The Semantics of Consistency and Trust in Peer
Data Exchange Systems

Leopoldo Bertossi' and Loreto Bravo?

1 Carleton University, School of Computer Science, Ottawa, Canada.
bertossi@scs.carleton.ca
2 University of Edinburgh, School of Informatics, Edinburgh, UK.
Ibravo@inf.ed.ac.uk

Abstract. We propose and investigate a semantics for peer data ex-
change systems (or peer data management systems) where different peers
are pairwise related to each other by means of data exchange constraints
and trust relationships. These two elements plus the data at the peers’
sites and the local integrity constraints for a peer are made compatible
via the proposed semantics by determining a set of solution instances,
which are the intended virtual instances for the peer. The semantically
correct answers from a peer to a query, called its peer consistent answers,
are defined as those answers that are invariant under all its different so-
lution instances. We show that solution instances can be specified as the
models of logic programs with a stable model semantics.

1 Introduction

A peer data exchange system (PDES) consists of a finite set of peers {P1,...P,},
each of them with a local database instance. Peers may be pairwise related by
means of logical sentences, called data exchange constraints (DECs), which are
expressed in terms of the participating schemas and are expected to be satisfied
by the combined data. Furthermore, a peer P may trust its data the same as or
less than other peers’ data, i.e. there may be trust relationships between pairs of
peers. We may also have integrity constraints (ICs) that are local to each peer.

The DECs could be seen as ICs on a global database obtained by conceptually
putting together all the peers’ schemas and data. Most likely, these DECs will
not be satisfied in this global database, but virtually enforcing their satisfaction
at query time has the effect of shipping (sub)queries and data between peers.
Actually, in such a PDES, a query Q is posed to a peer P, who, in order to
answer it, may need to consider both its own data and the data stored at other
peers’ sites that are related to P by DECs. Keeping P’s DECs satisfied at query
time may imply getting data from other peers to complement P’s data, but also
not using part of its own data.

The decision by a peer P on what other data to consider does not depend only
on its DECs, but also on the trust relationships that P has with other peers. For
example, if peer P trusts peer Q’s data more than its own, P will accommodate
its data to Q’s in order to keep the DECs between them satisfied.

In order for P to return meaningful answers, its local semantic constraints
have to be taken into account. The consistency of its instance should be pre-
served when it is virtually updated due to the interaction with other peers. In
consequence, still at query time, P may also need to “virtually repair” its data.

Our semantics makes all these elements compatible, by defining a set of
virtual global instances called solution instances (or simply solutions) for a peer.
In consequence, the “data” for a peer, the one in its solution instances, depends
upon its instance, the local instances of the related peers, the satisfaction of the
DECs, and the satisfaction by P of its local ICs. After that, having a precise
definition of the intended solution instances for a peer P, the peer consistent
answers (PCAs) from peer P to query Q are defined as those answers that can
be retrieved from every possible solution for P.

The definition of solution for P may suggest that P may physically change
other peers’ data, but this is not the case. The notion of solution is used as
an auxiliary notion to characterize the correct answers from P’s point of view.
Ideally, P should be able to obtain its peer consistent answers just by querying
the already available local instances. This resembles the approach to consistent
query answering (CQA) in databases, where consistent answers to a query posed
to a database, which is possibly inconsistent wrt to a given set of ICs, are defined
as those answers that can be retrieved from every minimally repaired version of
the original instance. Methods have been developed for computing these answers
without having to physically repair the given instance [1, 8, 9].

Our work goes in the direction of semantic approaches to peer-to-peer data
exchange [26, 28, 27, 13, 20, 7, 14, 22]. In [7] trust relationships were introduced
for the first time in this scenario and the notions of solution instance for a
peer and of peer consistent answer to a query were introduced. The case of a
peer and its immediate neighbors was considered and investigated. However, the
situation where a peer is related by logical transitivity via DECs to other, non
neighboring peers was not modelled. Actually, in [7] it was only indicated that
giving a semantics to solution instances for a peer that consider the transitive
relationships to other peers could be done by using logic programs with stable
model semantics. We fully develop this idea here. First, we provide a general
model-theoretic definition of solutions for a peer, including the transitive case,
and next, we specify the solutions as the models of disjunctive logic programs
with stable model semantics [23], aka. answer set programs [24, 3].

Logic programs can capture the different ways the system stabilizes after
satisfying the DECs, the trust relationships, and the local ICs. Disjunctive pro-
grams allow for the specification of alternative virtual updates on data sources
under certain conditions. We propose appropriate logic programs and then we
establish that there is a one-to-one correspondence between the set of solution
instances for a peer and the set of stable models of the program. Logic programs
provide an expressive language for representing and specifying the alternative
solutions for a peer, and become executable specifications for computing peer
consistent answers. This approach has been exploited in CQA, where database
repairs are specified as stable models of a program [2, 25, 4, 16].

2 A Semantics for PDESs

We consider peers that have mutually disjoint relational schemas; but all of them
share a possibly infinite database domain . Peers are denoted by A, B, P, Q, ...

Definition 1. A peer data exchange system ‘P consists of: (a) A finite set
P of peers, with each peer P owning a relational database schema R(P), and

a database instance D(P) conforming to schema R(P). The schemas determine
FO languages, e.g. L(P), L(P,Q). (b) For each peer P, collections X'(P,Q) of
sentences of L£(P,Q), which contain the DECs between P and a peer Q. Here,
Y(P) == Uy ¥(P,Q) and X := Upep ¥(P). (c) For each peer P, a set of L(P)-
sentences [C(P) that are ICs on R(P). Here, IC = (Jpcp IC(P). (d) A relation
trust C P x {less, same} x P, with exactly one triple of the form (P, -, Q) for each
non empty X' (P, Q). a

The intended semantics of (4, less,B) € trust is that peer A trusts itself less than
B; while (4, same,B) € trust indicates that A trusts itself the same as B.

Definition 2. (a) A universal data exchange constraint (UDEC) between peers
P1, P2 is a first-order (FO) formula of form:

n
va(\ Ri(zi) — (\ Qi) v 9)); (1)
i=1 j=1
where the R;, Q); are relations in R(P1)UR(P2), ¢ is a formula containing built-in
atoms' only, and Z;,5; C Z. (b) A referential data exchange constraint (RDEC)
between peers P1, P2 is an £(P1,P2)-sentence of the form:

Vz(R(z) — Ty Q@' 9)); (2)
where R,Q € R(P1) UR(P2), and &’ C Z. O

Notice that the sets of DECs X(P1,P2) and X'(P2,P1) can be different. When
exchanging or repairing data, the existential quantifier in RDECs will be inter-
preted as a null value. By having one database atom in the consequent, we avoid
existential joins that, when filled with nulls, do not have a clear semantics (cf.
[11] for a discussion and a FO semantics of nulls in SQL databases).?

