) V=(Num(z), Auz(k,n),n # 0,n # 2).

Denial (a) indicates that 0, 1 are possible truth values. Denial (b), that a literal
takes only one truth value in the whole set of Cl-tuples. Denial (c) indicates
that complementary literals take different truth values. Denial (d), that each
clause becomes true, and then also ®, or Aux takes a value other than 0 in
its second attribute. Finally, denial (e) indicates that the value in the second
attribute of Auz has to be 0 or [v/s+ 1|. Attribute K in Auz is introduced
just to have a key. Other than this, it is not relevant.

If ® is unsatisfiable, then the original instance is inconsistent, because (d) is
violated. Even more, in this case there is no repair that can be obtained by
changing truth values only, because (d) would still be violated. In this case, in
order to make (d) true, only the value of the second attribute of Auz has to
be changed, from 0 to [v/s + 1], as prescribed by (e). The distance between
this repair and D is ([v/s + 1])?, which is greater than s. This is the closest
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repair to D we can have when ® is not satisfiable.

When & is satisfiable, it may be the case that D already encodes a satisfying
truth assignment. In this case, D is consistent and it is its only LS-repair, at
a distance 0. If D does not encode a satisfying assignment, but there is one,
we can change the truth values in the Cl-tuples in D in order to encode in a
repair D’ of D the satisfying assignment. In this case, the distance between D
and D' is at most s (this generous upper bound is reached only if all literals
have to change their truth values).

It holds that ® is unsatisfiable iff the instance D’ that coincides with D except
for Auz, that now contains only Ans(0, [v/s + 1]) instead, is an LS-repair of D
wrt IC. Thus, checking D’ for LS-repair of D suffices to check unsatisfiability.

For membership to coNP, for an initial instance D, instances D’ in the com-
plement of Rep(IC) have witnesses D” that can be checked in polynomial time,
namely instances D” that have the same rigid values as D, satisfy the ICs,
but A(D,D") < A(D,D").

(b) For the first claim on CQA, let IC' and a query @ be given. The comple-
ment of CQA is in NP“"": Given an instance D, nondeterministically choose
an instance D’ with D’ j~ @) and a repair D" of D. The latter test can be done
in coNP (by part (a)). But NP’ = NP™ = %P In consequence, CQA
belongs to coXt = I1L.

For the second claim, we prove hardness of CQA by a LOGSPACFE-reduction
from the following problem [24, Theo. 3.4]: Given a Boolean formula in 3CNF
®(py,...,pn), decide if the last variable p,, is equal to 1 in the lexicographically
maximum satisfying assignment (the answer is No if ® is not satisfiable).

We consider a fixed database schema containing predicate Var(V, T, Weight),
with key V' and fixable attributes 7', taking values 0 or 1, and Weight. It also
contain predicate CI(C, Vary, Valy, Vars, Valy, Vars, Vals), with key C' and no
fixable attributes.

Now, if ® is ¢ A --- A ¢, with each ¢; a clause, we create an instance
D as follows. For each variable p;, Var(p;,0,2"") goes into D. In binary
encoding, the values 2"~% are polynomial in the size of original formula. For
each clause o; = I;, V 1y, V iy, Cl@i, Di, s Ly Digs Liys Dia» li) is inserted into D,
where ZZ-J. is equal to 1 in case of positive occurrence of variable p;; in ¢; and
equal to 0 for a negative occurrence. For example, for g = pg V —pg V D12,
Cl(vs, ps, 1, D9, 0, p12, 1) is inserted.

We consider the following 1Cs: 4
(a) Yo, t=(Var(v,t, ) ANt <0); Yo, t=(Var(v,t,.) At >1).

4 Un underscore, _, in an argument of an atom means that any fresh variable may
appear at its place.
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(b) Yu,t,w=(Var(v,t,w) ANt =0Aw > 0).
(c) Ve, vy, 21, U2, g, U3, T3, U1, Uz, u3—(Cl(c, vy, 21, V2, T2, v3,23) A Var(vy, ug, )
AVar(vy, ug, ) A\ Var(vs,us, ) A xy # ug A Ty # us A T3 # ug).

The idea is that the 3rd, 5th and 7th arguments in Cl-tuples contain the truth
value that makes the propositional variable in the preceding argument true.
According to denial (c), the truth values in the 2nd argument of Var-tuples
associated to a same clause cannot differ all from the right value prescribed
by the corresponding Cl-tuple. In this way we make the clause true. The
extended denial constraint in (¢) could be replaced by eight non-extended
denial constraints.

Instance D is inconsistent due to (b). Each repair of D represents a satisfying
assignment for ®. If ® is not satisfiable, there is no repair of D. If it is, in
order to obtain a satisfying assignment, the values in the 2nd argument of Var
have to be changed to obtain a repair.

Let us now consider the square distance from a repair to D. Each repair D’ is
associated to a satisfying truth assignment S = (s1,...,8,,) for (p1,...,pn).
If i1 < --- < 4, is the sequence of all the indices in S associated to Os in .5,
the square distance from D’ to D is 22(=i) 4 22(n=i2) 4 ... 4 92(n=ir) 4 (),
because due to (b) we have to give value 0 to Weight for each variable that
retains the value 0 it had in D. The term (n —r) comes from the truth values
that were changed from 0 to 1.

Assume that S = (sq1,...,s,) and S’ = (t1,...,t,) are satisfying truth as-
signments (for (p1,...,p,)) with S < 5" under the lexicographical order. In
this case, there exists an integer m such that 0 = s,, < t,,, = 1, while for all
k < m, sp =t = 0. We can compare the square distances to D from the
repairs D(S), D(S"), associated to S,.S’, resp. Since for m it holds s, = 0 and
t,m = 1, the tuple Var(p,,0,2"=™)) in D has to be changed to Var(p,,0,0)
in D(S), contributing to the square distance with 22("=™) 41 which is greater
than the sum of terms for higher indices (and smaller exponents) with which
S" may contribute to the distance A(D, D(S’)). Notice that for both D(S)
and D(S), the sums of the first m — 1 terms of the distance (corresponding
to the first (m — 1) indices) are the same, namely ¥7122("=%),

We can see that S < S" implies A(D, D(S")) < A(D, D(S5)). In consequence,
the closest repair to D in square distance (i.e. the only LS-repair if any)
corresponds to the maximum satisfying assignment for ® in the lexicographical
order. It is good enough to check if this repair has p, taking value 1: The
consistent answer to the ground atomic query Var(p,,1,1) is yes iff p, takes
the value 1 in the lexicographically maximum satisfying truth assignment. O

Membership in Theorem 3(a) can be obtained for any set of extended denials.
It is still open to close the gap between the lower and upper data complexity
bounds for CQA.
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Theorem 4 For aggregate comparison queries using sum, CQA under linear
denials and brave semantics is coNP-hard.

Proof: A reduction from Vertex Cover can be established with a fixed set ICy
of ICs. Given an undirected graph G = (V, £), consider a database with pred-
icates Ver(V, Z), Edge(V1,V2), where V is a key for Ver, and Z is the only
fixable attribute, that takes values in {0, 1}, which can be enforced by includ-
ing in ICy the linear denials Vx, z—(Ver(z, 2),z > 1), Va, z=(Ver(z, 2), z < 0).
Intuitively, Z indicates with 1 if the vertex V is in the cover, and with 0
otherwise. The values for the attributes of Edge are vertices and then, non
numerical.

In the original database D we have the tuples Ver(e, 0), for e € V; and also the
tuples Edge(ey,es), Edge(ea, e1) for {e1, es} € E. Putting into ICy the linear
constraint Vuy, 21, Xa, z9-( Ver(zy, 21), Ver(xq, 23), Edge(x1,12),21 < 1,29 <
1), the LS-repairs of the database are in one-to-one correspondence with the
vertex covers of minimum cardinality.

For the query QW : q(sum(z)) A sum(z) < k, with q(sum(z)) « Ver(z, z),
the instance (D, yes) for consistent query answering under brave semantics
has answer No, (i.e. Q™ is false in all LS-repairs) only for every k smaller
than the minimum cardinality ¢ of a vertex cover. O

5 Approximation for the Database Repair Problem

We consider the problem of finding a good approximation for the optimization
problem DROP(IC).

Proposition 3 For a fixed set /C of linear denials, DROP(IC) is MAXSNP-
hard.

Proof: By reduction from the MAXSNP-hard problem B-Minimum Vertex
Cover (BMVC) which asks for a minimum vertex cover in a graph whose
nodes have a bounded degree [23, chap. 10]. We encode the graph as in the
proof of Theorem 4. We also use the same initial database D. Every LS-repair
D’ of D corresponds to a minimum vertex cover )V’ for G and vice versa, and it
holds |V'| = A(D, D’). This gives us an L-reduction from BMVC to DRP(IC)
29]. O

As an immediate consequence [29], we obtain that DROP(IC) cannot be uni-
formly approximated within an arbitrarily small constant factor.

Corollary 1 There is a set IC of linear denials for which, unless P = NP,
there is no Polynomial Time Approximation Schema for DROP(IC). O

This negative result does not preclude the possibility of finding an efficient
algorithm for approximation within a constant factor for DROP. Actually, in
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the following we do this for a restricted but still useful and interesting class
of denial constraints.

5.1 Local denials

Definition 6 A set of linear denials IC' is local if:® (a) Attributes participat-
ing in equality atoms between attributes or in joins are all rigid. (b) There is
a built-in atom with a fixable attribute in each element of /C. (c) No element
of IC contains # involving a fixable attribute. (d) No attribute A appears in
IC both in comparisons of the form A < ¢; and A > ¢». O

Without loss of generality and for simplicity of the presentation, we assume
in what follows that each local constraint contains (a) < and >, but not < or
>0 (b) at most one comparison of the type Afc per attribute A, for 6 either
> or <.

Example 10 The denial Vz,y, z=(R(z,y, 2),y > 3,y > 5,z < 7) has the sec-
ond attribute compared more than once, and the third attribute is compared
with a <. The denial can be replaced by Vz,y, 2=(R(z,y, z),y > 5,z < 8). O

In Example 5, IC is local. In Example 6, the set of ICs is not local since
attribute B of relation P is compared through both < and >. In Example 9,
IC is not local for the same reason. Local constraints have the property that
by solving a particular inconsistency, no new inconsistencies are generated as
shown in the following example.

Example 11 (example 5 continued) The ICs are local. IC ic; is violated by
{t1,t4} and {t1,t5}, and icy by {t1} and {to}. The first inconsistency can be
solved by updating ¢4,(P) from 27 to 25. The resulting instance is such that
icy is violated by {t1,t5}, and ice by {t1} and {t2}. No new inconsistency is
introduced. O

Example 12 Consider a predicate R(A, B, ('), where A is the key and C' is
the fixable attribute; and the local ICs icy : Va,y, 2=(R(z,y, 2),z > 4), and
ico: Vr,y, z=(R(z,y,2),z > 2). The instance D that contains only the tuple
t: R(a,1,5) violates both ic; and icy. The inconsistency wrt ic; can be solved
by replacing ¢(C') by 4. In the new database, the updated tuple t' is still
inconsistent wrt icy, but no new inconsistencies arise from the update. O

Lemma 3 Given an instance D and a set IC of local denial constraints, there
always exists an LS-repair of D wrt IC.

5 We assume here that attributes or versions thereof are used as variables in the
1Cs.
6 The comparisons z < ¢ and = > ¢ can be expressed as x < ¢+ 1 and > ¢ — 1,
resp.
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Proof: Since IC is local, in each denial in it, there is at least one fixable
attribute involved in a built-in. Changing its value, the comparison atom can
be falsified and the whole constraint can be satisfied. We have to show that
such a change can be made for the whole set of ICs. For each fixable attribute
A in IC, we are able to derive an interval [c4,00) or (—o0,c4] such that if
we pick up the value of A from it, all the ICs involving A in a built-in are
satisfied. An interval of the form [c4,00) can be found if A is compared with
<, and of the form (—oo,ca] if it is compared with >. Let Fg be the set of
fixable attributes that are in a built-in atom in at least one element of IC.

