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Abstract

Data quality assessment and data cleaning are context-dependent activities. Starting

from this observation, in previous work a context model for the assessment of the

quality of a database was proposed. A context takes the form of a possibly virtual

database or a data integration system into which the database under assessment is

mapped, for additional analysis, processing, and quality data extraction. In this

work, we extend contexts with dimensions, and by doing so, multidimensional data

quality assessment becomes possible. At the core of multidimensional contexts we

introduce ontologies with provably good properties in terms of query answering (QA).

We use the ontologies to represent dimension hierarchies, dimensional constraints,

dimensional rules, and specifying quality data. Query answering relies on and triggers

dimensional navigation, and becomes an important tool for the extraction of quality

data.

We introduce and investigate an ontological-multidimensional (OMD) data model

for which the aforementioned multidimensional ontology is a particular case. The

OMD model extends the traditional multidimensional data model, embedding it into

a Datalog± ontology. The ontology allows for the introduction of generalized fact-

tables, called categorical relations, which may be incomplete and associated to cate-

gories at arbitrary levels of the dimensions. The dimensional rules in the ontology are

represented as Datalog± rules, and they enable dimensional navigation while prop-

agating data between different dimension levels, for data completion where data is

missing. The dimensional constraints are semantic conditions that have to be satisfied

and are represented as Datalog± constraints. It turns out that the ontologies created

vii



according to the OMD model correspond to weakly-sticky (WS) programs, for which

tractability of conjunctive QA is guaranteed. We analyse the representational and

computational properties of the OMD model, we investigate QA and optimization for

the WS programs which was only partly studied in the literature.
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Chapter 1

Introduction

The notion of data quality has different definitions in various areas of computer sci-

ence. In knowledge representation and also data management, data quality refers to

the degree to which the data fits or fulfills a form of usage [Batini & Scannapieco,

2006; Herzog et al., 2009]. Problems related to the quality of data in data man-

agement systems have been increasingly evident for organizations, companies and

businesses. Specifically, decision making based on data of poor quality costs them

hugely everyday. Those organizations, companies and businesses that invest in man-

aging and improving data quality experience tangible and intangible benefits [Batini

& Scannapieco, 2006; Eckerson, 2002; Redman, 1998].

Data quality in data management has several dimensions (also called data quality

attributes, or aspects), most importantly, among other dimensions [Batini & Scanna-

pieco, 2006]: (1) Consistency refers to the validity and integrity of data representing

real-world entities typically identified as satisfaction of integrity constraints, (2) Cur-

rency (timeliness) aims to identify the current values of entities represented by tuples

in a (possibly stale) database, and to answer queries with the current values, (3) Ac-

curacy refers to the closeness of values in a database to the true values for the entities

that the data in the database represents, and (4) Completeness is characterized in

terms of the presence/absence of values.

1
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1.1 Context and Data Quality

Independently from the quality dimension we may consider, data quality assessment

and data cleaning are context-dependent activities. This is our starting point, and

the one leading our research. In more concrete terms, the quality of data has to be

assessed with some form of contextual knowledge; and whatever we do with the data

in the direction of data cleaning also depends on contextual knowledge. For example,

contextual knowledge can tell us if the data we have is incomplete or inconsistent. In

the latter case, the context knowledge is provided by explicit semantic constraints.

Theory 

Logical  

Mappings 
Contextual theory 

�  �′  ��  
Figure 1.1: Embedding into a contextual theory

In order to address contextual data quality issues, we need a formal model of

context. In very general terms, the big picture is as in Figure 1.1. A database can

be seen as a logical theory, T , and a context for it, as another logical theory, T c, into

which T is mapped by means of a set of logical mappings. This embedding of T into

T ′ could be seen as an interpretation of T in T c.1 The additional knowledge in T c

may be used as extra knowledge about T , as a logical extension of T . For example, T c

can provide additional knowledge about predicates in T , such as additional semantic

constraints on elements of T (or their images in T c) or extensions of their definitions.

1 Interpretations between logical theories have been investigated in mathematical logic [Enderton,
2001, sec. 2.7] and used, e.g. to obtain (un)decidability results [Rabin, 1965].
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In this way, T c conveys more semantics or meaning about T , contributing to making

more sense of T ’s elements. T c may also contain additional knowledge, e.g. data and

logical rules, that can be used for further processing or using knowledge in T . The

embedding of T into T c can be achieved via predicates in common or, more complex

logical formulas.

In this work, building upon and considerably extending the framework in [Bertossi

et al., 2011a, 2016], context-based data quality assessment, data quality extraction

and data cleaning on a relational database D are approached by creating a context

model where D is the theory T above (it could be expressed a logical theory [Reiter,

1984]), the theory T c is a (logical) ontology C; and, considering that we are using

theories around data, the mappings can be logical mappings as used in virtual data

integration [Lenzerini, 2002] or data exchange [Barcelo, 2009]. In this work, the

mappings turn out to be quite simple: The ontology contains, among other predicates,

nicknames for the predicates in D (i.e. copies of them), so that each predicate R in

D is directly mapped to its copy R′ in C.

Once the data in D is mapped into C, the extra elements in it can be used to

define alternative versions of D, in our case, clean or quality versions, Dq, of D in

terms of data quality. The data quality criteria are imposed within C. This may

determine a class of possible quality versions of D, virtual or material. The existence

of several quality versions reflects the uncertainty that emerges from not having in D

fully quality data.

The whole class, Dq, of quality versions of D determines or characterizes the

quality data in D, through what is certain with respect to Dq. One way to go in

this direction consists in keeping only the data that are found in the intersection of

all the instances in Dq. A more relaxed alternative consists in considering as quality
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D 

Contextual 

Ontology 

Mappings 

Quality Versions  

of  D 

�� ℭ 

Figure 1.2: Contextual ontology and quality versions

data those that are obtained as certain answers to queries posed to D, but answered

through Dq: The query is posed to each of the instances in Dq (which essentially have

the same schema as D), but only those answers that are shared by those instances

are considered to be certain [Imielinski & Lipski, 1984].

The main question is about the kind of contextual ontologies that are appropriate

for our tasks. There are several basic conditions to satisfy. First of all, C has to

be written in a logical language. As a theory it has to be expressive enough, but

not too much so that computational problems, such as (quality) data extraction via

queries becomes intractable, if not impossible. It also has to combine well with

relational data. And, as we emphasize and exploit in our work, it has to allow for the

representation and use of dimensions of data, as found in multidimensional databases

and data warehouses [Jensen et al., 2010]. Dimensions are almost essential elements of

contexts, in general, and crucial if we want to analyze data from different perspectives

or points of view.

The language of choice for the contextual ontologies will be Datalog± [Cal̀ı et

al., 2010b]. As an extension of Datalog, a declarative query language for relational
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databases [Ceri et al., 1990], it provides perfect extensions of relational data by means

of expressive rules and constraints. Certain classes of Datalog±programs have non-

trivial expressive power and good computational properties at the same time. One

of those good classes is that of weakly-sticky Datalog± [Cal̀ı et al., 2012c]. Programs

in that class allow us to represent a logic-based extension of the Hurtado-Mendelzon

(HM) multidimensional data model [Hurtado & Mendelzon, 2002; Hurtado et al.,

2005], which allows us to bring data dimensions into contexts.

Standard Intensive Terminal 

W4 W3 W2 W1 

H1 

allHospital 

H2 

AllHospital 

Institution 

Unit 

Ward 

Figure 1.3: The Hospital dimension.

The main components of an HM

model are dimensions and fact-tables. A

dimension is represented by a dimension

schema, i.e. a hierarchy (more gener-

ally, a lattice) of category names, plus

a dimension instance that assigns (data)

members to the categories.

Example 1.1.1 Figure 1.3 shows the

Hospital dimension with a hierarchy of category names (e.g. Unit) and a parallel

hierarchy of data elements in the categories (e.g. Standard). The bottom category of

Hospital is Ward, with four data elements. In every dimension there is always a single

top category, All, with a single element, all. �

The HM model has some limitations when we want to go beyond the usual ap-

plications to DWHs and OLAP, in particular towards context modeling. In the HM

model, we find the assumption that data is complete, which may not make sense

in some applications. Furthermore, relational tables are linked to the dimensions as

fact-tables, or possibly, as tables representing materialized aggregate data at higher
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dimension levels. In some applications we may find convenient to have tables directly

and initially linked to arbitrary dimension levels, and not only in relation to numer-

ical data. The HM model considers some semantic conditions, such as homogeneity

and strictness [Hurtado et al., 2005] that restrict the hierarchy structure, but do not

say much about data-value dependencies between different categories. Another im-

portant limitation of the HM model, at least for the applications we have in mind, is

the lack of logical integration and simultaneous representation of the metadata (the

schema) and the actual dimension and table contents (the instances).

We overcome these limitations through the use of multidimensional (MD) ontolo-

gies, with a logical layer containing formulas representing metadata (or a multidimen-

sional conceptual model); and a data layer representing different kinds of relations,

and at different levels of the hierarchies. Expressive semantic constraints are included

as logical formulas in the ontology. This creates a scenario that is similar to that of

ontology-based data access (OBDA) [Poggi et al., 2008]. The MD ontologies that we

propose and investigate in this work can be used for data modeling, reasoning, and

QA. They are the basis for our proposed ontological-multidimensional (OMD) data

model.

Now we give a few more introductory details about the general ingredients of OMD

models. They can be used to produce particular ontological models depending on the

application domain. OMD models allow for the introduction of categorical relations

that are associated to categories in different dimensions, at arbitrary levels of their

hierarchies. However, a categorical relation may be linked to a single dimension.

Our categorical relations may be incomplete [Abiteboul et al., 1995; Imielinski &

Lipski, 1984]. Intuitively, data will be completed by data propagation from other

categorical relations through navigation along the dimension hierarchies. For this
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there are data-creating rules, and also constraints that regulate data propagation.

Hence, OMD models include dimensional rules and dimensional constraints. The

former are intended to be used for data completion, to generate data through their

enforcement via dimensional navigation. The latter can be seen as dimensional in-

tegrity constraints on categorical relations. They are typically denial constraints that

forbid certain (positive) combinations of values, in particular, joins.

Example 1.1.2 An OMD model is shown in Figure 1.4. It has two dimensions,

Hospital and Time. Each of them has a unary relation for each of its categories, e.g.

Unit for the second category from the bottom of the Hospital dimension. Dimensions

also have a binary relation for each child-parent pair of categories, e.g. WardUnit,

representing the data associations between the “child category” Ward and its “parent

category” Unit. For example, according to Figure 1.3, (W1, standard) ∈ WardUnit .

Similarly, DayMonth is a child-parent binary relation for the Time dimension.

In addition to all these purely “dimensional” data, we find in the middle of Fig-

ure 1.3, two relational tables with data (the non-shaded tuples in them), Work-

ingSchedules and Shifts. They are categorical relations that store schedules of nurses

in units, and shifts of nurses in wards, respectively. Attribute Unit in the categor-

ical relation WorkingSchedules takes values from this Unit category, which makes

the former a categorical attribute. Similarly, the Day attribute in this relation is

categorical, but Nurse and Speciality are not. We make a difference between the

two kinds of attributes by using a semi-colon to separate them, as in WorkingSched-

ules(Unit,Day;Nurse,Speciality).

The model is also endowed with the two dimensional rules, σ1 and σ2, in (1.1) and

(1.2), resp., and a dimensional constraint, η, in (1.3), which contains two constants.
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WorkingSchedules 

Unit Day Nurse Speciality 

Terminal Sep/5 Cathy Cardiac Care 

Intensive Nov/12 Alan Critical Care 

Standard Sep/6 Helen ? 

Intensive Aug/21 Sara ? 

Shifts 

Ward Day Nurse Shift 

W4 Sep/5 Cathy Noon 

W1 Sep/6 Helen Morning 

W3 Nov/12 Alan Evening 

W3 Aug/21 Sara Noon 

W2 Sep/6 Helen ? 

 
 

 

AllTime 

Year 

Month 

Day 

Time 

AllHospital 

Institution 

Unit 

Ward 

σ1 : Shifts(w, d;n, s),WardUnit(w, u) → ∃tWorkingSchedules(u, d;n, t). (1.1)

σ2 : WorkingSchedules(u, d;n, t),WardUnit(w, u) → ∃s Shifts(w, d;n, s). (1.2)

η : WorkingSchedules(intensive, d;n, s),DayMonth(d, jan) → ⊥. (1.3)

Figure 1.4: An OMD model with categorical relations, dimensional rules, and con-
straints

Their role and use will be described throughout the example.

Now, a query to WorkingSchedules asks about unit/day schedules for Helen. The

extensional data for WorkingSchedules (again, the non-shaded tuples) do not show

any entry for Helen, which could be due to the incompleteness of the given table.

However, it could be the case that missing data could be obtained through the logical

relationships between WorkingSchedules and the dimensional relation Shifts.

Actually, the dimensional rule σ1 in (1.1) tells us: “If a nurse has shifts in a ward

on a specific day, he/she has a working schedule in the unit of that ward on the same

day”. (It is shown as a labeled arrow on the right-hand-side of the central tables in

Figure 1.4.)
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Since the contents of relation WardUnit is given by the Hospital dimension (as in

Figure 1.3), rule σ1 enables upward navigation and data movement from the Ward

to the Unit category levels, completing data in WorkingSchedules through the use

of data in Shifts. This is possible due to the join in its body that involves the

child-parent relation WardUnit. Since (W1, standard) ∈ WardUnit , the second tuple

in Shifts implies that Helen works in the Standard unit on Sep/6. On this basis,

the third, shaded tuple in WorkingSchedules is created. Notice that we may not

know some attribute values, as in this case, for attribute Speciality, whose variable is

existentially quantified in (1.1).

Elaborating on this example, let us now consider the dimension constraint η,

imposed on dimension Time and the relation WorkingSchedules linked to its Day cat-

egory. It tells us (possibly because the Intensive care unit was closed during January)

that: “No personnel was working in the Intensive care unit during January”. (Shown

on the left-hand-side of Figure 1.4.)

For the ontology to be consistent with respect to the dimensional constraint, η,

the constraint is expected to be satisfied by the combination of the extensional data

for WorkingSchedules (non-shaded tuples in Figure 1.4) and the intensional data, i.e.

tuples generated by σ1 (shown in Figure 1.4 as shaded tuples). In this example, η is

satisfied. It involves the Hospital and Time dimensions. More specifically, checking

η requires upward navigation through the Time dimension. This is because January,

appearing in η, belongs to the Month category, and WorkingSchedules is linked to

the Day category. Also, the Hospital dimension implicitly affects η, because it has to

be satisfied by the intentional data generated by σ1 through upward navigation from

Ward to Unit. �
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We have shown that upward dimensional navigation may be used for QA. This

is enabled by the “upward” rule (1.1), that propagates data from Shifts at the lower

level of the Ward category to WorkingSchedules, which is at the higher level of the

Unit category. Downward navigation is also supported by the OMD model, and can

be used for QA and data propagation (or generation) at lower levels in a dimensional

hierarchy. This is shown in the next example, through the use of the “downward”

rule (1.2), which allows for the propagation of data from WorkingSchedules (at the

level of the Unit category) to Shifts (at lower level of the Ward category).

Example 1.1.3 (ex. 1.1.2 cont.) Now, a query in terms of the Shifts predicate asks

for the wards where Helen was working on Sep/6. The only answer directly provided

by the initial extensional data in Shifts is W1 (the second tuple in Shifts). However,

rule σ2 in (1.2), which expresses an institutional guideline stating that “If a nurse

works in a unit on a specific day, he/she has shifts in every ward of that unit on the

same day”, can be used to obtain additional answers.

Actually, applying this rule with the third tuple in WorkingSchedules and the

pairs (W1, standard), (W2, standard) in WardUnit, we obtain that Helen has shifts in

both W1 and W2 on Sep/6 (cf. the fifth, shaded tuple in Shifts in Figure 1.4, again

showing an unknown value due to the existential quantifier in σ2). The new answer,

W2, has been obtained by downward navigation from the Standard unit to its wards.

�

1.2 The OMD Model and Data Quality

The ontologies in the OMD model can be used to support the specification and ex-

traction of quality data, as shown in Figure 1.5. In this framework, D is a database
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Figure 1.5: A multidimensional context

instance for a relational schema R= {R1, ..., Rn} that is under quality data specifica-

tion and extraction. Context C contains: (a) R′ = {R′
1, ..., R

′
n}, a copy of schema R

with nicknames (the primed versions) for the elements of the latter. They are used to

bring data from D into C. (b) A core MD ontology M (as described in Section 4.1)

that is used for dimensional data manipulation. (c) Application-dependent quality

predicates P (defined by ΣP , cf. Figure 1.5) capturing data quality concerns. (d)

A contextual relational schema Rc, with an instance Ic, which contains materialized

data at the contextual level context.

The quality predicates are defined by non-recursive Datalog rules in terms of

the categorical predicates in M, predicates in Rc and possibly built-in predicates.2

The quality predicates in P are used to define quality versions, Rq
1, ..., R

q
n, for the

corresponding relations in D, under quality assessment (cf. Figure 1.5, right). The

quality predicate definitions may be based on data quality guidelines that are captured

as rules or semantic constraints, both of which may refer to categorical attributes of

2 We could use more expressive languages, but Datalog seems to be good enough for this task.
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predicates in a core multidimensional ontology M, without being part of M. Rather,

this “quality part” of the context comes on top of M. We establish in Section 5.1

that under reasonable conditions on these extra definitions, the resulting extension of

M still retains the good computational properties of the core ontology of the OMD

model.

The process of data quality assessment and extraction is guided by query-answering,

in the sense that the queries are rewritten using the quality predicates and the quality

versions of the predicates under assessment. The rewritten queries are answered on

the core OMD model, the nickname relations R′
1, ..., R

′
n and the relations in Ic.

Example 1.2.1 (ex. 1.1.3 cont.) The relational table Temperatures (Table 1.1) shows

body temperatures of patients in an institution. A doctor wants to know “The body

temperatures of Tom Waits for August 21 taken around noon with a thermometer of

brand B1” (as he expected). Possibly a nurse, unaware of this requirement, used a

thermometer of brand B2, storing the data in Temperatures. In this case, not all

the temperature measurements in the table are up to the expected quality. However,

table Temperatures alone does not discriminate between intended values (those taken

with brand B1) and the others.

Table 1.1: Temperatures

Time Patient Value Nurse

1 Sep/1-12:10 Tom Waits 38.2 Anna

2 Sep/6-11:50 Tom Waits 37.1 Helen

3 Nov/12-12:15 Tom Waits 37.7 Alan

4 Aug/21-12:00 Tom Waits 37.0 Sara

5 Sep/5-11:05 Lou Reed 37.5 Helen

6 Aug/21-12:15 Lou Reed 38.0 Sara

For assessing the quality of the data

in Temperatures according to the doc-

tor’s quality requirement, extra contex-

tual information about the thermome-

ters in use may help. In this case, the

contextual information is in form of a

guideline prescribing that: “Nurses in
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intensive care unit use thermometers of Brand B1”. It can be used for data qual-

ity assessment when combined with categorical table WorkingSchedules, for which

the complete data is obtained in the MD ontology as explained in Example 1.1.2.

Table 1.2: Temperaturesq

Time Patient Value Nurse

1 Nov/12-12:15 Tom Waits 37.7 Alan

2 Aug/21-12:00 Tom Waits 37.0 Sara

3 Aug/21-12:15 Lou Reed 38.0 Sara

According to the guideline, it is now

possible to conclude that the measure-

ments taken by Alan and Sara were taken

with the expected thermometer: these

nurses were working in the intensive care

unit (cf. WorkingSchedules in Figure 1.4), where according to the guideline they used

thermometers of brand B1. These “quality data” appear in relation Temperaturesq

(Table 1.2), and the second tuple provides the answer to the doctor’s query.

Notice that the second and the third tuples in Temperaturesq are obtained using

the fact that Sara was in the intensive care unit on Aug/21 (the last gray tuple in

WorkingSchedules), which is generated by data completion and upward navigation

from Shifts in the MD ontology.

In more formal terms, Temperaturesq is defined by the non-recursive Datalog rule:

Temperatures ′(t, p, v, n),TakenWithTherm(t, n, b1) → Temperaturesq(t, p, v, n), (1.4)

where Temperatures ′ is the nickname in the context for Temperatures, and Taken-

WithTherm is a quality predicate that is defined by the Datalog rule:

WorkingTimes(intensive, t;n, y) → TakenWithTherm(t, n, b1). (1.5)

Here, WorkingTimes is a categorical relation that contains the schedules in Work-

ingSchedules at the Time level rather than the Day level.

The doctor’s query:

Q(v) : ∃n ∃t (Temperatures(t, tom waits, v, n) ∧ aug-21/11 :45 ≤ t ≤ aug-21/12 :15)
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is answered by: (a) replacing Temperatures with its quality version Temperaturesq,

(b) unfolding the definitions of Temperaturesq and then TakenWithTherm using (1.4)

and (1.5) resp., and (c) answering the obtained query over M and nickname relations

with the data of D. �

1.3 Datalog± Representation of Multidimensional Ontologies

An OMD model has a semantics that is determined by its rules, constraints, and

underlying extensional data. More precisely, dimensional rules in an OMD model

act as tuple-generating dependencies (tgds) [Abiteboul et al., 1995], and are repre-

sented by existential rules, such as (1.1) and (1.2), with the syntax and semantics of

Datalog±[Cal̀ı et al., 2009, 2010b, 2011]. Datalog± is an extension of classical Dat-

alog (hence the +) that allows existential rule heads, and constraints. About the

constraints, Datalog±, and also the OMD model, supports equality-generating depen-

dencies (egds), i.e. rules with just an equality atom in the head [Abiteboul et al.,

1995], and negative constraints (NCs), such as that in (1.3).

The enforcement of tgds creates an iterative data propagation and generation

process that starts from the extensional data, the so-called chase procedure [Aho et

al., 1979; Maier et al., 1979]. This chase determines a possibly infinite instance for the

ontological schema, which is also called the chase. In the chase, the initially possibly

incomplete predicate extensions are completed with data. This chase-based semantics

naturally extends the forward data-propagation process underlying Datalog [Ceri et

al., 1990], through value invention corresponding to existential quantifiers.

From the conceptual point of view, queries are posed to and answered from the

chase. However, doing QA on a completely materialized chase is inefficient if not

impossible. For this reason, and depending on the kind of Datalog±ontology at hand,
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the data generation process can be triggered but also restricted by QA; or not done at

all, but replaced by query rewriting, according to which the original query is replaced

by one that can be posed and answered from the initial extensional data [Cal̀ı et al.,

2012c; Gottlob et al., 2014, 2015].

Actually, Datalog± imposes some syntactic restrictions on the sets of rules, to

guarantee good computational behavior when it comes to QA (hence the −). There

are different classes of restrictions, which give rise to a family of Datalog± languages,

with differences in expressive power and computational properties. Datalog± has been

used to represent different kinds of ontologies, enabling OBDA [Cal̀ı et al., 2012a,b],

and representation and querying of semantic web data [Arenas et al., 2014].

Our OMD models become Datalog± ontologies that extend HM models. In them,

dimensional rules are represented as tgds; and dimensional constraints as egds or NCs.

We impose two natural conditions on dimensional rules in OMD models: (a) Data

generation along dimensional navigation is enabled by tgds whose body joins (i.e. in

the antecedent) are on categorical attributes (and then, take values from dimension

categories); and (b) No values are invented for categorical attributes. For example,

in (1.1) the join is on the categorical attribute Ward; and the invented value (the

existential quantifier) if for the non-categorical attribute Speciality. (We discuss in

Section 4.3.1 the case where these assumptions do not hold or are relaxed.)

These conditions on OMDmodels make the corresponding Datalog± ontologies be-

long to one of the previously identified and investigated syntactic classes of Datalog±

programs, that of weakly-sticky (WS) programs [Cal̀ı et al., 2012c]. This allows us

to apply some established results in relation to QA. For example, it is known that

conjunctive QA can be done in polynomial-time (in data complexity) [Cal̀ı et al.,

2012c].
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The class of WS programs is a generalization of sticky Datalog±. The latter is a

syntactic class of programs characterized by restrictions on variables participating in

a body join. WS Datalog± extends sticky Datalog± by also capturing the well-known

class of weakly-acyclic (WA) programs [Fagin et al., 2005], which is defined in terms

of the syntactic notions of finite- and infinite-rank positions. Actually, WS Datalog±

is defined through restrictions on join variables occurring in infinite-rank positions.

At the end of Example 1.1.2, we saw the dimensional negative constraint η sat-

isfied after the dimensional tgds are enforced. Actually, evaluating satisfaction of

dimensional NCs on the chase is not different from boolean conjunctive query (BCQ)

answering on the MD ontology.3 If a query obtained from the body of the dimensional

NCs is positively answered, the ontology is inconsistent. In Example 1.1.2, the BCQ

obtained from the body of η is:

Qη : ∃d ∃n ∃s (WorkingSchedules(intensive, d;n, s) ∧ DayMonth(d, jan)), (1.6)

and η holds since the answer to Qη is false. Query answering is trivial on an incon-

sistent ontology since every query is entailed. Otherwise, every CQ can be answered

by ignoring the dimensional NCs.

While checking NCs is done effortlessly, the possible interaction between egds and

tgds (cf. Example 1.3.1) can lead to undecidability of QA [Chandra & Vardi, 1985].

Example 1.3.1 (ex. 1.1.2 cont.) Consider a dimensional egd constraint ε, stating

that nurses working in the same institution are of the same speciality:4

[WorkingSchedules(u, t;n, s),WorkingSchedules(u′, t′;n′, s′),

UnitInstitution(u, i),UnitInstitution(u′, i)] → s = s′,

3 A conjunctive query (CQ) with no free variable and its answer as either true or false.
4 The square brackets in the rule show the beginning and the end of the rule’s body.
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and a tgd σ3:

WorkingSchedules(u, t;n, critical-care),TimeDay(t, d) → CriticalCareNurses(d;n).

According to the last three tuples of WorkingSchedules in Figure 1.4, Alan, Helen

and Sara have schedules in H1 since intensive and Standard are units in H1. Alan

in the third tuple is a critical-care nurse. Therefore to enforce ε, Alan and Helen

have to be critical-care nurses, i.e. the unknown values in the last two tuples in

WorkingSchedules have to change to critical-care. Now, this makes σ3 applicable which

in turn adds (sep-6, helen) and (aug-21, sara) to CriticalCareNurses. This shows an

interaction between tgds and egds. More precisely, the application of the tgd σ1

activates the enforcement of egd ε, which triggers tgd σ3. �

Separability [Cal̀ı et al., 2012a] is a semantic condition for tgds and egds that

guarantees there is no harmful interaction. Intuitively, it means either (i) tgds and

egds do not interact, or (ii) the interaction does change answers to queries.

Example 1.3.2 (ex. 1.3.1 cont.) The set of dependencies formed by σ1, ε and σ3 is

not separable, due to the interaction between ε and σ3. This interaction also changes

query answers. Specifically, the CQ, Q(n) : ∃d CriticalCareNurses(d;n), answers

{Alan, Sara}, where Sara is obtained from the interaction between ε and σ3. �

For separable tgds and egds checking satisfaction of egds can be postponed to after

the application of the tgds, so is that of NCs [Cal̀ı et al., 2012a]. In our work, we

identify a syntactic condition on the dimensional egds that guarantees the separability

of the combination of dimensional tgds and egds.
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1.4 Query Answering under Weakly-Sticky Datalog±

We study CQ answering over Datalog± programs, containing only tgds (specially

sticky and WS tgds), since it becomes crucial for quality QA. There are two general

approaches for QA over a Datalog± program [Cal̀ı et al., 2013, 2010a; Gottlob et al.,

2014]:

(i) Bottom-up chasing or expansion of the program extensional data through the

program rules, to obtain an instance satisfying the tgds that is used for QA.

(ii) Query rewriting according to the rules into another query (possibly in another

language), so that the correct answers can be obtained by evaluating the new

query directly on the initial extensional data.

QA over sticky Datalog± can be done by query rewriting [Cal̀ı et al., 2010a], which

is proved impossible for WS programs [Cal̀ı et al., 2009]. A non-deterministic QA

algorithm for WS Datalog± is presented in [Cal̀ı et al., 2012c], to obtain polynomial-

time complexity upper bound rather than provide a practical algorithm.