Example 1. Consider a PDES 9 with four peers and R(P1) = {R!(-,-)}, R(P2) =
[R2(,-), $()}, R(P3) = {R3(,)}, R(P4) = {RA(-,-,-)}, and DECs;

S(P1,P2)= {Vay(R%(z.y) — R\(z, 1)},

Y (P2,P3)= {Vay(R%*(z,y) A R*(x,y) — false)},

Y(P4,P2)= {Vayz(R%*(z,y) A S*(y,2) — R*(z,y,2))},

Y(P4,P3)= {Vay(R3(z,y) — F2R*(z,y,2))}.

Here false in the second DEC is a built-in atom that is false in every instance, so
the DEC specifies that relations R? and R? are disjoint. The DECs in X (P1, P2),
X(P2,P3) and X'(P4,P2) are UDECs and the one in X'(P4,P3) is a RDEC. Finally,
we could have trust = {(P1,less,P2), (P2,same,P3), (P4,less,P2), (P4,less,P3)}.
Peer P1 trusts P2 more than itself, and it will import all the data from R? into
its table R'. On the other hand, peer P2 trusts peer P3 as much as itself, and its
DEC states that it is not possible to have the same tuple in both R? and R2. O

Local ICs IC(P) are also of the form in Definition 2, but with all database
predicates in R(P). So, we can identify IC(P) with X'(P,P). All the common ICs
found in database practice can be accommodated into these syntactic classes.

! For example, # 3, y = z and z > 3.
2 Our framework can be easily adapted to cases where, instead of null, one uses arbi-
trary elements of the database domain [12] or labelled nulls [29)].

In particular, using the atom false, denial constraints are of the form (1). In
Example 1, we could have IC(P2) = {VaVy(R?(z,y) A S*(z,y) — false)}.

Each peer P is responsible for maintaining its material instance consistent
with respect to its ICs IC(P), independently from other peers; and we may
assume that this is the case. However, our semantics works the same if we allow
peers with locally inconsistent data. According to our semantics presented below,
unsatisfied local ICs are considered when solution instances are specified, which
is done by using a repair semantics and techniques developed for CQA [9, 6].

When a peer P is posed a query, it may have to submit queries to other peers
according to its DECs, using data in other peers’ relations appearing in them.
Data brought from other peers will possibly cause virtual updates on P’s data,
which may create virtual violations of P’s local ICs, which has to be considered.

From the perspective of a peer P, its own database may be inconsistent with
respect to the data owned by another peer Q it trusts more or the same, and the
DECs in X'(P,Q). When P queries its own database, the answers from P should
be consistent with X(P,Q) and its own ICs IC(P). In principle, P, which is not
allowed to change other peers’ data, could try to physically repair its database in
order to satisfy X'(P) U IC(P). This is not a realistic approach. Rather, P should
solve its semantic conflicts at query time. This leads to a set of virtual instances,
the minimal repairs of P’s local database, where P’s DECs and ICs are satisfied,
while respecting P’s trust relationships to other peers. The answers returned by
P to the user are those that are true of all these instances.

The solution instances of a peer will be determined not only by its relation-
ships with its neighbors, but also by the neighbors of its neighbors, etc.

Definition 3. (a) The accessibility graph G(B) of a PDES ‘P contains a vertex
for each peer P € P and a directed edge from Pi to Pj if ¥'(Pi,Pj) is non empty.
An edge from Pi to Pj is labelled with “<” when (Pi, less,Pj) € trust, and with
“=” when (Pi, same,Pj) € trust.> (b) Peer P’ is accessible from P if there is a
path in G(3) from P to P’ or if P’=P. Peer P’ is a neighbor of P if there is an
edge from P to P’ in G(P), or if P’ = P. With AC(P) and N (P) we denote the
sets of peers that are accessible from P and the neighbors of P, respectively. For
P € P, G(P) is the restriction of G(3) to AC(P). m|

Bk -

(b) G(P1) (c) G(P4)
Fig. 1. Graphs for Example 2

Ezample 2. (Example 1 continued) In this system, AC(P1) = {P1,P2,P3}, AC(P2)
= {P2,P3}, AC(P3) = {P3}, AC(P4) = {P2,P3,P4}, N(P1) = {P1,P2}, N(P2) =
{P2,P3}, N'(P3) = {P3}, and N (P4) = {P2,P3,P4}. O

3 In case a peer P trusts itself more than another peer, the information of the latter
is irrelevant to P.

The data distributed across different peers has to be appropriately gathered
to build solution instances for a peer, and different semantics may emerge as
candidates, depending on the granularity of the data sent between peers. We
develop one of them,* according to which, the data that a peer P receives from
a neighbor Q to build its own solutions is the intersection of the solutions for
Q. After P collects this data, only P’s DECs and ICs are considered. This is a
recursive definition since the solutions for the neighbors have to be determined,
under the same semantics. Base cases of the recursion are peers with no relevant
DECs. In consequence, this semantics requires an acyclic accessibility graph.

In [26] problematic cases involving cyclic dependencies through DECs are
identified, which implicitly involve a cyclic accessibility graph. For example, we
may have a PDES P with P = {P1,P2,P3}, with relations R!(-), R%(-), R3(-),
resp., and DECs X(P1) = {Vz(R?*(x) — R(x))}, ¥(P2) = {Vz(R*}(z) —
R3(x))}, X(P3) = {Vx(R'(z) — R3(z))}, each of them satisfied only by im-
porting data into the peer who owns the DEC. The implicit trust relation
{(P1, less, P2), (P2, less,P3), (P3,less,P1)} makes AC(B) cyclic. In [26] it is as-
sumed that no cycles of this kind appear. In the following, we will also assume
that G(P) is acyclic, and then for each particular peer P, G(P) is acyclic.

Null values will be used to satisfy referential DECs and local referential ICs;
and the repair semantics based on introduction of null values, presented and
developed in [11, 10] for single relational databases and RICs, can be adapted
here, but now taking into account the trust relationships. Data sources at the
peers’ sites may contain null values that, as those used to satisfy referential con-
straints, will have a semantics that corresponds to the way nulls are handled by
DBMSs that follow the SQL standard. In particular, there is only one constant,
null, that is used as the null value.® We use a semantics for IC satisfaction in the
presence of nulls that generalizes the one implemented in DBMSs, and coincides
with the first-order notion of formula satisfaction in databases without nulls [10].

A formal development of the notion of constraint satisfaction, denoted D |=
¥, with D possibly containing null and 1 a constraint, can be found in [11, 10]
(see Appendix B for a review). What matters most for the rest of this paper
is that the satisfaction of a constraint 1 depends upon the presence of null in
attributes of database relations which are also relevant attributes for 1.

Solutions for a peer should stay close to its original physical instance while
satisfying the DECs and local ICs. We do not want to import or give up more
data than strictly required to satisfy the constraints. To formalize this idea, we
first need to compare tuples that may contain null. A constant ¢ provides less or
equal information than a constant d, denoted ¢ C d, iff ¢ is null or ¢ = d [30]. A
tuple ¢; = (e1,. .., ¢,) provides less or equal information than ¢, = (dy, ..., d,),
denoted t; C #,, iff ¢; C d; for every i = 1,...,n. Finally, {; C f> means t; C 5

4 1n [10] also two other alternative semantics are fully developed and compared, in
particular establishing some conditions under which they coincide or differ. The
other semantics assume that more detailed information, such as mappings and trust
relationships, can be sent between peers.