An instance D’ can be constructed from D by replacing the value of every
fixable attribute A € Fp in every tuple t € D by cu. This new instance
satisfies the constraints, therefore it is a repair of D wrt IC. By Proposition
1, there is an LS-repair. a

Locality is a sufficient, but not necessary condition for existence of LS-repairs.
This can be seen with the database D = {P(a,2)}, whose first attribute is the
key, and the non-local set of denials {Vx,y—(P(x,y),y < 3),Vz,y=(P(z,y),
y >5)}. D has {P(a,3)} as LS-repair. In the rest of Section 5 we will assume
that the sets of flexible denials associated to a schema are local.

Proposition 4 There is a set IC of local denials, such that DRP(IC) is NP-
complete, and DROP(IC) is MAXSNP-hard.

Proof: For the first claim, membership follows from Theorem 1(b). For hard-
ness, we can do the same reduction as in Theorem 1(b), because the ICs used
there are local denials. For the second claim, we can proceed as in the proof of
Proposition 3, but instead of using the non-local denials in that proof, we can
use the single local denial ic: Vxy, 21, k9, 29— ( Ver(zy, 21), Ver(xza, 22), Edge(x,
x9),21 < 1,29 < 1). We need no denials that restrict the attributes to take
values in {0, 1}, because in the tuples in D, attribute Z takes value 0. By
minimality of LS-repairs, when restoring consistency wrt ic, Z will only be
modified to take value 1. a

This proposition tells us that the problem of finding good approximations in
the case of local denials is still relevant. Local constraints do not make our
decision problems easier. For example, Theorem 4 still holds for them, because
in its proof the first denial in ICy can be eliminated, and the two remaining
form a local set. This is due to the contents of the initial instance and the
minimality imposed on value changes.

Definition 7 Let ic € IC be denial constraint of the form
Vi (A1 (Z1) A AN Ap () A B (Zg1) A+ A Biss(Timts)), (1)

where 7 = UjL, 7; 2 U;":J;‘jﬂ zj, the A; are database predicates and the B;

are built-in predicates.
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(a) A set I ={A}(a1),...,A}(ar)} of (ground) database atoms is a violation
set for ic in instance D iff: (al) Al(a;) € D, j = 1,...,k. (a2) There is
a substitution 6 : T — U, such that {A:(z1),..., A, (Zn)}0 = I, and, for
i=m+1,....,m+s, Bi(z;)0 is true in U.

(b) The set of labeled violation sets of IC'in D is Z(D, IC) = {(I,ic) | ic € IC

and [ is a violation set for ic}. O

Here, A(z")0, with z’ C z, is the ground atom that results from applying 6 to
the variables in A(Z'); and {A1(Z1), ..., An(Zm)}0 = {A1(Z1)0, ..., A (Z0,)0}.
In consequence, the substitution @ in the definition is a unifier of {A;(z1),...,
Apm(ZTm)} and 1. So, k < m, and the predicates A} must be among the 4; in
(1). Notice that a violation set makes the conjunction in (1) true in D, and
then ic becomes false in D. Z(D, IC) contains the violation sets together with
the constraint they violate, which is used as a label. In this way, the same set of
tuples can be associated to different constraints. Elements (7, ic) of Z(D, IC)
will still be called violations sets. Notice that the definition of violation set
can be applied to any extended denial.

Example 13 (example 5 continued) A violation set for ic, is {¢1,t4} since,
for (/D) =1, (A) = 15, 6(C) = 25, §(I) = CD and 6(P) = 27, it holds
{Buy(ID1,1,P), Client(ID, A, C)}0 = {t1,t4}, and both (A < 18)8 and (P >
25)0 are true. Similarly, {t1,t5} is also a violation set for ic,, and {t;} and
{t2} are both violation sets for ic,. In consequence, Z(D, IC) = {({t1,t4}, ic,),

({t17t5},i61), ({tl}’i%)? ({t2}7i02)}' .

Notice that the conflict hypergraph introduced in [12] for studying classic CQA
wrt denial constraints has as vertices the database tuples in D; and as hyper-
edges, the violation sets for elements ic of IC. In our case, each hyperedge
is labelled with its corresponding ic. If the denial constraints are functional
dependencies, we obtain conflict graphs [3].

Example 14 (example 13 continued) The conflict hypergraph as shown in
Fig. 1 contains four hyperedges, those corresponding to the violation sets

({t1>t4}’ icl)? ({t17t5}7 Z.01)7 ({t1}> icz) and ({tQ}? icz)' .

Fig. 1. Conflict hypergraph

Definition 8 (a) Consider an instance D and a set IC of ICs. Let ¢ be a tuple

22



in D such that t € I C D, where (I, ic) is a violation set for ic € IC'in D. A
database tuple ¢’ is a local repair of t (wrt I and ic) if: (al) ¢’ uses the same
database predicate as t. (a2) ¢’ has the same values as t in all the attributes
but one fixable attribute. (a3) Replacing ¢ by t' solves the inconsistency wrt
ic, i.e. (I ~A{t})U{t'},ic) is not a violation set of IC' in (D ~ {t}) U{t'}.
(ad) There is no tuple t” that simultaneously satisfies (al)-(a3), differs from ¢
on the same attribute as ¢, and A({t}, {t"}) < A({t},{t'}), where A denotes
quadratic distance.

(b) S(t,t") ={(1,ic) | ic € IC, t € I and (I ~{t})U{t'} is not a violation set
for ic in (D~ {t}) U{t'}}. O

A local repair t’ of t solves the violation of at least one IC where ¢ participates,
minimizes the distance from ¢, and differs from ¢ in the value of only one
attribute. Thus, if a tuple t is consistent, i.e. it does not belong to any violation
set, then it has no local repairs. It holds S(t,t') C Z(D, IC), and the former
set contains the violation sets that include ¢ and are solved by replacing t’ by
t. We will usually apply the notation S(¢,%) to a tuple ¢ and one of its local
repairs t'.

The attribute that has been changed by a local repair t of t is denoted
by adiff (t,t').” In the examples, we will usually write in bold the attribute
values that are modified by local repairs.

Example 15 (example 13 continued) Tuple ¢} : Client(1,15,50) is a local
repair of ¢, because: (a) It modifies only the value of the fixable attribute C'
in t1; (b) For icy, replacing ¢; by t| solves the violation set ({¢1}, ico); and (c)
There is no other tuple that solves the same violation set and is closer to ;.
In this case, adiff (t1,t]) = C, and S(t1,t)) = {({t1}, ic,)}.

Tuple t]: Client(1,18,52) is also a local repair of ¢;, with S(t1,t]) = {({t1, t4},
ic1), ({t1,t5},ic,), ({t1}, ic,)}. Tuples t, t4 and t5 have one local repair each,
namely ¢, : Client(2,16,50), t} : Buy(1l, CD,25), and t; : Buy(1l, DVD,25),
respectively, with S(ta, t5) = {({t2}, ic,)}), S(ta, t)) = {({t1, 4}, ic,)}) and
S(ts, tt) = {({t1,t5}, ic,)}), respectively. The consistent tuple ¢3 has or needs
no local repair. a

5.2 Database repair problem as a set cover problem

For a fixed sets IC of local denials, we can solve the instances of DROP(IC)
by transforming them into instances of a Minimum Weighted Set Cover Op-
timization Problem (MWSCP). This problem is MAXSNP-hard [28,29], and
its general approximation algorithms approximate within a logarithmic factor
[28,14]. By concentrating on local denials, we will be able to generate versions

7 We recall that an attribute is associated to a unique database predicate and only
one of its arguments.
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of the MWSCP that can be approximated within a constant factor (cf. Section
5.3).

Definition 9 For a database D and a set IC' of local denials, the instance
(U,S,w) for the MWSCP, where U is the underlying set, S is the collection
of subsets of U, and w is the weight function? is given by: (a) U = Z(D, IC);
(b) & = {S(¢t,t') | t' is a local repair for a tuple ¢t € D}; and (¢) w(S(t,t")) =

A{t} At'}). O

By construction, all the S(¢,t') in the MWSCP are non empty. Also, since
the ICs are local, the union of S is U. This holds since for each (I,ic) € U,
ic contains at least one fixable attribute A in a built-in, and there is tuple
t € I such that, by modifying ¢(A) we can get a local repair ' of t such that
IeS(tt).

Example 16 (example 5 and 15 continued) We illustrate this reduction from
DROP to MWSCP, and give an idea about how we are going to use minimum
set covers to obtain LS-repairs. Here, U = {({t1,t4}, ic,), ({t1, 5}, ic,), ({t1},
icz)v ({t2}7 ic2>}7 and § = {S(tht/l)? S(tl’tlll)v S(t27t,2)7 S(t47 ti;), S(t57t/5)}'
The contents of each of the elements in S is shown in the table below. Elements
of § are the columns, and their elements, the rows. An entry 1 means that
the set of S contains the corresponding element in the first column; and a 0,
otherwise.

Set S(ty,th) | S(ti,t]) | S(ta,ty) | S(ta,ty) | S(ts,tr5)
Weight 4 9 1 4 1

<{t1’t4}’ Y;CI)
({tl}v icz)
<{t1’t5}7 Z.Cl)
({t2}> ’i02>

A minimum set cover for this problem is C; = {S(t1,t]), S(ts,t5)}, with total
weight 10. It is a minimum cover, because the union of its elements is U, and
there is no other cover with less weight. C; shows that, by replacing ¢, by ¢}
and ty by t5, all the violation sets are solved, i.e. they are no violation sets for
the same constraint anymore. Actually, the database D’ obtained from D by
replacing t; by ! and ¢, by t} is an LS-repair of D. These replacements lead to
a consistent database for two reasons: (1) Since S(t1,t]) and S(t2,t}) together
form a cover, all the inconsistencies are solved in D’; and (2) Since the con-
straints are local, no new inconsistencies are generated by these replacements.
If the constraints were not local, the replacements would solve the initial in-
consistencies, but might introduce new ones. Cf. Definition 11 and Lemma 5
below for a formal treatment of this idea.

_— o O O
S O O
O = O O

1
1
1
0

S O = O

8 In the corresponding MWSCP, we try to find (the weight of) a C C S, such that,
for every u € U, there is s € C with u € s (i.e. a set cover for U), and C has minimum
weight (given by the sum of the weights of its elements).
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Another minimum cover, therefore also with weight 10, is Co = {S(t1,1),
S(ta, th), S(ta,ty), S(ts,t5)}. The database D" obtained from D by replacing
t1 by t, to by t,, t4 by t}, and t5 by L is also an LS-repair. O

As we can see, we could think of constructing an LS-repair by replacing each
inconsistent tuple t € D by a local repair ¢ with S(¢,t') € C, where C is a
minimum set cover for the corresponding instance (U, S, w) of the MWSCP.
The problem is that for a tuple ¢, it might be the case that S(¢,t') and S(¢,t")
belong both to the minimum set cover C. In that case, it is not clear how to
construct the LS-repair by replacing ¢.