In order to attack practical QA under WS programs, we set ourselves the following

motivations, goals, and results (among others):

(A) Provide a practical bottom-up QA algorithm for WS Datalog±.

(B) Apply a magic-sets rewriting optimization technique to the bottom-up algo-

rithm in (A) to make it more query sensitive, and therefore more efficient.

(C) Present a hybrid QA algorithm that combines the algorithm in (A) and a form

of query rewriting.
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For (B), we use a magic-sets technique for existential rules introduced in [Alviano

et al., 2012] that extends classical magic-sets for Datalog [Ceri et al., 1990]. Unfortu-

nately, the class of WS Datalog± programs is provably not closed under this rewriting,

meaning that the result of applying the rewriting to a WS program may not be WS

anymore. This led us to search for a more general class of programs that: (i) is closed

under the magic-sets rewriting, (ii) extends WS Datalog±, (iii) still has tractable QA,

and (iv) allows the application of the proposed bottom-up QA in (A).

More specifically, we propose the class of joint weakly sticky (JWS) programs. It

extends both sticky and WS Datalog± using the notions of existential dependency

graph and joint acyclicity [Krötzsch & Rudolph, 2011]. This new syntactic class of

programs satisfies the desiderata above.

About (A), we provide a polynomial-time, chase-based, bottom-up QA algorithm,

that can be applied to a range of program classes that extend sticky Datalog±, in

particular JWS and WS.

In relation to (C), we propose a hybrid algorithm between the bottom-up algorithm

mentioned above and rewriting. It transforms a WS program using its extensional

data into a sticky program, for which known query rewriting algorithms [Cal̀ı et al.,

2010a; Gottlob et al., 2014] can be applied. This is done by partial grounding of

the program rules, i.e. replacing variables that break the syntactic property of sticky

Datalog± with selected constants from the program extensional data. Grounding

a program is replacing every variable in its rules with data values, considering all

possible conditions, obtaining basically a propositional program. Our grounding is

only partial since it replaces only some of the variables.
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1.5 Outline and Contributions

Summarizing, in this thesis we make the following contributions:

1. We present MD ontologies and the OMD model that extend the HM model

with: (a) categorical relations as generalized facts-tables, (b) dimensional rules

as tgds to specify data generation in categorical relations; and (c) dimensional

constraints as egds and NCs that restrict the data generation process, by pre-

venting some combinations of values in the relations.

2. We establish that the MD ontologies belong to the class of WS Datalog± pro-

grams, which enjoys tractability of QA. As a consequence, QA can be done in

polynomial time in data.

3. We analyze the effect of dimensional constraints on QA, specifically the sepa-

rability condition between dimensional rules (tgds) and dimensional constraints

(egds). We show that by making variables in equalities appear as categorical

attributes, separability holds.

4. We present two QA algorithms; a bottom-up chase-based algorithm, and a

hybrid algorithm as a combination of grounding and rewriting.

5. We integrate the first algorithm with magic-sets rewriting technique for further

optimization.

6. We introduce the class of JWS programs that extends sticky and WS Datalog±

and we show that the bottom-up algorithm and its magic-sets optimization are

applicable for JWS programs.
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7. We propose a general approach for contextual quality data specification and

extraction that is based on MD ontologies, emphasizing the dimensional navi-

gation process that is triggered by queries about quality data. We illustrate the

application of this approach by means of an extended example.

8. We capture semantic constraints on dimensions in the HM model, namely strict-

ness and homogeneity [Hurtado & Mendelzon, 2002], as dimensional rules and

dimensional constraints in the MD ontology.

9. We show the connection of the OMD model with some other similar hierarchical

models. Particularly, we explain how the OMD model can fully capture the

extended relational algebra proposed in [Martinenghi & Torlone, 2009, 2010,

2014].



Chapter 2

Background

2.1 Relational Databases

We start with a relational schema R containing two disjoint data domains: C, a

possibly infinite domain of constants, and N , of infinitely many labeled nulls. It also

contains predicates of fixed finite arities. We use capital letters, e.g. P,R, S, and T ,

possibly with sub-indices, for database predicates; and small letters, e.g. x, y, and z,

denote variables. If P is an n-ary predicate (i.e. with n arguments) and 1 ≤ i ≤ n,

P [i] denotes its i-th position. With R, C, N we can build a language L of first-order

(FO) predicate logic, that has V as its infinite set of variables. We denote with x̄,

etc., finite sequences of variables. A term of the language is a constant, a labelled

null, or a variable. An atom is of the form P (t1, . . . , tn), with P ∈ R, n-ary, and

t1, . . . , tn terms. An atom is ground if it contains no variables. An instance I for

schema R is a possibly infinite set of ground atoms. A database instance is a finite

instance that contains no labelled nulls. The active domain of a database instance D,

denoted Adom(D), is the set of constants that appear in D. Instances can be used as

interpretation structures for the FO language L. Accordingly, we can use the notion

of formula satisfaction of FO predicate logic.

A conjunctive query (CQ) is a FO formula, Q(x̄), of the form:

∃ȳ (P1(x̄1) ∧ · · · ∧ Pn(x̄n)), (2.1)

22
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with x̄ :=
⋃
x̄i r ȳ as a list of m variables. For an instance I, t̄ ∈ (C ∪ N )m is an

answer to Q if I |= Q[t̄], meaning that I makes Q[t̄] true, where Q[t̄] is Q with the

variables in x̄ replaced with the values in t̄. Q(I) denotes the set of answers to Q in

I. Q is a boolean conjunctive query (BCQ) when x̄ is empty, and if it is true in I,

Q(I) := {yes}. Otherwise, Q(I) = ∅.

A tuple-generating dependency (tgd), also called existential rule or simply a rule,

is a sentence, σ, of L of the form:

P1(x̄1), . . . , Pn(x̄n) → ∃ȳ P (x̄, ȳ), (2.2)

with x̄i indicating the variables appearing in Pi (possibly among with elements from

C), and an implicit universal quantification over all variables in x̄1, . . . , x̄n, x̄, and

x̄ ⊆
⋃

i x̄i, and the dots and the commas in the antecedent standing for conjunctions.

The variables in ȳ (that could be empty) are the existential variables. We assume

ȳ ∩ ∪x̄i = ∅. With head(σ) and body(σ) we denote the atom in the consequent and

the set of atoms in the antecedent of σ, respectively.

A constraint is an equality-generating dependency (egd) or a negative constraint

(NC), which are also sentences of L, respectively of the forms:

P1(x̄1), . . . , Pn(x̄n) → x = x′, (2.3)

P1(x̄1), . . . , Pn(x̄n) → ⊥, (2.4)

where x, x′ ∈
⋃

i x̄i, and ⊥ is a symbol that denotes the Boolean constant that is

always false. The notion of satisfaction of program rules and program constraints by

an instance I is defined as in FO logic.

In relational databases, the above rules and constraints are called dependencies,

and are considered to be general forms for integrity constraints (ICs) [Abiteboul et al.,

1995]. In particular, tgds generalize inclusion dependencies (IDs), a.k.a. referential
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constraints, and egds subsume key constraints and functional dependencies (FDs).

Relational databases make the complete data assumption (closed world assumption

(CWA)) [Abiteboul et al., 1995] and as a result the application of these dependencies

amounts to checking them over database instances.

A functional dependency (FD) R : Ā → B̄, where Ā and B̄ are sets of positions

of the predicate R, is satisfied if for every pair of tuples t̄ and t̄′ in the extension

of R, t̄[Ā] = t̄′[Ā] implies that t̄[B̄] = t̄′[B̄] holds.1 An inclusion dependency (ID)

P [i] ⊆ R[j] is satisfied, if for every tuple t̄ in the extension of P there is a tuple t̄′ in

the extension of R, such that ti = t′j [Abiteboul et al., 1995].

Datalog is a declarative query language for relational databases that is based on

the logic programming paradigm. Datalog allows to define recursive views, which

goes beyond the traditional relational query languages, i.e. relational calculus (RC)

and relational algebra (RA) [Abiteboul et al., 1995; Ceri et al., 1990]. A Datalog

program Π of schema R is a set ΠR of function-free horn clauses of FO logic, i.e.

tgds as in (2.2), but without ∃-variables, plus a database D. The predicates in R are

either extensional, i.e. they do not appear in rule heads and have complete data in

D, or intentional, and are defined by the rules, without an extension in D.

The semantics of a Datalog program is given by a fixed-point semantics [Abite-

boul et al., 1995]. According to this semantics, the extensions of the intentional

predicates are obtained by, starting from the extensional database, iteratively enforc-

ing the rules and creating tuples for the intentional predicates. This coincides with

the model-theoretic semantics [Abiteboul et al., 1995], a.k.a. minimal-model seman-

tics for Datalog, determined by a minimal model for the database and the rules (it

always exists and is unique).

1 t̄[Ā] are the values of t̄ in the positions of Ā.
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Example 2.1.1 A Datalog program Π containing the rules:

P (x, y) → R(x, y),

P (x, y), R(y, z) → R(x, z),

defines, on top of the extensional relation P , R as a new intentional predicate and

the transitive closure of the extensional predicate P . For D = {P (a, b), P (c, d)}, the

extension of R can be populated by iteratively adding tuples using the program rules,

which results in {R(a, b), R(c, d), R(a, d)}. �

A CQ as in (2.1) can be expressed as a Datalog rule of the form:

P1(x̄1), ..., Pn(x̄n) → ansQ(x̄), (2.5)

where ansQ(·) /∈ R is an auxiliary predicate. The query answers form the extension

of the answer-collecting predicate ansQ(·). When Q is a BCQ, ansQ is a propositional

atom; and if Q is true in I, then generating the atom ansQ can be reinterpreted as

the query answer (being Yes).

A Datalog± program Π = ΠR ∪ΠC ∪D is, in general, formulated by a set of rules

ΠR of the form (2.2), a (possibly empty) set of constraints ΠC as in (2.3) and (2.4),

and a database D that provides extensional data for the programs.2 The semantics of

tgds, egds, and NCs in a Datalog± program is notably different from their semantics

in relational databases. With Datalog±, we make the open world assumption (OWA),

which allows incomplete data for all program predicates, and tgds are used to complete

the data through data generation, and egds and NCs to restrict this process.

The set of models of Π, denoted by Mod(Π), contains all instances I, such that

I ⊇ D and I |= ΠR ∪ ΠC . Given a CQ Q, the set of answers to Q from Π is defined

by ans(Q,Π):=
⋂

I∈Mod(Π) Q(I), a certain answer semantics.

2 For simplicity of notation, when a program Π has only rules (without constraints, i.e. ΠC = ∅),
we use Π to refer to the program (i.e. set of rules plus extensional data) and also its set of rules.
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A homomorphism is a structure-preserving mapping, h: C ∪ N →C ∪ N , between

two instances I and I ′ over the same schema R such that: (a) t ∈ C implies h(t) = t,

and (b) for every ground atom P (t̄): if P (t̄) ∈ I, then P (h(t̄)) ∈ I ′. An isomor-

phism is a bijective homomorphism. We will use the notions of homomorphism and

isomorphism in Chapter 7.

2.2 The Chase Procedure

The chase procedure [Aho et al., 1979; Beeri & Vardi, 1984] is a fundamental al-

gorithm used for various database problems, including implication of database de-

pendencies, query containment, CQ answering under dependencies, and data ex-

change [Beeri & Vardi, 1984; Cal̀ı et al., 2003; Fagin et al., 2005; Johnson & Klug,

1984; Maier et al., 1979]. The idea is that, given a set of dependencies over a database

schema and an instance as input, the chase enforces the dependencies by adding new

tuples into the instance, so that the result satisfies the dependencies.

Here, we review the tgd-based chase procedure that is used with Datalog+ pro-

grams, i.e. programs without constraints. In Section 2.4, we discuss adding program

constraints.

The chase procedure on a Datalog+ program Π, i.e. a Datalog± program with

set of rules ΠR and database D (without program constraints, ΠC = ∅), starts from

the extensional database D, and iteratively applies the tgds in ΠR through some

tgd-based chase steps.

Definition 2.2.1 (tgd-chase step) Consider a Datalog+ program Π of schema R,

an instance I over the same schema R. A tgd rule σ ∈ Π and an assignment θ are

applicable if θ maps the body of σ into I.3

3 Sometimes we say the pair (σ, θ) is applicable.
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A chase step applies on instance I the applicable pair (σ, θ) and results in instance

I ′ = I ∪ {θ′(head(σ))}, where θ′ is an extension of θ that maps the ∃-variables of σ

into different fresh nulls (i.e. not appearing in I) in N . This is denoted by I
σ,θ
−−→ I ′.�

The chase step in Definition 2.2.1 is called oblivious [Cal̀ı et al., 2013], as it applies

a rule when its body can be mapped to an instance, ignoring whether the rule is

satisfied.

Remark 2.2.1 In a sequence of chase steps, denoted by I0
σ1,θ1

−−−−→ I1
σ2,θ2

−−−−→ I2 . . . ,

each applicable rule/assignment pair is applied only once. The sequence terminates

if every applicable pair has been applied.

The instances in a sequence are monotonically increasing, but not necessarily

strictly increasing, because a chase step can generate an atom that is already in

the current instance. Depending on the program and its extensional database, the

instances in a chase sequence may be properly extended indefinitely. �

Different orders of chase steps may result in different sequences. The chase pro-

cedure uses the notion of the level of atoms to define a “canonical” sequence of chase

steps [Cal̀ı et al., 2013].

Definition 2.2.2 Let I0
σ1,θ1

−−−−→ I1...
σk,θk−−−−→ Ik be a sequence of tgd-chase steps of a

program Π, with 0 < k, I0 := D. The level of an atom A ∈ Ik, denoted level(A), is:

(a) 0 if A is in I0, and (b) the maximum level of the atoms in θi(body(σi)) plus one

when A ∈ (Ii \ Ii−1), and Ii−1
σi,θi−−−→ Ii is a chase step with 0 < i ≤ k.

The level of an applicable rule/assignment pair, (σ, θ), in Ik is the maximum level

of the atoms in θ(body(σ)). �
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The chase applies the applicable rule/assignment pairs in a deterministic manner.

That is if there are several applicable pairs after the k-th chase step, the chase pro-

cedure chooses the pair with the minimum level in the sequence of tgd-chase steps

so far. If there are still several pairs with the minimum level, the chase applies the

one with lexicographically smaller body image,4 where the body image of (σ, θ) is the

sequence of atoms obtained from applying θ on the body of σ.

Example 2.2.1 Consider a program Π with extensional database D = {R(a, b)} and

set of rules:

σ : R(x, y) → ∃z R(y, z).

σ′ : R(x, y), R(y, z) → S(x, y, z).

With the instance I0 := D, (σ, θ1), with θ1 : x 7→ a, y 7→ b, is applicable:

θ1(body(σ)) = {R(a, b)} ⊆ I0. The chase inserts a new tuple R(b, ζ1) into I0 (ζ1

is a fresh null, i.e. not in I0), resulting in instance I1. The level of the new atom,

R(b, ζ1), is 1.

Now, (σ′, θ2), with θ2 : x 7→ a, y 7→ b, z 7→ ζ1, is applicable, because θ2(body(σ
′)) =

{R(a, b), R(b, ζ1)} ⊆ I1. The pair (σ, θ3), with θ3 : x 7→ b, y 7→ ζ1, is also applicable

since θ3(body(σ)) = {R(b, ζ1)} ⊆ I1. The levels of both pairs are 1 as the maxi-

mum levels of the atoms in their bodies are 1. The procedure applies (σ′, θ2) since

R(a, b), R(b, ζ1) is lexicographically smaller than R(b, ζ1). R(a, b), R(b, ζ1) is the body

image of (σ′, θ2) while, R(b, ζ1) is the body image of (σ, θ3). The chase adds S(a, b, ζ1)

into I1, resulting in I2. �

The result of the chase procedure is an instance called “the chase”, denoted by

chase(Π) or chase(D,ΠR). If the chase does not terminate, the chase is an infinite

4 This lexicographical order is based on a pre-established order between constants, nulls and
predicate names.
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instance: chase(Π) :=
⋃∞

i=0(Ii), with I0 := D, and, Ii is the result of the i-th chase

step for i > 0. If the chase stops after m steps, chase(Π) :=
⋃m

i=0(Ii). The chase

instance containing atoms up to level k ≥ 0 is denoted by chasek(Π), while chase [k](Π)

is the instance constructed after k ≥ 0 chase steps.

Example 2.2.2 (ex. 2.2.1 cont.) The chase continues, without stopping, creating an

infinite instance:

chase(Π) = {R(a, b), R(b, ζ1), S(a, b, ζ1), R(ζ1, ζ2), R(ζ2, ζ3), S(b, ζ1, ζ2), . . .}.

According to the chase procedure of Π:

chase [0](Π) = chase0(Π) = D = {R(a, b)}.

chase [1](Π) = chase1(Π) = {R(a, b), R(b, ζ1)}.

chase [2](Π) = {R(a, b), R(b, ζ1), S(a, b, ζ1)}.

chase2(Π) = {R(a, b), R(b, ζ1), R(ζ1, ζ2), S(a, b, ζ1)}.
�

In Section 2.3.4, we use a derivation relation for a program Π, a binary relation

between atoms in the chase of Π. Intuitively, if atoms A and B are in the derivation

relation of Π, then, B is either directly obtained from A in a chase step, or indirectly

derived by a sequence of chase steps, while A appears in the body image of some of

the applied rule/assignment pairs in the chase steps.

Definition 2.2.3 (derivation relation) Consider a program Π and the k-th chase

step, Ik
σk,θk−−−−→ Ik+1, with k ≥ 1, in the chase of Π. Let Ck = θ(body(σk))×(Ik+1\Ik).

Then,
Π

−−→ is defined as
⋃∞

i=1Ci if the chase does not stop, and
⋃m

i=1Ci if it stops

after m steps. The derivation relation of Π, denoted by
Π
−→

∗

, is the transitive closure

of
Π

−−→. �

In Definition 2.2.3, each Ck is a binary relation between atoms in the chase of Π.
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Example 2.2.3 (ex. 2.2.1 cont.) According to the chase of Π:

C1 = {〈R(a, b), R(b, ζ1)〉}.

C2 = {〈R(b, ζ1), R(ζ1, ζ2)〉}.

C3 = {〈R(a, b), S(a, b, ζ1)〉, 〈R(b, ζ1), S(a, b, ζ1)〉}.

. . . (non-terminating chase)

Π
−−→ = C1 ∪ C2 ∪ C3 ∪ ...

= {〈R(a, b), R(b, ζ1)〉, 〈R(a, b), S(a, b, ζ1)〉,

〈R(b, ζ1), S(a, b, ζ1)〉, 〈R(b, ζ1), R(ζ1, ζ2)〉, ...}.

Π
−−→

∗

= {〈R(a, b), R(b, ζ1)〉, 〈R(a, b), S(a, b, ζ1)〉,

〈R(b, b), S(a, b, ζ1)〉, 〈R(b, b), R(ζ1, ζ2)〉, ...}. �

Given a program Π, its chase (instance) is a universal model [Fagin et al., 2005],

i.e. a representative of all models in Mod(Π), in the sense that, for every model in

Mod(Π), there is a homomorphism that maps the universal model to that model.

For this reason, as it is shown in [Fagin et al., 2005, Proposition 2.6], the (certain)

answers to a CQ Q under Π, i.e. those in ans(Q,Π), can be computed by evaluating

Q over the chase instance (and discarding the answers containing nulls).

There are various chase procedures [Cal̀ı et al., 2013; Deutsch et al., 2008; Fagin

et al., 2005; Marnette, 2009] that compute universal models. They differ in: (a)

The definition of applicable rule/assignment pairs in chase steps. For example, in a

restricted chase step [Cal̀ı et al., 2013] a tgd is applicable only if it is not satisfied. (b)

The order of their chase step applications. For example, core chase [Deutsch et al.,

2008] applies all applicable pairs simultaneously. In this thesis, we use the oblivious

chase [Cal̀ı et al., 2013], that uses an oblivious chase step plus the restriction on
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repetition of rule applications in Remark 2.2.1, since it simplifies our algorithms and

proofs.

2.3 Programs Classes and Datalog±

CQ answering over Datalog+ programs with arbitrary sets of tgds is in general un-

decidable [Beeri & Vardi, 1981], and it becomes decidable for those programs with

a terminating chase. However, it is in general undecidable if the chase terminates,

even for a fixed instance [Beeri & Vardi, 1981; Deutsch et al., 2008]. Several suf-

ficient conditions, syntactic [Deutsch et al., 2008; Fagin et al., 2005; Krötzsch &

Rudolph, 2011; Marnette, 2009], or data-dependent [Meier et al., 2009], that guaran-

tee chase termination have been identified. Weak-acyclicity [Fagin et al., 2005] and

joint-acyclicity [Krötzsch & Rudolph, 2011] are two kinds of syntactic conditions that

use a static analysis of a dependency graph for the predicate positions in the program.

A non-terminating chase does not imply that CQ answers are uncomputable. Sev-

eral program classes are identified for which the chase may be infinite, but QA is still

decidable. That is the case for linear, guarded, sticky, weakly-sticky Datalog± [Cal̀ı et

al., 2009, 2010a, 2011, 2012a], shy Datalog∃ [Leone et al., 2012], and finite expansion

sets (fes), finite unification sets (fus), bounded-treewidth sets (bts) [Baget et al., 2009,

2011a,b]. Each program class defines conditions on the program rules that lead to

good computational properties for QA (Figure 6.2 in Section 6.3 shows the general-

ization relation among the program classes in the thesis). In the following, we focus

on sticky and weakly-sticky Datalog± programs because of their relevance to MD

ontologies.
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2.3.1 Weakly-acyclic programs

Weakly-acyclic programs are defined using dependency graphs. The dependency graph

(DG) of a program Π with schema R (cf. Figure 2.1) is a directed graph whose

vertices are the positions of R. The edges are defined as follows: for every σ ∈ Π,

and every universally quantified variable (∀-variable)5 x in head(σ) in position p in

body(σ) (among possibly other positions where x appears in body(σ)): (a) for each

occurrence of x in position p′ in head(σ), create an edge from p to p′, (b) for each

∃-variable z in position p′′ in head(σ), create a special (dashed) edge from p to p′′.

The rank of a position p in the graph, denoted by rank(p), is the maximum number

of special edges over all (finite or infinite) paths ending at p. πF (Π) denotes the set

of finite-rank positions in Π. A program is Weakly-acyclic (WA) if all of the positions

have finite-rank [Fagin et al., 2005].

Example 2.3.1 Let Π be a program with rules:

U(x) → ∃y R(x, y),

R(x, y) → P (y, x).

P [1]

P [2]

R[1]

R[2]

U [1]

Figure 2.1: Dependency graph

According to the DG of Π, shown in Figure 2.1, the ranks of U [1], R[1], and

P [1] are 0, and the ranks of R[2] and P [2] are 1. Π is WA since all positions have

finite-rank. �

The problem of BCQ answering over a WA program is PTIME-complete in data

complexity [Fagin et al., 2005]. This is because the chase for these programs stops in

5 Every variable that is not existentially quantified is implicitly universally quantified.
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polynomial time w.r.t. the size of the data [Fagin et al., 2005]. The same problem is

2EXPTIME-complete in combined complexity, i.e. w.r.t. the size of both program

rules and the data [Kolaitis et al., 2006].

2.3.2 Jointly-acyclic programs

The definition of the class of joint-acyclic (JA) programs appeals to the existential

dependency graph (EDG) of a program [Krötzsch & Rudolph, 2011] that we briefly

review here.

Let Π be a program with standardized apart rules, i.e. no variable appears in

more than one rule. For a variable x in rule σ, let Bx and Hx be the sets of positions

where x occurs in the body, resp. in the head, of σ. For an ∃-variable z, the set of

target positions of z, denoted by Tz, is the smallest set of positions such that: (a)

Hz ⊆ Tz, and (b) Hx ⊆ Tz for every ∀-variable x with Bx ⊆ Tz. Roughly speaking, Tz

is the set of positions where the null values invented for the ∃-variable z may appear

during the chase.

The EDG of Π is a directed graph with the ∃-variables of Π as its nodes. There

is an edge from z ∈ σ to z′ ∈ σ′ if there is a body variable x in σ′ such that Bx ⊆ Tz.

Intuitively, the edge shows that the values invented by z may appear in the body of

σ′, and cause invention of values for z′. Therefore, a cycle represents the possibility

of inventing infinitely many null values for the ∃-variables in the cycle. A program is

joint-acyclic (JA) if its EDG is acyclic.

Example 2.3.2 Consider a program Π with the following rules:
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P (x1, y1) → ∃z1 R(y1, z1). (2.6)

R(x2, y2), U(x2), U(y2) → ∃z2 P (y2, z2). (2.7)

P (x3, y3) → ∃z3 S(x3, y3, z3). (2.8)
z3

z2

z1

Figure 2.2: The EDG of Π.

By1 = {P [2]} and Hy1 = {R[1]} are the sets of positions where the variable y1

appears in the body and, resp. the head of rule (2.6). Similarly, Bx2
= {R[1], U [1]},

By2 = {R[2], U [1]}, and By3 = {P [2]}. Tz1 = {R[2]} and Tz2 = {P [2], R[1], S[2]} are

the sets of target positions of z1 and resp. z2.

In the EDG of Π in Figure 2.2 there is an edge from z2 to z1 since for the body

variable y1 in rule (2.6), where z1 appears, By1 ⊆ Tz2 holds, which means y1 occurs

only in the target positions of z2. Similarly, there is an edge from z2 to z3 since for

the body variable y3 in rule (2.8), where z3 appears, By3 ⊆ Tz2 holds, which means

y3 occurs only in the target positions of z2. There is no edge from z1 to z2 since, in

rule (2.7), Bx2
6⊆ Tz1 and By2 6⊆ Tz1 . For a similar reason, there is no self-loop for z2.

The graph is acyclic, and Π is JA. �

JA programs have polynomial size (finite) chase w.r.t. the size of the exten-

sional data, and properly extend WA programs. BCQ answering over JA programs is

PTIME-complete in data complexity, and 2EXPTIME-complete is combined com-

plexity [Krötzsch & Rudolph, 2011].

The program classes introduced in this section so far have a finite chase. Now,

we review program classes for which the chase may be infinite, but still enjoy good

properties w.r.t. QA.
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2.3.3 Stickiness of the chase

The syntactic classes of sticky and weakly-sticky programs (cf. Section 2.3.4 and

Section 2.3.5) are defined on the basis of the notion of the “stickiness property of

the chase” (sch-property) [Cal̀ı et al., 2012c]. The latter is a “semantic” property

of Datalog+ programs in relation to the way the program’s chase behaves with the

extensional data. Informally, a program has this property if, due to the application

of a rule σ, when a value replaces a repeated variable in a rule-body, then that value

also appears in all the head atoms introduced through the iterative enforcement of

applicable rules that starts with σ’s application. In short, the value is propagated

through all possible subsequent chase steps.

Definition 2.3.1 (Stickiness of the chase) [Cal̀ı et al., 2012c] A Datalog+ pro-

gram Π (including extensional data) has the stickiness property of the chase (in short

the sch-property), if and only if for every chase step Ii
σi,θi−−−→ Ii ∪ {Ai} during the

chase of Π, the following holds: If a variable x appears more than once in body(σi),

θi(x) occurs in Ai and every atom B for which, Ai
Π

−−→
∗

B. Sticky-chase (SCh) is

the class of programs with the sch-property. �

The stickiness of the chase of a program is a semantic notion, relative to the

program’s extensional data.

Example 2.3.3 Consider Π1 with D1 = {R(a, b), R(b, c)}, and the following rules:

R(x, y), R(y, z) → P (y, z).

P (x, y) → ∃z S(x, y, z).

S(x, y, z) → U(y).
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r(a,b) r(b, c)

p(b, c)

s(b, c, ζ1)

u(c)

r(a,b) r(b, c)

p(b, c)

s(b, c, ζ1)

Figure 2.3: The sch-property.

Π1 does not have the sch-property, as the chase in Figure 2.3 (left-hand side) shows:

value b is not propagated all the way down to U(c). However, a program Π2 with

the same database D2 = D1 and the rules in Π1 without its third rule, has the

sch-property, as shown in Figure 2.3 (right-hand side). �

Remark 2.3.1 The sch-property for a program guarantees PTIME data complexity

of CQ answering: a CQ can be answered on an initial fragment of the chase of

polynomial size in the size of the program’s data (cf. the QA algorithm in Chapter 7

and Theorem 7.2.1). In particular, the values that are propagated during the chase,

either:

(a) Replace a join variable in a tgd-chase step and continue to appear in the head

atoms in the subsequent tgd-chase steps, or

(b) Do not replace any join variables in the tgd-chase steps.