5 This null is obviously different from the multiple labelled null values that are con-
sidered in data exchange for satisfying existential quantifiers (cf. [29] for a survey).

and t; # t3 . In the following, a database instance is identified with a finite set
of ground database atoms; and A(-,-) denotes the symmetric difference of sets.

Definition 4. Let D, D’, D" be database instances for the same schema. It
holds that D' <p D" iff for every P(a) € A(D, D’), there exists P(a’), such
that: (a) P(a’) € A(D,D"); (b)a C a’; and (c) if a C @, then P(@) ¢
A(D,D’). Finally, D" <p D’ means D" <p D’ but not D’ <p D". O

If D' <p D", we say that D’ is closer to D than D”. Condition (c) in Def. 4
ensures that a database that adds to D a tuple with null is closer to D than other
that adds other constant. This condition will later ensure that the satisfaction
of RDEC:s is enforced by using null.

For an instance D of a schema S, and &’ a subschema of S, D|S’ denotes the
restriction of D to &’. Thus, if R is a predicate in S and D is an instance for S,
DI{R} denotes the extension of R in D.If R(P) C S, D|P is the restriction of D to
R(P). A neighborhood solution for P and a database for its whole neighborhood
is a closest database that satisfies P’s DECs, ICs, and trust relationships.

Definition 5. Given a peer P in a PDES 9 and instances D, D’ on schema
Ugene) R(Q), D" is a neighborhood solution for P and D if : (a) D' |=
Ugene) 2 (P,Q) U IC(P). (b) D'{R} = DI{R} for every predicate & € R(Q)
with (P, less,Q) € trust. (c) There is no instance D" that satisfies (a) and (b),
and such that D" <p D’. O

We do not require in (a) IC'(Q) to be satisfied, because @ will move data to P’s
site, where inconsistencies will be solved locally, according to Definition 6, where
S(P) denotes the set of solutions for peer P.

Definition 6. Given a peer P in a PDES P with local instance D(P), an instance
D over R(P) is a solution instance for P if: (a) D = D(P) and X(P) = ; or (b)
X (P) # 0, D = D|P where D is a neighborhood solution for P and the database
instance D(P) U Uge vy~ ge}) Nres@? over schema Ugepnp) R(Q). |

Intuitively, before constructing P’s solutions, P has its local instance D(P) and
each of its neighbors has as local instance the intersection of its own solutions.
This produces a combined database. After that, the solutions for P are obtained
by restricting to P the neighborhood solutions for the combined instance. The
neighborhood solution captures the minimal virtual updates that are necessary
to satisfy the DECS and local ICs. As there may be several neighborhood solu-
tions, several solutions for a peer are possible.

Ezample 3. (Example 1 and 2 continued) Consider the following instances of
peers P1, P2 and P3 : D(P1) = {R!(a,2)}, D(P2) = {R?(c,4), R*(d,5)}, D(P3) =
{R3(c,4)} and D(P4) = {R*(d,5,1)}. If we want the solutions for P1, the so-
lutions for P2 are needed, who will need in turn the solutions for P1. Since P3
has no DECs with other peers, its only neighborhood solution is it local instance
D(P3). This data is sent back to P2, who needs to repair { R?(c, 4), R*(d, 5), R3(c,
4)} now wrt X(P2,P3). As P2 trusts P3 the same as itself, it can modify its
own data or the data it got from P3. There are two neighborhood solutions
for P2: {R%(c,4), R*(d,5)} and {R*(d,5), R3(c,4)}, that lead to two solutions
for P2: {R?(c,4), R?(d,5)} and {R?(d,5)}. Peer P2 will send to P1 the intersec-
tion of its solutions: {R?(d,5)}. Now, P1 has to repair {R!(a,2), R*(d,5)} wrt

X (P1,P2)= {Vay (R*(x,y) — R'(x,y))}. Since P1 trusts its own data less than
the data of P2, it will solve inconsistencies by modifying its own data. There is
only one neighborhood solution, {R'(a,2), R?(d,5), R'(d,5)}, and the solution
for P1 is {R%(a,2), R(d,5)}.

To compute the solutions for P4, the solutions of P2 and P3 are computed as
shown before. Neighborhood solutions for P4 are obtained by repairing { R*(d, 5,
1), R%(d,5), R3(c,4)} wrt X(P4,P2), and X(P4,P3). The DECs in X(P4,P2) are
already satisfied, but not the ones in X'(P4,P3). Since P4 trusts the data in P3
more, a repair is obtained by adding a tuple with null into P4. The unique neigh-
borhood solution for P4 is {R*(d,5,1), R*(d,5), R3(c,4), R*(c,4, null)}. Conse-
quently, S(P4) = {{R*(d,5,1), R*(c,4, null)}}. a

The peer consistent answers are the semantically correct answers to a query
returned by a peer who consistently considers the data of- and trust relationships
with its neighbors.

Definition 7. Given a FO query Q(z) € L(P) posed to P, a ground tuple ¢ is
a peer consistent answer (PCA) to Q from P iff D = Q(t) for every solution
instance D for P. o

Example 4. (Example 3 continued) If P2 is posed the query Q: R*(z,y), from
its first solution instance we get {(c,4),(d,5)}, and from the second, {(d,5)}.
Therefore, the only PCA from P2 is {(d,5)}. O

Even in the absence of cycles in G(), there may be no solutions for a peer (cf.
Example 10 in Appendix A). Furthermore, still with acyclic G(B), the decision
problem of peer consistent answering, i.e. deciding if a tuple is a PCA to a query,
may be undecidable if consistency wrt RDECs is achieved using arbitrary values
in the domain.® However, using null instead avoids this problem, making the
problem decidable. Actually, by reduction from CQA to PCA and known results
on the data complezity of CQA [11], we obtain

Theorem 1. The problem of peer consistent answering is IT4'-complete. O

3 Answer Set Programs and the Solutions for a Peer

In order to define the solutions for a peer P, we have to consider P’s relevant peers,
which are those in AC(P). The presence of cycles, through trust relationships or
constraints (DECs or ICs), have an impact on the semantics. The former cycles
appear in a cyclic G(P). The latter appear when the DECs and local ICs of peers
in AC(P) put together present cycles through the implications that involve an
RDEC or a local referential IC (a RIC). Sets of local ICs of this kind are called
RIC-cyclic in [11]. For example, IC = {Vx(S(z) — Q(x)), Vz (Q(z) — S(x)),
Vz(Q(x) — Jy T(z,y))} is not RIC-cyclic, whereas IC" = IC U {Vxy (T(z,y)
— Q(y))} is, because there is a cycle involving the RIC Vz(Q(x) — Jy T(z,v)).
RIC-cyclicity at the level of local ICs may lead to more solutions than intended
when capturing the repair semantics by means of logic programs [11].

 The undecidability result for CQA in [12] can be reconstructed in our framework,
because even with G(B) acyclic, DECs can have ref-cycles (cf. Example 5).