Example 17 Consider a schema with a predicate R(A, B,C, D), with Kg =
{A}, F(R) = {B,C}. The set ICof local denials contains ic,: V-(R(z,y, z,w),
y > 3), dc,: Vo(R(x,y, z,w), y > 5, w > 7), and ic,: V=(R(x,y, z,w), 2 < 4).
The database instance D containing only the tuple ¢: R(1,6,1,8) is incon-
sistent. Here, Z(D, IC) = {({t},1ic,), ({t},ic,), ({t},ic,)}. There are three
local fixes, namely, t;: R(1,3,1,8), to: R(1,5,1,8) and t3: R(1,6,4,8). For
them, S(t,t1) = {({t}. ic,), ({t}, ic,)}, St t2) = {({t},ic,)} and S(t,t3) =
{({t}, ic,)}. The instance of MWSCP is:

Set S(t,t1> S(t,tg) S(t,tg)
Weight 9 1 9
({t}, ic,) 1 0 0
({t}, ic,) 1 1 0
({thic) | O 0 1

The only minimum cover is C = {S(¢,t1), S(¢,t3)}. In this case, we could
attempt to obtain an LS-repair by replacing ¢ by both #; and t3, but this
would result in a violation of the key constraint on R. However, the local
repairs t; and t3 can be combined into a new tuple t; = R(1, 3,4, 8), which is
not a local repair, but solves all the inconsistencies. The database D’ obtained
by replacing t by ¢4 is an LS-repair. O

Our next results tells us that the replacement we made in the previous example
is always possible.

Lemma 4 Let C be a minimum cover for instance (U, S, w) of the MWSCP
associated to D and IC. For different local repairs ', ¢" of t such that S(¢,t'),
S(t,t") € C, it holds adiff (t,t') # adiff (t,t").

Proof: Let us assume, by contradiction, that there are S(¢,t'),S(t,t") € C
such that adiff (t,t') = adiff (t,t") = A and t'(A) < t"(A). Since the ICs are
local, either A is compared in all ICs in IC with either < or >. Without loss
of generality, we assume the latter. Since t'(A) < t”"(A), it is easy to see that
S(t,t") C S(t,t'). Thus, C ~ {S(t,t")} is also a cover. This implies that C is
not minimum, and we have a contradiction. O
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This result may not hold if the cover is not minimum. This lemma allows
us to combine in one tuple the local repairs that participate in a minimum
cover. These combined tuple repairs will be used to construct a new consistent
database.

Definition 10 Let C be a minimum cover for instance (U, S, w) of the MWSCP
associated to D, IC. (a) Let t1,...,t, be the local repairs of ¢t € D, such that

S(t,t;) € C, for i € [1,n]. The combined local repair of t, denoted t*, is such

that t*(A) = t;(A) when A = adiff (t,t;), and t*(A) = t(A), otherwise.

(b) If T* = {(t,t*) | there is t’ such that S(¢,t') € C}, then we define D(C) =

Uemer (D~ {E) U )] 0

D(C) is the database instance obtained from D by replacing ¢ by ¢* whenever
(t,t*) € T*. Notice that t* may not be a local repair of ¢, because it may
change more that one attribute. However, t* is obtained from a set of tuples
that modify only one attribute of ¢ each. Whenever we have a cover C C §,
where all the local repairs t' in the elements S(¢,¢') of C change different
attributes values of ¢, we may compute the t*s, no matter if C is minimum or
not. After that, 7* and its corresponding new instance D(C) can be computed
as in Definition 10(b).

Example 18 (example 17 continued) The combined local repair t* for ¢ is
obtained from the local repairs represented in C = {S(¢,t1), S(t,t3)}: t* be-
comes R(1,3,4,8). Thus, T* = {(t, R(1,3,4,8))}, and D(C) = {R(1,3,4,8)},
which is in fact the only LS-repair of D. a

Now we can establish that there is a one-to-one correspondence between the
minimum covers of the MWSCP and the LS-repairs.

Theorem 5 If C is a minimum cover for instance (U,S,w) of the MWSCP
associated to D, IC, then D(C) is an LS-repair of D wrt IC, and A(D, D(C)) =
w(C). Furthermore, for every LS-repair D’ of D wrt IC, there exists a minimum
cover C for the instance (U,S,w) of the MW SCP associated to D and IC,
such that D' = D(C). O

In order to prove this theorem we need first some auxiliary concepts and
technical lemmas. First, we will prove that local repairs do not introduce new
inconsistencies when the denials are local.

Definition 11 Consider an instance D and a set of local denials IC:

(a) For (I,ic) a violation set for D and IC, define I|A \ F|] = {(R, t[A(R) ~
F(R)]) | there are R € R and ¢ with t = R(¢) € I}.

(b) Z(D, IO)A N F] = {([AN Fl,ic) | (I,ic) € Z(D, IC)}.

(c) Let ¢,t" be database tuples such that {t} and {¢'} are rigid-comparable as
instances, and t € D. Replacing ¢t by ¢ in D does not generate new inconsisten-
ciesit Z(D', IC)[ANF| N Z(D, IC)[ANF] = 0, where D' = (D~ {t})U{t'}.
O
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I[AN F] denotes the set of tuples of constants obtained from database tuples
t in I by projecting the ts on their rigid attributes, and then annotating them
with their predicate names R (to keep track of their origin).

Example 19 (example 12 continued) In this case, IC = {icy, ico}, tis R(a, 1,5),
t"is R(a,1,4), Z(D, IC) = {({R(a,1,7)}, ic1), ({R(a,1,7)}, ice)}. For D' =
{R(a,1,4)}, T(D',1C) = {({R(a,1, D)}, ica)}.

To check if new inconsistencies are generated, we compute the difference
between Z(D', IC)[A N~ F] = {({(R,(a,1))},ice)} and Z(D,IC)[A N F] =
{{(R,(a,1))}, ic1), {(R,(a,1))},ice)}. Since the difference is empty, replac-
ing t by its local repair ¢’ does not generate new inconsistencies. a

Lemma 5 If ¢’ is a local repair of a tuple ¢ wrt instance D and a set of local
denials IC, then replacing t by ¢’ in D does not generate new inconsistencies.
O

Proof: Let adiff (t,t') = A. Since IC'is local, attribute A can only appear in
IC in <- or >-atoms, but not both. Without loss of generality, assume the
latter is the case. So, t'(A) < t(A).

For D' = (D ~ {t}) U {t'}, we need to prove that (Z(D',IC)[A ~ F] ~

Z(D,ICY[A N~ F]) = 0. By contradiction, assume that for ic € IC, there is
a violation set (I',ic) € Z(D',IC) such that there is no (1, ic) € Z(D, IC)
with I[A ~ F] = I'[ A~ F]. Since the rigid values are kept in a repair, this
is equivalent to saying that there is a violation set (I’,ic) € Z(D',IC) for
which (m~(I"),ic) € Z(D', IC). Since ¢’ is the only difference between D and
D' it holds t' € I'. But #/(A) < t(A), the only difference between D and D’
is attribute A, and in all the constraints attribute A is compared only with
>. Therefore, if (I’,ic) € Z(D’, IC), then (m(I'),ic) € I(D,IC). We have a
contradiction. O

The following lemma justifies that an LS-repair can always be constructed
from a set of local repairs that are combined as described in Definition 10.
This lemma will allow us to prove later that, for every LS-repair D', there is
minimum cover C such that D' = D(C).

Lemma 6 Consider an LS-repair D’ of D wrt IC, and L(D,D’) = {(¢,t') |
t,t" are R-tuples for some R € R, t € D, and there are an R-tuple t” €
(D'~ D)and A € A(R) such that t = m~(t"), t"(A) # t(A), t'(A) =
t"(A); and, for each B # A, t/(B) = ¢(B)}. It holds: (a) For each (t,t') €
L(D,D"), t is a local repair of ¢t. (b) C(D,D’) = {S(t,t') | (t,t') € L(D,D")}
is a cover of the MWSCP associated to D and IC. (¢) D(C(D,D’)) =D'. O

For each tuple t € D, the tuple m(¢) in D’ (the t” in the definition of L(D, D"))
may differ in more than one attribute value from ¢. The set L(D, D) contains
the pairs (t,t'), such that ¢’ coincides with the modified version of ¢, i.e. m(t),
in repair D’ in exactly one modified attribute value, but coincides with ¢ at the
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other attributes. That is, we are decomposing the modified versions of tuples
in D into its “local repair components”. Thus, L(D, D') traces back and finds
the set of local repairs that can transform D into D’.

There will be as many local repairs of ¢ in L(D, D’) as attribute values in ¢
have been changed by m(t). If the local repairs obtained from L(D,D’) are
combined as described in Definition 10, we would obtain a set T™* that is
needed to transform D into D’. For different local repairs ¢’ and t” such that
(t, '), (t,t") € L(D,D’), it holds adiff (t,t') # adiff (t,t"). Thus, it is possible
to compute D(C(D,D’)), even without proving that the cover C(D,D’) is
minimum. However, later on we will show it actually is (cf. proof of Theorem

5).

Example 20 (example 18 continued) The only LS-repair of D, that contains
only tuple ¢: R(1,6,1,8), wrt IC is D' = {R(1,3,4,8)}. This repair is ob-
tained from D by two local repairs: one changing attribute B from 6 to 3 and
another changing attribute C' from 1 to 4. Thus, L(D, D’) = {(t,t'), (t,t")},
with ¢: R(1,3,1,8) and t": R(1,6,4,8).

The repair D’ can be reconstructed from L(D,D’) by combining the local
repairs as described in Definition 10. In fact, C(D, D") = {S(t,t), S(¢,t")}, and
T = {(t,t*)}, with t* = R(1, 3,4,38). Therefore, D(C(D,D") ={R(1,3,4,8)}
=D O

Proof of Lemma 6: (a) Let (¢,t') € L(D, D). By the minimality of D" as an
LS-repair, the change of value in attribute A = adiff (¢,t') has to solve some
inconsistency. More precisely, there are ic € IC and I C D, such that (I, ic)
is a violation set wrt D and IC, t € I, and t' solves the violation set, i.e.
(I ~A{t})U{t'}, ic) is not a violation set wrt (D~ {t}) U {t'}. We collect in a
set all these violation sets. So, consider S = S(t,t), the set of all the violation
sets that are solved by replacing ¢ by t'. S is non empty, because (1, ic) € S.
Furthermore, ¢’ clearly satisfies conditions (al)-(a3) for being a local repair of
t through every (I, ic) in S. We have to check that (a4) holds for at least one
element of S.

Consider IC" = {ic € IC | there is I with (I,ic) € S}. Let us assume that
attribute A appears in IC' in comparisons of the type > (the case of com-
parisons with < is similar). Let ¢ be the smallest constant with which A is
compared through A > ¢ in IC’. Let (I, icy) be an element of S such that
A > ¢ appears in icy. Notice that for ¢ to belong to the violation sets in S, it
must hold ¢(A) > ¢

We have three cases: t'(A) > ¢, '(A) < ¢, and t/(A) = c. If ¥'(A) > ¢, then
(1o, ico) cannot be solved by replacing ¢ by t'. Since (y, ico) € S, we have a
contradiction. If #'(A) < ¢, we can construct the instance D" = (D'~ {t'}) U
{m(t)'}, where m(t)’ coincides with m(t) (the modified version of ¢ in D’)
except at attribute A, for which m(t)'(A) = ¢. The same inconsistencies will

28



be solved by D" since ¢ is the smallest value that appears in a comparison
involving A. It holds A({D},{D"}) < A({D},{D’}); which contradicts the
LS-minimality of D’. Thus, it must be t'(A) = c¢. In this case condition (a4)
holds for (1o, ico), because any tuple ¢ with ¢"(A) > ¢, i.e. closer to the original
instance, will not solve the violation set (I, ico). In consequence, t' is a local
repair of t for (I, ico).

(b) Now, we will prove that C(D, D) = {S(t,t') | (t,t') € L(D, D")} is a cover
of the MWSCP. We have already proven that every S(¢,t') € C(D, D’) is such
that t' is a local repair of ¢t. Since D’ is an LS-repair of D wrt IC, the set of
local repairs needed to construct it solve all the inconsistencies, and therefore

C(D,D’) is a cover. O

Proof of Theorem 5: We start proving the first statement, i.e. that the
instance associated to a minimum cover is an LS-repair. Since the union of all
the elements of a cover C is U, the local repairs represented by the cover solve
all the violations sets in D. By Lemma 5, no new inconsistencies are added by
applying the local repairs. Therefore, D(C) is a repair of D wrt IC. We need
to prove that D(C) is an LS-repair. By contradiction, assume it is not. In this
case, there exists an LS-repair D’ for which A(D, D") < A(D, D(C)).