The values in (b) can be interchangeably used during the chase. So, they can be con-

sidered as placeholders. For example, atoms U(ζ1) and U(ζ2) can be interchangeably

used during the chase, if ζ1 and ζ2 never replace a repeated variable in any chase

step (more details are in the proof of Theorem 7.2.1). The number of values in (a)
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is a polynomial function of the number of constants in the program’s extensional

database [Fagin et al., 2005] (cf. Example 2.3.4). Therefore, the values in (a) and (b)

generate polynomially many atoms in the fragment of the chase for answering a CQ at

hand. In Chapter 7, we propose a QA algorithm for SCh (and some generalizations)

that generates this fragment of the chase. �

Example 2.3.4 Consider a program Π with D = {U(a), U(b)}, a BCQ Q : ∃x ∃y

(U(x) ∧ P (x, y) ∧ V (y)), and the set of rules:

U(x) → ∃y P (x, y). (2.9)

P (x, y) → V (y). (2.10)

U(x), P (x, y), V (y) → ansQ(x, y). (2.11)

Rule (2.11) defines the query answer collection predicate ansQ. The chase of Π

terminates and results in:

chase(Π)={U(a), U(b), P (a, ζ1), P (b, ζ1), R(ζ1, ζ3), R(ζ2, ζ4), ansQ(a, ζ1), ansQ(b, ζ2)}.

The values a, b, ζ1 and ζ2 are examples of values in (a), in Remark 2.3.1, as they

replace join variables in tgd-chase steps with (2.11). They continue to appear in the

next atoms, in this case, ansQ(a, ζ1) and ansQ(b, ζ2). The number of these values in

limited by the arity of the predicates (no more than two in this case as ansQ can hold

at most two values). This shows the number of such values polynomially depends on

the number of constants in the extensional database. �

SCh is the semantic class of Datalog± programs with the sch-property. Sticky

Datalog± (cf. Section 2.3.4) is a syntactic class of programs that enjoy the sch-

property, for every extensional database [Cal̀ı et al., 2012c]. The SCh class can be
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extended to several larger, semantic, program classes that enjoy a relaxed form of the

sch-property (cf. Section 6.1).

2.3.4 Sticky programs

The class of sticky programs is characterized through a body variable marking pro-

cedure whose input is the set of rules in the program Π (the extensional data do not

participate in it). The procedure has two steps:

(a) Preliminary step: For each σ ∈ Π and variable x in body(σ), if there is an atom

A in head(σ) where x does not appear, mark each occurrence of x in body(σ).

(b) Propagation step: For each σ ∈ Π, if a marked variable in body(σ) appears at

position p, then for every σ′ ∈ Π (including σ), mark each occurrence of the

variables in body(σ′) that appear in head(σ′) in the same position p.

Π is sticky when, after applying the marking procedure, there is no rule with a

marked variable appearing more than once in its body. Notice that a variable never

appears both marked and unmarked in a same body.

Example 2.3.5 The original set of three rules is shown on the left-hand side below.

The second rule already shows marked variables (with a hat) after the preliminary

step. The set of rules on the right-hand side are the result of whole marking procedure.

R(x, y), P (x, z) → S(x, y, z). R(x̂, y), P (x̂, ẑ) → S(x, y, z).

S(x̂, y, ẑ) → U(y). S(x̂, y, ẑ) → U(y).

U(x) → ∃y R(y, x). U(x) → ∃y R(y, x).

Variables x and z in the first rule-body end up marked after the propagation step:

they appear in the same rule’s head, in positions where marked variables appear in
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the second rule (S[1] and S[3]). Accordingly, the set of rules is not sticky: x in the

first rule’s body is marked and occurs twice in it (in R[1] and P [1]). �

Sticky Datalog± is properly included in SCh. That is programs with sch-property

may not be syntactically sticky.

Example 2.3.6 Let Π be a Datalog+ program with extensional data D = {R(a, b)}

and the tgd rule, R(x, y), R(y, z) → R(x, z). Π is not sticky as y is marked and

appears twice in the body of the rule. The chase of Π does not apply the rule. So,

the program trivially has the sch-property. �

With sticky programs, QA can be done in PTIME in data complexity and

EXPTIME-complete in combined complexity [Cal̀ı et al., 2012c]. In fact, CQ an-

swering over sticky programs is first-order rewritable [Cal̀ı et al., 2010a; Gottlob et

al., 2011].

Definition 2.3.2 (first-order rewritability) [Calvanese et al., 2007]6 CQ answer-

ing over a Datalog+ program Π with extensional database D is first-order (FO)

rewritable if, for every CQQ, a FO queryQ′ can be constructed such that, ans(Q,Π) =

Q′(D). �

Example 2.3.7 Let Π be a program with a database D = {P (a, b), U(b)} and the

rule:

P (x, y), U(y) → ∃z S(x, y, z).

Π is sticky since it does not have marked variables. Being sticky, it is also FO

rewritable. For the CQ Q(x) : ∃y ∃z S(x, y, z), Q(D) = ∅, since S has no extension

in D. However, ans(Q,Π) = {a} because S has intensional data obtained through the

6 First-order rewritability for ontology-based query answering (cf. Section 3.4 for details) is first
introduced in [Calvanese et al., 2007].
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rule. Q can be rewritten into the FO queryQ′(x) :∃y∃z S(x, y, z) ∨ ∃t (P (x, t)∧U(t)),

for which, ans(Q,Π) = Q′(D). Here, Q′ is obtained by relaxing Q and adding

∃t (P (x, t) ∧ U(t)) that is extracted from the rule body. �

FO rewritability is a desirable property as it is well known that the evaluation of

FO queries is in the highly tractable class AC0 (in data complexity) [Vardi, 1995].

2.3.5 Weakly-sticky programs

Weakly-sticky programs form a syntactic class that extends those of WA and sticky

programs. Its characterization does not depend on the extensional data, and uses

the notions of finite-rank and marked variable introduced in Section 2.3.1 and, resp.,

Section 2.3.4: A set of rules Π is weakly-sticky (weakly-sticky (WS)) if, for every rule

in it and every repeated variable in its body, the variable is either non-marked or

appears in some positions in πF (Π).

Example 2.3.8 Consider Π with the set of rules:

R(x, y) → ∃z R(y, z).

R(x, y), U(y), R(y, z) → R(x, z).

According to the graph of Π, πF (Π) = {U [1]}, and π∞(Π) = {R[1], R[2]}. After

applying the marking procedure, every body variable in Π is marked. Π is WS since

the only repeated marked variable is y, in the second rule, and it appears in U [1] ∈

πF (Π).

Now, let Π′ be the program with the first rule of Π and the second rule as follows:

R(x, y), R(y, z) → R(x, z).
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Now, πF (Π
′) = ∅ and π∞(Π′) = {R[1], R[2]}. After applying the marking procedure,

every body variable in Π′ is marked. Π′ is not WS since y in the second rule is

repeated, marked and appears in R[1] and R[2], both in π∞(Π). �

Intuitively, WS generalizes the syntactic stickiness condition by prohibiting re-

peated marked variables appearing only in infinite-rank positions. The WS condition

guarantees tractability of CQ answering, because a CQ can be answered on an ini-

tial fragment of the chase whose size is polynomial in the size of the extensional

database (it also depends on the query). In fact, the data complexity and com-

bined complexity of CQ answering over WS programs are PTIME-complete and

2EXPTIME-complete, respectively [Cal̀ı et al., 2012a].

The polynomial data complexity of QA under a WS program relies on the follow-

ing facts about the values in the fragment of its chase just mentioned: (a) Polyno-

mially many values in the size of the program’s data may appear in the finite-rank

positions [Fagin et al., 2005], (b) The values in the infinite-rank positions enjoy the

stickiness property. As explained in Section 2.3.3, there are polynomially many values

of this kind. Consequently, the values in (a) and (b) can generate polynomially many

atoms in the fragment of the chase of a WS program that is necessary for answering

a CQ.

This argument about PTIME data complexity of QA under WS programs can

also be applied to more general, syntactic and semantic classes of programs that are

characterized through the use of the stickiness condition on positions where infinitely

many values may appear during the chase. (WS programs are a special case, where

those positions have infinite-rank; and stickiness is enforced by the syntactic variable-

marking mechanism.) Actually, we can make the general claim that the combination
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of finitely many values in finite positions plus chase-stickiness on infinite positions

makes QA decidable (cf. Theorem 7.2.1 and the QA algorithm in Chapter 7 for

classes of programs that generalize WS).

Table 2.1 is a summary of complexity of BCQ answering under programs that

have been reviewed in this section.

Data complexity Combined complexity

WA PTIME-complete 2EXPTIME-complete

JA PTIME-complete 2EXPTIME-complete

sticky in AC0 EXPTIME-complete

WS PTIME-complete 2EXPTIME-complete

Table 2.1: Complexity of BCQ answering under programs in Section 2.3

2.4 Program Constraints

So far in this chapter we have considered programs without constraints, i.e. only

programs with extensional databases and rules of the form (2.2). In this section, we

extend Datalog+ with NCs and egds of the forms (2.4) and (2.3), resp. These ICs are

called program constraints in the context of Datalog+ programs.

2.4.1 Negative constraints

We recall the syntax and the semantics of NCs introduced in Section 2.1. A NC is of

the form (2.4), η : P1(x̄1), . . . , Pn(x̄n) → ⊥; and η holds in an instance I if there is no

assignment θ that maps P1(x̄1), . . . , Pn(x̄n) into I. This can be checked by evaluating

a BCQ associated to η, Qη : ∃x1 ... ∃xn (P1(x̄1)∧ . . .∧ Pn(x̄n)) in I. The NC η holds

in I if and only if Qη is false in I.
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For a program Π, adding NCs may change CQ answers under the program, by

eliminating some models from Mod(Π).

Example 2.4.1 Consider a program Π with the database D = {U(a)} and the tgd,

σ : U(x) → ∃y R(x, y). I1 = {U(a), R(a, a)} and I2 = {U(a), R(a, b)} are two

models in Mod(Π). The BCQ Q : ∃x R(x, x) is false in Π since I2 6|= Q (according to

the certain answers semantics, cf. Section 2).

Let Π′ be a program as Π, but with the additional NC, η : U(x) → ⊥. The

NC eliminates I1 and I2 from Mod(Π′), since Qη : ∃x U(x) is true in both instances.

In fact, Π′ does not have any model, Mod(Π′) = ∅, and Q is trivially true under Π′.

This shows that adding NCs may change CQ answers.

Adding NCs to a program Π does not necessarily lead to different query answers,

even if the NCs eliminate certain instances from Mod(Π). In fact, consider now the

program Π′′ as Π with the additional NC, η′ : R(x, x) → ⊥. Now, I2 ∈ Mod(Π′′)

and I1 6∈ Mod(Π′′) since Qη′ : ∃x R(x, x) is false in I2 and true in I1. Q is false under

Π′′ because I2 6|= Q. Here, adding η′ to Π eliminated I1 from Mod(Π′′) but Π′′ still

answers Q the same as Π. �

Example 2.4.1 confirms that NCs have to be considered for CQ answering when

programs contain them.

According to [Cal̀ı et al., 2009, Theorem 11], CQ answering under a program Π

with rules ΠR and NCs ΠC can be reduced to CQ answering under a program, Π′,

with only the rules ΠR (and without the NCs). This can be done by:

(a) Checking if the NCs in ΠC are satisfied by Π′. More precisely, for η ∈ ΠC , we

evaluate the BCQ Qη over Π′. If at least one of such queries answers positively,

Π is inconsistent, and thus QA is trivial since every query is entailed.
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(b) If the NCs are not satisfied by Π′, for every BCQ Q, Π |= Q if and only if

Π′ |= Q, i.e. we can answer queries over Π′, ignoring the NCs.

Notice that in (a), if Π′ (the program without egds) is WS, for which the chase

might not terminate, we can answer Qη on the limited portion of the chase of Π′, as

explained in Section 2.3.5.

Example 2.4.2 (ex. 2.4.1 cont.) For Π′ and as in (a) above, we evaluate Qη under

Π (Π′ without η). The answer is true, which means η does not hold, and Π′ is

inconsistent. Every CQ is trivially true under Π′.

For Π′′, we first evaluate Qη′ under Π and since it is false, η′ is satisfied by Π′′.

So, we ignore the constraint: Π′′ 6|= Q because Π 6|= Q, with Q : ∃x R(x, x). �

We can see that answering BCQs under Datalog± programs with NCs has the

same data complexity of answering BCQs on Datalog+ programs with tgds alone.

2.4.2 Equality-generating dependencies

Let us retake egds of the form (2.3) in Section 2.1, with their semantics defined as FO

sentences. An egd ε holds in an instance I if and only if any assignment that maps

body(ε) to I, maps the head variables of ε to the same terms. So as with NCs, adding

egds to a Datalog+ program Π may eliminate certain models from Mod(Π), which

in turn may change CQ answers. However, imposing egds on a Datalog+ program is

different from imposing NCs. This is specially due to possible interactions between

the egds and tgds during the chase procedure, as we show now.

Example 2.4.3 Consider a program Π with D = {R(a, b)} and the following rules:
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R(x, y) → ∃z ∃w S(y, z, w). (2.12)

S(x, y, y) → P (x, y). (2.13)

chase(Π) = {R(a, b), S(b, ζ1, ζ2)}, with ζ1 and ζ2 fresh nulls. Rule (2.13) is not applied

since ζ1 and ζ2 are not equal, as required by the body. The answer to a BCQ Q :

∃x ∃y P (x, y) is false under Π as chase(Π) 6|= Q. Now consider Π′ that is obtained

by adding the following egd to Π:

S(x, y, z) → y = z. (2.14)

The chase of Π′ first applies rule (2.12) and results in I1 = {R(a, b), S(b, ζ1, ζ2)}. Now,

there is no more tgd/assignment applicable pair. But, if we apply the egd (2.14), it

equates ζ1 and ζ2, and results in I2 = {R(a, b), S(b, ζ1, ζ1)}. (This kind of egd-chase

step is defined in Definition 2.4.1.) Now, rule (2.13) and θ′ : x 7→ b, y 7→ ζ1 are

applicable and they add P (b, ζ1) to I2, generating I3 = {R(a, b), S(b, ζ1, ζ1), P (b, ζ1)}.

The procedure terminates since no more tgds or egds can be applied. The chase

result, chase(Π′), is I3. Q holds under Π′: chase(Π′) |= Q. �

Example 2.4.3 shows that adding an egd to a program may change query answers.

Also, the chase of a program may apply an egd between tgd-chase steps. Actually,

there might be interactions between tgds and an egd, i.e. the application of a tgd

activates the egd, which in turn might make some tgds applicable. This confirms that,

unlike NCs, checking egds can not be postponed until all tgds have been applied: they

have to be applied during the chase procedure, through egd-chase steps.

Definition 2.4.1 (egd chase step) [Cal̀ı et al., 2009] Let Π be a program with

database D, tgds ΠR, and egds ΠC . The egd ε : P1(x̄1), . . . , Pn(x̄n) → x = x′ in ΠC
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and assignment θ are applicable on an instance I if θ(body(ε)) ∈ I and θ(x) 6= θ(x′).

In this case, the effect of the application of the pair, (ε, θ), an egd-chase step, is as

follows:

(a) If θ(x) and θ(x′) are two distinct constants,7 then the result is a hard con-

straint violation, which causes the failure of the chase, and the halting of its

computation. We say the program is inconsistent.

(b) Otherwise (i.e. at least one of them is a null), the result is the replacement of all

occurrences of θ(x′) in I by θ(x), where θ(x) precedes θ(x′) in the lexicographical

order.8 �

Notice that this definition also defines the failure of the chase with egds.

The (combined) chase procedure of a program, with tgds and egds, iteratively

applies both tgd and egd chase steps, as follows: (a) Apply applicable pairs of

egd/assignment exhaustively, as long as they exist, and according to a pre-established

order (such as tgd-chase steps). (b) Apply a tgd-chase step as described in Section 2.2.

In other words, a sequence of steps in the (combined) chase procedure is formed by a

sequence of tgd-chase steps, while before each tgd-chase step every possible egd-chase

step is applied.

The (combined) chase terminates if it either fails (always due to a failed egd-

step) or there are no more applicable pairs of egd/assignment or tgd/assignment.

The (combined) chase failure results in an inconsistent program that answers every

BCQ positively. If the (combined) chase does not fail, the result is a possibly infinite

universal model, that satisfies both the tgds and egds [Cal̀ı et al., 2013].

7 This includes the constants that the tgds may introduce.
8 We assume a lexicographical order between constants in C and also between nulls in N (cf.

Section 2.2), in which constants precede all null values.
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The interaction of tgds and egds during the chase procedure (as shown in Exam-

ple 2.4.3) may lead to undecidability of QA [Johnson & Klug, 1984]. In fact, this

is true even in simple cases, such as combinations of functional dependencies (FDs)

and inclusion dependencies (IDs) [Chandra & Vardi, 1985], or key constraints and

IDs [Cal̀ı et al., 2013]. A separability condition on the combination of egds and tgds

guarantees a harmless interaction, i.e. CQ answering becomes decidable [Cal̀ı et al.,

2012a,c].

Definition 2.4.2 (Separability) [Cal̀ı et al., 2012a] Let Π be a program with a

database D, a set of tgds ΠR, and a set of egds ΠC , and let Π′ be the program with

D and ΠR (without the egds). ΠR and ΠC are separable if either (a) the chase of Π

fails, or (b) for any BCQ Q, Π |= Q if and only if Π′ |= Q. �

In Example 2.4.3, the tgds and the egd are not separable as the chase does not

fail, and the egd changes CQ answers (in that case, Π 6|= Q and Π′ |= Q).

Separability is a semantic condition, relative to the chase, and depends on a

program’s extensional data. It guarantees that, as for programs with tgds and NCs,

CQ answering under a program Π with tgds ΠR and egds ΠC can be reduced to CQ

answering under a program, Π′, with only the tgds in ΠR (and without the egds) [Cal̀ı

et al., 2012a]. More precisely, if separability holds,

(a) Combined chase failure can be decided by posing the BCQs obtained from the

egds directly to the program without the egds [Cal̀ı et al., 2012d, Theorem 1].

More specifically, for the egds in ΠC , ε : P1(x̄1), . . . , Pn(x̄n) → x = x′, the

obtained BCQs are Qε : ∃x̄1, ..., ∃x̄n (P1(x̄1)∧ . . .∧Pn(x̄n)∧ x 6= x′). The chase

fails iff the answer is positive at least for one of them.
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(b) If it does not fail, CQ answering can be done with the tgds alone [Cal̀ı et al.,

2012a,d].

Notice that in (a), if Π′ is WS, for which the chase might not terminate, we can

answer Qε on the limited portion of the chase of Π′, explained in Section 2.3.5.

Example 2.4.4 (ex. 2.4.3 cont.) Let Π′′ be Π with an additional egd:

ε′ : R(x, y) → x = y. (2.15)

The tgds and ε′ are separable. Intuitively, this is because R in the body of ε′ does

not appear in the head of the tgds, and as a result, ε′ can only equate values from

Adom(D) during the (combined) chase of Π′′. Therefore, the application of ε either

causes failure, or it does not change the chase result or CQ answers. In fact, this

observation leads to a sufficient syntactic condition for separability (cf. Condition (a)

Definition 2.4.3).

Since the tgds and ε′ are separable, we can decide if the chase fails by posing the

BCQ Qε′ : ∃x ∃y (R(x, y)∧x 6= y) to Π (the program without the egd). The answer is

positive, which means the (combined) chases fails, and the program is inconsistent.�

The problem of deciding if a set of tgds and egds is separable is undecidable [Cal̀ı

et al., 2010a]. For functional dependencies (FDs), as opposed to general egds, a

syntactic sufficient condition for separability is a non-conflicting combination of tgds

and FDs [Cal̀ı et al., 2010a, 2012d].

Definition 2.4.3 (Non-conflicting FDs) [Cal̀ı et al., 2010a] Let Π be a program

with a set of tgds, ΠR, and a set ΠC of FDs. ΠR and ΠC are non-conflicting if, for

every pair formed by a tgd σ ∈ ΠR and an FD ε of the form R : Ā → B̄ in ΠC , at



49

least one of the following holds: (a) head(σ) is not an R-atom, (b) Uσ 6⊇ Ā, or (c)

Uσ = Ā and each ∃-variable in σ occurs just once in the head of σ. Here, Uσ is the

set of positions of ∀-variables in the head of σ. �

Example 2.4.5 Consider R, a schema with a ternary predicate S and a unary pred-

icate V , a tgd σ : V (x) → ∃y ∃z S(x, y, z), and the FD ε : {S[1], S[2]} → {S[3]}.

The FD ε can be written as an egd: S(x, y, z), S(x, y, z′) → z = z′. Here, σ and ε are

non-conflicting, because (b) holds: Uσ 6⊇ A, with Uσ = {S[1]} and A = {S[1], S[2]}.

Now, consider the tgd σ′ : V (x) → ∃y S(x, y, y), and the FD ε′ : {S[1]} →

{S[2], S[3]}. They are not non-conflicting, because none of (a)-(c) holds: For (a), S

appears in the head of σ and the body of ε. For (b) and (c), A = Uσ′ = {S[1]}, but

y appears twice in the head of σ′. �

Conditions (a) and (b) in Definition 2.4.3 imply separability, by ensuring that the

application of a tgd can not make an egd applicable. In particular for (a), the atoms

introduced by a tgd never appear in the body of an egd. For (b), these atoms do not

make the egd applicable since they introduce fresh nulls in the positions in A. With

respect to (c), the atoms can make the egd applicable, but applying the egd does not

change CQ answers (as shown in Example 2.4.6), which still guarantees separability.

Notice that the non-conflicting condition is decidable.

Example 2.4.6 Let Π be a program with D = {P (a, b), V (a)}, FD ε : {P [1]} →

{P [2]}, and tgd σ : V (x) → ∃y P (x, y). According to (c), ε and σ are non-conflicting:

A = Uσ = {P [1]} and y appears once in the head of σ.

The chase of Π applies (σ, θ), with θ : x 7→ a, and results in I1 = {P (a, b), V (a),

P (a, ζ1)}. Now, ε is applied, which converts ζ1 into b, and results in I2 = D. This
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egd application does not change CQ answers since for every CQ Q, it holds Q(I1) =

Q(I2). �

2.5 The Hurtado-Mendelzon Multidimensional Data Model

According to the Hurtado-Mendelzon (HM) multidimensional data model [Hurtado

& Mendelzon, 2002], a dimension schema, H = 〈K ,↗〉, consists of a set K of

categories (a.k.a. levels), and an irreflexive, binary relation ↗, called the child-parent

relation, between categories (the first category is a child and the second category is

a parent). ↗∗ denotes the transitive and reflexive closure of ↗. It is a partial order

(a lattice) with a top category, All, which is reachable from every other category:

K ↗∗ All , for every category K ∈ K . There is a unique base category, Kb, that

has no children: for no category K, K ↗ Kb holds. There are no “shortcuts”, i.e.

if K ↗ K ′, there is no category K ′′, distinct from K and K ′, with K ↗∗ K ′′,

K ′′ ↗∗ K ′.

A dimension instance for schema H is a structure L = 〈U , <,m 〉, where U is a

non-empty, finite set of data values called members, < is an irreflexive binary relation

between members, called the child-parent relation (the first member is a child and

the second member is a parent),9 and m : U → K is the total membership function.

Relation < parallels (is consistent with) relation ↗ between the categories: e < e′

implies m(e) ↗ m(e′). The statement m(e) = K is also expressed as e ∈ K. <∗

is the transitive and reflexive closure of <, and is a partial order over the members.

There is a unique member all, the only member of All, which is reachable via <∗

from any other member: e <∗ all , for every member e. A child member in < has

9 There are two child-parent relations in a dimension: ↗ is between the categories, and < is
between their members.
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only one parent member in the same category: for members e, e1, and e2, if e < e1,

e < e2 and e1, e2 are in the same category (i.e. m(e1) = m(e2)), then e1 = e2. <
∗ is

used to define the roll-up relations for any pair of distinct categories K and K ′, with

K ↗∗ K ′: LK′

K (L ) = {(e, e′) | e ∈ K, e′ ∈ K ′ and e <∗ e′}.

Standard Intensive Terminal 

W4 W3 W2 W1 

H1 

allHospital 

H2 

AllHospital 

Institution 

Unit 

Ward 

PatientsDiseases 

Ward Disorder Day Count 

W4 Lung Cancer Jan/10 1 

W3 Malaria Feb/16 2 

W1 
Coronary Artery Mar/25 5 

AllTime 

Year 

Month 

Day 

AllDisorder 

Type 

Disease 

Diagnostics 

Figure 2.4: An HM model

Example 2.5.1 An HMmodel is shown in Figure 2.4, with three dimensions. For the

Hospital dimension, on the left-hand-side, K = {AllHospital , Institution,Unit ,Ward},

with top category AllHospital and base category Ward. The child-parent relation ↗

contains (Institution,AllHospital), (Unit , Institution), and (Ward ,Unit). The category

of each member is specified by m, e.g. m(H1) = Institution. The child-parent rela-

tion, <, between the members contains (W1, standard), (W2, standard), (W3, intensive),

(W4, terminal), (standard,H1), (intensive,H1), (terminal,H2), (H1, allHospital), and (H2,

allHospital). Finally, LInstitution
Ward is one of the roll-up relations and contains (W1,H1),

(W2,H1), (W3,H1), and (W4,H2). �



52

A dimension can be represented in relational terms.10 The relational dimension

schema is H = K ∪ L, where K is a set of unary category predicates, and L is a set

of binary child-parent predicates. In child-parent predicates, the first attribute is a

child and the second attribute is a parent. The data domain of the schema is U (the

set of members in the dimension). Accordingly, a dimension instance is a database

instance DH over H, giving extensions of the predicates in H. The extensions of the

category predicates form a partition of U .

The relational dimension schema and its relational instance are in one-to-one

correspondence with the dimension schema and its dimension instance. In particular,

for each category K ∈ K there is a category predicate K(·) ∈ K, and the extension of

the predicate contains the members of the category. Also, for every pair of categories

K, K ′ with K ↗ K ′, there is a corresponding child-parent predicate in L, and

its extension contains the child-parent relationships between members of K and K ′,

according to <. In other words, each child-parent predicate in L stands for a roll-up

relation between two child-parent categories.

Example 2.5.2 (ex 2.5.1 cont.) In the relational representation of Hospital, K con-

tains unary predicates AllHospital(·), Institution(·), Unit(·), andWard(·). The instance

DH gives to them the following extensions: AllHospital = {allHospital}, Institution =

{H1,H2}, Unit = {standard, intensive, terminal}, and Ward = {W1,W2,W3,W4}. L

contains binary predicates InstitutionAllHospital(·, ·), UnitInstitution(·, ·), and Ward -

Unit(·, ·), with the following extensions for the relational instance DH:

10 We will use this representation in Section 4.1 to extend the HM model.
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InstitutionAllHospital = {(H1, allHospital), (H2, allHospital)},

UnitInstitution = {(standard,H1), (intensive,H1), (terminal,H2)},

WardUnit = {(W1, standard), (W2, standard), (W3, intensive),

(W4, terminal)}. �

In order to recover the hierarchy of a dimension in its relational representation, we

have to impose some integrity constraints (ICs). First, inclusion dependencies (IDs)

associate the child-parent predicates to the category predicates. For example, the

following IDs associate the first and second positions of WardUnit(·, ·) to Ward(·)

and Unit(·), resp.: WardUnit [1] ⊆ Ward [1], and WardUnit [2] ⊆ Unit [1] (cf.

Section 2.1 for the definition of IDs). We need key constraints for the child-parent

predicates: the first attribute (child) is the key attribute. For example, WardUnit [1]

is the key attribute for WardUnit(·, ·).

We can have multiple dimensions reflected with disjoint relational dimensional

schemas, one for each dimension. They can be put together into a single multidimen-

sional schema that is the union of the individual ones. In particular, there are now

top and base categories predicates in K, for each dimension.