In order to deal with the new issues arising in PDESs, we will assume that, for
each peer P, IC'(P) is RIC-acyclic (cf. Section 4 for a discussion). Cycles through
DECs and ICs will be crucial for a logic programming-based specification of
solutions for a peer. We will say that the PDES ‘B is ref-acyclic when in XU IC
there are no cycles that involve an RDEC or a RIC.

As Example 5 below shows, even assuming the acyclicity of G(P), and RIC-
acyclicity at the level of local ICs (or no local ICs at all), we may have ref-cycles
in the set of all DECs. This is due to the generality of DECs, where we can have
relations of any of the two peers on both sides of the implication.

Example 5. Peers P1, P2 have relations R, R%, resp. Y(P1) = {Vaz(R(z,2) —
JyR%(z,y)), Voz(R%(z,2) — JyRY(x,y)}, Y (P2) = (; and (P1, less,P2) € trust.
Here, AC(B) is acyclic, but X(P1) U X'(P2) has a ref-cycle. m|

Now we will show how to specify solutions for a peer, given instances for the
other peers, as the stable models of disjunctive logic programs. These programs
use annotation constants to indicate the atoms that may become true or false
(virtually inserted or deleted) in order to satisfy the DECs and local ICs. For
each database predicate P we generate a new copy P. with an extra argument to
accommodate the annotation. In P_(@,t,), annotation t, means that the atom
is advised to be made true; and f,, that the atom should be made false. For each
DEC and local IC %, a rule captures through its disjunctive head the alternative
virtual updates that can be performed to satisfy ¢ (cf. rules 2. and 3. in Definition
9 for DECs, and 4. and 5. for local ICs).

Annotation t* indicates that the atom is true or becomes true in the program.
It is introduced in order to execute a sequence of virtual updates that is needed
due to interacting DECs and ICs. Finally, atoms annotated with t** are those
that become true in a solution. They are the relevant atoms, and are used to
read off the database atoms in the solutions (rules 8. below).

The relevant attributes of a constraint are those where the occurrence of null
is relevant for its satisfaction [11], and then, they receive a special treatment in
the logic programs. For the DEC in X'(P4,P3) in Example 1, the two attributes
of R? and the first two of R?* are relevant, but not the third attribute of R*.

Definition 8. For a constraint ¢ € L(R) and a variable or a domain constant
t, posT(1, 1) is the set of positions in predicate R € R where t appears in 1. The
set of relevant variables for ¢ is V(¢) = {z | = is a repeated variable in ¢ }. The
set of relevant attributes for v is A(y) = {R[i] | x € V(1) and i € posT(vp,x)} U
{R[i] | ¢ is a constant in v and i € posT(1, c)}, where R[i] denotes the attribute
in position 7 in R. O

Definition 9. Consider a PDES 9§, a peer P € P with A(P) = {P,P1,...,Pn},
and Z = {I,...,I,}, where I; is a database instance over the schema of Pj.
The solution program II(3,P,Z) for P contains:
1. dom(a), for every a € (U ~ {null}). R(a), for each atom R(a) € D(P).
R(a), for each R(a) € I with I € 7.
2. For every UDEC ¢ € X(P,Pj) of the form (1) with Pj € A/(P) and (P, { same
or less},Pj) € trust, the rule:

n

V R@i,fa) v\ Q@ ta) — /\ Ru(@:, t7), /\ij(gj,f*), N\ @i # null, @,

REeRp QEeEQyr i=1 1 EA(Y)

where A(¢) is the set of relevant attributes of ¢, @ is a conjunction of
built-ins that is equivalent to the negation of ¢; and, given R = {R; | i =
1,...,n, R; appears in (1)}, Rp is defined by Rp = RNR(P) if (P, less,Pj) €
trust; and Rp = R if (P, same,Pj) € trust. Qp is defined analogously in terms
of the Q; predicates in (1).
3. For every RDEC ¢ € X(P,Pj) of the form (2) such that Pj € N(P) and
(P, {same or less},Pj) € trust:
(a) If (P, same,Pj) € trust, the rule:
R(%,fa) V Q(3', null, ta) « R(Z,t*), not auzy ('), ' # null.
(b) If (P less ,Pj) € trust and R € R(P), the rule:
R (z,)<— R (z,t*), not auzy(Z'), T’ # null.
(c) If (P less,Pj) € trust and @ € R(P), the rule:
Q(F', null, ta) — R.(Z,t*), not auxy(T'), ' # null.
Plus the auxiliary rules:
auzy(Z') — Q& , null), not Q(T', null,fa), T # null.
For every y; € ¥:
auzy () — QT ,§,t*), not QT ,y,fa), T # null, y; # null.
4. For every UIC ¢ e IC(P) of the form (1), the rule

\/P ml? \/ QJ y]7 /\P(7«7t* /\QJ y]7 7 /\ T #nu”7 95

z EA(Y)

5. For every RIC w € IC(P) of the form (2), the ruleb.
P(2,fa) V Q(Z', null, ta) «— P(Z,t*), not auzy(z'), ' # null.
auzy(z') — Q(z', null), not Q(z', null,fa), & # null.
For every y; € y:
auty(T') — Q(T',§,t*), not Q(T',7,fa), T # null, y; # null.
6. For each predicate R € R(N(P)), the annotation rules
R(z,f*) « dom(Z), not R(Z). R(z,f*) — R(z,f,).
R(z,t*) «— R(Z). R(Z,t*) « R(Z,ta).
7. For each predicate R € R(N(P)), the program constraint:
— R(Z,ta), R(Z,fa).
8. For each predicate R € R(P), the interpretation rule:
R(Z,t*) «— R(z,t*), not R(Z,fa). O

In bodies of rules associated to DECs or ICs 1, the conditions of the form = #
null, with x a variable appearing in a relevant attribute of v are used to capture
the semantics of null values as used in SQL (cf. [11] for details). An atom of the
form P(Z,null,...) in the program represents an atom with possibly several oc-
currences of null, not necessarily in its last arguments, e.g. P(z, null,y, null, ...).
For z = z1,...,x,, T # null abbreviates 1 # null, ...z, # null. The program
constraints in 7. discard models where an atom is both inserted and deleted.
The facts of the program are those in instance D(P) of P and those in instances
I(Pi) for P’s neighbors Pi. The instances I(Pi) used in the program may not
coincide with the physical instances D(Pi). Actually, as shown below, if each
I(Pi) is the intersection of the solutions of Pi, then the stable models of the
program are in one-to-one correspondence with the solutions of peer P.

Since virtual updates are executed on the peers’ instances, their local ICs
have to be kept satisfied. That is the role of rules 4. (for universal ICs) and 5.

(for referential ICs) above. We adopt the stable model semantics for the solution
programs [23], i.e. their intended models are their stable models.

Example 6. (Example 1 continued) Consider D(P1) = {R'(a,2)}, and the in-
stance Iy = {R?(d, 5)} for P2, the neighbor of P1. The solution program I7 (%3, P1,

{I2}) contains: dom(a). dom(). ... RYa,2). R%*(d,5).

R(a: Y, t)<—R(Jc y,t*) Ya,y, £%), 2 # null,y # null.

Riryt) — Ri(eyta) R(yit) — R (z,y).