Let C(D, D’) be the cover defined as in Lemma 6. It holds D(C(D, D")) = D'.
Also, for different local repairs ¢’ and t” such that S(¢,t'), S(t,t") € C(D, D’),
we have adiff (t,t") # adiff (t,t"). Since all the local repairs modify different
values, w(C(D, D")) = A(D, D"). But A(D,D") < A(D, D(C)) = w(C). There-
fore, w(C(D, D’)) < w(C). We obtain that C is not a minimum cover, and we
have a contradiction.

Now we prove the second statement, i.e. that for every LS-repair D’ there is a
minimum cover C such that D(C) = D'. Let C(D, D') be defined as in Lemma
6. By Lemma 6, C(D, D') is a cover of the MWSCP for D and /C. We need to
prove that C(D, D’) is minimum. Let us assume, by contradiction, that there
exists a minimum cover C’ such that w(C") < w(C(D, D")). By the first claim
in this theorem, D(C’) is an LS-repair. Since C’ is a minimum cover, by Lemma

4, no two local repairs of a tuple modify the same attribute. As a consequence,
w(C") = A(D, D(C)).

By construction, C(D, D') is such that no two local repairs of a tuple modify
the same attribute. Thus, it holds that w(C(D,D")) = A(D, D(C)). This im-
plies that A(D, D(C")) < A(D,D(C(D,D"))) = A(D, D’), which contradicts
the fact that D’ is an LS-repair. O

Example 21 (example 16 continued) From the minimum cover C;= {S(t1,
t7), S(ta, t5)}, we get t7 =t = Client(1,18,52), and t§ = t, = Client(2, 16, 50),
and therefore, D(C;) is instance D" in Example 5. On the other hand, for the
minimum cover Co = {S(t1,t}), S(t2,t5), S(ts,t}), S(ts,t5)}, the LS-repair
D(Cy) coincides with instance D’ in Example 5. O
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Proposition 5 The transformation of an instance of DROP(IC) into the in-
stance of MWSCP, and the construction of database instance D(C) from a
cover C for (U,S,w) can be done both in polynomial time in the size of D.

Proof: It remains to verify that (U, S, w) can be computed in polynomial time
in the size of D. Let n be the number of tuples in D. Notice that if m; is the
number of database atoms in ic; € IC, and m is the maximum value of the
m;, there are at most n” violation sets associated to ic; € IC, each of them
having between 1 and m tuples. Therefore, the size of U is O(n™ x |IC]). The
size of each S(t,t') is bounded by the size of U.

The size of S, i.e. the number of sets S(¢,t’), is polynomially bounded by the
size of D. In fact, there is one S(t,t") for each local repair of ¢, and each tuple
may have no more than |F| x |IC] local repairs, where F is the set of fixable
attributes. Therefore, |S| is O(|F| x |IC| x |D|).

The weight of each S(t,t’) is polynomially bounded by the maximum absolute
value in an attribute in the database and the maximum absolute value of a
constant appearing in /C (by an analysis similar to the one in Lemma 1).

With respect to D(C), since C C S, C is polynomially bounded by the size of
D. The generation of T* and the replacements in D are easy. Therefore, the
construction of D(C) can be done in polynomial time on |D|. O

We have established that the transformation of DROP into MWSCP is an
L-reduction [29].

If we apply this reduction to D and IC when IC'is non-local, the instance D(C)
for a cover C can still be constructed, as above. However, it may not satisfy IC;
because repairing single inconsistent tuples through local repairs solves only
the initial inconsistencies, but new inconsistencies can be introduced. This is
the case in Example 6, which has a non-local set of denials.

5.3  Approzimate LS-repairs via approrimate minimum covers

Now that we have transformed the database repair optimization problem into
a weighted minimum set cover problem, we can apply approximation algo-
rithms for the latter to approximate the former. Any cover C, even if not
minimum, will generate a database D(C) that is a repair of D. The better
the approximation, the closer will the repair be to an LS-repair. For exam-
ple, using a greedy algorithm, MWSCP can be approximated within a factor
log(N), where N is the size of the underlying set U [14]. The approximation
algorithm returns not only an approximation w to the optimal weight w?, but
also a -not necessarily optimal- cover C for problem (U,S,w). As in Definition
10, the cover C can be used to generate a repair D(C) for D that may not be

LS-minimum.
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Example 22 (examples 5 and 21 continued) We show how to compute a
solution to this particular instance of DROP using the greedy approximation
algorithm for MWSCP presented in [14]. We start with C := 0, S(t;,#))° :=
S(t;,t;) for each S(t;,t;) € S. Then, we add to C the set S(t;,t,) such that
S(t;,t))° has the maximum contribution ratio |S(t;,t})°|/w(S(t;,t)°). In this
case, the alternatives are:

|S(t17 t/1)|/w(5(t1’ tll)) = 1/47 |S(t4’ ti})|/w(s<t4v til)) = 1/47

1S(t )|/l S(tr.#4)) = 3/9. 1S(ta, )] fw(S(ts, 1)) = 1.

1S (b )] /u(S(ta, ) = 1,

The ratio is maximum for S(ts,t}) and S(t5,t), so we can add any of them
to C. If we choose the first, we get C = {S(t,,t,)}. Now we compute the new
sets S(t;, t) := S(t;, )0\ S(t, t,)°, and choose again an S(t;, ) for C such
that S(;, )" maximizes the contribution ratio. Now S(ts,t,) is added to C,

(2
because S(ts,tt)! gives the maximum.

We repeat this process until we get all the elements of U covered, i.e. all
the sets S(t;,t;)* become empty at some iteration point k. We finally obtain

C = {S(ts, 1)), S(ts, t5), S(t1,t1), S(ta, t})}. In this case, C is an optimal cover,
and therefore, D(C) is an LS-repair, namely D’ in Example 5. O

Since we are using a cover that is not necessarily minimum, Lemma 4 may not
hold. This means that, for a tuple ¢, there might be two local repairs in the
cover that modify the value of the same attribute; and t* cannot be computed
as in Definition 10. This situation is shown in the following example.

Example 23 (example 18 continued) The greedy algorithm in [14] returns
the non-optimal cover C = {S(t,t,), S(t,t5), S(t,t3)}. Here t; = R(1,3,1,8),
ts = R(1,5,1,8) and t3 = R(1,6,4,8) are all local repairs for the same tuple
t, but now the first two of them modify its second attribute B. The tuples t;
and t, solve different set of inconsistencies (violation sets); and those changes
have to be made in order to solve them. Picking up randomly one of the two
local repairs may leave the other set of inconsistencies unsolved.

However, in this example, B always appears in the denial constraints in com-
parisons of the form B > ¢ for a certain constant ¢’ Furthermore, the values
for the attributes other that B are the same in #; and ty. Therefore, we can
construct the combined local repair by taking only the smallest value assigned
to B in a local repair, namely 3 (the smallest constant ¢ appearing in the
comparisons B > ¢ above). Thus, the combined local repair would be in this
case t* = R(1,3,4,8), which solves all the violation sets. O

We need to modify Definition 10 to consider not only minimum covers, but
any cover that might be returned by an approximation algorithm.

9 Recall that since the constraints are local, a fixable attribute is either used with
< or > in IC but never both.
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Definition 12 Let C be a (not necessarily minimum) cover for instance (U, S,
w) of the MWSCP associated to D and IC. (a) For each tuple t € D, and its
local repairs tq, . .., t, for which S(¢,¢;) € C holds, the combined local repair t*
is defined by the following conditions: (al) t*[A] = t;[A] if there exists an ¢ in
[1,n] with A = adiff (¢,t;); and there is no other j in [1, n] with A = adiff (¢, ;)
and t;[A] < t;[A4] (t;[A] > t;[A]) if A is compared with > (resp. <) in IC.
(a2) t*[A] = t[A] for other attributes A that are not involved in (al).

(b) T* and instance D(C) associated to C are defined as in Definition 10. O

This definition coincides with Definition 10 if € is a minimum cover. Indeed,
if we have a minimum cover, Lemma 4 holds, and for each tuple there is a
unique local repair that modifies a specific attribute.

Example 24 (e;gample 23 continued) Applying Definition 12 to the non-
minimum cover C = {S(¢,1), S(t,t2), S(t,t3)}, we obtain t* = R(1,3,4,38),

~

and then D(C) = {R(1,3,4,8)}, which is an LS-repair of D wrt IC. O

This example shows that even when the approximation algorithm returns a
non-minimum cover, the repair associated to it may be minimum, i.e. an LS-
repair. However, non-minimum covers may also lead to non-minimum repairs.

Example 25 Consider a schema with predicates P(A, B,C),Q(D, E, F,G),
and Kp = {A}, Kg = {D}, and F = {B,C, E, F'}. The instance D below is
inconsistent wrt the local ICs icy: V—(P(x,y, 2), Q(z,w,v,u), y > 7, w < 7),
icy : V(P(x,y,2), Q(z,w,v,u), y > 9, w < 6), ic3: V=(P(x,y,2), y > T,

z > 2), and icy: V(P(x,y, 2), Qu,w,v,x), y > 9, w > 2).

D:| P A| B | C | Q D | FEF | F |G
a 11 4 tl a 4 5 f ts
b 5 7 to c 4 8 a ta
The violation sets are ({t1,t3}, ic1), ({t1,t3}, ica), ({t1}, ics) and ({¢1, t4}, icq).

The local repairs are: ¢ : P(a,7,4), t] : P(a,9,4), t; : P(a,7,5,f), t§ :
P(a,6,5, f), and t;: P(c,2,8,a). The instance of the MWSCP is:

Set S(tl, tll) S(tl, tlll) S(t3, té) S(tg, tg) S(t4, til)
Weight 16 1 9 1 4
{ttah.icy), | 1 0 1 0 0
({t1,t5}, ics), 1 1 1 0 0
({tl}, ng) 1 0 0 1 0
({tl,t4}, iC4) 1 0 0 1 1

The only minimum cover for this problem is C = {S(t,t])}, with weight 16.
As expected, the associated repair D(C) also has distance 16 to D. However,
a cover obtained by the greedy algorithm in [14] is C = {S(t1,t/), S(ts,t}),
S(ts, 1), S(ts, t,)}, with weight 21. The repair D(C) is:
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P| A B | C | Q| D|E | F |G
a 9 4 |t/ a 7|5 [t
b 5 7 | ta c 2 8 a ||t

This repair is not an LS-repair since the distance to D is 17 instead of 16. O

Notice that, as illustrated in the previous example, for a cover C, it holds
A(D,D(C)) < w(C), with equality for a minimum cover. This is because, to
obtain D(C), we may eliminate elements from C.

Proposition 6 Given an instance D and a set IC' of local ICs, the instance
D(C), obtained from the cover C returned by the approximation algorithm,

is a repair. It also holds A(D, D(C)) < log(N) x A(D, D’), where D’ is any
LS-repair of D wrt IC, and N is the number of violation sets for D wrt IC.

Proof: Since C is a cover, the local repairs that it represents solve all the
violations sets in D. Since we are dealing with local ICs, the set of updates
defined by T™ still solves all the inconsistencies. By Lemma 5, no new incon-

sistencies are added by applying the local repairs. Therefore, D(C) is a repair
of D wrt IC.

