
N

I

New Generation Computing, 14 (1996) 237-259
OHMSHA, LTD. and Springer-Verlag

O oHrvrsHA, LTD. 1996

Towards Efficient Partial Evaluation in Logic Pro-
grammrng

David A. FULLER. Sacha A.
Computer Science Department,
Pontificia Universidad Catolica de
PO Box 306, Santiago 22, Chile.

Received 15 December 1993
Revised manuscript received 27 June 1994

Abstract Part ial evaluation is a symbolic manipulat ion technique

used to produce efficient algorithms when part of the input to the algorithm
is known. Other applications of partial evaluators such as universal compila-
tion and compiler generation are also known to be possible. A partial

evaluator receives as input a program and partially known input to that
program, and outputs a residual program which should run at least as
efficient as the input program with restricted input.

In this paper we study the case where both the input and residual
programs are logic programs, being the partial evaluator itself a logic
program. Up to now, partial evaluators have failed to process large "non-

toy" examples. Here we present extensions to partial evaluators which will

allow us to produce more efficient residual programs using less computing
resources during part ial evaluation.

First, the introduced extensions allow the processing of large exam-
ples, which is not possible with the previous techniques. This is now possible

since the extensions use less CPU time and memory consumption during the
partial evaluation process. Second, the extended partial evaluator produces

smaller residual programs, producing important CPU time optimizing
effects. With the standard techniques, a partial evaluator will most probably

act as a pessimizer, not as an optimizer. Examples are given.

Keywords:Part ial Evaluation, Logic Programming, Symbolic Manipulat ion,
Program Optimization.

$ t Introduction
Partial evaluation has been known as a program optimizatron technique

BOCIC, and Leopoldo E. BERTOSSI

Chile.

238 D. A. Fuller, S. A. Bocic, and L. E. Bertosst

since the early seventies.to'5) Only in the last few years, however, its use has been

made possible. In this paper we wil l define extensions to partial evaluators

which wil l made possible to process large programs when part of its input is

known at compile time (i.e. partial evaluation time), as well as producing

optimized output programs. Standard partial evaluation techniques in logic

programming cannot handle large examples, and when they produce an output

program, it wil l often use more computer resources than the input program. We

will also present some examples showing the power of this optimization tech-

nique. One of the examples wil l also describe a partial evaluator working as a

universal compiler, producing efficient target programs.

Partial evaluation of a subject program wrt known values of some of its

input parameters wil l result in a residual program. Running the residual

program on any remaining input values wil l yield the same result as running the

original subject program on all of the same input values. A residual program,

therefore, is a specialization of a subject program wrt known values of some of

its parameters. In expert systems and logic programming, this technique is now

known as a way of eliminating the extra layers of interpretation produced by

meta-i nterpreters.22'20' ls)

In this section we wil l describe the equations defining partial evaluation

and the meaning they have in the optimization of algorithms, automatic produc-

tion of compilers and compiler generators. Let P be a programming language

with a semantic function:

p : D - (D _ _ + D)

where D is a set whose elements may represent programs in various languages, as

well as their input and output. Note that P is a partial function, since programs

may have infinite loops. A residual program r is defined by:

P (p) (< d l , d 2 >) - P (r) (< d 2 >)

where d I is the known parameter, dZ the unknown, and p and r are valid

programs in language P. Let mix and int be two valid programs in P, where mix

is a partial evaluator, int is an interpreter for programs in language L, and I a

valid program in L. The description of the three residual programs is given in

the fo l low ing equat ions :

target - P(mix)((int, 1))
comp - P(mix)({ mix, int))
cocom - P(mix)(4,mix, mix))

The residual program target is generated by running the partial evaluator

mix with input parameters int and 1, and corresponds to the compiled program

I into P. It should be noted that this is exactly how partial evaluation is being

used in meta-interpretation. This equation also shows the way of using a partial

evaluator as a program optimizer. In this case, program int represents the input

(1 . 1)
(r .2)
(1 . 3)

Towards Efficient Partial Evaluation in Logic Programming 239

program to be optimized, I corresponds to the partially known values to int, and
target is the optimized program int wrt 1.