Ri(z,y,f*) — Ri(z,y,fa). RY(z,y,f*) « dom(x),dom(y), not R'(z,y).
— RY(x,y,ta), Ri(z,y, fa). Ri(z,y,t**) « RY(z,y,t*), not Ri(z,y,fa).

With similar rules to the 2nd-6th for R2. The first rule makes sure that an R?-
tuple that is not in R!, is also virtually inserted into R'. In this case, since P1
trusts P2 more than itself, virtual changes affect only peer P1.]

Ezample 7. Consider a PDES 8 with R(P1) = {R!(-,-)}, D(P1) = {R(s,t),
Rl(a, null)}, R(P2) = {R%*(,, -)}, D(P2) = {R%*(c,d), R?*(a,e)}, X(P1, P2)
= {Vay (R*(z,y) — 3z R'(x,2))}, IC(P1) = {Vayz (R'(x,y) A R'(x,2) —
y = z)}, X(P2,P1) = IC(P2) = 0, and trust = {(P1, less, P2)}. The program
I (B, P1,{I1}) for P1 needs an instance for P2 that may be different from D(P2),
but in this case we choose I, = D(PQ), obtaining the following program (omit-
ting rules 6., 7.): dom(a). dom(b). ... R'(a,null). R'(s,t). R*(c,d). R*(a,e).
Rl(x null, ta) «— R*(x, t*), not auz(x),x # null.
aux(z) — Rl(:c null), not R (x, null, f,).
auz(x) «— R'(z,y,t*), not R (z,y,fa), x # null,y # null.
RY(z,y,fa) V R (z, 2,f2) «— R (z,y,t%), R (z, 2,t%), © # null, y # =.
RY(z,y,t**) « RY(x,y,t*), not R (x,y, fa).
The first rule has the role of satisfying the RDEC by introducing a null into R'.
The fourth rule takes care of the local functional dependency. O

The atoms annotated with t** in a stable model of P’s program have predicates
of P only. They define a database instance for P. In Example 7, only R -atoms
become annotated with t**. The program has only one stable model, with asso-
ciated instance {R!(a, null), R*(s,t), R(c, null)}.

Definition 10. The database instance for peer P associated to a stable model

M of program I1(,P,T) is Dy = {R(a) | R(a,t*™) € M}. 0
Theorem 2. Given a PDES B, P € P, N(P) = {P,P1,...,Pn}, n >0, D(P) an
instance for P, and Z* = {I3,...,I,} instances for P1, ..., Pn, resp. If X' U IC

is ref-acyclic and each of the I; is the intersection of the solution instances for
peer Pi, then the instances of the form Dj4, where M is a stable model of
I1(B,P,Z*), are the all and only solution instances for P. o

In Example 7, given that D(P2) is already the only solution instance for P2 (P2
has neither DECs nor local ICs) and X(P1,P2) is ref-acyclic, the only solution
instance for P is D = {RY(s,t), R*(a, null), R'(c, null)}. However, if there are
ref-cycles, the stable models may correspond to a strict superset of the solutions
for a peer (c.f. Example 12 in Appendix A). In this case, post-processing that
deletes models corresponding to non-minimal “solutions” is necessary.

10

Under the assumption that we have already computed the (intersection of
the) solution instances for the neighbors of P, the program for P allows us to
compute its solution instances. This generates a recursive process that can be
applied because G(P) is acyclic. The terminal peers Pt, i.e. those with no outgoing
edges in G(P), will become the base cases for the recursion. If a peer P’ has Pt
as one of its neighbors, the instance I; to be used for Pt in the program for P’
is simply D(Pt), Pt’s original local instance.

Theorem 2 still holds if peer P, instead of collecting the intersection I; of the
solutions of a neighbor Pi, uses the intersection of the solutions for Pi restricted
to the subschema of Pi that contains Pi’s relations that appear in X(P,Pi),
which are those P needs to run its program.

With a solution program for P, PCAs for a query Q posed to P can be
obtained by running under the stable model semantics a query program II(Q)
that represents the query in combination with IT(3,P, 7*).

Ezample 8. (Example 6 continued) In order to obtain the PCAs to the query
Q1 : R'(z,y), asking for the tuples in R!, the rule ansi(z,y) « R'(z,y,t**)
has to be added to IT(3,P1,{l>}) (assuming that I5 is the intersection of the
solution instances for P2). The ground ansi-atoms in the intersection of all stable
models correspond to the PCAs. For the query Qo : JyR!(z,y), the projection
of R! on its first attribute, the query rule is anss(x) «— R (z,y, t**). O

Our semantics could be naively implemented as follows. When P is posed a query,
P has to run its program, for which it needs as facts those in the intersections
of the solutions of its neighbors. So, P sends to each neighbor P’ queries of the
form Q: R(Z), where R is a relation of P’ that appears in X(P,P?). P expects to
receive from P’ the set of PCAs to 9, because they corresponds to the extension
of R in the intersection of solutions for P’. In order to return to P the PCAs to
its queries, the neighboring peers have to run their own programs (except for the
facts, each peer has a fixed solution program that can be used with any query).
As before, they will need PCAs from their own neighbors; etc. This recursion will
eventually reach peers that have no DECs (and its local ICs will be satisfied),
who will offer answers from their original instances to queries by other peers.
Now, propagation of PCAs goes backwards until reaching P, and P gets the facts
to run its program and obtain the PCAs to the original query.

Ezample 9. (Example 6 continued) Consider local instances D(P1) = {R!(a,2)},
D(P2) = {R?(c,4),R?(d,5)}, and D(P3) = {R3(c,4)}. A user poses the query
Qo : RY(z,y) to P1, expecting its PCAs. To run its program, P1 needs the
intersection of the solutions of peer P2. So, P1 sends to P2 the queries Qi :
R?(x,y) and Q3 : S%(x,y) (actually, P1 does not need the latter, S? is not
relevant to P1). In order to peer-consistently-answer these queries, P2 needs
from P3 the PCAs to Q%: R3(x,y). Since P3 has no neighboring peers, it returns
to P2 the entire extension in its local database of relation R3: I3 = D(P3) =
{R3(c,4)} is given to P2. Now, P2 can run its solution program I7(%B3,P2, {I3}),
containing: dom(c). dom(d). ... R2(c,4). R2*(d,5). R3(c,4).
R%(z,y,fa) V R3(z,y,fa) «— Ri(z,y,t%), R3(x,y,t*), z # null,y # null.
R%(z,y,t**) « R2(x,y,t*), not R*(x,y, fa).
S%(J;7 y’ t**) — S%(x7 y’ t*)7 nOt S%(x7 y? fa)'

11

We obtain two solutions: {{R?(d,5)} and {R?(c,4), R*(d,5)}}. So, the inter-
section of P2’s solutions is Iy = {R?(d,5)}. Finally, the program IT(%3,P1,{l>})
given in Example 6 is run. It has only one solution, namely { R'(a,2), R*(d,5)}}.
Therefore, the peer consistent answers to Qg are (a,2) and (d, 5). O

4 Discussion

The domain predicate, dom, in the solution programs can always be instantiated
in a finite active domain; actually dom can be eliminated by adding rules [10].