Assume H is the relational schema with multiple dimensions. A fact-table schema

over H is a predicate T (C1, ..., Cn,M), where C1, ..., Cn are attributes with domain

U , and M is an attribute, called measure, with a numerical domain. Attribute Ci

is associated with base-category predicate Kb
i (·) ∈ K. This is represented by an ID

T [i] ⊆ Kb
i [1]. Additionally, {C1, ..., Cn} is a key for T , intuitively each point in the

multidimensional space is mapped to at most one measure. A fact-table (instance)

contains an extension of T .
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Example 2.5.3 A tuple in a fact-table (cf. PatientsDiseases at the bottom-right in

Figure 2.4) represents a numerical value, say a measurement, that is given context by

the other entries in the tuple, which are members from the categories at the bottom

of the dimension hierarchies. �

This multidimensional representation enables aggregation of numerical data at

different levels of granularity, depending on the different levels of the categories in the

dimension hierarchies. The roll-up relations can be used for this kind of aggregation.



Chapter 3

State of the Art

Our research builds upon and starts from work on context-dependent data quality

assessment [Bertossi et al., 2011a, 2016] and context-aware databases [Martinenghi

& Torlone, 2009, 2010, 2014]. Other closely related research, in regard to context

modeling, is context-aware data tailoring and context-dimension trees (CDTs) [Bol-

chini et al., 2007a,b, 2009]. In relation to OBDA and ontologies, Description logics

(DLs) [Baader et al., 2007] is a family of knowledge representation languages widely

used in OBDA, similar to Datalog± that we used in our research. In this chapter, we

briefly review them.

3.1 Contextual Data Quality Assessment

We first review previous work in [Bertossi et al., 2011a, 2016] on context-based data

quality assessment. The starting point is that data quality is context-dependent. A

context provides knowledge about the way data is interrelated, produced and used,

which allows to make sense of the data. Furthermore, both the database under

quality assessment and the context can be formalized as logical theories. The former

is then put in context by mapping it into the latter, through logical mappings and

possibly shared predicates.

In Figure 3.1, D is a relational database (with schema R) under quality assess-

ment. It can be represented as a logical theory [Reiter, 1984]. The context, C in the

55
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Figure 3.1: A context for data quality assessment

middle, resembles a virtual data integration system, which can also be represented as

a logical theory [Lenzerini, 2002]. The context C has a relational schema (or signa-

ture), in particular predicates with possibly partial extensions (incomplete relations).

The mappings between C and D are of the kind used in data integration or data

exchange [Fagin et al., 2005], that can be expressed as logical formulas. In [Bertossi

et al., 2011a, 2016], the concern is not about how such a context is created, but about

how it is used for the purpose of data quality specification and extraction.

The context C has nicknames (copies) R′ for predicates R in R. Nicknames are

used to map (via αi) the data in D into C, for further logical processing. So, a

schema of C can be seen as an expansion of R through a subschema R′ that is a

copy of R. Some predicates in the schema of C are meant to be quality predicates

(P in Figure 3.1), which are used to specify single quality requirements. There may

be semantic constraints on the schema of C, and also access (mappings) to external

data sources, in E , that could be used for data quality assessment or cleaning. The
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schema of C also includes a contextual relational schema Rc, with an instance Ic (in

the middle of Figure 3.1), which contains materialized data at the level of context.

A clean version of D, obtained through the mapping of D and C, is possibly a

virtual instance Dq, or a collection of thereof Dq, for schema Rq (a “quality” copy of

schema R).1 The extension of every predicate in it, say Rq, is the “quality version”

of relation R in D, and is defined as a view (via the αq
i ) in terms of the nickname

predicates in R′, in P , and other contextual predicates.

The quality of (the data in) instance D can be measured by comparing D with

the instance Dq or the set, Dq, of them. This latter set can also be used to define and

possibly compute the quality answers to queries originally posed to D, as the certain

answers w.r.t. Dq (cf. [Bertossi et al., 2011a, 2016] for more details). In any case,

the main idea is that quality data can be extracted from D by querying the possibly

virtual class of quality instances Dq.
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+ Dimensions) 

M Ontology 

Dimensional rules 

and constraints 

I
c R’ 

Nicknames 

R
i

’ 

Quality  

predicates 
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Context C 

Figure 3.2: A multidimensional context

In this thesis, we extend the ap-

proach to data quality specification

and extraction we just described, by

adding dimensions to contexts, for

multidimensional data quality speci-

fication and extraction. In this case,

the context contains a generic MD

ontology, the shaded M in Figure 3.2, a.k.a. “core ontology” (and described in

Chapter 4). M represents multidimensional data within the context by means of cat-

egorical relations associated with dimensions (the elements in M in Figure 3.2). This

1 Figure 3.1 shows the case when there is only one instance Dq. Figure ??, in Section 1.1, better
illustrates the case when there is a collection Dq of instances.
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ontology can be extended, within the context, with additional rules and constraints

that depend on specific data quality concerns (cf. Chapter 5).

3.2 Querying Context-Aware Databases

In the context-aware data model [Martinenghi & Torlone, 2009], the notion of context

is implicit and indirectly captured by relational attributes that take as values members

of dimension categories.2 In particular, in a relation in this model, the context of a

tuple is captured by its values in dimensions, while the categories of these members

specify the granularity level of the context.

Example 3.2.1 Consider relation Schedules(Nurse, Shift ,Unit ,Day), with the tu-

ples (cathy, night, terminal, sep/5) and (helen,morning, standard, sep/6) in its extension.

The values of Unit and Day attributes are members from Unit and Day categories

in the Hospital and Time dimensions, resp. So, (terminal, sep/5) and (standard, sep/6)

define the context of these tuples, with the granularity level specified by Unit and

Day categories. �

The context-aware data model has a query language that extends the relational

algebra, by introducing new operators for manipulating the granularity of contextual

attributes (i.e. attributes with values as members of dimensions). These operators

add new contextual attributes and their values to a relation. The new attributes

are associated with higher or lower categories of the original contextual attributes,

and they make it possible to specify contexts with coarser or finer granularities. The

language inherits the standard operators from the relational algebra, i.e. projection,

selection and join operators.

2 Dimensions are defined as in the HM model.
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In the following, we review the context-aware data model in detail, using our

running Example 3.2.1.

Let H be a set of dimensions. Rc = (C1 : l1, ..., Cm : lm) is a context schema, where

each Ci is an attribute name and each li is a level or category of some dimensions in

H. A context c̄ over Rc is a function that maps each attribute Ci to a member of li.

Notice that multiple attributes can share an attribute name: they represent the same

attribute name at different granularity levels. For example, C : l and C : l′ represent

C in levels l and l′, resp.

Example 3.2.2 (ex. 3.2.1 cont.) Schedulesc = (Loc :Unit ,Date :Day) is a context

schema, where Loc :Unit and Date :Day are attributes associated with Unit and

Day attributes in Hospital and Time dimensions, resp.3 Two possible contexts over

Schedulesc are (terminal, sep/5) and (standard, sep/6). �

As in the relational data model, Rr = (A1 : V1, ..., Ak : Vk) is a relation schema

(which is different from a context schema), where each Ai is a distinct attribute and

each Vi is a set of values called the domain of Ai. A tuple t̄ over a relation schema

Rr is a function that associates with each Ai occurring in Rr a value taken from Vi.

A relation over a relation schema Rr is a finite set of tuples over Rr.

R(Rr || Rc) is a contextual relation (c-relation) schema, where Rr is a relation

schema, and Rc is a context schema. A c-relation (instance) over R is a set of tuples

t̄ = (r̄ || c̄), where r̄ is a tuple over Rr, and c̄ is a context over Rc.

Example 3.2.3 (ex. 3.2.2 cont.) Schedules(Nurse :String , Shift :String || Loc :Unit ,

Date :Day) is a c-relation schema, where (Nurse :String , Shift :String) is a relation

schema and (Loc:Unit ,Date:Day) is a context schema, separated by “ || ”. A possible

3 Loc is short for Location.
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extension of Schedules contains (cathy, night || terminal, sep/5) and (helen,morning ||

standard, sep/6), with (terminal, sep/5) and (standard, sep/6) as their contexts, resp.�

Context-relational algebra (CRA) is the query language in the context-aware data

model that extends relational algebra by introducing two new operators, upward

extension and downward extension, explained below.

Let R be a c-relation with schema R(Rr || Rc) and contextual attribute C in Rc

associated to the level l, such that l rolls up to a level l′ (cf. Section 2.5 for roll-up

relationships). The upward extension of R from the attribute C : l to l′, denoted by

ε̂
C:l′

C:l (R), is the c-relation of schema R(Rr || Rc ∪ {C : l′}), defined as follows,

ε̂
C:l′

C:l (R) = {t̄′ | ∃ t̄ ∈ R, t̄′[Rc] = t̄[Rc], t̄′[Rr] = t̄[Rr], t̄′[C : l′] = Ll′

l (t̄[C : l])},

where t̄[C : l] is the value of attribute C : l in t̄, t̄[R] are the values of attributes of R

in t̄, and Ll′

l is the roll-up relation between levels l and l′ (cf. Section 2.5). Intuitively,

ε̂
C:l′

C:l (R) has the same schema of R with additional contextual attribute C : l′ that

represents C in level l′. Members of the new attribute are specified by roll up (using

Ll′

l ) from members of C : l to level l′.

Example 3.2.4 (ex. 3.2.3 cont.) ε̂
Loc:Inst

Loc:Unit(Schedules) is the upward extension of

Schedules from Loc :Unit to the level Institution (Inst in short), with schema (Nurse:

String , Shift:String || Loc:Unit ,Date:Day ,Loc:Inst), where Loc:Inst is the additional

contextual attribute. There are two tuples (cathy, night || terminal, sep/5,H2) and

(helen,morning || standard, sep/6,H1) in the extension of ε̂
Loc:Inst

Loc:Unit(Schedules), where

terminal and standard roll up to H2 and H1, resp. �

Now let l′′ be a level such that l drills down to l′′, i.e. l′′ rolls up to l. The

downward extension of R from the attribute C : l to l′′, denoted by ε̌C:l

C:l′′(R), is the

c-relation with schema R(Rr || Rc ∪ {C : l′′}), defined as follows:
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ε̂
C:l′′

C:l (R) = {t̄′′ | ∃ t̄ ∈ R, t̄′′[Rc] = t̄[Rc], t̄′′[Rr] = t̄[Rr], t̄[C : l] = Ll
l′′(t̄

′′[C : l′′])}.

Here, members of the new attribute C : l′′ are specified by drill down from members

of C in level l to level l′′.

Example 3.2.5 (ex. 3.2.3 cont.) ε̌Loc:Unit

Loc:Ward(Schedules) is the downward extension

of Schedules from Loc : Unit to the level Ward, with schema (Nurse :String , Shift :

String || Loc :Unit ,Date :Day ,Loc :Ward), where Loc :Ward is the additional con-

textual attribute. There are three tuples in the extension of ε̌Loc:Unit

Loc:Ward(Schedules):

(cathy, night || terminal, sep/5,W4), (helen,morning || standard, sep/6,W1), (helen,morn

ing || standard, sep/6,W2). This is because terminal drills down to W4 and standard

drills down to two members W1 and W2. �

The main rationale behind the upward and downward extensions is the need to

relax a query with respect to the level of detail of the relations. For example, in the

Schedule c-relation, one might want to find schedules of a nurse in an institution,

even though the schedules might be stored with a lower level (e.g., unit). Both down-

ward and upward extensions meet needs that arise naturally in several application

domains [Martinenghi & Torlone, 2010].

The combination of the standard operators of the relation algebra and the new

upward and downward extensions makes new operators, e.g. upward selection and

downward selection, that are explained in detail in [Martinenghi & Torlone, 2014].

Context-aware databases have applications beyond context modeling, and they are

referred by the more general term of taxonomy-based databases [Martinenghi & Tor-

lone, 2010, 2014].
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Our extension of the HM model in Section 4.1 has similarities with c-relations and

the context-aware data model that we investigate in detail in Section 4.3.6.

3.3 Context-Aware Data Tailoring for Relational Databases

Context-aware data tailoring is defined in [Bolchini et al., 2007a,b, 2009] as the ac-

tivities of (a) specifying data views over a database, based on the identification of

the various contexts the application user is going to experience, and (b) using these

views to extract a portion of the database.

In [Bolchini et al., 2007a], context-based data tailoring is included in a design

methodology for very small databases (VSDB) aimed at being hosted by portable

devices. Here the existence of a database is assumed that has a global schema and re-

sides on a central fixed device. VSDBs are defined as collections of materialized views

over the database based on different user contexts. In this case, context is defined by

a chunk configuration that is a set of values for certain “ambient dimensions”, such

as time, space, and situation.

In [Bolchini et al., 2009, 2007b], the ambient dimensions are extended to context

dimension trees (CDTs) that can represent context in finer granularity. Specifically,

a chunk configuration is specified by a set of values for different ambient dimensions

and sub-dimensions. The process of extracting database views w.r.t. a chunk config-

uration is discussed with details in [Bolchini et al., 2007b] where two strategies are

proposed for this purpose: (a) configuration-based, in which each chunk configuration

is linked to a view over a relational database, (b) value-based, in which partial views

are linked to values from the chunk configuration and for each chunk configuration a

view is built by combining the relevant partial views.
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Example 3.3.1 [Bolchini et al., 2007b] Consider the relational database of a large

real estate agency that stores data related to customers, estates, sales with the fol-

lowing schema:

Customers(CustomerId ,Name,Surname,Type,Budget ,Address,City ,PhoneNumber)

Estate(StateId ,OwnerId ,Category ,StateId ,Area,City ,Provinance,RoomsNumber ,Bedrooms)

Sales(EstateId ,Agent ,CustomerId ,Date,AgreedPrice,Status)

The objective is designing a number of views, to be made available to different

possible actors of the scenario: supervisors, agents, buyers and sellers.
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Figure 3.3: A CDT for modeling context.

Figure 3.3 shows the CDT for modeling context in this application domain. In

a CDT, the first-level dark nodes, connected to the root, are ambient dimensions

and the second-level white nodes connected to them are their possible values. The

third-level dark nodes are sub-dimensions that can specify values for each dimension

with a finer granularity.

The following chunk configuration, C , specifies the context of an agent who is

currently at the office, and needs to check the sales of residential estates located in a

certain area that have been concluded today:

C = 〈{agent($agentId)}, {in-office}, {today}, {residential, sale, zone($zoneId)}〉.
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According to the configuration-based strategy, the chunk configuration is linked

to a view defined by a relational calculus expression such as:

R(C ) = σCategory=residential∧Area=$zoneId(Estate) ./ σDate=today(Sale) ./ Customer .

In the value-based strategy, views for chunk configurations are automatically ex-

tracted by combining partial views. Here, let us consider the following partial views

associated to values of dimensions, buyer and residential:

R(buyer) = {ΠArea,RoomsNumber ,Bedrooms(Estate)}. (3.1)

R(residential) = {σCategory=residential(Estate)}. (3.2)

A view for the chunk configuration C ′ = 〈{buyer}, {residential}〉 is extracted by

combining (3.1) and (3.2) using operators, i.e. intersection or union, over relation

schemas. �

3.4 Ontology-Based Data Access

Ontology-based data access (OBDA) [Poggi et al., 2008] is an important approach to

data access, according to which an ontology is used to mediate between data users

and data sources. The ontology allows queries to be formulated in terms of a user-

oriented conceptual model that abstracts away complex implementation-level details

that are typically encountered in databases. OBDA is a virtual approach, since it

provides an access layer on top of databases while leaving the data in its original

stores. Thus, OBDA has the potential to improve data access with a minimal change

to the existing data management infrastructure.

3.4.1 Description logics

Description logic (DL) [Baader et al., 2007; Calvanese et al., 2007; Artale et al., 2007,
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2009] is a family of knowledge representation languages that are widely used in OBDA.

It provides the formalism for the Web Ontology Language (OWL) as standardised by

the World Wide Web Consortium (W3C).4 However, DLs have been used in knowl-

edge representation long before the advent of OBDA, and the Semantic Web [Baader

et al., 2007].

DLs are decidable fragments of FO logic, and as such they are equipped with

a formal semantics, which gives meaning to DL ontologies. This formal semantics

makes it possible to use logical reasoning, i.e. to infer additional information from

the facts and axioms explicitly stated in the ontology. There is not just a single

DL, but several, each with a language that balances expressivity and complexity of

reasoning.

DL models relationships between individuals in a domain of interest. It is based

on three elements: concepts representing sets of individuals, roles representing binary

relations between the individuals, and individual names representing single individuals

in the domain. For example, an ontology that models relationships in a hospital

might use concept such as Doctor to represent the set of all doctors, a role patientOf to

represent the (binary) relationship between doctors and their patients, and individual

name such as joe to represent the individual Joe.

Unlike a database, a DL ontology does not fully describe “state of the world” or

situation; rather it consists of a set of axioms, each of which must be true. As such,

they typically capture only partial knowledge about the situation, and therefore there

may be many different states of the world (i.e. models) that are consistent with the

ontology.

Axioms in DL are separated into two groups: assertional (ABox) axioms, and

4 https://www.w3.org/
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terminological (TBox) axioms. ABox axioms capture knowledge about named indi-

viduals, i.e., Doctor(julia) asserts that the individual named julia is an instance of the

concept Doctor. TBox axioms describe relationships between concepts. For example,

the fact that all doctors are personnel of the hospital is expressed by the concept

inclusion Doctor v Personnel, i.e. the concept Doctor is subsumed by the concept

Personnel. Also, Doctor u Patient v ⊥ is an axiom that states no patient is a doctor

(⊥ is the concept with no individual).

DLs are distinguished by the constructors they provide in their TBoxes and

ABoxes [Baader et al., 2007]. There are various DLs as extensions of the AL-language

(attributive language), a minimal language that is of practical interest [Schmidt-

Schauß & Smolka, 1991]. For example, the DL SHOIQ [Horrocks et al., 2006]

extends AL and it is one of the most expressive DLs at the basis of the ongoing

standardization of OWL 2, a new version of OWL. Reasoning in SHOIQ is compu-

tationally expensive, and several more tractable languages have been proposed in the

Semantic Web community, among them EL++, and the DL-Lite family.

The description logic EL++ is an extension of EL [Baader et al., 2005] both en-

joying PTIME-complete reasoning. The DL-Lite family of DLs is proposed and

investigated in [Calvanese et al., 2007], and later extended in [Artale et al., 2007,

2009]. The members of this family represent many important types of constraints,

and at the same time guarantee good computational properties w.r.t. QA.

For OBDA, DL and Datalog± both serve as ontological languages, and have mem-

bers with similar properties, in terms of expressivity and complexity of reasoning.

Some of the DLs are shown to be subsumed by certain Datalog± members. In par-

ticular, linear Datalog± with NCs and non-conflicting keys can express the whole

DL-Lite family of tractable description logics. Guarded Datalog± can express the
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tractable DL EL [Cal̀ı et al., 2012b]. In this research, we used Datalog± languages.

For ontological query answering and reasoning, they turn out to be extremely versatile

and expressive. Datalog± languages naturally extend Datalog, which is a language

for querying relational databases.

3.4.2 Closed predicates

The aim of OBDA is to facilitate querying of data that is essentially incomplete.

To account for the incompleteness, OBDA formalisms typically adopt the OWA, in

which predicates can have any interpretation that includes the predicate’s extensional

data, and possibly more. In some applications, there are selected parts of the data for

which the CWA is more appropriate [Lutz et al., 2013], and the standard semantics

from relational databases is adapted: the interpretation of closed predicates is fixed

to what is explicitly stated in the extensional data. Making the CWA for dimensional

predicates in MD ontologies is a case that we investigate in Section 4.3.1 is an example.

Closed predicates have a strong effect on the complexity of QA, which becomes

CoNP-hard in data already when ontologies are formulated in inexpressive DLs such

as DL-Lite [Franconi et al., 2011], while CQ answering without closed predicates is in

AC0 for DL-Lite [Calvanese et al., 2007]. The combined complexity in the presence

of closed predicates is analysed in [Ngo et al., 2015].

In [Lutz & Wolter, 2012], the main finding is that there are syntactic conditions

for ontologies in DL-Lite and EL that guarantee tractability of CQ answering with

closed predicates. In [Lutz et al., 2015], an even more fine-grained approach is taken

for analysing the complexity of this problem.
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3.4.3 Inconsistency-tolerant ontologies

In real-life applications, involving large amounts of data, it is possible that the data of

an ontology is inconsistent with the ontology’s rules and constraints. Since the seman-

tics of ontologies follows the FO logic semantics, every fact is trivially entailed by an

inconsistent ontology which makes QA pointless. This shows the need for developing

inconsistency-tolerant semantics for ontological reasoning, that is QA and reasoning

is done under the repairs of the inconsistent ontology, i.e. consistent ontologies that

minimally depart from the inconsistent ontology.

There has been a recent and increasing focus on the development of inconsistency-

tolerant semantics for QA purposes [Bienvenu, 2012; Bienvenu & Rosati, 2013; Bien-

venu at al., 2014b; Lembo er al., 2010; Lukasiewicz et al., 2012]. The AR semantics

for several DLs [Lembo er al., 2010] is the most widely accepted semantics for query-

ing inconsistent ontologies, which is based on the ideas of consistent query answering

and repairs in relational databases [Arenas et al., 1999; Bertossi, 2011b].

According to the AR semantics, an answer is considered to be valid if it can be

inferred from each of the repairs of the extensional data D, i.e. the ⊆-maximal con-

sistent subsets of D that make a consistent ontology. Obtaining the set of consistent

answers under the AR semantics is known to be a computationally hard problem,

even for very simple languages [Lembo er al., 2010]. For this reason, several other

semantics have been developed, with the aim of approximating the set of consistent

answers [Bienvenu, 2012; Lembo er al., 2010; Lukasiewicz et al., 2012].

The complexity of QA under the AR semantics (and also under several other
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semantics) for DL ontologies is rather well-understood. The data and combined com-

plexity were studied in [Rosati, 2011], for a wide spectrum of DLs, while [Bien-

venu, 2012] identifies cases of simple ontologies (within the DL-Lite family) for which

tractable data complexity can be guaranteed.

The AR semantics has also been studied when the ontology is described using

Datalog± [Lukasiewicz et al., 2012, 2015], where the data complexity of the AR se-

mantics is studied for several classes of tgds enriched with NCs. They show that

the problem of BCQ answering under different inconsistency-tolerant semantics is

intractable for Datalog± ontologies.



Chapter 4

Multidimensional Ontological Data Model

In this chapter, we present the OMD model as an extension of the HM model. We

propose a Datalog± representation of the extended model as an MD ontology and we

study the computational properties of such ontologies.

4.1 Extending the Hurtado-Mendelzon Data Model

A database schema in the multidimensional-ontological (OMD) data model is RM =

H ∪ Rr, where H is a relational schema with multiple dimensions (with category

predicates K and child-parent predicates L, as defined in Section 2.5); and Rr is a

set of categorical predicates. Categorical predicates replace the fact-tables in the HM

model. The attributes of a categorical predicate are either categorical that can take

values as members of dimensions, or non-categorical with arbitrary domains.

We show a categorical predicate as R(C1, . . . , Cm;N1, . . . , Nn), where, to high-

light, categorical and non-categorical attributes (Cis vs. Njs) are separated by “;”.

The connection between the categorical attributes and the category predicates is es-

tablished through IDs. In particular, R[i] ⊆ Ki[1] connects categorical attribute Ci

to category predicate Ki(·) in K, for i ≤ m.

The (extensional) data DM = DH ∪ Dr associated to the schema RM has the

complete extensions for dimensional predicates (category predicates and child-parent

predicates) in H that come from the instance DH. The categorical relations in Dr

70
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(with predicates in Rr) may contain partial data, i.e. they may be incomplete.

Example 4.1.1 (ex. 1.1.2 and 2.5.2 cont.) WorkingSchedules(Unit ,Day ;Nurse,

Speciality) in Figure 1.4 is a categorical relation with categorical attributes Unit

and Day, connected to the Hospital and Time dimensions, resp. This is through IDs,

WorkingSchedules [1] ⊆ Unit [1], and WorkingSchedules [2] ⊆ Day [1]. Nurse is non-

categorical, i.e. a foreign key to another relation. The dimension schema H, with K

and L, is as specified in Example 2.5.2, and Rr contains WorkingSchedules. �

Amultidimensional (MD) ontology,M, in addition to a databaseDM with schema

RM (as in the OMD model), includes a set of basic constraints ΩM, a set of dimen-

sional rules ΣM, and a set of dimensional constraints κM. These rules and constraints

are defined over the same schema RM.

Below, there are the basic egds and NCs in ΩM, where (a) and (b) represent the

ICs of DH, and (c) expresses the IDs that associate categorical relations to category

predicates.

(a) IDs between the child-parent predicate P ∈ L and the category predicates

K,K ′ ∈ K (i.e. P [1] ⊆ K[1] and P [2] ⊆ K ′[1]), as NCs:

P (e, e′),¬K(e) → ⊥. (4.1)

P (e, e′),¬K ′(e′) → ⊥. (4.2)

Notice that K and K ′, to which negation is applied, are closed (with complete

data in DH).

(b) Key attributes of the child-parent predicates are defined by egds:

P (e, e1), P (e, e2) → e1 = e2. (4.3)
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(c) IDs between categorical attributes and categories as NCs:1 (R ∈ Rr, K ∈ K;

ē, ā are categorical, non-categorical, resp.; e ∈ ē)

R(ē; ā),¬K(e) → ⊥. (4.4)

Example 4.1.2 (ex. 2.5.2 and 4.1.1 cont.) For the Hospital dimension, the ID

WardUnit [2] ⊆ Unit [1] is expressed by constraint of the form (4.2):

WardUnit(w , u),¬Unit(u) → ⊥. (4.5)

and the key constraint of WardUnit is captured by a constraint of the form (4.3):

WardUnit(w , u),WardUnit(w , u ′) → u = u′. (4.6)

In WorkingSchedules, the categorical attribute Unit takes values from the Unit cate-

gory. We use a constraint of the form (4.4), namely:

WorkingSchedules(u, d ; n, t),¬Unit(u) → ⊥. (4.7)

�

Now, we present dimensional rules ΣM and dimensional constraints κM:

(a) Dimensional constraints, as egds or NCs: (Ri ∈ Rr, Pj ∈ L, and x, x′ stand

both for either categorical or non-categorical attributes in the body of (4.8))

R1(ē1; ā1), ..., Rn(ēn; ān), P1(e1, e
′
1), ..., Pm(em, e

′
m) → x = x′. (4.8)

R1(ē1; ā1), ..., Rn(ēn; ān), P1(e1, e
′
1), ..., Pm(em, e

′
m) → ⊥. (4.9)

1 As an alternative, we may use tgds between categorical attributes and categories (cf. Sec-
tion 4.3.1).
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(b) Dimensional rules as Datalog± tgds:

R1(ē1; ā1), ..., Rn(ēn; ān), P1(e1, e
′
1), ..., Pm(em, e

′
m) → ∃āz Rk(ēk; āk). (4.10)

Here, āz ⊆ āk, ēk ⊆ ē1 ∪ ... ∪ ēn ∪ {e1, ..., em, e
′
1, ..., e

′
m}, ākrāz ⊆ ā1 ∪ ... ∪ ān;

and repeated variables in bodies are only in positions of categorical attributes

(in the categorical relations Ri(ēi; āi)), and attributes in child-parent predicates

Pj(ej, e
′
j).

2 Value invention is only on non-categorical attributes (we will con-

sider relaxing this in Section 4.3.1).

Some of the lists in the bodies of (4.8)-(4.10) may be empty, i.e. n = 0 or m = 0.

This allows us to represent, in addition to properly “dimensional” constraints, also

classical constraints on categorical relations, e.g. keys or FDs.

Example 4.1.3 (ex. 1.1.2 and 4.1.1 cont.) The constraint η from Example 1.1.2,

“No nurse in the Intensive care unit during January” is a dimensional (navigational)

constraint of the form (4.9):

WorkingSchedules(intensive, d;n, s),DayMonth(d, jan) → ⊥. (4.11)

An egd of the form (4.8) says that “All thermometers in a unit are of the same type”:

Therm(w , t ; n),Therm(w ′, t ′; n ′),WardUnit(w , u),WardUnit(w ′, u) → t = t′. (4.12)

with Therm(Ward ,Thertype;Nurse) a categorical relation, and Ward, Thertype cat-

egorical attributes (the latter for an Instrument dimension). This egd illustrates the

flexibility of our approach. Even without having a categorical relation at the Unit,

we could still impose a condition at that level.3

2 This is a natural restriction since dimensional navigation is captured by the joins (repeated
variables) only between variables of these attributes.