A

We need to prove that A(D, D(C)) < log(N) x A(D, D'). By definition of the
square distance, it holds A(D, D(C)) = Suep A({t}, {t*}). Let {t1,...,t,} be
the set of local repairs of ¢ such that {S(¢,41), ..., S(t,t,)} C C. When com-
puting t* for ¢, some of the S(¢,¢;) in C may not have been used. Assume that t*
is built using the local repairs t;,, ..., t;, , with {41,...,4,} € {1,...,n}. Thus,
it holds A({t}, {t*}) = S5_ A({t}, {t;,}) < L, A({t}, {t:}). In consequence,
SiepA{tH At} < Ygiaee At {t:}). Finally, we obtain A(D, D(C)) <
Ysiiee At At} = Xspiee wS(t 1) = 0 < log(N) x w® = log(N) X
A(D, D), for every LS-repair D’ of D. O

We have obtained that, for any set IC of local denials, there is a polynomial
time approximation algorithm that solves DROP(IC) within an O(log(N))
factor, where N is the number of violation sets for D wrt IC. As mentioned
before, this number N is polynomially bounded by |D| (cf. Proposition 5).
N may be small if the number of inconsistencies or the number of database
atoms in the ICs are small, which is likely the case in real applications.

However, we can get an even better approximation via a cover C obtained
with an approximation algorithm for a special case of the MWSCP: When the
number of occurrences of an element of U in elements of S (its frequency) is
bounded by a constant. For this case of the MWSCP there are approximations
based on “linear relaxation” that provide a constant approximation factor [23,
Chapter 3]. This is clearly the case in our application, being m x |F| x |IC/|
a constant bound (independent from |D|) on the frequency of each element of
U, where m is the maximum number of database atoms in an IC.

Theorem 6 There is a polynomial time approximation algorithm that, for a
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A

given instance D and a set IC of local ICs, returns a repair D(C) of D wrt

A

IC, such that A(D, D(C)) < ¢x A(D, D'), where ¢ is a constant and D’ is any
LS-repair of D. O

6 One Atom Denials and Conjunctive Queries

In this section we concentrate on the common case of one database atom
denials (1AD), i.e. of the form V—(A, B), where atom A has a predicate in
R, and B is a conjunction of built-in atoms. One atom denials are used in
practice. For example, they capture range constraints. They can also be used
as constraints on census data, which is usually represented as a single relation

[18].

It is not difficult to produce examples of instances that have exponentially
many LS-repairs wrt 1ADs. Thus, CQA is not necessarily easier under 1ADs.
Actually, we will see below that some decision problems around CQA are
NP-hard.

For 1ADs, we can identify tractable cases for CQA under LS-repairs by re-
duction to CQA for (tuple and set-theoretic) repairs of the form introduced
in [2] for key constraints. This is because each violation set (cf. Definition 7)
contains one tuple, maybe with several local repairs, but all sharing the same
rigid values. So, now the problem consists in choosing one from different tuples
with the same rigid values (cf. proof of Theorem 7 below). The transformation
preserves consistent answers to both ground and open queries.

The “classic” -tuple and set oriented- CQA problem as introduced in [2]
has been studied in detail for key dependencies in [12,19]. In particular, for
tractability of CQA in our setting, we can use results and algorithms obtained
in [19] for the classic framework.

The join graph G(Q) [19] of a conjunctive query without built-ins @ is a
directed graph whose vertices are the database atoms in (). There is an edge
from L to L' if L # L’ and there is a variable w that occurs at the position of a
non-key attribute in L and also occurs in L’. Furthermore, there is a self-loop
at L if there is a variable that occurs at the position of a non key attribute in
L, and at least twice in L.

For a conjunctive query without repeated database predicates and without
built-ins @, we write Q € Cryrest if G(Q) is a forest and every non-key to key
join of @ is full i.e. involves the whole key. Classic CQA wrt key constraints
is tractable for queries in Cpppest [19].

Theorem 7 For every fixed set of 1ADs and query in Cry.st, consistent query
answering under LS-repairs is in PTIME.
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Proof: Based on the tractability results in [19], it suffices to show that the LS-
repairs for a database D are in one-to-one and polynomial time correspondence
with the classic repairs based on tuple deletions [2,12] for a database D’ wrt
a set of key dependencies.

Since we have 1ADs, the violation sets will have a single element. Thus, for
an inconsistent tuple ¢t wrt a constraint ic € IC, it holds ({t},ic) € Z(D, IC).
Since all the violation sets are independent, in order to compute an LS-repair
for D, we have to generate independently all the local repairs ¢’ for all incon-
sistent tuples ¢ such that there exists and ic € IC with ({t},ic) € Z(D, IC).

Those local repairs can be found by considering all the candidate repairs (not
necessarily LS-minimum) that can be obtained by replacing, in each tuple,
the flexible attributes that appear in the ICs by all the values in the inter-
vals around the borders and around the values in D (cf. Lemma 1). Then,
one can check which of candidate repairs satisfy IC. Finally, those that min-
imize A({t},{t'}) are chosen. The number of repair candidates per tuple in
the database is O((|D| x |A|? + | Borders(IC)| x |A|)”1), where A is the set
of attributes and F is the set of fixable attributes. Thus, the total number
of repair candidates is O(|D|(|D] x |A[*> + |Borders(IC)| x |A|)1), which is

polynomial in the size of D.

Let us now define a database D’ consisting of the consistent tuples in D,
together with all the local repairs of the inconsistent tuples. By construction,
D and D' share the same rigid values. Since each inconsistent tuple in D
may have more than one local repair, D’ may become inconsistent wrt its
key constraints. Each classic repair of D’; i.e. obtained by tuple deletions, will
choose one local repair from D’ for each inconsistent tuple ¢ of D, and therefore
will determine an LS-repair of D wrt IC. Conversely, every LS-repair can be
obtained in this way. a

For queries () returning numerical values only, e.g. scalar aggregate queries,
which is common in our framework, it is natural to use a range semantics for
CQA [3]. In this case, the consistent answer to @ is the pair consisting of the
maz-min and min-max answers, i.e. the infimum and supremum, resp., of the
set of answers to () obtained from LS-repairs. In other words, the consistent
answer to a numerical query @ is the shortest interval [maz-min,min-max|,
such that for every LS-repair D', Q(D’) € [maz-min,min-maz).

We can see that the max-min and min-max answers to a query are the mini-
mum and the maximum answers, resp., considering all LS-repairs. So, finding
these values becomes a minimization and a maximization problem, resp., over
the class of LS-repairs. Correspondingly, the decision problems of CQA wun-
der the range semantics consist in determining if a numerical query ) has its
answer: (a) < k; in some LS-repair (the maz-min case); or (b) > ko for some
LS-repair (the min-max case).
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Our next result exhibits, for each of the common aggregate functions, a set
of denials and a scalar aggregate conjunctive query for which at least one of
these two decision problems of CQA becomes NP-complete.

Theorem 8 For each of the aggregation functions sum, count, count distinct,
and average, there is a fixed set of 1ADs and a fixed aggregate acyclic con-
junctive query with one occurrence of the function, such that CQA under the
range semantics is NP-complete. O

For the proof of this theorem we need a preliminary result.

Lemma 7 Consider a regular undirected graph G = (V, ) of degree 3 (i.e.
all the vertices have degree 3), and a function F' from sets of vertices S to
nonnegative integers defined as follows:
(1) For SCV,andv eV, F(S,v):=|T(S,v)]?, where:
/ / !/
T(S.0) = {v/ | € (V\Sé)and {v,v'} €&} ,ves

,UES
(2) F(S) = Tues F'(S,v).

The maximum value of F(S) over all possible sets S C V is (3% x |I]), for I a
maximal (wrt set inclusion) independent set. O

Proof: Let us first assume that S is an independent set, not necessarily max-
imal. In this case the value F'(S) is 3% x |S|, because each element v € S
is connected to three vertices in V . .S. Then, among independent sets, the
maximum value for F(S) is 3% X m, where m is the maximum cardinality of
an independent set.

For S C V, let G[S] denote the subgraph (5, &g), where Eg are all the edges
{v,v"} € £ such that v,v" € S. Now, if S is not an independent set, there
exists a maximum independent set Ig of G[S]. Every v € (V \. .S) is adjacent
to at least one vertex in Ig, otherwise Is U {v} would be an independent set
contained in S which is a proper extension of Ig, contradicting our choice of
Is. Now, define Fopy(S,v) = (F'(S,v) + Eppuyee F'(S,0)). Since every edge
v € (SN Ig) is adjacent to Ig, it is easy to see that:

F(S) <Y Fu(S,0). (2

vel

~—

We want to prove that F(S) < F(Ig). This, combined with equation (2),
shows that it suffices to prove that 3=, c;. Fent(S,v) < F(Ig). Since F(Ig) =
S vers F'(Is,v), we need to prove that 3 ,cr. Feat(S,0) < Ypers F'(Is,v). It
is sufficient to prove that F,.;(S,v) < F'(Ig,v) is true for every v € Ig. For
v e lgand S' = (5 \ Ig), we have the following cases:

(1) If v is adjacent to one vertex in S’, then F,.(S,v) < 23 4 23, and
FY(Is,v) = 3. In consequence, F..;(S,v) < (F'(Is,v) — 11).
(2) Ifwvisadjacent to two vertices in S’, analogously to (1), we get Fi.:(S,v) <
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(Fi(Is,v) — 10).
(3) Ifvis adjacent to three vertices in S, analogously to (1), we get F.(S,v) <
(F'(Is,v) — 3).

Thus, we have proved that F...(S,v) < F'(Ig,v), and therefore, that F(S) <
F(Is). We also know that, since Ig is an independent set, that F(S) < F(Ig) <
3% x m. O

Proof of Theorem 8: In all the cases, membership to NP is a consequence
of the existence of a polynomially bounded and polynomial-time verifiable
certificate, as established in Theorem 1. Now we consider hardness.

(a) For sum: By reduction from the NP-hard problem Independent Set for
Cubic Planar Graphs [21], where the vertices of the graph have all degree 3.

Given an undirected graph G = (V, ) of degree 3, and a lower bound k for
the size for a maximum independent set, we create a predicate Ver(V,C, Cy),
where the key V' takes vertices as values, and C1, (s are fixable and may take
values 0 or 1, but are all equal to 0 in the initial instance D. This relation
is subject to the denial ic : Yv,cy,com(Ver(v,ei,02),¢1 < 1,¢9 < 1). D is
inconsistent wrt this constraint, and, in any of its LS-repairs, each vertex v
will have associated a tuple Ver(v,1,0) or Ver(v,0,1), but not both.

Each LS-repair D’ of the database defines a partition of V' into two sub-
sets: S, with those v with Ver(v,1,0) € D’; and S’, with those v with
Ver(v,0,1) € D'. Clearly SU S =V and SN S = (). We also use pred-
icate Edge(V, Vo, W), with rigid attributes only, whose extension contains
Edge(vy, vy, 1) and Edge(vq, vy, 1) for {vy,v9} € €. So, every vertex v appears
exactly 3 times in each argument of Fdge-tuples in D.

Consider the ground aggregate conjunctive query Q:

q(sum(wg)) < Ver(vy,c11,c12), c11 = 1, Edge(vy, v, wy), Ver(vy, ca1, ca2),
co1 = 0, Edge(vy, v3,wy), Ver(vs,csr,cs2), c31 =0,
Edge(vy,v4,ws), Ver(vy, e, ca2), ca1 = 0.

Given an LS-repair as a partition of a set of vertices into two subsets S and
S’ for each vertex v € S, the body of Q will be satisfied m? times, where m is
the number of vertices of S’ that are adjacent to elements in S. This happens
because the query has three pairs of predicates Edge, Ver, each predicate can
be satisfied m times, and they are independent from each other (there are
no equality, non-equality or predicates connecting them). In consequence, the
whole body of the query will be satisfied m? times. Each satisfying assignment
of the body of the query brings value 1 to the multiset (wg) which is under the
sum aggregation function. That is, query () computes the nonnegative integer
function F', such that F'(S) gives the sum of cubes of the number of vertices
of YV \. S that are adjacent to vertices in S. More precisely, F'(S) = Q(D’), for
D' € Rep(D,IC) and S = {v | Ver(v,1,0) € D'}.
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Since this function is nonnegative and its value is zero for S = () and S =V,
we have that its minimum value in the repairs is zero. We are interested in the
maximum value for Q) in Rep(D, IC), i.e. the min-max answer introduced in

3]-

From Lemma 7, we have that the answer to query @ is at most 3% x ||, with
I a maximum independent set. In consequence, the min-max answer for () is
3% x m, with m the cardinality of the maximum independent set. Thus, there
is an independent set of size at least k iff min-max answer to Q > 33 x k.