In the most common PDESs, let us call them the unrestricted import case,
peers P only import data from other peers they trust more than themselves; and
using DECs X(P) of the form (1) or (2) that have only one database predicate
in the consequent which belongs to R(P), and all predicates in the antecedent
belonging to another peer’s schema. In this case, the relevant part of the inter-
section of the solutions of each neighbor can be obtained as the PCAs to a single
conjunctive query, namely the one in the antecedent of the DEC.

Proposition 1. For the unrestricted import case of PDES, a peer P with an
empty set IC(P) of local ICs always has a solution instance. ad

This result still holds under rather weak conditions, e.g. if the ICs in IC(P): (a)
have a consequent that contains at least one database predicate (not a built-in);
or (b) if only built-ins appear in the consequent, e.g. false, there is a predicate
in the antecedent of the IC that does not appear in any of P’s DECs.

If a PDES has no local ICs, then it is easy to see that the solution program
is head-cycle free [17], and we obtain

Proposition 2. In the unrestricted import case, the solution program for a peer
with an empty set of local ICs is equivalent to a non-disjunctive program. O

The hypothesis on local ICs in this result can be much weakened by assuming
that local ICs are of the form identified in [5, 11], that lead to head-cycle free
repair programs. Since cautious reasoning from normal logic programs is coNP-
complete [17], peer consistent answering is in coNP in data complexity.

We have assumed that G(3) is acyclic. However, the peers, not being aware
of being in a cyclic G(B), could attempt to do data exchange as described above.
In order not to detect an infinite loop, for each query a unique identifier can be
created and kept in all the queries that have origin in it.

The assumption of acyclicity of the accessibility graph is quite cautious in
the sense that it excludes cases where a reasonable semantics could be given
and the logic programs would work correctly, because the cycles in G(3) are not
relevant (cf. Example 11 in Appendix A).

We have also assumed that the sets IC(P) of local ICs of peers P are each
ref-acyclic. Even under this assumption, and also with X'(P) ref-acyclic, IC(P) U
X(P) can have ref-cycles. For example, with IC(P1) = {Vz(R'(z) — S'(x))},
Y(P1, P2) = {Vz(S'(z) — JyR?*(z,y)),Vz(R*(x,y) — R'(z))}. There are also
cases with an acyclic G(3), but with ref-cycles in the DECs, where the logic
programming counterpart of the semantics is correct due to the role of the trust
relationships (cf. Example 13 in Appendix A).

It becomes clear that it is possible to find more relaxed conditions, both
on the accessibility graph and ref-cycles, under which a sensible semantics for

12

solutions and semantically corresponding logic programs can be given. Also, with
general cyclic accessibility graphs, super peers [31] could be used to detect cycles
and prune certain DECs, making the graph acyclic if necessary; and then our
semantics could be applied.

In [13, 15, 14], the semantics of a PDES is given in terms of epistemic logic.
The mappings (our DECs) are of the form cg; — cg;, with cg; and cg; conjunctive
queries over Pi and Pj’s schemas, resp. Those DECs keep the schemas separate.
It is implicitly assumed that peers trust themselves less than other peers. The
semantics can be applied in the presence of cycles in the accessibility graph.

The treatment of local ICs differs from ours in two ways : (a) A peer that
is inconsistent wrt its local ICs is not considered for data exchange, while in
our case such a peer may apply a repair semantics, as in CQA. (b) Atoms are
imported into a peer by interaction with other peers only if this does not produce
a local IC violation. In our case, under the same trust conditions, the data is
accepted and the peer applies again a local repair semantics.

In order to answer a query [14], a peer traverses the network eventually
collecting at its site all DECs, ICs and data of other logically related peers.
With these elements, the peer can construct its epistemic theory, that is used
for query answering. An accessibility cycle can be detected by using request
identifiers. The use of epistemic logic makes sure that certain data, the one a
peer really knows, is passed to another peer. In our case, a peer collects only
data from its neighbors; and certainty is achieved by using the PCAs of a peer,
or more generally, the intersection of its solutions. A more detailed comparison
can be found in [10].

The semantics in [20, 21] coincides with the epistemic semantics in [15]. They
provide a distributed algorithm, where peers’ data is updated by instruction of
a super peer. When a query is posed to a peer, it can answer the query right
away with its data because the PDES is already updated.

5 Conclusions

We have introduced a framework for peer data exchange with trust relationships.
Each peer solves its data and semantic conflicts at query time, when querying
its own and other peers’ data.

Logic programs can be used to specify solutions for a peer and to obtain
peer consistent answers. Techniques to partially compute the solution instances
can be useful, since we are not interested in them per se, but in the PCAs.
Techniques used in CQA, such as magic sets for stable model semantics [19] and
identification of predicates that are relevant to queries and constraints, could
also be used in this setting, to restrict the number of rules and the amount of
data that are needed to run the program [16, 18].

The problem of query evaluation from disjunctive programs is I11’-complete
[17], which matches the complexity of PCA. In spite of this, it is possible to
identify syntactic classes of PDESs for which peer consistent query answering
has a lower complexity, and specifically tailored mechanisms to solve this problem
could be developed, as for CQA (cf. [9] for a survey).

The concepts and results presented in this paper smoothly extend the se-
mantics for local solutions for a peer as introduced in [7] to the transitive case.

13

Basically, those local solutions correspond to the neighborhood solutions we in-
troduced above. No general solution programs were presented in [7].

Semantics for PDESs have been introduced and analyzed in [26, 20, 28, 27,
21, 13, 15, 14, 22|, but without considering trust relationships. In them, if there
is a DEC from P to Q, it is implicitly assumed that P trusts itself less than Q.
Also, all the research so far, has concentrated on the unrestricted import case.
In our setting, a DEC may also restrict the data that can belong to a peer.

Acknowledgements: Research supported by NSERC and a CITO/IBM-CAS
Student Internship. L. Bertossi is Faculty Fellow of IBM CAS (Toronto Lab.).
Part of this work was done when L. Bertossi was visiting the Database Group
at Edinburgh University. Their hospitality is much appreciated.

References

[1] Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query Answers in Incon-
sistent Databases. In Proc. ACM Symposium on Principles of Database Systems
(PODS’99). ACM Press, 1999, pp. 68-79.

[2] Arenas, M., Bertossi, L., Chomicki, J. Answer Sets for Consistent Query Answers.
Theory and Practice of Logic Programming, 2003, 3(4&5):393-424.

[3] Baral, C. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

[4] Barcelo, P. and Bertossi, L. Logic Programs for Querying Inconsistent Databases.
In Proc. Practical Aspects of Declarative Languages (PADL’03). Springer LNCS
2562, 2003, pp. 208-222.

[5] Barceld, P., Bertossi, L. and Bravo, L. Characterizing and Computing Semanti-
cally Correct Answers from Databases with Annotated Logic and Answer Sets. In
Semantics in Databases. Springer LNCS 2582, 2003, pp. 7-33.

[6] Bertossi, L. and Bravo, L. Consistent Query Answers in Virtual Data Integration
Systems. In Inconsistency Tolerance. Springer LNCS 3300, 2004, pp. 42-83.