3 If we have that relation, then (4.12) could be replaced by a “static”, non-dimensional FD.
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The dimensional rules in Example 1.1.2 (σ1 and σ2) that generate data from

WorkingSchedules to Shifts, and vice versa are of the form (4.10):

σ1 : Shifts(w, d;n, s),WardUnit(w, u) → ∃tWorkingSchedules(u, d;n, t).

σ2 : WorkingSchedules(u, d;n, t),WardUnit(w, u) → ∃s Shifts(w, d;n, s).

The ∃-variables t and s make up for the missing, non-categorical attributes Speciality

and Shift in WorkingSchedules and Shifts. �

Remark 4.1.1 A general tgd of the form (4.10) enables upward- or downward-

navigation, depending on the body joins. The direction is determined by the di-

mension levels of categorical attributes in the joins. For simplicity, assume that there

is a single Pj ∈ L in the body (as in σ1 and σ2). If the join is between Ri(ēi; āi)

and Pj(ej, e
′
j) then: (a) (one-step) upward navigation is enabled, from e′j to ej, when

e′j ∈ ēi (i.e. e′j appears in Ri(ēi; āi)) and ej ∈ ēk, i.e in the head), (b) (one-step)

downward navigation is enabled, from ej to e′j, when ej occurs in Ri and e′j occurs

in Rk. Several occurrences of child-parent predicates in a body capture multi-step

navigation. �

Example 4.1.4 (ex. 4.1.3 cont.) Rule σ2 captures downward-navigation; and this

is a general behavior with tgds of the form (4.10). That is when drilling down via σ2,

from a tuple, say WorkingSchedules(u, d;n, t) via the category member u (for Unit),

for each child w of u in the Ward category, a tuple for Shifts is generated, as specified

in the body of σ2.

For example, chasing σ2 with the third tuple in WorkingSchedules, generates the

new tuple (W2, sep/6, helen, ζ) in Shifts, with a fresh null, ζ, for the shift. This allows
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us to answer the query about the wards Helen works on Sep/6:

Q′(w) : ∃s Shifts(w, sep/6, helen, s).

We obtain W1 and W2.

Instead, the join between Shifts and WardUnit in σ1 enables upward-dimensional

navigation; and generates only one tuple for WorkingSchedules from each tuple in

Shifts, because each Ward member has only one Unit parent. �

4.2 Computational Properties and Query Answering

Here, we first establish the membership of our MD ontologies, M (cf. Section 4.1) in

a class of the Datalog± family. Membership is determined by the set ΣM of its tgds.

Next, we analyze the role of the constraints in κM, in particular, of the set κM of

egds.

Proposition 4.2.1 MD ontologies are WS Datalog± programs. �

Proof of Proposition 4.2.1: A MD ontology includes dimensional rules of the form

(4.10): R1(ē1; ā1), ..., Rn(ēn; ān), P1(e1, e
′
1), ..., Pm(em, e

′
m) → ∃āz Rk(ēk; āk), in which

(a) āz ⊆ āk, (b) ēk ⊆ ē1 ∪ ... ∪ ēn ∪ {e1, ..., em, e
′
1, ..., e

′
m}, (c) ākr āz ⊆ ā1 ∪ ... ∪ ān,

and (d) repeated variables in bodies are only in positions of categorical attributes.

In particular, (a) guarantees that no null values are invented in the categorical

positions during the chase of M. Also, (b) ensures that the variables in the non-

categorical positions in the bodies do not appear in the heads in the categorical

positions. As a result, no null value can replace a variable in a categorical position

during the chase. This, in addition with (d), proves that no null value can replace a

repeated body variable, which proves a set of dimensional rules is WS. �
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A consequence of this result is that CQ answering from ΣM is in polynomial-time

in data complexity [Cal̀ı et al., 2012c]. The complexity stays the same if we add

dimensional NCs, of the forms (4.9), because they can be checked through the CQs

in their bodies (cf. Section 2.4.1). In case of dimensional egds of the form (4.8), we

consider a syntactic condition that guarantees separability:

Proposition 4.2.2 For an MD ontology M with a set ΣM of tgds as in (4.10) and

set κM of egds as in (4.8), separability holds if, for every egd in κM, the variables in

the equality (in the head) occur in categorical positions in the body. �

Proof of Proposition 4.2.2: Let Π be the Datalog± program with database DM,

ΣM and κM as its rules ΠR and constraints ΠC , resp. Let Π′ be Π with only ΠR

(without ΠC).

In order to prove that ΠR and ΠC are separable, we need to show that if chase(Π)

does not fail, then chase(Π) |= Q if and only if chase(Π′) |= Q. In the proof of

Proposition 4.2.1, it is shown that no null value replaces a variable in a categorical

position during the chase of M. The variables in the head of every egd appear in the

body only in the categorical positions. Therefore, they are not replaced by nulls. As

a result, the egds can only equate constants, which results into hard violations and

inconsistency. Since we assumed Π is consistent, the egds are never applicable during

the chase, and they can be ignored: chase(Π) |= Q if and only if chase(Π′) |= Q. �

Adding egds and NCs in ΩM does not change the complexity of QA, as discussed

in Sections 2.4.1 and 2.4.2. Note that egds of the form (4.3) are non-conflicting

and separable. That is because they satisfy the first non-conflicting condition in

Definition 2.4.3. In combination with Proposition 4.2.1, we obtain:
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Corollary 4.2.1 Under the hypothesis of Proposition 4.2.2, CQ answering from an

MD ontology can be done in polynomial-time in data. �

4.3 Discussion and Extensions

Here, we study some extensions of the OMD model.

4.3.1 Uncertain downward-navigation and closed predicates

In the OMD model, the dimensional rules of the form (4.10) do not allow existential

quantifiers on variables in the categorical positions. Notice that sometimes in logic,

we use existential quantifiers as a way of referring to an element in a specified set (that

is as a disjunction on the set of elements). In dimensional rules, we can use existential

quantifiers to refer to the parent of a child member without explicitly mentioning the

former. This kind of existential quantification can be avoided, because the parent

is unique as captured by the child-parent relation and the FD as stated by the egd

(4.3). It might not be desirable to use an existential quantifier in this case (upward

navigation), because in principle a new parent could be invented that would be forced

by (4.3) to be the same as the original parent which only creates additional complexity

and possible semantic collision.

If we allow existential quantifiers on variables in categorical positions while going

downward, they stand for existing child members and possibly new ones. This is a

more complex situation because we have more than one child members and there is

no egd such as (4.3) in downward direction. All this becomes more relevant in real

applications of MD ontologies where category predicates and child-parent predicates

are considered closed.
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Table 4.1: DischargePatients

Inst. Day Patient

1 H1 Sep/9 Tom Waits

2 H1 Sep/6 Lou Reed

3 H2 Oct/5 Elvis Costello

4 H1 Dec/16 Elvis Costello

Table 4.2: PatientUnit

Unit Day Patient

1 Standard Sep/5 Tom Waits

2 Standard Sep/9 Tom Waits

3 Intensive Sep/6 Lou Reed

Example 4.3.1 Consider DischargePatients (Table 4.1) and PatientUnit (Table 4.2),

that contain data on patients leaving an institution and on locations of patients,

resp. Since, a patient was in a unit when discharged, we can use DischargePatient to

generate data for PatientUnit, at the Unit level, down from the Institution level. For

example, through the following rule:

DischargePatients(i, d; p) → ∃u (UnitInstitution(u, i),PatientUnit(u, d ; p)). (4.13)

Notice that (4.13) is not of the form (4.10): (a) it can invent values in the non-

categorical position PatientUnit [1], (b) it has the child-parent predicate UnitInsti-

tution in its head, and (c) it has two head atoms. For (c), it can be resolved by

transforming (4.13) into multiple rules with single head atoms.4 We used two head

atoms to better convey (a) and (b).

The ∃-variable u in (4.13) (and then, value invention) appears in the first, i.e.

“downward” attribute of the child-parent relation UnitInstitution. Inventing such a

value in this relation amounts to creating possibly new members in categories, which

in many applications we would consider to be given by a finite and closed extension.

Categories are normally “complete”. �

In Example 4.1.3, we adopted the usual OWA semantics of Datalog±. There

was no problem with upward tgds, such as σ1, nor with “regular” downward tgds,

4 In this case, the rules are DischargePatients(i, d; p) → ∃u TempPatient(i , u, d ; p),
TempPatient(i , u, d ; p) → UnitInstitution(u, i), and TempPatient(i , u, d ; p) → PatientUnit(u, d ; p).
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such as σ2: they invent values only for non-categorical attributes. However, as in

Example 4.3.1, we might object value invention in complete child-parent relations

and categories due to the application of non-deterministic downward rules, such as

(4.13). If we accept this kind of tgds and, at the same time, we consider dimensional

predicates, i.e. category predicates and child-parent predicates, as closed, then we

start departing from the usual Datalog± semantics, and some of the results we reuse

or provide for WS programs (with OWA semantics) have to be reconsidered (cf.

Section 3.4.2).

A semantics with a combination of closed dimensional predicates and open cate-

gorical predicates greatly impacts CQ answering under MD ontologies (we discussed

this semantics for DL and Datalog± ontologies in Section 3.4.2). In fact, the com-

plexity results in Section 4.2 do not hold under this semantics, and the problem of

CQ answering becomes intractable. Intuitively, this is because of the combinato-

rial choices of child members during uncertain downward-navigation from a parent

member, in the non-deterministic downward rules, such as (4.13).

Example 4.3.2 Consider a MD ontology M with ThermType(Type;Nurse) and

ThermBrand(Brand ;Nurse) as categorical relations, specifying the types and brands

of thermometers used by nurses. ThermType and ThermBrand have categorical at-

tributes Type and Brand associated with categories Type and Brand in the Instrument

dimension. M also includes the dimensional rule:

ThermType(t;n) → ∃b (BrandType(b, t),ThermBrand(b;n)), (4.14)

where BrandType is a child-parent predicate in Instrument (cf. Figure 4.1), which

is closed, with its complete data in the extensional database. Table 4.3 shows the

extension of ThermType, while ThermBrand is defined by Rule (4.14).
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Brand B2 B1 B4 B3 B2n B2n-1 

T1 T2 Tn 

… 

Type … 

Figure 4.1: The Brand and Type categories.

Table 4.3: ThermType

Type Nurse

1 T1 N1

2 T2 N2

.

.

.

...
...

n Tn Nn

M has exponentially many models (w.r.t. the size of

the extensional data). That is because, moving from each

parent member Ti in Type category during the chase with

M, there are two possible child members B2i−1 and B2i in

Brand category. There are n binary choices for n nurses

in these relations, which make 2n possible extensions for

ThermBrand. �

The exponentially many models for the MD ontology in Example 4.3.2 suggests

that CQ answering under MD ontologies with closed dimensional predicates seman-

tics is intractable in data complexity. In fact, the problem is CoNP-hard even for

inexpressive Datalog± and DL ontologies [Ahmetaj et al., 2016; Franconi et al., 2011].

4.3.2 Categorical keys

In the HM model, attributes in a fact-table, excluding the measure, form a key in

the fact-table. In other words, a point in the multidimensional space is mapped by

a fact-table to at most one measure. This is a natural assumption in the DWHs

and OLAP applications. However, in the OMD model, categorical attributes are not

necessarily key attributes for categorical relations. For example in WorkingSched-

ules(Unit,Day;Nurse,Speciality), Unit and Day are not key attributes since multiple

nurses might have working schedules in the same unit and on the same day.

There are still cases when categorical attributes define key attributes in categorical
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relations. For example in InstitutionBoard(Institution;Chair,President,CEO), if there

is only one board directory (i.e. chair, ceo, and president) for an institution, then

attribute Institution is a key attribute for the relation.

Here, we discuss the effect of considering categorical keys, i.e. making categorical

attributes form a key for their categorical relations. More precisely, we assume in

every categorical relation R(C1, ..., Cn;A1, ..., Am), the set {C1, ..., Cn} is a key for R.

This can be expressed in the MD ontology by egds (yi ∈ ȳ and y′i ∈ ȳ′):

R(x̄; ȳ), R(x̄; ȳ′) → y′i = yi. (4.15)

For example the categorical key for InstitutionBoard is captured by egds, among

them the following:

InstitutionBoard(i; c, p, e), InstitutionBoard(i; c′, p′, e′) → c′ = c.

The following example shows that dimensional rules and categorical keys defined

by (4.15) are not necessarily separable (cf. Section 2.4.2).

Example 4.3.3 Consider the categorical relation InstitutionBoard with the key at-

tribute Institution, and the following dimensional rules (they are different in the

underlined ∃-variable in heads):

PatientUnit(u, d; p),UnitInstiution(u, i) → ∃c ∃n InstitutionBoard(i; c, c, n). (4.16)

PatientUnit(u, d; p),UnitInstiution(u, i) → ∃c ∃n InstitutionBoard(i; c, n, n). (4.17)

Let (standard, sep/5; tom waits) be the only tuple in the extension of PatientUnit.

The egds defining the key attribute Institution are not separable from dimensional

tgds (4.16) and (4.17) because: (a) the chase does not fail since the egds only equate

nulls invented by (4.16) and (4.17), and (b) the BCQQ : ∃i ∃c InstitutionBoard(i, c, c, c)
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has a negative answer without the categorical key, but its answer is true with the cat-

egorical key. �

Although the dimensional rules and the categorical keys are not separable from

each other, QA on MD ontologies with categorical keys is still in PTIME in data

complexity. This is because no null value appears in the positions of categorical

attributes, therefore there are polynomially many (w.r.t. the size of data) applicable

pairs of tgd/assignment during the chase, and after each of the tgd-chase steps. This

shows that the chase runs in polynomial time for an MD ontology under the categorical

key assumption.

Proposition 4.3.1 The data complexity of CQ answering on MD ontologies with

categorical keys is in PTIME. �

4.3.3 Inconsistency-tolerant multidimensional ontologies

In Section 2.4, we discussed QA in the presence of dimensional constraints (dimen-

sional NCs and egds). So far, we have considered QA with consistent MD ontologies,

where constraints are satisfied. If the ontology is inconsistent, i.e. dimensional con-

straints are not satisfied, CQ answering becomes trivial and pointless since every

BCQ is answered positively under the ontology.

We consider an inconsistency-tolerant semantics that gives meaningful answers

to queries under inconsistent MD ontologies. This semantics is based on repairing

extensional database, as in the AR semantics for Datalog± and DL ontologies (cf.

Section 3.4.3). According to this semantics, given an inconsistent ontology M, a

repair Mr is a consistent MD ontology with the same rules and constraints in M,

and a database DMr that is maximally contained in DM. Answers to a CQ Q are
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those that are obtained from every repair of M.

Table 4.4: ThermBrand

Brand Nurse

1 B1 N1

2 B2 N1

3 B3 N2

4 B4 N2

.

.

.

...
...

2n-1 B2n−1 Nn

2n B2n Nn

QA under this semantics is intractable in the size of

the extensional database as suggested by Example 4.3.4.

In fact, there are results that show QA under the AR

semantics is NP-hard in data complexity, even for in-

expressive Datalog± ontologies such as linear and sticky

Datalog± [Lukasiewicz et al., 2012, 2015]. This means

the complexity results in Section 4.2 do not hold for

inconsistency-tolerant QA under MD ontologies.

Example 4.3.4 Assume categorical relation ThermBrand with extensional data in

Table 4.4 (in Example 4.3.2, it did not have extensional data and it was defined by

(4.14)) and the following egd that states “Every nurse uses thermometers of the same

brand”:

ε : ThermBrand(b; n),ThermBrand(b ′; n) → b = b′. (4.18)

There is no dimensional tgd, so ε is trivially separable. According to the exten-

sional data of ThermBrand, ε does not hold since each nurse Ni uses thermometers

of two brands B2i−1 and B2i. The data in Table 4.4 can be repaired in different ways:

for each pair of tuples (B2i−1, Ni) and (B2i, Ni), either of them can be removed. Since

there are n pairs, 2n different repairs are possible, which suggests that QA under

these repairs is not tractable in the size of the extensional data. �

In order to obtain tractability of CQ answering under inconsistent ontologies,

we suggest a novel and general approach for inconsistency-tolerant QA. The NCs

(and egds, mainly in the separable case) can and are checked on the result of the

chase (cf. Section 2.4). A possible more natural and practical approach would be to
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integrate constraint checking with data generation, restricting the latter process. We

consider two ways to apply this approach: (a) by compiling the constraints into the

tgds to restrict the data generation and prevent inconsistency, or (b) by checking the

constraints continuously after each tgd-chase step [Cal̀ı et al., 2010a, 2012c] during

the chase procedure in order to detect inconsistency sooner. In (a), a form of stratified

negation [Alviano & Pieris, 2015; Cal̀ı et al., 2013] might be needed to impose the

constraints using negation in the tgds bodies. Next, (a) and (b) are explained in

Examples 4.3.5 and 4.3.6, resp.

Example 4.3.5 Consider the categorical relations PatientUnit and PatientWard,

and the following dimensional rule:

PatientUnit(u, d; p),WardUnit(w, u) → PatientWard(w, d; p), (4.19)

and a dimensional NC that says there is no patient in the wards of the hospital during

September:

PatientWard(w, d; p),DayMonth(d, september) → ⊥. (4.20)

Here, (4.19) and (4.20) can be complied into the following tgd:

PatientUnit(u, d; p),WardUnit(w, u),¬DayMonth(d, september)

→ PatientWard(w, d; p). (4.21)

that applies the constraint while performing dimensional navigation. The negation

in the body of (4.21) is stratified since it is applied on a dimensional predicate with

complete data in the extensional database. �

Example 4.3.6 (ex. 4.3.5 cont.) Consider the following additional dimensional rule:

PatientWard(w, d; p),DayMonth(d,m) → ∃s PatientDiagnosis(w,m; p, s). (4.22)
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According to the data of PatientUnit in Table 4.2, the tuples (intensive, sep/1, tom waits)

and (intensive, sep/6, lou reed) generate tuples in PatientWard, through (4.19), that

violate (4.20). If we postpone checking (4.20) to after the complete data generation

by the chase, these tuples in turn generate tuples in PatientDiagnosis using (4.22).

However, by continuously checking (4.20), we can detect the error caused by these

two tuples sooner (and resolve the inconsistency possibly by repair), which prevents

additional erroneous data generation in PatientDiagnosis. �

4.3.4 Dimensional vs. static constraints

In the OMD model, dimensional constraints are egds and NCs of the form (4.8) and

(4.9), resp., with body atoms of the child-parent predicates for dimensional navigation

as explained in Remark 4.1.1. By static constraints we refer to egds and NCs without

these child-parent atoms in their bodies (for example, key constraints and FDs). Here,

we briefly study the connection between the two types of constraints.

Dimensional constraints can be transformed into static constraints and dimen-

sional rules of the form (4.10), as it is shown by the next example.

Example 4.3.7 (ex. 4.1.3 cont.) Consider the dimensional egd (4.12):

Therm(w , t ; n),Therm(w ′, t ′; n ′),WardUnit(w , u),WardUnit(w ′, u) → t = t′.

We can split it into a dimensional rule of the form (4.10) and a static egd as follows:

Therm(w , t ; n),WardUnit(w , u) → ThermTemp(u, t ; n).

ThermTemp(u, t ; n),ThermTemp(u, t ′; n ′) → t = t′.

Similarly, the dimensional constraint (4.11),

WorkingSchedules(intensive, d;n, s),DayMonth(d, jan) → ⊥,
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can be expressed by the following dimensional rule and static NC:

[WorkingSchedules(u, d;n, s),WardUnit(w, u),

DayMonth(d,m)] → SchedulesTemp(u,m).

SchedulesTemp(intensive, jan) → ⊥. �

Dimensional constraints of the forms (4.8) and (4.9) prevent some unnecessary

steps during the chase by avoiding data propagation for the additional predicates

(e.g. ThermTemp and SchedulesTemp).

Dimensional constraints can represent static constraints since static NCs and egds

are special cases of the general forms (4.8) and (4.9), resp., without child-parent

atoms in their bodies. Notice that the only egds in the model are those obtained

from the transformation we just illustrated in the example. However, these new egds

are still expected to be separable from the dimensional rules for good computational

properties. For example, they could satisfy the condition in Proposition 4.2.2.

4.3.5 Summarizability in multidimensional ontologies

Like in the relational data model, semantic constraints can be applied on the HM

model. Strictness and homogeneity are two important constraints on dimensions that

ensure the summarizability property, a desirable property that guarantees the correct

computation of cube views [Hurtado & Mendelzon, 2002]. A dimension is strict, i.e.

each member in a category has at most one parent in each higher category. It satisfies

homogeneity (a.k.a. covering) if each member in a category has at least one parent

in a parent category.

Example 4.3.8 The Hospital dimension (Figure 2.4) satisfies both strictness and

homogeneity. In Figure 4.2, the dimension on the left-side is not strict, because the
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Intensive 

H1 

allHospital 

H2 

AllHospital 

Institution 

Unit Intensive Unit 

H1 

allHospital AllHospital 

Institution H2 Clinic 

Figure 4.2: Homogenously and strictness of dimensions

Intensive child member in the Unit category has two parent members, H1 and H2

in the Institution category. Assuming that Clinic and Institution are both parent

categories of the Unit category, the dimension on the right-side is not homogeneous,

because the child member of Intensive does not have a parent member in the Clinic

category. �

We can represent homogeneity and strictness in the MD ontology through tgds,

egds, and NCs. To do that, we first introduce a binary predicate TH defined by rules

(4.23) and (4.24). There is one rule of this form for every child-parent predicate

P ∈ L.

P (e1, e2) → TH(e1, e2). (4.23)

The transitivity of TH is imposed by the following rule:

TH(e1, e2), TH(e2, e3) → TH(e1, e3). (4.24)

The strictness constraint on dimensionH can be captured by egds of the form (4.25).

There is an egd for every intermediate category K ∈ K.5

TH(e1, e2), TH(e1, e3), K(e2), K(e3) → e2 = e3. (4.25)

5 An intermediate category is a category that is not a base or top category.
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Under strictness and homogeneity, each member of a child category has a unique

member in the parent category. Homogeneity of H can be represented by tgds of the

form (4.26). There is a tgd for every child-parent predicate P ∈ L, between the child

category K and the parent category K ′.

K(e) → ∃e′ P (e, e′). (4.26)

Notice that (4.26) can also be expressed by the following tgd and NC:

P (e, e′) → CK(e). (4.27)

K(e),¬CK(e) → ⊥. (4.28)

Here, CK is an auxiliary, defined predicate that collects the child members from

the child-parent predicate P , and the negation in (4.28) is stratified. In fact, this

representations is preferred to (4.26) since it expresses homogeneity as a NC rather

than as a data generation rule.

Example 4.3.9 (ex. 4.3.8 cont.) In the Hospital dimension, the following rules cap-

ture strictness:

THospital(e1, e2),THospital(e1, e3),Unit(e2),Unit(e3) → e2 = e3.

THospital(e1, e2),THospital(e1, e3), Institution(e2), Institution(e3) → e2 = e3.

The homogeneity constraint is imposed by the following rule, among others:

Ward(w) → ∃uWardUnit(w, u),Unit(u).

This can be expressed by the following tgd and NC:

WardUnit(w, u) → CWard(w).

Ward(w),¬CWard(w) → ⊥. �
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4.3.6 Reconstruction of the context-aware databases

The context-aware data model [Martinenghi & Torlone, 2009, 2010, 2014] can be

fully reconstructed in terms of the OMD data model. The standard operators of

the relational algebra, i.e. selection, projection, and natural join, are supported by

Datalog and inherited by the MD ontology. The upward and downward extensions

are also expressible by means of dimensional rules of the form (4.10). The MD model

can additionally express recursion and contain incomplete data, both not expressible

in the context-aware databases.

Example 4.3.10 (ex. 3.2.3 cont.) The Schedules c-relation in the context-aware

data model can be represented as a categorical relation with the categorical and

non-categorical attributes that correspond to the contextual attributes and relation

attributes of the c-relation, resp. In particular, Schedule(Loc,Date;Nurse,Shift) is

a categorical relation that represents the c-relation, Schedules(Nurse :String , Shift :

String || Loc:Unit ,Date:Day). In the categorical relation, Loc and Date are categor-

ical attributes taking values from Unit and Day categories in the Hospital and Time

dimensions; and Nurse and Shift are non-categorical attributes.

The result of upward extension, ε̂
Loc:Inst

Loc:Unit(Schedules), is a categorical predicate,

Schedules ′, which is defined by a dimensional rule of the form (4.10):

Schedules(u, d;n, s),UnitInstitution(u, i) → Schedules ′(u, d, i;n, s).

Similarly, the result of downward extension, ε̌Loc:Unit

Loc:Ward(Schedules), is a categorical

predicate, Schedules ′′, which is defined by a rule:

Schedules(u, d;n, s),WardUnit(w, u) → Schedules ′′(u, d, w;n, s). �

The context-aware data model and its query language inherits the limitations of

relational algebra, including the following (that are necessary in many applications
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of the OMD data model [Milani et al., 2014; Milani & Bertossi, 2015b]): (1) It can

not capture recursive queries on the hierarchical data, (2) It is unable to represent

incomplete data.



Chapter 5

Multidimensional Ontologies and Data Quality

The OMD model provides a formal representation of the multidimensional context

as a core MD ontology. This allows us to establish a framework for contextual data

quality assessment.

5.1 Contextual Data Quality Assessment Revisited

We now show in detail the role of a MD context in quality data specification and

extraction. We will at the same time, for illustration and fixing ideas, use an example

(an extension of the running examples in Chapter 1), to put it in terms of the MD

context elements.1

Example 5.1.1 The relational table Temperatures (Table 5.1) shows body temper-

atures of patients in a hospital. A doctor wants to know “The body temperatures of

Tom Waits for August 21 taken around noon with a thermometer of brand B1 and

by a certified nurse”. Possibly a nurse, unaware of this requirement, took a measure-

ment and stored the data in Temperatures. In this case, not all the measurements

in the table are up to the expected quality. However, table Temperatures alone does

not discriminate between the intended values (those taken with brand B1 and by a

certified nurse) and the others.

1 Note that the tables in Chapter 1 reappear in this chapter, sometimes with a few changes in
their data to convey the ideas in more detail.
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Table 5.1: Temperatures

Time Patient Value Nurse

1 Sep/1-12:10 Tom Waits 38.2 Anna

2 Sep/6-11:50 Tom Waits 37.1 Helen

3 Nov/12-12:15 Tom Waits 37.7 Alan

4 Aug/21-12:00 Tom Waits 37.0 Sara

5 Sep/5-11:05 Lou Reed 37.5 Helen

6 Aug/21-12:15 Lou Reed 38.0 Sara

For assessing the quality of the

data in Temperatures according to

the doctor’s quality requirement, ex-

tra contextual information about the

thermometers and the nurses may

help. In this case, the contextual in-

formation is in categorical relations

WorkingSchedules, Shifts, and Personnel shown in Tables 5.2-5.4, resp. Work-

ingSchedules and Shifts have working schedules and shifts of nurses in units and

wards of the hospital, resp. Table Personnel stores hiring dates of personnel in the

hospital.

Furthermore, the institution has two guidelines prescribing that:

(a) “Temperature measurements for patients in intensive care unit have to be taken

with thermometers of Brand B1”.

(b) “Personnel hired after February are certified”.

Guideline (a) can be used for data quality assessment when combined with cat-

egorical table WorkingSchedules, which is linked to the Unit category. The data for

WorkingSchedules is partial and can be completed by table Shifts, by upward navi-

gation through the Hospital dimension from category Ward to category Unit. Tuples

Table 5.2: WorkingSchedules

Unit Day Nurse Speciality

1 Terminal Sep/5 Cathy Cardiac Care

2 Intensive Nov/12 Alan Critical Care

3 Standard Sep/6 Helen ?

4 Intensive Aug/21 Sara ?

Table 5.3: Shifts

Ward Day Nurse Shift

1 W4 Sep/5 Cathy Noon

2 W1 Sep/6 Helen Morning

3 W3 Nov/12 Alan Evening

4 W3 Aug/21 Sara Noon

5 W2 Sep/6 Helen ?
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that are obtained through dimensional navigation and data generation are shown

shaded in Tables 5.2.