(b) For count: Basically the same proof as for (a) applies. Only the query has
to be changed to:
q(count) «— Ver(vy, c11,c12), c11 = 1, Edge(vy, vg, wy), Ver(vy, car, ¢22),
Co1 = 0, Edg@(Ul, Vs, U)l), Ver(vg, C31, 032), C31 — O,
Edge(vy,vq, ws), Ver(vy, c1, ca2), ca1 = 0,w = 1.

(c) For count distinct: By reduction from MAXSAT. Assume that an instance
for MAXSAT is given. It consists of a set P of propositional variables, a
collection C of clauses over P, and a positive integer k. The question is whether
at least k clauses can be satisfied simultaneously. The answer will be Yes
exactly when a question of the form countd < (k — 1), with countd defined by
an aggregate query over a database instance (both of them to be constructed
below), gets answer No under the min-max semantics.

Define a predicate Var(U, Vi, Vs), being the first attribute the key, and the
second and third are fixable (the denial below and the minimality condition
will make them take values 0 or 1). The initial database contains Var(u,0,0)
for every u € P. Another predicate, Clause(u,c, s), has no fixable attributes.
Its extension contains Clause(u, ¢, s) for every occurrence of variable u € P
in a clause ¢ € C, where s an assignment for u satisfying clause c¢. The IC is
Yu, vy, vo—( Var(u, vy, v2),v1 < 1,v9 < 1). The acyclic query is ¢(countd(c)) «
Var(u,vy,vq), Clause(u, ¢, s),v; = s, where countd denotes the “count dis-
tinct” aggregation function. Its answer tells us how many clauses are satisfied
in a given LS-repair. The maz value taken on a LS-repair, i.e. the min-max

answer, will be the maximum number of clauses which may be satisfied for
MAXSAT.

(d) For average: By reduction from 3-SAT. We use the same predicate Var(U,
Vi1, V5) and IC as in (¢). Now, we encode clauses as tuples in the extension of a
predicate Clause(Val, Var,, Val;, Vars, Vals, Vars, Vals), which has no fixable
attributes. The extension contains tuples Clause(val,vary,valy,vars, vals,
vars), where var;, varg, varsg are the propositional variables in the clause (in
any order), val;, valy, vals are all the possible combinations of truth assign-
ments to variables (at most eight combinations per clause); and wal is the
corresponding truth value taken by the clause (0 or 1) given the values val;.
Now, the acyclic query

q(avg(v)) «— Clause(v,uq, vy, ug, vo, us, vs), Var(uy, vy, v)), Var(ug, vg, vh),
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Var(us, v, v5)
takes a maximum value 1 in an LS-repair, i.e. the min-max answer to ¢ is 1,
iff the formula is satisfiable. O

Notice that for the four aggregation functions one 1AD suffices (plus the 1ADs
that force numerical values not to be less that 0). For sum and count we use
a reduction from the Independent Set Problem with bounded degree 3 [21].
The general Independent Set Problem has bad approximation properties [23,
Chapter 10]. The Bounded Degree Independent Set has efficient approximations
within a constant factor that depends on the degree [22].

Theorem 9 For any set of 1ADs and conjunctive query with sum over a non
negative attribute, there is a polynomial time approximation algorithm with
constant factor for determining the min-max answer for CQA. a

The factor in this theorem depends upon the ICs and the query, but not
on the size of the database. The acyclicity of the query is not required. The
algorithm is based on a reduction of our problem to satisfying a subsystem
with maximum weight of a system of weighted algebraic equations over the
Galois field with two elements GF'[2] (a generalization of problems in [20,33]).
For the latter problem, a polynomial time approximation similar to the one
for MAXSAT can be given [33]. The long proof of this theorem is given in
Appendix A in [6].

7 Extensions

7.1 Dependencies between attributes

The notion of LS-repair that we introduced can be seen as a first approach to
the problem of defining and computing a semantically correct data set that is
close to the one at hand. Thinking of census like applications, the idea that
key constraints are satisfied makes sense. Data forms usually come partially
filled out, with the data for the identification fields already entered. It is the
data that is entered in situ the one that is subject to errors. Considering the
possible violation of the key constraints in this picture would require much
more research. Our results rely on the hardness of the key constraints.

We are also making the reasonable assumption that the dependencies between
fixable attributes are captured by the denial constraints, but the errors that
one can make when entering the individual attribute values are independent
from each other. A more sophisticated model could consider some sort of
stochastic dependency between the errors made in groups of attribute values.
This dependency should be captured by the distance function. This is an
interesting venue to explore that has to be left for future research.
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7.2 Minimum distribution-variation repairs

Repairing a database under minimization of the square distance to the original
database may not preserve the statistical or aggregate properties of the original
data, which in some applications could be relevant, like in census data. Given
that there may be several LS-repairs, we may prefer those that preserve the
data distribution.

As a first step in this direction, one could choose those LS-repairs such that,
for each fixable attribute, the frequency of values in the repair stay as close as
possible to the frequency of values in the original database. This is one way of
capturing the preservation of the data distribution. This choice assumes that
the different attributes are stochastically independent. Without attempting
to develop this direction in full, we briefly investigate in the following a first
possible approach. A deeper analysis of this class of LS-repairs under the
independence assumption, and also the study of preservation of statistical
properties when attributes are stochastically correlated are both material for
future research.

Definition 13 Let D and D’ be instances over the schema > = (U, R, B, A),
and R € R. (a) The distribution distance between D and D' wrt attribute
A of Ris AFA(D, D) = ¥ucpom(a)(count(a, R.A, D) — count(a, R.A, D"))?,
where count(a, R.A, D) gives the number of occurrences of value a in A of R
in instance D.

(b) The distribution distance Aq(D, D') between D and D’ is the maximum
of the distribution distances over all relations and their attributes.

(c) Given set of ICs IC, D’ is a minimum distribution variation repair (MDV-
repair) of D wrt IC'if D’ is an LS-repair that also minimizes A4(D, D’). O

Example 26 Consider the IC VN, E,S—(Emp(N,E,S),E < 5,5 > 5),
which requires that no employee with experience shorter than 5 years gets
a salary higher than 5 thousand. The inconsistent instance D = { Emp(Ann,
4,6), Emp(Bill,3,7), Emp(Chris, 2,2), Emp(Dan, 6, 6)} has the following
LS-repairs:

= {Emp(Ann, 4,5), Emp(Bill,3,5), Emp(Chris, 2,2), Emp( Dan,6,6)},
Dy = {Emp(Ann, 4,5), Emp(Bill,5,7), Emp(Chris, 2,2), Emp(Dan, 6, 6)},
D3 = {Emp(Ann, 5,6), Emp(Bill,3,5), Emp(Chris, 2,2), Emp(Dan, 6, 6)},
Dy = {Emp(Ann, 5,6), Emp(Bill,5,7), Emp(Chris, 2,2), Emp(Dan, 6, 6)}.
The distance is A(D, D;) = 2—1—22 =5Hfori=1,23,4.

Ay(D,Dy) = Maz{AY (D, Dy), AY(D, Dy), A3(D, Dy)}, with AY(D, D)
0, AF(D,D)) = 0, and AS(D, D,) = (count(5,S,D) — count(5,S, Dy))?
+ (count(6, S, D)— count(6,S, D1))* + (count(7,S, D) — count(7,S, Dy))?

22 + 12+ 12 = 6. Thus, Ay(D, D) = 6.

Ad(D,Dg) = Max{AéV(D,Dg), Ag(D,DQ), Ag(D,DQ)}7 with AéV(D,Dl) =

II“II
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0, AE(D, Dy) = (count(3, S, D) — count(3, S, D3))?+ (count(5, S, D)— count (5,
S, D5))? = 12+1% and A5 (D, Dy) = (count (5, S)— count(5, S, D3))? + (count (6,
S, D) — count(6,S, Dy))? = 1% + 12. Thus, Aq(D, D,) = 2.

This shows that repair D; has a bigger impact over the distribution than D.
Then, if we want to keep the statistical properties of the database we will
prefer Dy better than D;. Analogously, we can obtain Ay(D,D3) = 2 and
Ad(D,D4) = 6. Then, Ad(D,DQ) = Ad<D,D3) < Ad(D,Dl) = Ad(D,D4),
and the MDV-repairs are Dy and Ds. O

From Theorem 2 and the fact that for a database there is an LS-repair if and
only if there is a MDV-repair, we obtain

Proposition 7 The problem of existence of MDV-repairs under linear con-
straints is NP-complete. a

7.8 Aggregation Constraints

We may consider aggregation constraints (ACs) [31] expressed in terms of
aggregation functions, like sum, count, average. It is natural and common to
use those functions when processing numerical data.

Filtering ACs impose conditions on the tuples over which aggregation is ap-
plied, e.g. sum(A; : Ay = 3) > 5 contains a sum over A; of tuples with
Ay = 3, and checks if this sum is greater that 5. Multi-attribute ACs al-
low for arithmetical combinations of attributes as arguments for sum, e.g.
sum(A; + Ay) > 5 and sum(A; x Ay) > 100. If an AC has attributes from
more than one predicate, it is multi-relation, e.g. sumg, (A1) = sumpg,(A4;),
otherwise it is single-relation.

Having aggregation constrains together with denial constrains has an im-
pact on the class of possible repairs. For example, consider the relational
predicate R(A, B), with key A and fixable attribute B. If we have IC =
{Vx,y=(R(z,y),y > 1), sum(B) = 10}, any database with less than 10 tuples
has no repairs.

It is not difficult to see that for a fixed set IC of ICs containing denials and
aggregation constraints, NE(IC) is decidable. Here we will investigate the de-
cision NE = {(D, IC) | Rep(D, IC) # 0}, of existence of LS-repairs, whose in-
stances in this case consist both of a database instance and a set of constraints
(and a corresponding schema). We consider the variant of CQA where ICs are
also part of the instances.

Theorem 10 Under extended linear denials and complex, filtering, multi-
attribute, single-relation, aggregation constraints, the problems NFE of exis-
tence of LS-repairs, and CQA under the skeptical semantics are undecidable.

Proof: (sketch) Hilbert’s 10th problem on existence of integer solutions to
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diophantine equations can be reduced to NE. More precisely, given a dio-
phantine equation, it is possible to construct a database D and a set of ICs IC'
such that the existence of an LS-repair for D wrt IC implies the existence of a
solution to the equation, and viceversa. An example can be found in Appendix
B in [6]. For CQA, apply Proposition 2. A more detailed sketch of the proof
for NE and a representative example is given in Appendix B. in [6]. O

7.4 Other distances

Our results for the square distance rely basically on the additivity of the
distance on the tuples of the database and its monotonicity on the absolute
values of the differences between values for the same attribute. The property of
polynomial-time computability of the distance function is also required. Any
distance that satisfies these properties can be used instead of the Ly distance,
obtaining the same complexity results. In particular, all the results apply to
the “city” distance (or L; distance) given by the sum of those absolute dif-
ferences. Of course, when using the L; distance, we may get a different set
of repairs for the same database. The approximation algorithm can also be
used by computing the weights using the L instead of the L, distance. Thus,
the general complexity and approximability results still hold. For example,
the optimization and implementation of the approximation in [27] of the al-
gorithm for the DROP problem presented here uses the L, distance, without
any essential changes wrt the treatment based on the Ly distance.