[7] Bertossi, L. and Bravo, L. Query Answering in Peer-to-Peer Data Exchange
Systems. In Proc. EDBT Workshop on Peer-to-Peer Computing and Databases
(P2PEDB’04). Springer LNCS 3268, 2004, pp. 476-485.

[8] Bertossi, L. and Chomicki, J. Query Answering in Inconsistent Databases. In
Logics for Emerging Applications of Databases. Springer, 2003, pp. 43-83.

[9] Bertossi, L. Consistent Query Answering in Databases. ACM Sigmod Record,
June 2006, 35(2):68-76.

[10] Bravo, L. Handling Inconsistency in Databases and Data Integration Sys-
tems. PhD. Thesis, Carleton University, Department of Computer Science, 2007.
http://homepages.inf.ed.ac.uk/lbravo/Publications.htm

[11] Bravo, L., Bertossi, L. Semantically Correct Query Answers in the Presence of Null
Values. In Proc. EDBT WS on Inconsistency and Incompleteness in Databases
(IIDB’06). Springer LNCS 4254, 2006, pp. 336-357.

[12] Cali, A., Lembo, D. and Rosati, R. On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In Proc. ACM Symposium
on Principles of Database Systems (PODS’03). ACM Press, 2003, pp. 260-271.

[13] Calvanese, D., De Giacomo, G., Lenzerini, M. and Rosati, R. Logical Foundations
of Peer-To-Peer Data Integration. In Proc. ACM Symposium on Principles of
Database Systems (PODS’04). ACM Press, 2004, pp. 241-251.

[14] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M. and Rosati, R. In-
consistency Tolerance in P2P Data Integration: An Epistemic Logic Approach. In
Proc. International Symposium on Database Programming Languages (DBPL’05).
Springer LNCS 3774, 2005, pp. 90-105.

14

[15]

[16]

[30]

[31]

Calvanese, D., Damaggio, E., De Giacomo, G., Lenzerini, M. and Rosati, R. Se-
mantic Data Integration in P2P Systems. In Proc. VLDB International Workshop
on Databases, Information Systems and Peer-to-Peer Computing (DBISP2P’03).
Springer LNCS 2944, 2004, pp. 77-90.

Caniupan, M. and Bertossi, L. Optimizing Repair Programs for Consistent Query
Answering. In Proc. International Conference of the Chilean Computer Science
Society (SCCC’05). IEEE Computer Society Press, 2005, pp. 3-12.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. Complexity and Expressive
Power of Logic Programming. ACM Computing Surveys, 2001, 33(3): 374-425.
Eiter, T., Fink, M., Greco, G. and Lembo, D. Efficient Evaluation of Logic Pro-
grams for Querying Data Integration Systems. In Proc. 19th International Confer-
ence on Logic Programming (ICLP 03). Springer LNCS 2916, 2003, pp. 163-177.
Faber W., Greco G., Leone N. Magic Sets and their Application to Data Integra-
tion”. J. Comp. and Sys. Sciences, 2007, 73(4):584-609.

Franconi, E., Kuper, G., Lopatenko, A. and Serafini, L. A Robust Logi-
cal and Computational Characterisation of Peer-to-Peer Database Systems. In
Proc. VLDB Workshop on Databases, Information Systems and P2P Computing
(DBISP2P’03). Springer LNCS 2944, 2004, pp. 64-76.

Franconi, E., Kuper, G. Lopatenko, A. and Zaihrayeu, I. A Distributed Al-
gorithm for Robust Data Sharing and Updates in P2P Database Networks. In
Proc. EDBT Workshop on Peer-to-peer Computing and Databases (P2P&DB’04),
Springer LNCS 3268, 2004, pp. 446-455.

Fuxman, A., Kolaitis, Ph., Miller, R. and Tan, W. Peer Data Exchange. ACM
Trans. Database Systems, 2006, 31(4): 1454-1498.

Gelfond, M. and Lifschitz, V. Classical Negation in Logic Programs and Disjunc-
tive Databases. New Generation Computing, 1991, 9:365-385.

Gelfond, M. and Leone, N. Logic Programming and Knowledge Representation:
The A-Prolog Perspective. Artificial Intelligence, 2002, 138(1-2):3-38.

Greco, G., Greco, S. and Zumpano, E. A Logical Framework for Querying and
Repairing Inconsistent Databases. IEFEE Transactions on Knowledge and Data
Engineering, 2003, 15(6):1389-1408.

Halevy, A., Ives, Z., Suciu, D. and Tatarinov, I. Schema Mediation in Peer Data
Management Systems. In Proc. International Conference on Data Engineering
(ICDE’03). IEEE Computer Society, 2003, pp. 505-518.

Halevy, A., Ives, Z., Madhavan, J., Mork, P., Suciu, D. and Tatarinov, I. The
Piazza Peer Data Management System. IEEE Transactions on Knowledge and
Data Engineering, 2004, 16(7):787-798.

Kementsietsidis, A., Arenas, M., and Miller, R. Mapping Data in Peer-to-Peer
Systems: Semantics and Algorithmic Issues. In Proc. ACM International Confer-
ence on Management of Data (SIGMOD ’03). ACM Press, 2003, pp. 325-336.
Kolaitis, Ph. Schema Mappings, Data Exchange, and Metadata Management. In
Proc. of ACM Symposium on Principles of Database Systems (PODS ’05). ACM
Press, 2005, pp. 61-75.

Levene, M. and Loizou, G. Null Inclusion Dependencies in Relational Databases.
Information and Computation, 1997, 136(2):67-108.

Yang, B. and Garcia-Molina, H. Designing a Super-Peer Network. In Proc. Inter-
national Conference on Data Engineering (ICDE’03), IEEE Computer Society,
2003, p. 49.

15

Appendix
A Examples

Ezample 10 (A peer may have no solutions). Consider the PDMS ‘P with

P1: R(P1) = {R'(-,-)}, D(P1)={},

P2: R(P2) = {R*(-,")}, D(P2) = {R?(a,b)},

P3: R(P3) = {R*(-,-),S*(")}, D(P3) = {R*(a,b)},

Y (P1,P2)= {VaVy(R*(z,y) — R'(z,v))},

Y (P1,P3)= {VaVyVz(R'(x,y) A R3(x,y) — S3(x))}.
The trust relationships are shown in the accessibility graph in Figure 2. Since P1
trusts the other peers more than itself, it will modify only its own data to enforce
the satisfaction of the DECs. The DEC in X'(P1,P2) enforces that (a,b) has to
be added to relation R*. However, ¥(P1, P3) forbids its addition. Therefore, peer
P1 has no solutions. O

7 P3
<\
P2

P1

Fig. 2. Accessibility graph of Example 10

Ezample 11 (Cyclic accessibility graph, but reasonable semantics). Con-
sider R(P1) = {R(:),S*(")}, R(P2) = {R2(-), S?(-)}, X(P1, P2) = {Va(R?(x)
— RY(x))}, X(P2,P1) = {Vz(S(z) — S*(z))}, trust = {(P1, less, P2), (P2, less,
P1)}. If a query is posed to P1, it will request from P2 the PCAs to query R?(z),
but not those to query S?(x). P2 will realize it does not need data from P1 and
will return D(P2)|{R?} to P1, who will run its solution program and answer the
original query. Even though there is a cycle in G(3), there is no infinite loop. O

Ezample 12 (Ref-cycles, complete but unsound program). For D(P1) =
{R'(a,b)}, D(P2) = {R?*(a,c)}, X(P1) = {Vaz(RY(z,2) — Jy R*(wz,y)), Yoz
(R*(x,2z) — 3y RY(z,y)}, X(P2) = (; and (P1,same,P2) € trust. The set of
DECs is ref-cyclic, and even though the only solution for P1 is {R!(a,b)}, the
associated solution program gives two models. The following are the relevant
rules and facts of the solution program:
dom(a). dom(b). ... RYa,b). R3(a,c).