According to (a), it is possible to conclude that tuples 3,4, and 6 in Temperatures

contain measurements taken with a thermometer of brand B1. In particular, the

nurses that took the measurements (Alan and Sara) were in the intensive care unit

(according to WorkingSchedules).

Table 5.4: Personnel

Inst. Day Name

1 H2 Sep/5 Anna

2 H1 Mar/9 Helen

3 H1 Jan/6 Alan

4 H1 Mar/6 Sara

Using guideline (b), only tuples 4 and 6 in

Temperatures are measurements taken by a certified

nurse, Sara, since she is hired after February, accord-

ing to table Personnel. This “clean data” in rela-

tion to the doctor’s expectations appear in relation

Temperaturesq (Table 5.5) that can be seen as a qual-

ity version of Temperatures.

Table 5.5: Temperaturesq

Time Patient Value Nurse

1 Aug/21-12:00 Tom Waits 37.0 Sara

2 Aug/21-12:15 Lou Reed 38.0 Sara

In the OMD model, there could be

semantic constraints, represented as di-

mensional constraints. For example, a

constraint that states “No nurse in in-

tensive care unit during January”. It is satisfied by table WorkingSchedules (Ta-

ble 5.2) since none of the tuples shows a working schedule during January. Another

example is a constraint saying “No nurse has working schedules in more than one

institution on the same day”, which is also satisfied by WorkingSchedules.

According to the clean data in Temperaturesq, the second tuple provides the an-

swer to the query. �

Figure 5.1 shows the overview of our general methodology for contextual data qual-

ity specification and extraction using MD ontologies. On the LHS, D is a database
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Figure 5.1: A multidimensional context

instance for a relational schema R = {R1, ..., Rn} that is under quality data specifi-

cation, assessment, and extraction.

The main element is a context C, shown in the middle of Figure 5.1. It contains

the following:

1. Nickname predicates R′ in a nickname schema R′ for predicates R in R. Predi-

cates R′ have the same extensions as the corresponding ones R inD, producing a

material or virtual instance D′ within C. These nickname predicates are defined

by a set Σ′ of non-recursive Datalog rules of the form:

R(x̄) → R′(x̄). (5.1)

where R ∈ R and R′ ∈ R′.

2. The core MD ontology, M, includes a partial instance, DM, containing dimen-

sional data; and dimensional rules ΣM, and dimensional constraints κM, among
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them, egds and NCs as in Section 4.1.2 We assume that application- depen-

dent guidelines and constraints (guidelines (a) and (b) and semantic constraints

in Example 5.1.1) are represented as dimensional rules and constraints in M,

resp. These are rules and constraints in ΣM and κM, resp., that unlike basic

constraints ΩM, are application-dependent (cf. Section 4.1).

3. A contextual relational schema Rc, with an instance Ic, which contains possibly

partial materialized data at the contextual level.

4. A set of quality predicates, P , with their definitions with non-recursive Datalog

rules ΣP (possibly with negation, not), in terms of predicates RM (e.g. Work-

ingScheduels and Personnel in Example 5.1.1), predicates in Rc, and built-in

predicates.3 A quality predicate reflects an application dependent specific qual-

ity concern. The definition of a quality predicate P ∈ P is a rule in ΣP of the

following form:

φc
P (x̄), ϕ

M
P (x̄) → P (x̄). (5.2)

Here, φc
P (x̄) is a conjunction of atoms with predicates in Rc plus built-ins, and

ϕM
P (x̄) is a conjunction of atoms with predicates in schema RM of the ontology

M.

Notice that the definition of quality predicates in P can be syntactically told

apart from the dimensional rules in M. Unlike quality predicates, the dimen-

sional rules perform dimensional navigation through the join variables in their

bodies that appear in categorical predicates and child-parent predicates (cf.

Section 4.1 and Remark 4.1.1)

2 The “core” ontology since it is within the context C that can also be considered as an ontology.
3 More general rules can be used, but their the interaction with the rest of the ontology may

affect the complexity of QA.
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Furthermore, and not strictly inside context C, there are predicates Rq
1, ..., R

q
n ∈

Rq, the quality versions of R1, ..., Rn ∈ R. They are defined through quality data

extraction rules Σq written in non-recursive Datalog, in terms of nickname predicates

(in R′), and the quality predicates (in P), and built-in predicates. Their definitions

(Σq in Figure 5.1) impose conditions corresponding to user’s data quality profiles,

and their extensions form the quality data (instance). The following is the general

form for the rules in Σq:

R′(x̄), ψP
R′(x̄) → Rq(x̄), (5.3)

where R′ ∈ R′, Rq ∈ Rq (R′ and Rq are associated with R ∈ R), and ψP
R′(x̄) is a

conjunction of atoms with predicates in P and built-ins.

Notice that the connection between the quality versions inRq, categorical relations

in M, and contextual relations in Ic is through quality predicates P . Since the latter

are defined by general and flexible rules, through them we can also access the ontology

M and the contextual instance Ic.

The external sources E = {E1, ..., Ej} are of different types and contribute with

data to the contextual schema. These data can be materialized and stored at the

context level by the contextual instance Ic, or left at the sources and accessed through

mappings.

Example 5.1.2 (ex. 5.1.1 cont.) Temperatures ′ ∈ R′ is a nickname predicate for

Temperatures ∈ R, whose initial contents (in D) is under quality assessment.

In the core MD ontology M, WorkingSchedules, Shifts, and Personnel are cate-

gorical relations. WardUnit, TimeDay are child-parent relations in the Hospital and

Time dimensions, resp. The following are dimensional rules (tgds) of ΣM:
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σ1 : Shifts(w, d;n, s),WardUnit(w, u) → ∃tWorkingSchedules(u, d;n, t).

σ2 : WorkingSchedules(u, d;n, t),WardUnit(w, u) → ∃s Shifts(w, d;n, s).

Categorical relations WorkingTimes and PersonnelMonth are defined below as views

in terms of WorkingSchedules and Personnel, to bring their data to the levels of time

and month, resp.

WorkingSchedules(u, d;n, s),TimeDay(t, d) → WorkingTimes(u, t;n, s). (5.4)

Personnel(i, d; p),DayMonth(d,m) → PersonnelMonth(i,m; p). (5.5)

The constraints in Example 5.1.1 are expressed by the following dimensional con-

straints:

WorkingSchedules(intensive, d;n, s),DayMonth(d, jan) → ⊥.

[WorkingSchedules(u, d;n, s),WorkingSchedules(u′, d;n, s),

UnitInstitution(u, i),UnitInstitution(u′, i′)] → i = i′.

TakenWithTherm and CertifiedNurse are defined next as quality predicates, with

definitions of the form (5.2) in ΣP (cf. Figure 5.1). They address quality concerns

about the certified nurses and the thermometers:

WorkingTimes(intensive, t;n, y) → TakenWithTherm(t, n, b1). (5.6)

PersonnelMonth(m, i; p), february ≤ m→ CertifiedNurse(p). (5.7)

Here, (5.6) and (5.7) refer to (a) and (b) in Example 5.1.1.

The quality version of Temperatures is Temperaturesq ∈ Rq, with the following

definition of the form (5.3) in Σq, which captures the intended, clean contents of the
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Algorithm 1 The QualityQA algorithm

Step 1: Replace each predicate R in Q with its corresponding quality version Rq,

obtaining a CQ Qq over schema Rq.

Step 2: Unfold the definitions of quality versions Rq of predicate R in R, given by

rules of the form (5.3) in Σq. This results into a UCQ QC in terms of predicates

in R′ ∪ P and built-ins.

Step 3: Unfold the definitions of quality predicates, given by rules of the form (5.2)

in ΣP , obtaining a UCQ QM in terms of predicates in R′∪Rc∪RM, and built-ins.

Step 4: Answer QM by CQ answering over: (a) the database D′ for schema R′,

(b) the instance Ic of Rc, and (c) the MD ontology M. For sub-queries in (c),

use the CQ answering algorithm proposed in Chapter 7 (or is the algorithm in

Chapter 9).

former:

[Temperatures ′(t, p, v, n),CertifiedNurse(n),

TakenWithTherm(t, n, b1)] → Temperaturesq(t, p, v, n). (5.8)

�

Now, we present the QualityQA algorithm (Algorithm 1) that computes clean

quality answers to a CQ Q posed to the initial dirty database D for schema R.

In Steps 2 and 3, the results are UCQs because ΣP and Σq contain non-recursive

Datalog rules, in addition to the fact thatQ is a CQ.4 As a consequence of that, Step 4

starts with a UCQ QM, for which each conjunct can be answered by CQ answering

under D′, Ic, and M. More complex rules than non-recursive Datalog in ΣP and Σq

4 A UCQ query is the unions of some CQs.
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require different QA approaches, that might affect other steps. In particular, QM in

Step 4 might be a more complex query than a UCQ, for which QA may not be done

by just answering CQs over M, in addition to D′ and Ic.

Regarding QA under M in Step 4, we can use the algorithm in Chapter 7. This

algorithm is a chase-based QA algorithm that imposes CQs on a canonical model

that represents multiple models of the ontology. This means, in general, there are

multiple clean instances, Dq, for which we implicitly use certain answers for quality

query answering, by utilizing the QA algorithm under the MD ontology in QualityQA.

Remark 5.1.1 Notice that given the kind of predicate definitions we have, the Qual-

ityQA algorithm computes what we could define as the clean answers to query Q, as

follows:

QAnsCD(Q) = {c̄ | D ∪ Σ′ ∪M∪ Ic ∪ ΣP ∪ Σq |= Qq[c̄]}.

This formulation of clean answers corresponds to a model-theoretic definition of

clean answers. Note that in this formulation, M can have multiple models that can

only be represented by a canonical model (the chase) for the purpose of computing

certain answers to CQs. �

The algorithm can be applied in particular to compute the clean version Rq of a

table R in D.

Example 5.1.3 (ex. 5.1.2 cont.) This is the initial query asking for (quality) values

for Tom Waits’ temperature,

Q(v) : ∃n ∃t (Temperatures(t, tom waits, v, n) ∧ aug/21-11 :45 ≤ t ≤ aug/21-12 :15),
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which, according to Step 1 of QualityQA, has to be first rewritten into:

Qq(v) : ∃n ∃t (Temperaturesq(t , tom waits, v , n) ∧ aug/21-11 :45 ≤ t ≤ aug/21-12 :15).

To answer Qq, first (5.8) can be used (Step 2 of QualityQA), obtaining a query:

QC(v) : ∃n ∃t (Temperatures ′(t, tom waits, v, n) ∧ TakenWithTherm(t, n, b1) ∧

CertifiedNurse(n) ∧ aug/21-11 :45 ≤ t ≤ aug/21-12 :15).

This query will in turn use the quality predicate definitions (5.6) and (5.7), that

lead to QM expressed in terms of Temperatures ′ and the predicates in RM, and

built-ins, namely the following (this is Step 3 of QualityQA):

QM(v) : ∃i ∃m ∃n ∃t ∃y (Temperatures ′(t, tom waits, v, n) ∧WorkingTimes(intensive, t;n, y)

∧ PersonnelMonth(m, i;n) ∧ february ≤ m ∧ aug-21/11 :45 ≤ t ≤ aug/21-12 :15).

At this point, according to Step 4 of QualityQA, we answer QM by CQ answering

under M and database D′. The former is by the application of the QA algorithm in

Chapter 7. �

Under our approach, data cleaning (or extraction of quality data from an initial

table) amounts to obtaining a clean instance Dq from the dirty target instance D,

and it is done by collecting clean extensions Rq
1, ..., R

q
n of R1, ..., Rn ∈ R. The clean

extension Rq of possibly dirty relation R in D is obtained by answering the atomic

query Q(x̄) : R(x̄) using QualityQA. In particular, the algorithm uses a rule of the

general form (5.3) to collect the clean data of Rq by applying conditions in ψP
R′ on R′.

The quality of the target database instance D can be assessed through its “dis-

tance” to the quality instance Dq, that is the aggregate distance of every relation

R(D) from its quality version Rq(Dq). Different notions of distance might be used as

discussed in [Bertossi, 2011b; Bertossi et al., 2016].
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We studied computational properties of MD ontologies and CQ answering over

them in isolation, in Section 4.2. Adding the definitions of the quality predicates

and quality versions, the result is a new ontology that might not preserve the syn-

tactic properties of the core MD ontology. The next example shows that adding the

definition of quality predicates as plain Datalog rules can break the WS syntactic

property.

Example 5.1.4 (ex. 5.1.2 cont.) Consider dimensional rules σ1, σ2, and the following

non-recursive Datalog rule that defines a quality predicate Mornings(Unit):

σ3 : Shifts(w, d;n,morning),WorkingSchedules(u, d;n, critical-care)→Mornings(u).

Here, Σ = {σ1, σ2, σ3} is not WS since n in the body of σ3 is a repeated marked body

variable that only appears in infinite-rank positions Shifts [3] andWorkingSchedules [3]

of Σ. �

In general terms, combining existential rules that separately enjoy good compu-

tational properties might lead to a set of rules that does not inherit these proper-

ties [Baget et al., 2011b, 2015]. In the case of ΣP and Σq define over the core MD

ontology, although the weak-stickiness might not hold for the resulting ontology, CQ

answering is still tractable. This is because ΣP and Σq are sets of non-recursive Dat-

alog rules, and as a result, a CQ can be rewritten using them in terms of predicates

in M (and other predicates in context, i.e. R′ ∪ Rc) and answered by the ontology

and the extensional data at context level (cf. Step 4 in Algorithm 1).

Since ontological predicates act as extensional predicates in the definitions of qual-

ity predicates, we can also accept quality predicates definitions in recursive Datalog,

without extensional variables in their heads, while still enjoying the good computa-

tional properties of QA.



Chapter 6

Semantic Generalization of Stickiness

For practical QA under WS Datalog±, which is essential for our MD ontology, we

present a bottom-up chase-based QA algorithm in Chapter 7. Being bottom-up, we

proposed the MagicD+ rewriting algorithm (cf. Chapter 8) to optimize it. However,

the class of WS programs is provably not closed under MagicD+, meaning that the

result of applying the rewriting to a WS program may not be WS anymore. This led

us to search for a more general class of programs that (i) is closed under the MagicD+,

(ii) extends WS Datalog±, (iii) still has tractable QA, and (iv) allows the application

of the proposed bottom-up QA.

To find such a program class, in this chapter, we study the syntactic stickiness and

the (semantic) shc-property (cf. Section 2.3.3) in detail. In particular, We generalize

the sch-property using the notion of finite and infinite positions which results to

specification of a range of semantic and syntactic classes, including sticky and WS

Datalog±, and a new class of JWS that satisfies the properties above.

6.1 Generalized Stickiness

The generalized-stickiness of the chase (gsch-property) is defined by relaxing the con-

dition in the sch-property: the condition applies to values for the repeated body

variables that do not appear in finite positions. A position in a program Π is finite if

finitely many values appear in the position during the chase of Π. We denote the set

102
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of finite positions of Π by FinPoss(Π).

Definition 6.1.1 A Datalog+ program Π (including extensional data) has the gene-

ralized-stickiness property of the chase, in short, the gsch-property, if and only if for

every chase step Ii
σi,θi−−−→ Ii ∪ {Ai} during the chase of Π, the following holds: If a

variable x appears more than once in body(σi) and not in FinPoss(Π), θi(x) occurs

in Ai and every atom B for which, Ai
Π

−−→
∗

B. Generalized-stickiness of the chase

(GSCh) is the class of programs with the gsch-property. �

Example 6.1.1 (ex. 2.3.3 cont.) Π1 and Π2 have no infinite positions because for

both programs the chase terminates. Consequently, they are GSCh. Let Π3 be Π2

with a new rule, σ : R(x, y) → ∃z R(z, x). R[1] and R[2] are infinite positions

because, during the chase of Π3, σ cyclically generates infinite null values in r[2] that

also propagate to R[1]. The chase of Π3 does not have the gsch-property and it is not

GSCh since the value b replaces the repeated body variable y that only appears in

infinite positions (R[1] and R[2]) and b does not propagate all the way down during

the chase procedure. �

6.2 Selection Functions and Program Classes

The finite positions in the definition of the gsch-property are not computable for a

given program which makes it impossible to decide if the program has the property.

Here, we define selection functions that determine subsets of the finite positions of

a program. We replace finite positions in the definition of the gsch-property with

the results from selection functions in order to define new stickiness properties and

program classes.
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A selection function S (over a schema R) is a function that takes a program Π

and returns a subset of FinPoss(Π). Particular functions are S⊥ and S>, that given

a program Π, return the empty set and FinPoss(Π), respectively. The latter may not

be computable, and depends on the program’s data, which is not the case for the

former. πF also defines a data-independent selection function, Srank , that returns the

finite-rank positions (there are finitely many values in them in the chase of Π, for

any data set [Cal̀ı et al., 2012c, Lemma 5.1]). A selection function is “syntactically

computable” if it only depends on the rules ΠR of a program Π, and we use the

notation S(ΠR) if it is not clear from the context.

The S-stickiness is defined by replacing the finite positions in the definition of

the gsch-property with a selection function S: The chase of a program Π has the

S-stickiness property if the stickiness condition applies only to values replacing the

repeated body variables that do not appear in a position of S(Π). SCh(S) is the

semantic class of programs with the S-stickiness. In particular, SCh = SCh(S⊥),

GSCh = SCh(S>). Also, WSCh = SCh(Srank ) is the class of programs with weak-

stickiness of the chase. SCh(S) specifies a range of semantic classes of programs

starting with SCh, ending with GSCh, and with WSCh in between.

S⊥ $ Srank $ S∃ $ S>

SCh:=SCh(S⊥) $ WSCh:=SCh(Srank) $ SCh(S∃) $ GSCh:=SCh(S>)

Sticky $ WS $ JWS

$ $ $

(g) (h) (i)

(j) (k)

(a) (b) (c)

(d) (e) (f)

Figure 6.1: Semantic and syntactic program classes, and selection functions

SCh(S) grows monotonically with S: For selection functions S1 and S2 over schema
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R, if S1 ⊆ S2, then SCh(S1) ⊆ SCh(S2). Here, S1 ⊆ S2 if and only if for every program

Π, S1(Π) ⊆ S2(Π). In general, the more finite positions are (correctly) identified (and

the consequently, the less finite positions are treated as infinite), the more general

subclass of GSCh that is identified or characterized.

Sticky Datalog± uses the marking procedure to restrict the repeated body vari-

ables and impose the sch-property. Applying this syntactic restriction only on body

variables specified by syntactic selection functions results in syntactic classes that ex-

tend sticky Datalog±. These syntactic classes are subsumed by the semantic classes

defined by the same selection functions; each of these syntactic classes only par-

tially represents its corresponding semantic class. In particular, SCh subsumes sticky

Datalog± [Cal̀ı et al., 2012c]; and WS is a syntactic subclass of WSCh (cf. (g) and

(h) in Figure 6.1).

6.3 Joint Weakly-Sticky Programs

The definition of the class of JWS programs uses the syntactic selection function S∃,

which appeals to the existential dependency graph of a program [Krötzsch & Rudolph,

2011] (cf. Section 2.3.2).

Definition 6.3.1 For a program Π, the set of finite-existential positions of Π, denoted

by π∃
F (Π), is the set of positions that are not in the target set of any ∃-variable in a

cycle in EDG(Π). �

Intuitively, a position in π∃
F (Π) is not in the target of any ∃-variable that may

invent infinite null values. Therefore, it specifies a subset of finite positions and

π∃
F (Π) characterise a syntactic selection function that we denote by S∃. Since it is
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join (WSJ) 

Figure 6.2: Generalization relationships between program classes

syntactic, it can also be denoted by π∃
F (Π

R) but for simplicity of notation we use

π∃
F (Π).

Proposition 6.3.1 For every set of rules Π, πF (Π) ⊆ π∃
F (Π). �

Proof of Proposition 6.3.1: Using proof by contradiction, we assume there is a

position p such that: p ∈ πF (Π) and p 6∈ π∃
F (Π). The latter means there is a cycle in

EDG(Π) that includes an ∃-variable z in a rule σ such that p ∈ Tz. The definition of

EDG implies that, there is ∀-variable x in the body of σ for which Bx ⊆ Tz. Let pz

and px be the two positions where z and x appear in σ resp. Then, there is a path

in DG(Π) from pz to px and there is also a special edge from px to pz making a cycle

including pz with a special edge. Therefore, pz has infinite-rank, pz 6∈ πF (Π). Since

p ∈ Tz, we can conclude that p also has infinite-rank, p 6∈ πF (Π), which contradicts

the assumption and completes the proof. �

π∃
F defines a computable selection function S∃ that returns finite-existential po-

sitions of a program (cf. (c) in Figure 6.1). SCh(S∃) is a new semantic subclass of

GSCh that generalizes SCh(Srank) since S∃ provides a finer mechanism for capturing

finite positions in comparison with Srank (cf. (e) and (f) in Figure 6.1).
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Definition 6.3.2 A program Π is joint-weakly-sticky (JWS) if for every rule in Π

and every variable in its body that occurs more than once, the variable is either

non-marked or appears in some positions in π∃
F (Π). �

The class of JWS programs is a proper subset of SCh(S∃) and extends WS (cf. (i)

and (k) in Figure 6.1). The latter is shown by Example 6.3.1.

Example 6.3.1 Let Π be program with rules:

R(x, y), U(y) → ∃z R(y, z). (6.1)

R(x, y), R(y, z) → R(x, z). (6.2)

πF (Π) = {U [1]} and π∃
F (Π) = {U [1], R[1], R[2]}. After applying the marking

procedure, all the body variables are marked. Π is not WS because of y in the second

rule. It is JWS since every position is in π∃
F (Π). �



Chapter 7

Query Answering for Semantically Sticky Classes

In this chapter, we present a bottom-up chase-based QA algorithm for programs in

the semantic classes in Section 6.2, and their related syntactic classes.

7.1 The SChQA Algorithm

SChQA takes as input a computable selection function S, a program Π ∈ SCh(S),

and a CQ Q over schema R and returns ans(Q,Π). Before describing SChQA, we

need to introduce the notion of applicability that modifies the applicability condition

in tgd-based chase step in Section 2.2.

Definition 7.1.1 Consider a Datalog+ program Π, and an instance I of Π. A pair

of rule/assingment (σ, θ), with σ ∈ Π, is applicable over I if: (a) θ(body(σ)) ⊆ I;

and (b) there is an assignment θ′ that extends θ, maps the ∃-variables of σ into fresh

nulls, and θ′(head(σ)) is not homomorphic to any atom in I.1 �

For an instance I and a program Π, we can systematically compute the applicable

pairs of rule/assignment by first finding σ ∈ Π for which body(σ) is satisfied by I.

That gives an assignment θ for which θ(body(σ)) ∈ I. Then, we construct θ′ as in

Definition 7.1.1 and we iterate over atoms in I and we check if they are homomorphic

to θ′(head(σ)).

1 Atom A is homomorphic to atom B, iff there is a homomorphism h such that h(A) = B.
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In SChQA, we use the notion of freezing a null value that is moving it from N

into C. It may cause new applicable pairs of rule/assignment because it changes

homomorphic atoms. Resumption is freezing every null in the current instance I and

continuing the algorithm steps. Notice that a pair of rule/assignment is applied only

once in Step 2. Moreover, if there are more than one applicable pairs, then SChQA

chooses the pair as in the chase using the notion of level and then lexicographic order

(cf. Section 2.2).

SChQA is applicable to any Datalog+ program and any computable selection func-

tion, and returns sound answers. However, completeness is guaranteed only when

applied to programs in SCh(S) with a computable S.

Algorithm 2 The SChQA algorithm

Inputs: A selection function S, a program Π ∈ SCh(S), and a CQ Q over Π.

Output: ans(Q,Π).

Step 1: Initialize an instance I with the extensional database D.

Step 2: Choose an applicable rule/assignment σ and θ over I, add θ′(head(σ)) into

I (θ′ is the assignment defined in Definition 7.1.1).

Step 3: Freeze nulls that appear in the new atom and in the positions of S(Π).

Step 4: Iteratively apply Steps 2-3 until all applicable pairs are applied.

Step 5: Resume Step 2, i.e. freeze nulls in I and continue with Steps 2. Repeat

resumption MQ times where MQ is the number of ∃-variables in Q

Step 6: Return the tuples in Q(I) that do not have null values (including the frozen

nulls).

Example 7.1.1 Consider a program Π with D = {S(a, b, c), V (b), U(c)}, and a set
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of rules containing (the hat signs show the marked variables),

σ1 : S(x̂, ŷ, ẑ) → ∃w S(y, z, w),

σ2 : U(x̂) → ∃y, z S(x, y, z),

σ3 : S(x̂, y, z),V (x̂), S(y, z, ŵ) → P (y, z),

and a BCQ Q : ∃y P (c, y). Π is in WS and so SCh(Srank). Specifically in σ3, x occurs

in V [1] which is in Srank (Π) and y and z are not marked.

The algorithm starts from I := D. At Step 2, σ1 and θ1 : x 7→a, y 7→ b, z 7→ c, are

applicable; and SChQA adds S(b, c, ζ1) into I. σ2 and θ2 : x 7→ c, are also applicable

and they add S(c, ζ2, ζ3) into I. Step 3 does not freeze ζ1, ζ2, and ζ3 since they are

not in Srank (Π).

There is no more applicable pairs and we continue with Step 5. Notice that σ1

and θ3 : x 7→ b, y 7→ c, y 7→ ζ1 are not applicable since any θ′3 : θ3 ∪ {w 7→ ζ4}

generates S(c, ζ1, ζ4) that is homomorphic to S(c, ζ2, ζ3) in I. SChQA is resumed

once since Q has one ∃-variable. This is done by freezing ζ1, ζ2, ζ3 and returning to

Step 2. Now, S(c, ζ1, ζ4) and S(c, ζ2, ζ3) are not homomorphic anymore and (σ1, θ3)

is applied which results in S(c, ζ1, ζ4). As a consequence, σ3 and θ4 : x 7→ b, y 7→

c, z 7→ ζ1, w 7→ ζ4, are applicable, which generate P (c, ζ1). The instance I in Step 6

is I = D ∪ {S(b, c, ζ1), S(c, ζ2, ζ3), S(c, ζ1, ζ4), P (c, ζ1), S(ζ2, ζ3, ζ5), S(ζ1, ζ4, ζ6)}, and

I |= Q. �

The number of resumptions with SChQA depends on the query. However, for

practical purposes, we could run SChQA with N resumptions, to be able to answer

queries with up to N ∃-variables. If a query has more than N variables, we can

incrementally retake the already-computed instance I, adding the required number

of resumptions.
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7.2 Correctness of SChQA and Complexity Analysis

In this section, we prove that SChQA is sound and complete w.r.t CQ answers under

programs in SCh(S), and we analyse the complexity of running it for different program

classes.

Theorem 7.2.1 Consider a computable selection function S over schema R, a pro-

gram Π ∈ SCh(S), and a CQ Q over R. Algorithm SChQA taking S, Π, and Q as

inputs, terminates returning ans(Q,Π). �

Proof of Theorem 7.2.1: Let Ii be the instance I in SChQA after the i-th resump-

tion, ci be the number of frozen nulls and constants in Ii during SChQA, r be the

number of the predicates in Π, and w be the maximum arity of the predicates. Ini-

tial value c0 is the number of constants in Adom(D) plus the finite number of nulls

in S(Π). Therefore there are r × (c0 + 1)w non-frozen nulls in I0 since there is no

homomorphic pair of atoms in I0. As a result, there are at most c0 + r × (c0 + 1)w

possible terms in I0. After the first resumption, every null value is frozen; so there

are c1 = c0 + r × (c0 + 1)w and at most r × (c1 + 1)w new nulls are invented, which

results to at most c1 + r × (c1 + 1)w terms in I1. Along the same line of reasoning,

we conclude that there are at most cMQ
+ r × (cMQ

+ 1)w terms in IMQ
, so it is a

finite instance. SChQA always terminates since there are finitely many applicable

pairs w.r.t the finite instance I = IMQ
.