The edit distance (ED) between two strings is the minimum number of sub-
stitutions, deletions and insertions of characters that are needed to trans-
form one string into the other. The hamming distance between two strings
of the same length is the number of positions that have different characters.
The hamming distance is an upper bound for the edit distance. For exam-
ple, HD(234,345) = 3, but ED(234,345) = 2. These distances are used in
data editing, but they are more appropriate for strings of characters, and
not for numerical data. Actually, our results would not apply to the edit
distance or the hamming distance, because they do not monotonically in-
crease over the absolute value of the difference between two attributes. For
example, for the numbers 21, 30 and 31, ED(21,30) = 2 > ED(21,31) = 1.
However, since |21 — 31| > |21 — 30|, the edit distance does not monoton-
ically increase over the absolute value of the difference. The same example
can be used for the hamming distance, because HD(21,30) = ED(21,30) and
HD(21,31) = ED(21,31).

Another problem with the edit and hamming distance is that there are too
many possible repairs to consider. For example, the database D = { P(a, 150)},
where the first attribute is the primary key and the second attribute is fixable,
is inconsistent wrt P(x,y) — y > 200. There exists only one LS-repair (under
the quadratic distance): D' = {P(a,200)}. If instead, we consider the edit
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distance, there are more than 40 repairs at distance one. For example: Dy =
{P(a,250)}, Dy = {P(a,350)}, D3 = {P(a,1050)}, D, = {P(a,1530)}, D5 =
{P(a,1590)}, D = {P(a,6150)}, D; = {P(a,1507)}, etc.

8 Conclusions

We have shown that fixing numerical values in databases poses many new
computational challenges that had not been addressed before in the context
of consistent query answering. These problems are particularly relevant in
census like applications, where the problem of statistical data editing [9,32] is
a common and difficult task. Also our concentration on aggregate queries is
particularly relevant for this kind of statistical applications. In this paper we
have just started to investigate some of the many problems that appear in this
context, and several possible extensions deserve to be explored.

We concentrated on integer numerical values, which provide a useful and chal-
lenging domain. Considering real numbers in fixable attributes opens many
new issues, requires different approaches; and must be left as a subject of fu-
ture research. Some of the results presented here carry over to the case of real
numbers. However, apart from the technical problems, the main complication
is to come up with a right repair semantics in the presence of real numbers,
in particular in comparisons of attributes. For example, if two attributes A, B
take the same value, but a constraint prevents this from happening, it is not
clear what new values have to be given to them in order to restore consistency.
Most likely making them differ by an infinitesimal quantity would not make
much sense in most of the applications. We could accept an epsilon of error
in the distance, in such a way that if, for example, the distance of a repair is
5 and the distance to another repair is 5.001, we could take both of them as
(minimum) LS-repairs.

What is essential about the numerical domain, in our case, the integers, is
that we have a discrete linear order and a numerical distance function that
is monotonic on the length of the interval between two arbitrary elements.
In consequence, the framework established in this paper could be applied to
qualitative attributes which have an implicit linear order given by the applica-
tion. Also numerical distances, like the ones introduced here, could be applied
to domains other than numerical if their elements can be naturally mapped
to numbers.

The result we have presented for fixable attributes that are all equally relevant
(cr, = 1 in Definitions 1 and 2) should carry over without much difficulty to
the general case of arbitrary weighted repairs. We have shown how to extend
our approach in order to consider minimum distribution variation LS-repairs
that keep, in some sense, the overall statistical properties of the database.
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Other open problems refer to the identification of cases of polynomial com-
plexity for linear denials with more that one database atom; approximation
algorithms for the DROP for non-local cases; and approximations to CQA
for other aggregate queries. More research on the impact of aggregation con-
straints on LS-repairs is needed.

For related work, we refer mainly to the literature on consistent query an-
swering. In [4] an earlier survey with abundant references can be found. More
recent surveys can be found in [5,13]. Most of the research on consistent query
answering has been carried out appealing to a tuple oriented repair semantics,
i.e. minimal repairs are obtained through tuple insertions or deletions. Under
the set-theoretic, tuple-based semantics, [12,11,19] present results on complex-
ity of CQA for conjunctive queries, functional dependencies and foreign key
constraints. A majority semantics was studied in [26] for database merging.

The range semantics for CQA of aggregate queries was introduced and investi-
gated in [3]. In that paper, the NP-completeness of CQA for atomic aggregate
queries, tuple-based and set-oriented repairs, and functional dependencies was
established.

Previous research reported in [34] and [18] is the closest to our work, because
changes in attribute values are basic repair actions. However, the peculiari-
ties of numerical values and quantitative distances between databases are not
investigated.

Recent research presented in [17] investigates the complexity of repair checking
and CQA wrt aggregation constraints. In this case, the constraints impose lin-
ear restrictions on summarizations. The repair semantics is based on changes
of numerical attribute values, as in our case. However, the distance between
instances does not consider the numerical values, but the set of changes wrt
cardinality or set inclusion. Queries are atomic, without aggregation. Compu-
tational mechanisms are not considered. However, in [16] the authors present
a system that uses linear programming techniques for computing a repair wrt
aggregation constraints. The repair minimizes the number of changes of at-
tribute values.

In [27], optimizations, the implementation, and experiments of/with the ap-
proximation algorithm for DROP are presented.

A repair semantic based on changes of attribute values is also considered in
[7]. The ICs considered are functional and inclusion dependencies. Database
tuples have numerical weights that may reflect provenance in data integration.
In consequence, a repair has a weight that reflects the weights of the tuples
modified by it. Except for these external weights, numerical attributes values
are not investigated. The authors concentrate of developing and investigating
heuristics for computing minimum cost repairs, but consistent query answering
is not addressed.
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There is interesting work in the area of statistical data editing [32]. Simi-
lar to integrity constraints, edits are used to express conditions that a data
set should satisfy [15]. Edits can be expressed as linear inequalities. There
are several alternative ways of modifying the data so that edits are satisfied
[15,10,8,9]. Those methods are tailored to finding a single “repair”. Consistent
query answering has not been considered in that area, and, to the best of our
knowledge, the complexity of the problem has not been investigated.
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Appendix A: Theorem 9 (approximation algorithm for sum)

First we reduce CQA under range semantics for aggregate queries with sum
to RWAE2, a restricted weighted version of the problem of solving algebraic
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equations over GF[2], the field with two elements. Next, we prove that such
an algebraic problem can be solved within a constant approximation factor.

(A) Reduction to RWAE2. In order to define polynomial equations, we in-
troduce a set V of variables X/, taking values in GF[2], for every tuple t;
in an LS-repair corresponding to a tuple ¢ (a ground database atom in the
database) with key value k in the extension of a predicate R in the original
database. That is, t; belongs to some LS-repair and t; and t share the key
value k. For example if the tuple ¢ is consistent or admits only one local re-
pair (one attribute can be changed and in only one way), only one variable is
introduced due to ¢. Denote with bag(t) the set of variables introduced due to
a same initial tuple ¢.

Consider a conjunctive query Q(sum(z)) «— Ry(Z),--- , Ry(Z). Throughout
the proof, ¢ is the body of the query as a conjunction of atoms, m is the
number of database predicates in v, n is the number of tuples in the database,
k is the maximal number of attribute comparisons in the ICs (and the maximal
number of repairs of a given tuple).

We may consider all the possible assignments [ from database atoms in the
query to ground tuples in repairs that satisfy . The number of assignments
is polynomial in the size of the database, actually not greater than n"™. Notice
that the number of LS-repairs of a database may be exponential, but the
number of local repairs of each original tuple is restricted by the number of
attributes of the tuple. So, the number of all possible LS-repairs of tuples is
polynomial in the size of the original database (even linear). Here we are using
the fact that we have 1ADs.

Now, we build a system &£ of weighted algebraic equations. Each such assign-
ment 3 is associated with a combination of tuples thllm» woe b, satistying
1. For each combination, we put the following equation E° over GF[2] into

E:
selected
X X [ X [T X =1 ()
i iFim

not—selected

The first product in (3), before the first [], contains the variables corresponding
to the tuples selected by 3. The rest of the product contains variables for those
tuples that were not selected. That is, if ¢; appears in the first product, with
t1 € bag(t), and ty € bag(t), with t; # to, then the variable X5 corresponding
to ty appears as (1 — X3) in the second part of the product. This captures
the restriction that no two different tuples from the same bag can be used
(because they share the key values). For each combination /3 of tuples in LS-
repairs, there is no more than one equation, which in turn has a polynomial
number of factors.

Equation (3) gets weight w(E?), that is equal to the value of the aggregation
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attribute z in f.

In this way we have an instance of the RWAFE2 problem, that requires to
find the maximum weight for a subsystem of £ that can be (simultaneously)
satisfied in GF'[2]. Here, the weight of the subsystem is the sum of the weights
of the individual equations. This problem also has a natural version as a
decision problem, so as CQA under the range semantics.

Claim: The maximal weight of a satisfied subsystem of £ is the same as the
maximal value of Q(sum(z)) over all possible LS-repairs of D.

(>) Assume that query () takes a maximum value over all possible LS-repairs
of D in an LS-repair D’. Under 1ADs, an LS-repair D’ is a union of local
repairs, with one local repair selected for every original tuple. Consider an
assignment A defined on V that maps variables corresponding a selected local
repair to 1 and all other variables to 0.

Consider all sets of local repairs which simultaneously satisfy . If local re-
pairs ty,--- ,t,, satisfy 1, then there exists exactly one equation e for that
given set of local repairs. The equation e will be satisfied because variables
corresponding to the selected local repairs have value 1, and “not-selected”
variables have value 0. So, for every set of local repairs satisfying the query
body, there would be a satisfied equation with weight equal to the value of
aggregated attribute. This means that a solution to the algebraic equation
problem is greater or equal to the maximal query answer (min-maz answer).

(<) Consider an assignment A which is a solution of the algebraic equation
problem. It maps elements of V to {0,1}, in such a way that the weight of
satisfied equations of £ is maximum over all possible assignment for V.

First we prove that if there exists a bag B such that more than one of its
variables is mapped to 1, then there exists an assignment A’ with the same
weight of satisfied equations of £ as A, but B contains no more than one
variable mapped to 1.

Assume that for a bag B, more than two variables (let us say X;, X;) are
mapped to 1. This means that every equation which contains variables from
B will be unsatisfied, because it contains either (1 —X;) or (1 —X;) as factors
in the equation. If we change a value of one of the variables (say X;) to 0, then
no satisfied equation becomes unsatisfied, because satisfied equations do not
contain X;. No unsatisfied equation becomes satisfied, due to the assumption
of maximality of the weight of the satisfied subset of E for A.

In a second step, we prove that if A is a maximal assignment and there exists
a bag B such that all of its variables are mapped to 0, then there exists an
assignment A’ that satisfies the same subset of £ as A, but at least one variable
from that B is mapped to 1.
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If all variables from a bag B are mapped to 0, then all equations which contain
variables from B are unsatisfied. If we change a value of one variable to 1, then
no satisfied equation becomes unsatisfied, because all satisfied equations do
not contain variables from B. No unsatisfied equation becomes satisfied due
to the maximality assumption about the weight of the satisfied equation for
A. Taking step by step all the bags from V), for a given maximum assignment
A, we produce an assignment A’, which has exactly one variable from each
bag mapped to 1.

Now, we construct an instance D’ which is the set of local repairs correspond-
ing to variables mapped to 1. It is obviously a LS-repair, and w(E(A)) <

QD).

(B) A deterministic approximation algorithm for RWAEZ2. The construction
and approximation factor obtained are similar those in the approximation of
MAXSAT [33,29]. In two steps, first a randomized algorithm is produced, that
is next de-randomized.

(B1) Randomized approzimation algorithm. Assume that from each bag we
select one variable with probability 1/k, where k is the number of variables
in the bag. We map the selected variable to 1 and all other variables in the
bag to 0. For each equation e, the random variable W, denotes the weight
contributed by e to the total weight W. Thus, W = > s W, and E[W,]| =
we + Prle is satisfied], where E is the mathematical expectation and Pr is the
probability.