RY(z,y,fa) V R:(z, null, ta) «+ RY(z,y,t*), not auzi(z),x # null.
, not R%(z, null, f,).

(z,y,t*), not R:(x,y,fa), z # null,y # null.
“(z,y,t%), not auzq(x),x # null.
Y, null), not R (x, null, f,).
Y, y,t%), not R (z,y,fa), z # null,y # null.

)

auzi(z) — R*(x, null)

auzy(r) «— R?

R%*(z,y,fa) V R (2, null, t,) «— R*
auze(z) — R
auzs(z) — R

The instances obtained from the stable models of this program are {R'(a,b)}
and () which correspond to the neighborhood instances {R'(a,b), R{a,c)} and

16

() respectively. Only the first instance corresponds to a solution instance. The
second model is the result of cycles through weak negation (not). The cycle
creates the self justification of facts as follows: (i) If we choose R%(a,c,fa) to
be true, then by the second and third rule, auz;(a) is false. (ii) Then, the first
rule can be satisfied, by making R(a,b,f,) true. (iii) By rules five and six,
auzy(a) is false. (iv) This justifies making R2(a,b,fs) true, thus, closing the
cycle. Notice, that in the whole justification the changes where not determined
by inconsistencies. O

Ezample 13 (Ref-cycles, complete and sound program). (example 12 con-
tinued) If we replace (P1, same,P2) € trust by (P1, less,P2) € trust, rules 1. to 3.
of the solution program for peer P1 are: dom(a). dom(b). ... R(a,b). R*(a,c).

RY(x,y,f;)<— RY(x,y,t*), not auz(z),x # null.
(x R%(x, null), not R*(x, null,f,).
auzi(z) — R*(x,y,t*), not R*(x,y,fa), x # null,y # null.
RY(z, null,ty) «— R%(x,y,t*), not auzy(x),x # null.
(z) «— RY(x, null), not R(z, null,f,).
auzo(x) «— R (z,y,t*), not R (x,y,fa), x # null,y # null.

auz,(x

auTs

Since P1 trusts more peer P2 than itself, it will modify only its own data. This
program computes exactly the solutions for peer P1, i.e. {R!(a,b)}, even though
the DECs exhibit ref-cycles. O

B Satisfaction of ICs in Databases with NULL

In [11] and [10, chapter 4], a precise, uniform, and logic-based definition of IC
satisfaction in SQL databases is given. Loosely speaking, in a commercial DBMS
like IBM DB2, a constraint is satisfied if any of the relevant attributes in it
has null or the constraint is satisfied in the traditional way (i.e. as first-order
satisfaction with null treated as any other constant).

Ezample 14. Consider a foreign-key constraint P[A, B] C R[A, B] and D:

P|lA| B |C R|A|B
a 5 d alb
b | null | a al 2

DBMSs implement the so-called simple semantics of the SQL standard for satis-
faction of ICs, according to which the database D above satisfies the foreign-key
constraint. This is because, for every tuple ¢ in P, if ¢[A] and ¢[B] are different
from null, there is a tuple ¢ in R such that ti[A4, B] = #'[A, B]. In this case, the
attributes that are relevant for checking the satisfaction of the IC are A and B
from both P and R.

Now, the version in first-order logic of the IC is a universal integrity con-
straint: ¢ : Vzyz (P(x,y,z) — R(x,y)). Since x and y appear twice in 1, by
Definition 8, A(¢)) = {P]1], R[1], P[2], R[2]}. We can see that the value for C
is not relevant to check the satisfaction of the constraint, which makes sense,
because we only want to make sure that the values in the first two attributes in
P also appear in R.

17

Now, if we try to insert tuple (¢, d, null) into P, the DBMS will reject the
tuple since none of the attributes that are relevant for checking the constraint
are null, and there is no tuple (¢, d) in R. o

For the formal definition of IC satisfaction, we need some concepts. Given a
set of attributes A and a predicate P € R, we denote by P4 the predicate P
restricted to (or projected onto) the attributes in A. D** denotes the database
D with all its database atoms projected onto the attributes in A, i.e., DA =
{PA(I14(?)) | P(t) € D}, where IT4(%) is the projection on A of tuple .

Definition 11. A constraint ¢ of the form:
va(\ Pi@) — 32\ Q;(55,2) Vo)), (3)
i=1 j=1
is satisfied in the database instance D, denoted D |=, v, iff DA®) = N,
where ¥ is

m n
- A() /= A /-
v\ P @) = (V w=mal v Q@) Ve @)
i=1 v, EV() j=1
and = U, ;. Here, DAW) |= o refers to classical first-order satisfaction,
where null is treated as any other constant in the domain. O

When we use D = 4 in the main body of this paper, we are really mean D = 1,
as just defined. Notice that UICs, RICs, UDECs and RDECs are special cases
of Formula (3). We can see from Definition 11 that there are basically two cases
for constraint satisfaction: (a) If null is in any of the relevant attributes in the
antecedent, then the constraint is satisfied. (b) If null does not appear in the
relevant attributes, then the second disjunct in the consequent of formula (4) has
to be checked, i.e., the consequent of the IC restricted to the relevant attributes.
This can be done as usual, treating null as any other constant.

Ezample 15. (example 14 continued) In order to check if D =, Vazyz (P(z,y, 2)
— R(z,y)), we need to determine if DAW) |= Vay(PAW) (z,y) — (x = null V y =
null V. RAW)(z,y))), with:

DA®W) . PATAB RM“[DIJE
al b a|d
b |null

For # = a and y = 5, DA |= PAW)(q,5), but none of them is null, therefore
we need to check if DAY) = RAW)(q,5). This is true, therefore the constraint
is satisfied for z = a and y = 5. Now, for z = b and y = null, DAW) =
PAW) (b, null), and since y = null, the constraint is satisfied.

If we add tuple P(e,d, null) to D, it would become inconsistent with respect
to constraint (a), because DAW) [(PAW) (¢, d) — (¢ = null V d = null V
RAW) (¢, d)). 0

The semantics of IC satisfaction in Definition 11 coincides, extends, and puts on
a solid logical ground the notion of IC satisfaction as implemented in DBMSs
that follow the SQL standard. More details can be found in [10, chapter 4].

18