For the rest of the proof, we assume Q is an atomic and BCQ, and the proof can be

extended to free CQs.2 To prove SChQA is sound ((IMQ
|=Q) ⇒ (chase(Π) |=Q)), we

show that IMQ
is isomorphic to a subset of chase(Π). We construct this isomorphism

2 Non-atomic queries can be converted to atomic queries using a query answer collection rule
that preserves the sch-stickiness property.
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inductively while running SChQA. More precisely, if a pair (σ, θ) is applied during

SChQA and generates atom A, there is an applicable pair (σ, θ′) during the chase of

Π. (σ, θ) and (σ, θ′) have isomorphic body images and they generate isomorphic atoms

as both invent fresh nulls. (σ, θ′) is eventually applied and generates A′ isomorphic

to A.3

To prove SChQA is complete ((Π |= Q) ⇒ (IMQ
|= Q)), assume that the an-

tecedent holds. Let k be the minimum number of steps, such that chase [k](Π) |= Q.

Q is mapped to an atom Am in chase [k](Π). We prove that Am is isomorphic to an

atom A′
m in IMQ

, so Q is also mapped to IMQ
, and IMQ

|= Q.

Assume Am is not in D, otherwise the proof is trivial. Let IA = {A1, ..., Am} be

the set of atoms that derive Am and are not in D, including Am (Ai
Π

−−→
∗

Am, i 6= m),

ordered by their appearance in the chase. Let S1, ..., Sm be the chase steps that

generate A1, ..., Am, by applying the pairs (σ1, θ1), ..., (σm, θm), resp. The null values

in IA either, (a) appear in the positions of S(Π), or (b) appear in the positions of

non-S(Π) and replace join variables in the body images of an applied pair, or (c) not

in (a) or (b).

We proof by induction that Ai, 1 ≤ i ≤ m is isomorphic to A′
i in Ik, such that k

is the number of null values of type (b) in A1, ..., Ai.

Base case: Starting from S1, θ1 maps body(σ1) to D. (σ1, θ1) satisfies the first

condition in Definition 7.1.1: θ1(body(σ1)) ⊆ D ⊆ IMQ
. It also satisfies the second

applicability condition, therefore, it is applied in SChQA, and generates the atom,

A′
1. The second condition holds, since otherwise A′

1 is homomorphic to an atom B′
1

in IMQ
, which means we can find and atom B1 ∈ chase(Π) that corresponding to B′

1

3 Note that the chase procedure in Section 2.2 is fair, i.e. every applicable pair is eventually
applied [Cal̀ı et al., 2013].
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and is obtained before A1. A1 and B1 can only differ in nulls on type (c), since nulls

of type (a) and (b) are frozen and equal in both. Specially, if there is at least one null

of type (b) in A1 and B1, there is at least one ∃-variable in Q, since that null value

also appear in Am, and so, there is at least one resumption which freezes that null.

B1 can replace A1 to derive Am which contradicts our assumption that A1 derives

Am. Therefore, there is no B′
1 and B1. As a result, A′

1 is in I1 if A1 contains nulls of

type (b) and it is in I0 if there is no null of type (b).

Inductive step: Assume A1, ..., Ai−1, i ≤ m are isomorphic to A′
1, ..., A

′
i−1 in Ik,

such that k is the number of nulls of type (b) in A1, ..., Ai−1. We proof Ai is also

isomorphic to A′
i in I ′k, where k

′ is the number of values of values of type (b) in

A1, ..., Ai. θi in Si maps body(σi) to D ∪ {A1, ..., Ai−1}. Consider the pair (σi, θ
′
i),

in which θ′i is obtained from θi by replacing nulls with their corresponding nulls

in IMQ
. (σi, θ

′
i) satisfies the first applicability condition in Definition 7.1.1, since

θ′i(body(σi)) ⊆ DA ∪ {A′
1, ..., A

′
i−1} (inductive hypothesis). It also satisfies the second

applicability condition, and the pair is applied and generates A′
i.

If the second applicability condition does not hold, A′
i is homomorphic to an atom

B′
i in Ik, that corresponds to an atom Bi ∈ chase(Π) that is obtained before Ai and

only differs from Ai in nulls of type (c). Specially for the nulls of type (b), they either

all correspond to frozen nulls in Ik, or they are frozen later in Ik+1. Therefore A′
i is

either obtained in Ik (in which case k′ = k), or it is obtained in Ik+1 (in which case

k′ = k + 1). This completes the inductive proof.

We also need to show that k in the proof never goes beyond MQ. This is because

there are at most MQ nulls in (b): sch-stickiness property of the chase implies that

those nulls continue to appear in the subsequent atoms and therefore in Am, that can

only contain MQ nulls. As a result, k never proceeds MQ which shows A1, ..., Am are
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mapped to atoms A′
1, ..., A

′
m in IMQ

. �

Proposition 7.2.1 Algorithm SChQA runs in polynomial time in data if the follow-

ing holds for S: for any program Π, the number of values appearing in S(Π)-positions

during the chase is polynomial in the size of the extensional data. �

Proof of Proposition 7.2.1: cMQ
+r×(cMQ

+1)w is a series with a closed form that is

polynomial in c0. The condition in the proposition means c0, i.e. the number of frozen

nulls before any resumption plus the number of constants in the extensional database,

is polynomial w.r.t the size of the extensional data. As a result, cMQ
+r× (cMQ

+1)w,

which is the number of terms in IMQ
, is polynomial in the size of the extensional

database which proves the proposition.

Lemma 7.2.1 During the chase of a Datalog+ program Π, the number of distinct

values in S∃(Π)-positions is polynomial in the size of the extensional data. �

Proof of Lemma 7.2.1: We first define the notion of ∃-rank of a position p in Π.

Let Zp be the set of ∃-variables z in Π, such that p ∈ Tz. Then, the ∃-rank of p is

the maximum length of any path in the existential dependency graph of Π that ends

with any ∃-variable in Zp. A position in π∃
F (Π) has finite ∃-rank, since it is not in the

target of any ∃-variable that appears in a cycle in the existential dependency graph

of (Π). We prove by induction that there are polynomially many values w.r.t. d (i.e.

the size of the extensional database), that appear during the chase in the positions

with ∃-rank at most i. In the inductive proof, di is the number of values in positions

with ∃-rank of i.

Base case: Only values from Adom(D) appear in the positions with ∃-rank of 0,

so d0 = d.
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Inductive step: The values that appear in a position of ∃-rank i are either (a) from

other positions with ∃-rank i, or (b) from the positions with ∃-rank j < i. For (b),

they are at most di−1 which, by inductive hypothesis, is polynomial in d. For (a), the

values are invented by ∃-variables that appear at the end of paths of length i in the

existential dependency graph of Π. Let σ be a rule containing such a ∃-variable, z.

The values in body(σ) are in positions with ∃-rank less than i. Let v be the maximum

number of variables in the body of any rule in Π. Then, σ can invent dvi−1 new values

for the positions with ∃-rank i. There are at most r such rules where r is the number

of rules in Π. Therefore, there are at most r × dvi−1 + di−1 distinct values in the

positions of rank at most i, and since r and v are independent of data, the number is

a polynomial w.r.t. d. Considering that the maximum ∃-rank in Π is independent of

the data of Π, we conclude that dk is also polynomial w.r.t. d.4

Corollary 7.2.1 SChQA runs in polynomial time in data with programs in SCh(S∃),

in particular for the programs in the JWS and WS syntactic classes. �

This proves JWS has the desirable property mentioned at the beginning of Chap-

ter 6: it extendsWS programs and also allows the application of the proposed bottom-

up QA, SChQA. Now, it remains to show that JWS has the first property: SChQA

for QA under JWS programs can be optimized through magic-sets rewriting, which

is addressed in the next chapter.

4 The proof is similar to the proof of [Fagin et al., 2005, Theorem 3.9], which shows the chase of
a WA program runs in polynomial time in data complexity.



Chapter 8

Magic-Sets Optimization for Datalog+ Programs

Magic-sets is a general technique for rewriting logical rules so that they may be

implemented bottom-up in a way that avoids the generation of irrelevant facts [Beeri

& Ramakrishnan, 1987; Ceri et al., 1990]. The advantage of such a rewriting technique

is that, by working bottom-up, we can take advantage of the structure of the query

and the data values in it, optimizing the data generation process. In this chapter, we

present a magic-sets rewriting for Datalog+ programs, denoted by MagicD+.

8.1 The MagicD+ Rewriting Algorithm

MagicD+ takes a Datalog+ program and rewrites it, using a given query, into a new

Datalog+ program. It has two changes regarding the technique in [Ceri et al., 1990] in

order to: (a) work with ∃-variables in tgds, and (b) consider the extensional data of

the predicates that also have intensional data defined by the rules. For (a), we apply

the solution proposed in [Alviano et al., 2012]. However (b) is specifically relevant for

Datalog+ programs that allow predicates with both extensional and intentional data,

and we address it in MagicD+.

To present MagicD+, we first introduce adornments, a convenient way for repre-

senting binding information for intentional predicates [Ceri et al., 1990].

Definition 8.1.1 Let P be a predicate of arity k in a program Π. An adornment for

P is a string α = α1...αk over the alphabet {b, f}. The i-th position of P is considered

116
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bound if αi = b, or free if αi = f .

For an atom A = P (a1, ..., ak) and an adornment α for P , the magic atom of A

w.r.t. α is the atom mg Pα(t̄), where mg Pα is a predicate not in Π, and t̄ contains

all the terms in a1...ak that correspond to bound positions according to α. �

Example 8.1.1 “bfb” is a possible adornment for ternary predicate S, andmg Sbfb(x, z)

is the magic atom of S(x, y, z) w.r.t. “bfb”. �

Binding information can be propagated in rule bodies according to a side-way

information passing strategy (SIPS) [Beeri & Ramakrishnan, 1987].

Definition 8.1.2 Let σ be a tgd and α be an adornment for the predicate of P in

head(σ). A side-way information passing strategy (SIPS) for σ w.r.t. α is a pair

(≺α
σ , f

α
σ ), where:

1. ≺α
σ is a strict partial order over the set of atoms in σ, such that if A = head(σ)

and B ∈ body(σ), then B ≺α
σ A.

2. fα
σ is a function assigning to each atom A in σ, a subset of the variables in A

that are bound after processing A. fα
σ must guarantee that if A = head(σ),

then fα
σ (A) contains only and all the variables in head(σ) that correspond to

the bound arguments of α. �

Now, we present MagicD+ using running Example 8.1.2.

Example 8.1.2 Let Π be a program with D = {U(b), R(a, b)} and the rules,

R(x, y), R(y, z) → P (x, z), (8.1)

U(y), R(x, y) → ∃z R(y, z), (8.2)

and consider CQ Q : ∃x P (a, x) imposed on Π. �
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The MagicD+ rewriting technique takes a Datalog+ program Π and a CQ Q

of schema R, and returns a program Πm and a CQ Qm of schema Rm, such that

ansQ(Q,Π) = ansQm
(Qm,Πm). It has the following steps:

1. Generation of adorned rules: MagicD+ starts from Q and generates adorned

predicates by annotating predicates in Q with strings of b’s and f ’s in the positions

that contain constants and variables resp. For every newly generated adorned pred-

icate Pα, MagicD+ finds every rule σ with the head predicate P and it generates an

adorned rule σ′ as follows and adds it to Πm. According to a pre-determined SIPS,

MagicD+ replaces every body atom in σ with its adorned atom and the head of σ with

Pα. The adornment of the body atoms is obtained from the SIPS and its function

fα
σ . This possibly generates new adorned predicates for which we repeat this step.

Example 8.1.3 (ex. 8.1.2 cont.) P bf is the new adorned predicate obtained from Q.

MagicD+ considers P bf and (8.1). It generates the rule,

Rbf (x, y), Rbf (y, z) → P bf (x, z), (8.3)

and adds it to Πm. This makes new adorned predicate Rbf . MagicD+ generates the

adorned rule,

U(y), Rfb(x, y) → ∃z Rbf (y, z), (8.4)

and adds it to Πm. Here, (8.2) is not adorned w.r.t. Rfb, because this bounds the

position R[2] that holds the ∃-variable z. The following are the result adorned rules:

Rbf (x, y), Rbf (y, z) → P bf (x, z). (8.5)

U(y), Rfb(x, y) → ∃z Rbf (y, z). (8.6)

�
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2. Adding magic atoms and magic rules: Let σ be an adorned rule in Πm with

the head predicate Pα. MagicD+ adds magic atom of head(σ) (cf. Definition 8.1.1) to

the body of σ. Additionally, it generates magic rules as follows. For every occurrence

of an adorned predicate Pα in σ, it constructs a magic rule σ′ that defines mg Pα (a

magic predicate might have more than one definition). We assume that the atoms in

σ′ are ordered according to the partial order in the SIPS of σ and α. If the occurrence

of Pα is in atom A and there are A1, ..., An on the left hand side of A in σ, the body

of σ′ contains A1, ..., An and the magic atom of A in the head. We also create a seed

for the magic predicates, in the form of a fact, obtained from the query.

Example 8.1.4 (ex. 8.1.3 cont.) Adding the magic atoms to the adorned rules, we

obtain the following rules:

mg P bf (x), Rbf (x, y), Rbf (y, z) → P bf (x, z). (8.7)

mg Rbf (y), U(y), Rfb(x, y) → ∃z Rbf (y, z). (8.8)

The following magic rules define the magic predicates:

mg P bf (x) → mg Rbf (x). (8.9)

mg Rbf (x), Rbf (x, y) → mg Rbf (y). (8.10)

�

3. Adding rules to load extensional data: This step applies only if Π has

intentional predicates with extensional data in D. The MagicD+ algorithm adds rules

to load the data from D when such a predicate gets adorned. In Example 8.1.3, R is

an intentional predicates that is adorned and has extensional data R(a, b). MagicD+

adds the following rules to load its extensional data for Rbf and Rfb :
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mg Rbf (x), R(x, y) → Rbf (x). (8.11)

mg Rfb(x), R(x, y) → Rfb(x). (8.12)

MagicD+ differs from the rewriting algorithm of [Alviano et al., 2012] in Step 3. In

particular, in the latter Step 3 is not needed since, unlike the former, it assumes the

intentional predicates in Π and the adorned predicates in Πm do not have extensional

data. Therefore, the correctness of MagicD+, i.e. ans(Q,Π) = ans(Qm,Πm), follows

from both the correctness of the rewriting algorithm in [Alviano et al., 2012] and

Step 3.

Πm has certain syntactic properties. The magic rules do not have ∃-variables.

Also as mentioned in Step 1, the positions of ∃-variables in the head of a rule never

become bounded. Applying MagicD+ over a WS program Π, Πm is not necessarily

WS or in SCh(Srank ) as shown in the following example.

Example 8.1.5 Consider BCQ Q : ∃x R(x, a) over program Π with extensional

database D = {R(a, b), V (b)} and rules:

R(x, y) → ∃z R(y, z). (8.13)

R(x, y) → ∃z R(z, x). (8.14)

R(x, y), R(y, z), V (y) → R(y, x). (8.15)

Π isWS since the only repeated marked variable, y in (8.15), appears in V [1] ∈ πF (Π).

Note that every body variable is marked. The result of the magic-sets rewriting Πm

contains the adorned rules:
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Rfb(x, a) → ansQ. (8.16)

mg R(y), Rfb(x, y) → ∃z Rbf (y, z). (8.17)

mg R(x), Rbf (x, y) → ∃z Rfb(z, x). (8.18)

mg R(x), Rbf (x, y), Rbf (y, z), V (y) → Rfb(y, x). (8.19)

mg R(y), Rfb(x, y), Rbf (y, z), V (y) → Rbf (y, x). (8.20)

and the magic rules:

mg R(a). (8.21)

mg R(x), Rbf (x, y) → mg R(y). (8.22)

mg R(y), Rfb(x, y) → mg R(x). (8.23)

Here, every body variable is marked. Note that according to the description of

MagicD+, the magic predicates mg Rfb and mg Rbf are equivalent and so we replace

them with a single predicates, mg R.

Πm is not WS, since Rfb [1], Rfb [2], Rbf [1], Rbf [2],mg R[1] are not in πF (Πm); and

(8.17), (8.18), (8.22) break the syntactic property of WS. The chase of Πm shows that

the program is not in SCh(Srank ). That is because in a chase step of (8.22) that “a”

replaces variable x that appears only in infinite-rank positions mg R[1] and Rbf [1].

Πm is JWS. That is because, Rfb [2], Rbf [1] are in π∃
F (Πm) and every repeated marked

variable appears at least once in one of these two positions. �

The above example proves that SCh(Srank ) and WS are not closed under MagicD+.

This is because MagicD+ introduces new join variables between the magic predicates

and the adorned predicates, and these variables might be marked and appear only
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in the infinite-rank positions. That means the joins may break the Srank -stickiness

as it happens in Example 14. Specifically it turned out to be because Srank decides

some finite positions of ΠR
m as infinite-rank positions. In fact, the positions of the

new join variables are always bounded and are finite. Therefore, MagicD+ does not

break S-stickiness if we consider a finer selection function S that decides the bounded

positions as finite.

We show in Theorem 8.1.1 that the class of SCh(S∃) and its subclass of JWS

are closed under MagicD+ since they apply S∃ that better specifies finite positions

compared to Srank .

Theorem 8.1.1 Let Π and Πm be the input and the result programs of MagicD+,

resp. If Π is JWS, then Πm is JWS. �

Proof of Theorem 8.1.1: To prove Πm is in JWS, we show every repeated marked

variable in Πm appears at least once in a position of π∃
F (Πm). The repeated variables

in Πm either: (a) are in adorned rules and correspond to the repeated variables in Π,

or (b) appear in magic predicates. For example, y in mg R(x), Rbf (x, y), Rbf (y, z) →

Rfb(y, x) is of type (a) since it corresponds to y in R(x, y), R(y, z) → R(y, x). x is a

variable of type (b), because it appears in the magic predicate mg R.

The bounded positions in Πm are in π∃
F (Πm). That is because an ∃-variable

never gets bounded during MagicD+, and if a position in the head is bounded the

corresponding variable appears in the body only in the bounded positions. As a

result, a bounded position is not in the target of any ∃-variable, so it is in π∃
F (Πm).

The join variables in (a) do not break the S∃-stickiness property since they cor-

respond to join variables in Π and Π is JWS. This follows two facts: first, a variable

in Πm that corresponds to a marked variable in Π is marked, second, variables in
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Πm that correspond to variables in πF (Π) are in πF (Πm). As a result if a repeated

variable is not marked or appears at least once in a πF (Π), its corresponding variable

in Πm also has these properties. The join variables in (b), also satisfy the JWS syn-

tactic condition, because they appear in positions of the magic predicates that are in

πF (Π). �

As a result of Theorem 8.1.1, we are able to apply MagicD+ in order to optimize

SChQA for the class of JWS and its subclasses sticky and WS. This shows the class

of JWS programs has the desirable properties w.r.t. QA while generalizing the class

of WS programs and sticky programs.



Chapter 9

Partial Grounding and Rewriting for WS Datalog±

An alternative approach to chased-based bottom-up approach is query rewriting in

which a given query is rewritten in terms of rules and constraints in a program and effi-

ciently answered on the extensional database. Sticky Datalog± enjoy FO rewritability

(cf. Section 2.3.4) and rewriting algorithms are proposed for these programs [Gottlob

et al., 2011, 2014].

WS programs, on the other hand, are not FO rewritable, and there is no pure

query rewriting algorithm for them. In this chapter, we propose a combined approach

that first applies a partial grounding algorithm to convert a WS program to a sticky

program, for which we can use query rewriting for QA.

9.1 Query Answering based on Partial Grounding

We propose a partial grounding algorithm, called PartialGroundingWS, that takes a

WS Datalog± program Π and transforms it into a sticky Datalog± program Πs such

that Πs is equivalent to Π for CQ answering. PartialGroundingWS selectively replaces

certain variables in positions of finite-rank with constants from the active domain of

the underlying database.

Our algorithm requires that Π satisfies the condition that there is no ∃-variable

in Π in any finite-rank position; therefore each position in Π will have rank either 0

or ∞. The reason for this requirement is the convenience of grounding variables
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at zero-rank positions by replacing them by constants rather than by labeled nulls.

This does not really restrict the input programs since, as we will show, an arbitrary

program can be transformed by the ReduceRank algorithm to a program that has the

requirement.

9.2 The ReduceRank Rewriting Algorithm

ReduceRank takes a program Π and compiles it into an equivalent program Π0,∞

that has only zero-rank or infinite-rank positions. The algorithm is inspired by the

reduction method in [Krötzsch & Rudolph, 2011] for transforming a weakly-acyclic

program into an existential-free Datalog program. Given a program Π, ReduceRank

executes the following steps:

1. Initialize Π0,∞ with rules and extensional database of Π.

2. Choose a rule σ in Π0,∞ with an ∃-variable in a position with rank 1. Notice

that if there are ∃-variables in the finite-rank positions, at least one of them has

rank 1.

3. Generate σ′ by replacing the ∃-variable in σ with a functional term. For exam-

ple, σ : P (x, y) → ∃z R(y, z), becomes σ′ : P (x, y) → R(x, f(x)).

4. Replace the predicate with functional term with a new expanded predicate of

higher arity and introduce a fresh constant to represent the function symbol.

The constant precedes its arguments in a newly introduced position. For exam-

ple, R(x, f(x)) becomes, R′(x, f, x), where the position R[2] is expanded.

5. Replace the expanded predicate in other rules. That might expand other

predicates in positions where repeated variables appear. For example, if R[2]
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in R(x, y), T (y, z) → S(x, y, z) gets expanded, T [1] and S[2] both get ex-

panded, because of the variable y, and it results in R′(x, y, y′), T ′(y, y′, z) →

S ′(x, y, y′, z).

6. Add new rules to Π0,∞ to “load” the extensional data of the expanded pred-

icates. For example, if R has extensional data, we add a rule, R(x, y) →

R′(x, y,4). 4 is a fresh constant that is used to fill the new positions in

the expanded predicates since they do not carry extensional data.

7. Repeat Steps 2 to 6 until there is no ∃-variable in a finite-rank position.

Remark 9.2.1 If a predicate is expanded in a head-atom in a position where an

∃-variable occurs, the new positions are not required and are filled with the special

symbol 4. For example, U(x) → ∃y R(x, y) becomes U(x) → ∃y R′(x, y,4), if R[2]

is expanded.

In Step 3, only the body variables that also appear in the head participate as

arguments of the function term. For example, in P (x, y) → ∃z R(y, z), the function

term that replaces z does not include x since the rule can be broken down into

P (x, y) → U(y) and U(y) → ∃z R(y, z).

Given a CQ Q over Π, Steps 2 to 6 are also applied on Q obtaining a new CQ

Q0,∞ over Π0,∞. �

Example 9.2.1 Let Π be a program with the following rules:

V (x) → ∃y R(x, y). (9.1)

T (x, y), V (x) → P (x, y). (9.2)

R(x, y) → ∃z T (x, z). (9.3)

P (x, y) → ∃z P (y, z). (9.4)
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In Π, πF (Π) = {V [1], R[1], R[2], T [1], T [2]}. ReduceRank will eliminate y in σ1 and

z in σ2, but not z in σ4 since the later is in an infinite-rank position. ReduceRank

chooses y in σ1 over z in σ2 since y is in R[2] with rank 1, and z is in T [2] with rank 2.

After applying Steps 2-6, the following rules are obtained:

V (x) → R′(x, f, x). (9.5)

R′(x, y, y′) → ∃z T (x, z). (9.6)

(9.5) and (9.6) replace (9.1) and (9.3), resp. Now, z in (9.6) is placed in a position

with rank 1, and ReduceRank repeats Steps 2-6 to eliminate it which results into Π0,∞:

V (x) → R′(x, f, x). (9.7)

T ′(x, y, y′), V (x) → p′(x,4, y, y′). (9.8)

R′(x, y, y′) → T ′(x, g, x). (9.9)

P ′(x, x′, y, y′) → ∃z P ′(y, y′, z,4). (9.10)

Notice that ReduceRank does not try to remove z in the last rule, since it is in

the infinite-rank position P [3]. Note also that P is expanded twice since both its

positions can host labeled nulls generated by z in σ2. �

Proposition 9.2.1 Given a CQ Q over a program Π, ReduceRank runs in EXP-

TIME to the size of the rules in Π, and returns a CQ Q0,∞ over a program Π0,∞,

such that Π0,∞ has no ∃-variable in πF (Π0,∞), and ans(Q,Π) = ans(Q0,∞,Π0,∞). �

Proof of Theorem 9.2.1: Consider each iteration of ReduceRank, i.e. Steps 2-6,

that transforms Πi into Πi+1 and removes the ∃-variable zi in σi. It expands the

predicate Pi in head(σi) to P ′
i . An iteration does not introduce new ∃-variables in

the finite-rank positions, therefore there are k iterations, such that k is the number

of ∃-variables in the positions of πF (Π).
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The variable zi is in a position with the rank 1, so expanding Pi does not expand

any predicate in body(σi) during Step 5. As a result, every position in the program

only gets expanded once during an iteration. Let r and b the number of rules and

the maximum number of body atoms in Π, resp. r and b do not change after running

each iteration. Let wi be and the maximum arity of atoms in Πi. The arity of P ′
i

(the expanded predicate of Pi) is at most increased by b×wi (the maximum possible

number of variables in body(σi)). Therefore, after propagating the expanded position

in other rules, the maximum arity of the predicates is wi+1 = b×w2
i . After k iterations

the maximum arity of the predicates is bk × wi
2k. This shows the size of the result

program Π0,∞ is EXPTIME to the size of the rules in Π.

The prove ans(Q,Π) = ans(Q0,∞,Π0,∞), we prove ans(Qi,Πi) = ans(Qi+1,Πi+1),

for each iteration of ReduceRank. That is by constructing an instance Ii+1 |= Πi+1 ∪

Qi+1, for every instance Ii |= Πi ∪ Qi.

Let assume that removing zi introduces a function symbol f. For every assignment

θ that maps body(σi) and head(σi) to Ii, let µi(θ(zi)) be the list of terms in θ(body(σi)).

Now, for every atom A = P (t1, ..., tn) ∈ Ii, we add an atom A′ into Ii+1 that is

constructed as follows: (a) if P is not expanded in Πi then A
′ = A, (b) if P is expanded

to P ′, in its k-th position, there are two possibilities, tk is either a null value or a

constant. If tk is a constant, expand it into tk,4, ...,4 to fill the expanded positions,

and if tk is a null value, expand tk into f following by µ(tk). Ii+1 |= Πi+1 ∪ Qi+1,

because for every assignment θ′ that maps the body of a rule σ into Ii+1, we can

make an extension of θ′′, using µ, that maps the head also into Ii+1.

Now, for an instance Ii+1 |= Πi+1∪Qi+1, we construct a instance Ii |= Πi∪Qi. This

is simply by replacing any extended predicate P ′ with its original predicate P and

removing additional terms, i.e. removing 4 symbols and the function symbols and
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their consequent terms with null values. For example, P ′(a, b, f, c) becomes P (a, b, ζ) if

P expanded by one, and P ′(a, b, d,4) becomes P (a, b, d). Again, it is straightforward

to prove that Ii |= Πi ∪ Qi by showing that for any assignment that maps the body

of a rule into Ii, there is an extension of it that maps the head into Ii.
1

�

Lemma 9.2.1 The class of WS programs is closed under ReduceRank. �

Proof of Lemma 9.2.1: To prove the lemma, we show ReduceRank is closed under

each iteration of ReduceRank. Let Πi be WS, the the following hold for Πi+1: (a) If

position p is in πF (Πi), and p
′ is one of the positions resulted by expanding p in Πi+1,

then p′ is in πF (Πi+1). (b) If a body variable x is not marked in Πi, the corresponding

variables in Πi+1 (resulted from expanding a predicate in the position of x) are not

marked in Πi+1.

If Πi+1 is not WS then there is a repeated marked variable in Πi+1 that does

not appear in πF (Πi+1). As a result (a) and (b), there is also a repeated marked

variable in Πi that does not appear in πF (Πi), and Πi is not WS. Since Πi is WS, Πi+1

must be also WS. This proves each iteration preserves the WS syntactic property, so,

ReduceRank also preserves the property. �

9.3 The PartialGroundingWS Algorithm

Now that we explained the ReduceRank algorithm, we continue and present the Partial-

GroundingWS algorithm. Given a WS program Π, let us call weak rules the rules of Π

in which some repeated marked body variables (which we call weak variables) appear

at least once in a position with finite-rank. PartialGroundingWS transforms Π into a

sticky program Πs, that has the same extensional database as Π, i.e. Ds := D, and

1 The proof is similar to the proof of Theorem 1 in [Krötzsch & Rudolph, 2011] for EXPTIME

combined complexity of reduction from JA programs to Datalog programs.
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its set of rules is obtained by replacing the weak variables of Π with every constants

from the active domain of D and constants in rules of Π. Example 9.3.1 illustrates

the PartialGroundingWS algorithm.