If the query contains m predicates, then each equation contains no more than
m variables from different bags (never two different variables from the same
bag), then E[W.] > k~™w,. Now, by linearity of expectation,

EW] =Y EW,]>k"™Y w, >k OPT.

ec& ecé

(B2) De-randomization via conditional expectation. We first establish
Claim: The RWAE2 problem is self-reducible [33, chapter A.5].

In fact, assume A’ is a partial assignment from V), such that the variables
Xi, -+, X; are mapped to {0,1}. Let £° be the set of equations satisfied
by A" with total weight W[E®]. £ is the set of equations which cannot be
satisfied under A’. Let E” be a set of equations from & \ (€% U &Y), such
that the variables from Xi,--- , X; are replaced by their values. By additivity
of the weight function and the independence of the variables, the maximum
weight of satisfied equations under an assignment which extends A’ is W[E*]+
maxW [E"], where W[E"] is a solution of the RWAE2 problem restricted to
E". 1t is good enough to consider the self-reducibility trees T' such only one
variable from each bag gets value 1 along any path in the tree. This establishes
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our claim.

Assume that a self-reducibility tree T is given, with each node in it corre-
sponding to a step of the self-reduction. Each node v of T is labeled with
Xy =ay,...,X; = a;, a partial assignment of values to variables Xy, -+, X; €
) associated to the step for v of the self-reduction. Since this is a partial
assignment, some of the equations in £ become immediately satisfied, other
unsatisfied, and some other undetermined. The latter become a set of equa-
tions E’ associated to v on variables V ~\ {Xj,..., X;}, obtained from & by
giving to the variables X1, ..., X, their values ay, . .., a;. By construction, these
equations inherit the weight of the corresponding equations in £.

For example, if the set of equations consists of: (1), yp(l1 — x) = 1, (2)
2xz(1—y) =1, (3) 3zw(1 —y) = 1, with variables x,y, z, p, w, and the partial
assignment, at some step of self-reduction for v is x = 1,y = 0,w = 1, then
equation (1) becomes unsatisfiable, (2) is not satisfied but possibly satisfiable
with an appropriate value for z; and (3) satisfied. So, E’ contains equation
(2), but with z,y replaced by their values 1,0, resp.

The conditional expectation of any node v in T can be computed via its sets of
equations E’ we just described. Clearly, the expected weight of satisfied equa-
tions of £’ under a random assignment of values in GF[2] to V~{X},..., X;}
can be computed in polynomial time. Adding to this the weight of the equa-
tions in & already satisfied by the partial assignment X; = aq,...,X; = q;
gives the conditional expectation.

Then, we compute in polynomial time a path from the root to a leaf, such
that the conditional expectation of each node on this path is > E[W]. This
can be done as in the construction in [33, theorem 16.4].

In consequence, we can find a deterministic approximate solution to the RWAFE2
problem in polynomial time. It approximates the optimum solution with a fac-
tor greater than £~™. It means that we can approximate the maximal value
of the aggregate conjunctive query within a factor £, which depends on the
ICs and the query, but not on the size of the database. This ends the proof.

For example, the query with sum used in the proof of the NP-hardness in
Theorem 8 has m = 4,k = 2, then it can be approximated within the factor
274,

Appendix B: Theorem 10 (proof sketch and example)

Consider a Diophantine equation £ : t; + 1ty + --- + t, = 0, where the t;
are terms over the variables zy,...,z,, (and integer constants). We create an

instance of the problem of existence of an LS-fix with an instance D and set
of ICs IC.
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For each term t;, introduce a predicate R; of arity a;+- - -+ a,, +2, where a;, is
the maximum degree of the variable zj in the equation. The attributes of R;
are K, C, and X,f;, with £ € {1,...,m} and j € {1,...,ax}. All the attributes
of R; take integer values.

We insert |b;| tuples into relation R; in D, where b; is the coefficient of the term
t;, as follows: If the degree of the variable x; in term t; is dj;, then for each
tuple in R;, the value of X7 is 0 for j € [1, dy;], and 1 for j € (dy;, ax]. For each
R;, K takes as values unique global identifiers for the tuples. In particular,
attribute K is a key for each of the predicates in the schema. Attribute C'
takes value 1 in case b; > 0, and —1, otherwise. We illustrate this construction
by means of a representative example.

Consider the diophantine equation E: 2x%y* + 3xy + 105 = 2%y3 + y2. The
most general product of variables in E is potentially P : x3y?, because the
maximum exponent of x in F is 3; the same for y. Each term ¢ in it will be
represented by a relation R(t) with 8 attributes taking values in N: the three
attributes X5, Xs, X3, representing, resp., the third occurrence of x in the term
23, the second occurrence of x (i.e. #?), and the first occurrence of z (i.e. =
itself) in the term. So, 3 attributes because 3 is the maximum exponent of x
in E. We also have three other attributes, Y7, Y5, Y3 (for the same reason wrt

Y)-

The idea is that (X7, X, X3,Y7,Ys,Y3) stands for the “maximum” product
P:xz-x-x-y-y-y. The product of variables in the first term of E is 2312,
which is proper factor of P. The product z3y? is represented as the combina-
tion (0,0,0,1,0,0) of values for (X, Xo, X3, Y, Ys,Ys), where the sequence of
values means that z3 is present (value 0) in the general product P, also x?
and z'. However, ¢ is not present in (is not a factor of) P and Y] gets value
1. Since both 92,y appear in P, attributes Y5, Y3 take value 0.

Finally, we have the rigid attribute C, for the constant terms, plus a last one,
K. The latter attribute is a key and is used in the initial data to store a
unique global identifier for each tuple in the database. Since K is rigid, the
identification values will stay in any repair. We chose to make K numerical,
but this not essential. The fixable attributes in R(t) are the X7, Y7 such that
3791 resp. 37/t appears in ¢ (as illustrated above).

In the initial instance, value 0 for an Xj,Y; attribute indicates that the term
appears in t, otherwise it gets value 1. We introduce as many copies of the
same tuple in R(t) as the absolute value of the coefficient of the term; the
tuples differ only in the value of K. Notice that with this construction, only
those attributes that take only value 0 are subject to fixes (the other only take
non-zero values). These are the relations and their ICs:
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RQ2z%%) | X1 Xy X3
0 0 0
0 0 0

=
o ol
o o]

C K
1 1 1
1 1 2
Here, attributes X, X, X3, Y, Y3 are fixable. Y] is rigid, because y* does not
appear in the term (or, equivalently, there is no third occurrence of y in it).
Its value 1 everywhere in the term cannot be changed and makes sure that it

will not affect the value of a multiplicative term. For this table we have the
following set IC(2z%y?) of ICs:

(a) Denials expressing that the same variable takes the same value everywhere,
and 1 values cannot be changed (due to the rigidity of the corresponding
attribute, we may drop this denial):

Vay - 2g=(R(2x%y?) (21, . .., 28) A 11 # 13),
Vay - xg—(R(22%y%) (21, . . ., 28) A 19 # T3),
Vay - wg—(R(2x3y?) (21, . .., w8) A x5 # T6),
Vo - as(R22%y) (@1, ... w8) Aay # 1)

(b) Denials expressing that the tuples take the same values, except for the
value of K:

Vay - 26— (R(223%y?) (21, . . ., x8) A R(223y?) (g, -+, 116) ATy # Tg), ...
Vay - 26 (R(223y?) (21, . . ., 28) AR(22%y*) (29, - - , T16) A5 # T13), ete. (ex-
cept for the case xg # x14)).

A relation for the second term:

RBaxy) | X1 Xy X3 Y1 Y2 Y3 C
1 1 0 1 1 o0 1

1

1

1 1 0 1 1 O
1 1 0 1 1 0

ol W X

Here, attributes X3, Y3 are fixable. These are the denials (similar as for the

previous term) IC(3zy):

—

Vay -z (R(3zy) (21, - . ., w8) A R(3zy) (w0, . . ., T16) A T3 # T11),
Vay - 2160 (R(32y) (21, - - - 28) A R(3wy) (w9, -+, T16) A 6 # T14),
Vay -y R(3ay)(an,..., ) Ay # 1),
vxl"'fES_'( (31‘y)(£1,...,l‘8)/\$27é1),
Vg« xg ~(R(Bxy)(zq, ..., 28) Ay # 1),
Vay - xg—(RBzy) (21, ..., x8) A xs # 1).

Finally, a relation for the constant term, without fixable attributes, and its
set 1C(105) of denials:

R105) | X1 X5 X5 Y1 Yo V3 C K
11 1 1 1 1 105 6

VSU1 .. xsﬁ(R(105)(.’L’1, . ,xs) AN 1 7& 1))

23



Vay - 25— (R(105) (21, . . ., x8) Azg # 1),
Vay - 2g—(R(105) (21, . .., x8) A s # 1),
Vay - xg—(R(105)(xy, ..., x8) Azy # 1),
V- xg=(R(105) (21, ..., x8) Axs # 1),
Vay -+ g-(R(105) (21, . . ., w8) Azg # 1),
V- 260 (R(105) (21, - -, w6) A 27 # 105).

As an alternative, we can insert either 105 tuples with C' = 1 into this relation.

Relations R(z*y®) and R(y?), with one tuple each, and corresponding sets of
ICs can be generated in a similar way for the terms on the right-hand side of

E.

Having constructed all the individual relations and their denials, we need
additional denials that ensure that each variable z or y takes the same value
across relations (or terms):

V- x160(R(22%%) (21, . . ., 28) A R(3zy)(m9, - - -, T16) AT3 # T11),
Vay - 26— (R(223y?) (21, ..., 28) A R(3 xy) (o, ..., T16) N\ Te # T14),
V- z6-(R(223y%) (21, . . ., w8) A R(2? 3)(5169, ©,T16) N\ T3 # T11),
Vxl c T _'(R(233'3y2>(1'1, cee 73;8) A R( )(l’g, B 7x16) N Tg 7é 3714),
v.%l - T16 _'(R(2I3y2)(l’1, Ce ,1’8) A R( 2)(1’9, C.e 7$16> A\ T §£ ZL’14).

Notice that the ICs of the form (a) above take care of the equality of values
(actually occurrence) of a variable and its powers in a same term.

Finally, we need a relation that represents the equation and the equality of
the terms on the two sides of the equality. This single relation R(equ) is
constructed by appending the previous tables:

R(equ) X1 X2 X3 Yl Y2 }/3 C K
0 0 0o 1 0 0 1 1
0 0 0 1 0 0 1 2
1 1 0o 1 1 0 1 3
1 1 0 1 1 0 1 4
1 1 0 1 1 0 1 )
1 1 1 1 1 1 105 6
1 0 o o o o -1 7
1 1 11 0 0 -1 8

In this relation, the first six attributes are fixable. However, the 1 values in
them will not be changed in a repair, because those values cannot be changed
as required by the ICs on the relations that represent the individual terms.
For this to work, we need ICs stating the correspondence between the terms
in the tables R(t) and their occurrence in relation R(equ):

Vi - zgm(R(equ)(zy, - . ., x8) A R(2x3y?) (mg, . .., T16) A Ty = 116 A T1 # Tg),
Vay - g (R(equ)(z1, . . . 7558) AR(22%y )($97 c 5 T16) ATy = T16 A Ta # T10),
<oy Vxl ce $16_|<R(€qu>($17 e 71:6) A\ R( )( Ty .-~ Ilﬁ)/\ Trg = T1g A Ty 7é I15).
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Finally, we need one aggregation constraint that requires the satisfaction of
equation E, namely  sump(equ) (X1 - Xo- X3-Y1-Yo-Y5-C) = 0.

If the database has an LS-fix, then there is an integer solution to the dio-
phantine equation. If the equation has a solution s, then there is an instance
R(equ)’ corresponding to s that satisfies the ICs. By Proposition 1, there is
an LS-fix of the database.

Notice that this reduction could be done with the table R(equ) alone, making
all the ICs above to refer to this table, but the presentation would be harder
to follow.
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