Example 9.3.1 Consider a WS program Π with D = {P (a, b), R(a, b)} and rules:

σ1 : P (x̂, ŷ) → ∃z P (y, z).

σ2 : P (x̂, y), P (y, z) → S(x, y, z).

σ3 : S(x̂, y, z), R(x̂, y) → T (y, z).

Here, σ3 is a weak rule with x as its weak variable. Notice that y in σ2 and σ3 are

not weak since they are not marked (the hat signs show the marked variables). We

replace x with constants a and b from D. The result is a sticky program Πs that

contains σ1 and σ2 as well as the following rules, σ′
3 : S(a, y, z), R(a, y) → T (y, z)

and σ′′
3 : S(b, y, z), R(b, y) → T (y, z). �

Theorem 9.3.1 Let Π be a WS program with extensional database D such that

there is no ∃-variable in πF (Π), and let Q be a CQ over Π. PartialGroundingWS runs

in polynomial time with respect to the size of D and it transforms Π and Q into a

sticky program Πs such that: ans(Q,Π) = ans(Q,Πs). �

Proof of Theorem 9.3.1: Πs is sticky since every weak variable that breaks the

weakly-stickiness syntactic property is replaced with constants. Also, ans(Q,Π) =

ans(Q,Πs) holds because the weak variables in Π are replaced with every possible

constant from D. It is important that no null value can appear in the positions of

the weak variables in Π. The algorithm runs in polynomial time with respect to

the size of the database because the partial grounding replaces weak variables with

polynomially many values from the database, and the number of weak variables is

independent of the size of the database. �
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A possible optimization for PartialGroundingWS is to narrow down the values for

replacing the weak variables. That is to ignore those constants in the active domain of

D that can not appear in the positions where weak variables appear during the chase

of Π. In Example 9.3.1, σ′
3 is not useful since the value “a” can never be assigned to

x in σ3.

The hybrid approach for CQ answering over WS programs combines ReduceRank

and PartialGroundingWS with a query rewriting algorithm for sticky programs [Gottlob

et al., 2011, 2014]. Given aWS program Π and a CQQ, the hybrid algorithm proceeds

as follows:

1. Use ReduceRank to compile Π into a WS program Π0,∞ without ∃-variable in

finite-rank positions. This also transforms Q into a new query Q0,∞.

2. Apply PartialGroundingWS on Π0,∞ that results to a sticky program Πs.

3. Rewrite Q0,∞ into a FO query Qs using the rewriting algorithm proposed

in [Gottlob et al., 2011] and answer Qs over D (any other sound and complete

rewriting algorithm for sticky programs is also applicable at this step).

Example 9.3.2 Consider a WS program Π with database D = {V (a)} and rules:

σ1 : P (x, y) → ∃z P (y, z).

σ2 : P (x, y), P (y, z) → U(y).

σ3 : V (x) → ∃y R(x, y).

σ4 : R(x, y), S(x, z) → C(z).

σ5 : C(x) → ∃y P (x, y).

The ReduceRank method removes the ∃-variable y in σ3. The result is a WS
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program Π0,∞ with rules:

P (x, y) → ∃z P (y, z).

R′(x, y, y′), S(x, z) → C(z).

P (x, y), P (y, z) → U(y).

C(x) → ∃y P (x, y).

V (x) → R′(x, f, x).

Next, PartialGroundingWS grounds the only weak variable, x in σ′
4 with con-

stant a which results into sticky program Πs with Πs = {σ1, σ2, σ
′
3, σ

′′
4 , σ5}, in which

σ′′
4 : R′(a, y, y′), S(a, z) → C(z). Πs is sticky and a CQs can be answered by rewriting

it in terms of Πs and answered directly on D. �

Corollary 9.3.1 Given a WS program Π and a CQ Q, the set of answers obtained

from the hybrid approach is ans(Q,Π). �

The corollary concludes the results of this chapter on QA under WS Datalog±

based on query rewriting. It shows that the combination of partial grounding and

rewriting can be used for QA under WS programs. This approach can serve as an

alternative to SChQA in Chapter 7, while the comparison of the two approaches, and

their implementations, remains the future extensions of this work (cf. Chapter 5).



Chapter 10

Related Work

In this chapter, we review some relevant research on data quality and context mod-

eling.

10.1 Declarative Approaches to Data Quality Assessment

Existing solutions for data quality assessment and data cleaning are mostly ad hoc,

rigid, and application-dependent. Most approaches to data cleaning are procedural,

and provided in terms of specific mechanisms. Their semantics and scope of applica-

bility are not fully understood [Batini & Scannapieco, 2006].

Declarative approaches to data cleaning intend to be more general [Bertossi &

Bravo, 2013]. They specify, usually by means of a logic-based formalism, what is the

intended result of a data cleaning process. The semantics of the specification tells us

what the result should look like, if there are alternative solutions, and what are the

conclusions that can be derived from the process and results. They also allow us, in

principle, to better understand the range of applicability and the complexity of the

declaratively specified cleaning mechanism.

Declarative data quality assessment is focused on using classic ICs, such as func-

tional dependencies and inclusion dependencies, and denial constraints.1 One can

1 NCs are denial constraints in Datalog±.
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specify the semantics of quality data with ICs, in a declarative way, and catch incon-

sistencies and errors that emerge as violations of them. Since they can be violated

by the database, the latter can be cleaned by repairing it based on ICs [Chiang &

Miller, 2011; Volkovs et al., 2014; Fan, 2009; Kolahi & Lakshmanan, 2009]. The ICs

could also be imposed at query answering time, seeing them more like constraints on

query answers than on database states [Arenas et al., 1999; Bertossi, 2011b].

The limited expressiveness of classic ICs often does not allow to represent data

quality requirements that are commonly found in real life databases. Newer classes of

ICs are introduced that extend classic ICs, and are particularly intended to capture

data quality issues or conditions, to directly support data cleaning processes [Fan,

2008]. Some examples are conditional dependencies (conditional FDs and IDs), and

matching dependencies [Fan et al., 2009, 2011]. The latter are applied to entity reso-

lution (ER), which is the problem of discovering and matching database records that

represent the same entity in the application domain, and detecting duplicates [Fan et

al., 2011].

10.2 Comparison with Data Quality Approaches

Our approach to quality data specification and extraction in Section 5.1 is declar-

ative: it uses logic-based languages, i.e. Datalog and Datalog±, in order to define

and specify quality data. Therefore, compared to procedural approaches [Batini &

Scannapieco, 2006], it has the following advantages: it has clear semantics and its

scope of applicability can be easily understood and analysed. It is also independent

of any procedural mechanism for quality data extraction and data cleaning.

In comparison to the declarative approaches to data quality assessment (cf. Sec-

tion 10.1), our approach is more general and comprehensive. In particular, those
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declarative approaches are based on checking some forms of IC (classic ICs such as

FDs or newer classes of ICs such as conditional and matching dependencies), while

considering the data under assessment as complete (CWA, cf. Section 2.1). Our

approach is able to represent rules and constraints, in particular classic ICs. Also,

the logic-based languages in our approach can be replaced with any other logic-based

formalism, which makes it possible to represent more complex constructs depending

on an application. In addition, the approach in our work supports the OWA and pro-

vides data completion through value invention as part of the OMD model. This is not

supported by the declarative approaches we found in the literature (cf. Section 10.1).

10.3 Data Quality Dimensions Revisited

Regarding the data quality dimensions that we mentioned in Chapter 1 (cf. [Fan,

2008; Jiang et al., 2008] for more details about these dimensions), our approach to

quality data specification and extraction is specifically directed at data complete-

ness, a data quality dimension that characterises data quality in terms of the pres-

ence/absence of values. Our approach allows the representation of incomplete data

(OWA in MD ontologies) with missing contextual information and provides a mech-

anism to complete the data (using dimensional rules and constraints) and additional

contextual data.

Our approach also relates to data consistency quality dimension, which is about

the validity and integrity of data representing real-world entities typically identified as

satisfaction of integrity constraints. However, our approach goes beyond consistency

checking of ICs (CWA in relational databases) and further support the OWA and

data completion through rules and constraints.

The data accuracy dimension refers to the closeness of values in a database to the
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true values for the entities that the data in the database represents. Data accuracy

is mostly evaluated in terms of the reliability and trustworthiness of data sources,

that is characterised by mechanisms such as using dependencies [Luna Dong et al.,

2009] and lineage information [Agrawal et al., 2006a] of data sources in order to

detect copy relationships, and employing vote counting [Galland et al., 2010] and

probabilistic analysis [Zhao et al., 2012]. There is also a connection between data

accuracy and data consistency since certain forms of accuracy can be enforced by

ICs and consistency checking [Cong et al., 2007; Batini & Scannapieco, 2006]. For

example, some cases of syntactic data inaccuracy can be detected by checking the

range or type of values of an attribute using ICs. Therefore, certain forms of data

accuracy can be addressed in our approach by means of rules and constraints.

Data currency (timeliness) aims to identify the current values of entities repre-

sented by tuples in a (possibly stale) database, and to answer queries with the current

values. With respect to data currency, our approach lacks the necessary elements to

address this data quality dimension. In particular, the MD ontologies are not able to

represent data that are associated with a temporal validity period, something that is

necessary for addressing the data quality assessment regarding data currency [Batini

& Scannapieco, 2006]. This can be resolved possibly by extending the MD ontologies

and our context model with temporal ontologies [Borgwardt et al., 2016; Calvanese et

al., 2016].

10.4 Context Modeling

Many formalizations and implementations of the notion of context have emerged in

various areas of computer science, including artificial intelligence (AI), knowledge

representation and data management. The study of a formal notion of context has a
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long history in AI; however, it became more widely discussed in the late 1980s, when

J. McCarthy proposed the formalization of context in his Turing award lecture [Mc-

Carthy, 1987], as a crucial step towards the solution of the problem of generality, and

devising axioms to express common sense. He raised the issue that no formal theory

of common sense can succeed without some formalization of context, since the repre-

sentation of common sense axioms crucially depend on the context in which they are

asserted.

McCarthy elaborated his views in a paper on formalizing context [McCarthy,

1993] where several important concepts around context modeling were presented.

Specifically, he introduced the notion of contexts as first class objects, expressed by the

formula ist(c, p), meaning a proposition p is true in context c; and also operations for

entering and exiting contexts. Following [McCarthy, 1987], Guha –under McCarthy’s

supervision– proposed in his PhD dissertation [Guha, 1992] a formalization of context.

In particular, he introduced a formal semantics for formulas of the form ist(c, p). He

also discussed several important concepts, such as the notion of context structure

and vocabulary, the concept of having a universal well-formed grammar and local

vocabularies and their semantics within a given context, and the notion of lifting

axioms. In addition, he discussed several applications and techniques of context-

based problem-solving techniques.

McCarthy and Guha’s work is the basis for Buvač and Mason’s Propositional

Logic of Context (PLC) [Buvač et al., 1995]. PLC intended to formalize McCarthy’s

views on context, while giving a more traditional, model-theoretic approach to Guha’s

semantics. Particular relevance is given to the idea that contexts must be formalized

as first class objects (i.e. the logical language must contain terms for contexts, and

the interpretation domain contains objects for contexts), and to the mechanisms of
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entering and exiting a context, which are identified as the two main mechanisms of

contextual reasoning. [Buvač, 1996] is a generalization of PLC to FO languages.

Following a different line of research, [Giunchiglia, 1993] formalized contexts with

motivation in the locality problem, namely the problem of modeling reasoning that

uses only a subset of what reasoners know about the world. The idea is that in solving

a problem on a given occasion, people do not use all their knowledge, but construct

a “local theory”, and use it as if it contained all relevant facts about the problem at

hand. While reasoning, people can switch from one context to another, for example

when the original context is not adequate to solve the problem. Under this approach,

unlike McCarthy’s, the emphasis is more on formalizing contextual reasoning than on

formalizing contexts as first class objects.

In [Giunchiglia & Serafini, 1994], Multi Context Systems (MCS) are presented as

a proof-theoretic framework for contextual reasoning. They introduce the notion of

bridge rule, i.e. a special kind of inference rule whose premises and conclusion hold in

different contexts. They later proposed Local Models Semantics (LMS) as a model-

theoretic framework for contextual reasoning, and used MCS to axiomatize many

important classes of LMS [Ghidini & Giunchiglia, 2001]. From a conceptual point

of view, they argued that contextual reasoning can be analyzed as the result of the

interaction of two very general principles: the principle of locality (reasoning always

happens in a context); and the principle of compatibility (there can be relationships

between reasoning processes in different contexts). In other words, contextual reason-

ing is the result of the interaction between distinct local structures. More recently,

MCS have been also investigated, and the problem of bridging them, e.g. using logic

programs [Dao-Tran et al., 2010], is matter of recent and ongoing research.

In the area of data management, the notion of context is usually implicit. It is of
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form of context-awareness, associated to the notion of data dimensions, usually time,

user, and location [Bolchini et al., 2007a, 2009, 2007b, 2013; Martinenghi & Torlone,

2009, 2010, 2014]. In context-aware systems, context is any information that can

be used to characterize the situation of an entity. An entity is a person, place, or

object that is considered relevant to the interaction between a user and an application,

including location, time, activities, and the preferences of each entity. A system is

context-aware if it can extract, interpret and use contextual information, and adapt

its functionality to the current context of use. In information management, context-

aware systems are devoted to determining what portion of the entire information is

relevant with respect to the ambient conditions of an agent or user [Bolchini et al.,

2007a].

In [Ghidini & Serafini, 1998], ideas from [Giunchiglia & Serafini, 1994] are applied

to information integration. Specially LMS is used for dealing with different problems

in the management of federated databases, where each database may have its own

local semantics, which can be formalized by a Local Model Semantics for federated

databases as an extension of LMS.

In [Analyti et al., 2007; Theodorakis et al., 2002] an interesting formalization of

contexts is presented and applied to conceptual modeling. Contexts are sets of named

objects, not theories, that allow the context to be structured through the traditional

abstraction mechanisms of classification, generalization, and attribution.

A general framework is proposed in [Motschnig, 1995, 2000] for decomposing in-

formation bases into possibly overlapping fragments, called contexts, in order to be

able to better manage and customize information. Examples of information bases

are databases, knowledge bases, softwares, and programming languages, for which
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contexts are defined as database views, knowledge base partitions, software compo-

nents, and program scopes, resp. The framework provides general mechanisms for

partitioning and coping with a fragmented information base.

According to the context relational data model [Rousoss et al., 2005], a context is

a first-class citizen at the level of the data model and its query language. It is defined

as a set of worlds, where each world is characterised by pairs of dimension names and

their values. A relation in this data model, called a context-relation, is a collection of

classic relations (as in the relational data model), and each classic relation is assigned

to a possible world, representing the context-relation in that world. Accordingly, an

attribute of a context-relation may not exist in some worlds, or the same attribute may

have different values under different worlds. A set of basic operations are provided

that extend relational algebra for querying context-relations, taking into account the

contexts and possible worlds.

A preference database system is presented in [Stefanidis et al., 2005, 2007] that

supports context-aware queries; that is, queries whose results depend on the context

at the time of their submission. Here, a context is modeled as a set of multidimen-

sional attributes; and data cubes (as in the MD data model) are used to store the

dependencies between context-dependant preferences and database relations. That

makes it possible to apply OLAP techniques for processing context-aware queries.

Auxiliary data structures, called context-trees, store results of past context-aware

queries indexed by the context of their execution.

10.5 Comparison with Related Context Models

Here, we make comparisons between our notion of context in Section 5.1 and those

that we reviewed in Sections 3.2, 3.3, and 10.4. Notice that some of the the context
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models reviewed in Section 10.4 are from other areas, such as AI and knowledge repre-

sentation, and not strictly for data management, and they are not easily comparable

with our approach.

1. The multidimensional aspect of context is not considered in [Motschnig, 1995,

2000]. In [Rousoss et al., 2005], ambient dimensions are used solely as names/labels,

and values from some domain sets are assigned to these dimensions to characterise

context. Context-aware data tailoring [Bolchini et al., 2007a,b, 2009] further allows

sub-dimensions with values of finer granularity. In [Martinenghi & Torlone, 2009,

2014; Stefanidis et al., 2005, 2007], similar to our approach, dimensions are defined

as in the HM data model.

2. With regard to the compatibility with the relational data model, we gave a

complete relational representation of an extension of the HM data model: data in

our model is modeled as relations only (cf. Section 4.1). However, the relational

context models that we reviewed in this thesis, namely [Bolchini et al., 2007a,b, 2009;

Martinenghi & Torlone, 2009, 2014; Stefanidis et al., 2005, 2007; Rousoss et al., 2005]

(that are the closest ones we found in the literature to the database discipline) are

not completely relational: they use an extension of relations with new data entities.

In [Rousoss et al., 2005], a collection of relations represents a context relation, and

creating, manipulating and querying these context relations needs additional care

with respect to the underlying collection of relations. In [Martinenghi & Torlone,

2009, 2014; Stefanidis et al., 2005, 2007; Bolchini et al., 2007a,b, 2009], no relational

representation of dimensions is given. In particular, [Martinenghi & Torlone, 2009,

2014; Stefanidis et al., 2005, 2007] use the MD data model for modeling dimensions,

and [Bolchini et al., 2007a,b, 2009] propose context dimension trees (CDTs) and chunk

configurations, which are not represented by relational terms.



142

3. In terms of languages for querying context, [Bolchini et al., 2007a,b, 2009;

Martinenghi & Torlone, 2009, 2014; Stefanidis et al., 2005, 2007] use extensions of

relational algebra that enable context querying, and they inherit the shortcomings

of relational algebra. For example, they can not express recursive queries that are

supported in our MD context.

4. The notion of context is explicit and represented by a first class entity in [Rousoss

et al., 2005; Bolchini et al., 2007a,b, 2009]. In [Martinenghi & Torlone, 2009, 2014],

similar to our work, context is implicitly modeled as certain “contextual” attributes

that take dimensional values. In [Motschnig, 1995, 2000], the notion of context is

abstract and is captured by partitions over an information base, e.g. views over a

database.

5. Concerning the applications of these context models, the one in [Stefanidis

et al., 2005, 2007] is in particular for context-aware preference databases. Context-

aware data tailoring [Bolchini et al., 2007a,b, 2009] is designed as a methodology for

managing small databases aimed at being hosted by portable devices. For both of

these context models, it is not clear how they can be adapted for other purposes.

The work on context-aware databases in [Martinenghi & Torlone, 2009, 2014] is fairly

general and can be applied in many applications in data management. But, still

there are necessary useful and necessary constructs for some applications that are not

supported, in particular, recursive queries and capturing incomplete data, that are

both supported by our notion of context.



Chapter 11

Conclusions and Future Work

11.1 Conclusions

In this thesis, we started from the idea that data quality is context-dependent. As

a consequence, we needed a formal model of context for context-based data quality

assessment and quality data extraction. For that we followed and extended the ap-

proach in [Bertossi et al., 2011a, 2016]. In that work, context is represented as a

database, or as a database schema with partial information, or, more generally, as a

virtual data integration system [Lenzerini, 2002] that receives and processes the data

under quality assessment. However, contexts have a dimensional nature, e.g. repre-

senting information about the time or location, which is not considered in [Bertossi

et al., 2011a, 2016].

Here, in order to capture general dimensional aspects of data for inclusion in

contexts, we started from the HM data model [Hurtado & Mendelzon, 2002; Hurtado

et al., 2005]. The HM model has shortcomings when it comes to applications beyond

DWHs and OLAP, including context modeling. We resolved this by the use of MD

ontologies in our proposed OMD model.

The proposed OMD model extends the HM model while replacing fact-tables with

more general categorical relations. Unlike fact-tables, they can store non-numerical

data, and can be linked to different levels of dimensions, other than the base level.
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The model is also enriched with dimensional rules and constraints to express addi-

tional knowledge, and adding the capability of navigating multiple dimensions in both

upward and downward directions.

We represented MD ontologies using the Datalog± ontological language, and we

showed that the result falls in the syntactic class of WS Datalog± programs, for which

CQ answering is tractable. We also studied several issues around the OMD model,

among others: adding a form on uncertain downward navigation, consistent QA when

facing inconsistent MD ontologies, and reconstruction of other context models.

We used the MD ontologies and propose a general methodology for contextual

and multidimensional data quality specification and extraction.

In the second part of the thesis, the first being the OMD model and data quality

assessment, we analysed WS Datalog± by investigating its syntactic and semantics

properties that lead to the characterization of a range of syntactic and semantic

programs classes that extend WS programs. This includes the new syntactic class

of JWS that is more general than WS and its programs inherit good computational

properties of WS Datalog± programs. We proposed a bottom-up chase-based QA

algorithm for those programs, and presented a magic-sets optimization for QA under

JWS, which is closed under magic-sets.

We also introduced a hybrid approach to CQ answering based on combining the

query rewriting and grounding CQ answering paradigms. This hybrid approach trans-

forms a WS program using the underlying data into a sticky program that is then

used for query rewriting.
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11.2 Future Work

We conclude this thesis with a list of problems for further research, and the sections

they are related to:

1. We presented a syntactic condition in Proposition 4.2.2 that guarantees separa-

bility of dimensional rules and constraints in the MD ontology. There are two

different directions that are interesting to explore: (a) studying other syntactic

conditions (such as a non-conflicting condition) that can guarantee separability

in MD ontologies; (b) studying non-separable rules and constraints for which

QA is still decidable.

2. The quality predicates and quality versions in Section 5.1 are defined as non-

recursive Datalog rules over the MD ontology, which guarantees tractable QA

over the result ontology. We intend to further study the definition of quality

predicates and quality versions using more expressive rules and its impact on

QA.

3. The problem of representing and reasoning about Datalog with aggregates has

received considerable interest in the database and the logic community and

different extensions of Datalog have been proposed to support aggregate rules.

We can combine the results and methods in the literature with MD ontologies.

4. With regard to QA under WS programs and the algorithms in Chapters 7 and

10, we will work on further optimizations and implementations of them and on

experiments using real world data. In particular, for our hybrid algorithm in

Chapter 10, a possible improvement can be the use of only necessary constants
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from the program’s extensional database for partial grounding. With this we

can decrease the number of sticky rules resulting from the algorithm.

5. We discussed a novel approach to the enforcement of constraints along with data

propagation (cf. Section 4.3.3). In our opinion, this is an interesting approach

for dealing with constraints and generating repairs in ontologies. We intend

to formalize this approach and its semantics, and study the properties of the

generated repairs, and also the connections with other inconsistency-tolerant

semantics in the literature.

6. We showed in Section 4.3.1 a form of dimensional navigation that requires mixed

closed/open predicates in the MD ontologies for representing, which provably

leads to intractability of QA. We intend to investigate the following possible

solutions to retain tractability of QA: (a) imposing syntactic restrictions on

dimensional rules, e.g. to navigate in one direction, (b) restriction on the hier-

archy of dimensions, e.g. the number of levels in a dimension, (c) considering

simpler CQs such as atomic queries.
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Ngo, N., Ortiz, M. and Šimkus, M. The Combined Complexity of Reasoning with
Closed Predicates. In Proc. of the International Workshop on Description Logic
(DL), CEUR-WS Proc. Vol. 1350, 2015.

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M. and Rosati, R.
Linking Data to Ontologies. Data Semantics, 2008, 10(1): 133-173.

Rabin, M. O. A Simple Method for Undecidability Proofs and Some Applications.
In Logic, Methodology and Philosophy of Science, Proceedings of the 1964 Inter-
national Congress, Bar-Hillel, Y. (ed.). Studies in Logic and the Foundations of
Mathematics. North-Holland Publishing Company, Amsterdam 1965, pp. 38-68.

Rajugan, R., Dillon, T. S., Chang, E. and Feng, L. Modeling Views in the Lay-
ered View Model for XML using UML. International Journal of Web Information
Systems (IJWIS), 2006, 2(2): 95-117.

Redman, T. The Impact of Poor Data Quality on the Typical Enterprise. Commu-
nications of the ACM, 1998, 41(2): 79-82.

Reiter, R. Towards a Logical Reconstruction of Relational Database Theory. In On
Conceptual Modelling, Springer, 1984, pp. 191-233.

Rosati, R. On the Complexity of Dealing with Inconsistency in Description Logic
Ontologies. In Proc. of the International Joint Conference on Artificial Intelligence
(IJCAI), 2011, pp. 1057-1062.

Rousoss, Y., Stavrakas, Y. and Pavlaki, V. Towards a Context-Aware Relational
Model. In Proc. International Workshop on Context Representation and Reasoning
(CRR), 2005, pp. 5-17.



156

Schmidt-Schauß, M. and Smolka, G. Attributive Concept Descriptions with Comple-
ments. Artificial Intelligence, 1991, 48(1): 1-26.

Stefanidis, K., Pitoura, E. and Vassiliadis, P. A Context-Aware Preference Database
System. Pervasive Computing and Communications, 2005, 3(4): 439-460.

Stefanidis, K., Pitoura, E. and Vassiliadis, P. Adding Context to Preferences. In Proc.
of the International Conference on Data Engineering (ICDE), 2007, pp. 846-855.

Theodorakis, M., Anality, A., Constantopoulos, P. and Spyratos, N. A Theory of
Contexts in Information Bases. Information Systems, 2002, 27(3): 151-191.

Vardi, M. On the Complexity of Bounded-Variable Queries. In Proc. of the ACM
SIGMOD-SIGACT Symposium on Principles of Database Systems (PODS), 1995,
pp. 266-276.

Volkovs, M., Chiang, F., Szlichta, J., and Miller, R. Continuous Data Cleaning.
In Proc. of the International Conference on Data Engineering (ICDE), 2014, pp.
244-255.

Zhao, B., Rubinstein, I. P. R., Gemmell, J. and Han, J. A Bayesian Approach to
Discovering Truth from Conflicting Sources for Data Integration. In Proc. VLDB
Endowment (PVLDB), 2012, 5(6): 550-561.


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Context and Data Quality
	The OMD Model and Data Quality
	Datalog Representation of Multidimensional Ontologies
	Query Answering under Weakly-Sticky Datalog
	Outline and Contributions

	Background
	Relational Databases
	The Chase Procedure
	Programs Classes and Datalog
	Weakly-acyclic programs
	Jointly-acyclic programs
	Stickiness of the chase
	Sticky programs
	Weakly-sticky programs

	Program Constraints
	Negative constraints
	Equality-generating dependencies

	The Hurtado-Mendelzon Multidimensional Data Model

	State of the Art
	Contextual Data Quality Assessment
	Querying Context-Aware Databases
	Context-Aware Data Tailoring for Relational Databases
	Ontology-Based Data Access
	Description logics
	Closed predicates
	Inconsistency-tolerant ontologies


	Multidimensional Ontological Data Model
	Extending the Hurtado-Mendelzon Data Model
	Computational Properties and Query Answering
	Discussion and Extensions
	Uncertain downward-navigation and closed predicates
	Categorical keys
	Inconsistency-tolerant multidimensional ontologies
	Dimensional vs. static constraints
	Summarizability in multidimensional ontologies
	Reconstruction of the context-aware databases


	Multidimensional Ontologies and Data Quality
	Contextual Data Quality Assessment Revisited

	Semantic Generalization of Stickiness
	Generalized Stickiness
	Selection Functions and Program Classes
	Joint Weakly-Sticky Programs

	Query Answering for Semantically Sticky Classes
	The SChQA Algorithm
	Correctness of SChQA and Complexity Analysis

	Magic-Sets Optimization for Datalog+ Programs
	The MagicD+ Rewriting Algorithm

	Partial Grounding and Rewriting for WS Datalog
	Query Answering based on Partial Grounding
	The ReduceRank Rewriting Algorithm
	The PartialGroundingWS Algorithm

	Related Work
	Declarative Approaches to Data Quality Assessment
	Comparison with Data Quality Approaches
	Data Quality Dimensions Revisited
	Context Modeling
	Comparison with Related Context Models

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