The second equation shows the production of a compiler comp by
running mix wrth the inputs mix and int. In other words, we are specializing the
interpreter int for language L into a compiler for language L. A mix partial

evaluator with the abil ity to apply to itself wil l be called a mix self-applicable
partial evaluator. Note that not every partial evaluator has this abil ity.s't+r

The third equation describes how to produce the residual program

cocom, a compiler-compiler or compiler generator, by running a mix self-
applicable partial evaluator with its two inputs being copies of mix. Thus, when
running cocom it wil l produce a compiler for a language L when an interpreter
for language L is given.

We have briefly summarized the basic concepts of partial evaluation and

self-application. The first mix self-applicable partial evaluator was described in

Ref. 12), using a first order subset of LISP. In the case of logic programming, a

mix self-applicable partial evaluator for PROLOG programs was first described
in Refs. 6) and 7).

In this paper, we present an extended partial evaluator capable of

undertaking powerful partial evaluation of logic programs. This means that the

extended partial evaluator wil l use less memory and CPU time during the partial

evaluation process, and the residual program will in fact be an optimized
program. Note that a partial evaluator should produce a residual program which

runs o'at least as efficient" as the input program, which is not the case of standard
partial evaluators. For this, we first present basic operations in a partial

evaluator such as expansion and suspension of predicates during the process of
building the proof tree. The following two sections introduce new operations to
partial evaluators. Subsequently, a treatment of negated predicates during
partial evaluation is presented. Then, local optimizations are introduced in

order to optimize the residual program, and practical experience is presented.

Finally, conclusions are drawn and further research is outl ined.

SZ Basic Operations
In terms of logic programming, a partial evaluator mix attempts to build

a proof tree of its f irst input program wrt its second one. For example, from

Equation (1.1), mix wll l attempt to produce a proof tree for int running l. The

proof tree thus produced wil l correspond to the residual target program. There

are basic operations to build the proof tree, which wil l be discussed in this

section.

2 . I Expansion
Expansion of a predicate p corresponds to building a partial proof tree

for p.16)The expansion of the user's goal wil l then produce the residual program.

This can be implemented easily in PROLOG with the help of a predicate

240 D. A. Ful ler , S. A. Bocic, and L. E. Bertossi

pe/z which receives as flrst argument a predicate and returns in its second
argument the proof tree for the predicate as a l ist. This is shown in Fig. 1.

Note that this implementation does not handle built- in predicates. In
fact, if the variable Goal is instantiated to a built- in predicate, the first definit ion
of pe/Z wil l fail because clause(Goal, true) fails to find a solution for all predicates
that are not facts in the PROLOG database. The second definition of pe/z also
fails because Goal cannot unify with a term like (Goal, Goals). The third definit ion
fails because there is no definit ion for Goal in the database (since it is a built- in
predicate that the user cannot redefine). However, extending the definit ion of
pe/2 to handle built- in predicates is easy, This wil l be shown later.

The implementation uses the PROLOG unification mechanism to unify
variables of predicates that are being partially evaluated.

: - m o d e p e (+ , -) .

pe(Goal , [Goal]) : - c lause(Goal , t rue).*

pe ((Goa l , Goa ls) , T ree) : - pe (Goa l , T ree l) ,
pe(Goals, Tree2),
append(Tree l , T reeZ, Tree).

pe(Goal , Tree) : - c lause(Goal , Body),
pe(Body, Tree |) ,
append([(Goa l : - Body)] , T ree l , T ree) . x *

Fig. 1 Expansion in partial evaluation.

An important fact is that the implementation only finds the first solution.
Other solutions have to be found using backtracking or the built- in predicate
baqof. As an example, let us consider the definit ion for the predicate member/Z
in Fig. 2. This predicate receives, as first argument, an element and as a second
argument, a l ist of elements. The predicate is true if the element belongs to the
list; otherwise it is false.

member(X, tX l- l) .
member(X, tY lZ]) : - X \ : : Y, member(X, Z) .

Fig.2 Implementation of memberf 2.

To partially evaluate the predicate memberf? with its first parameter

instantiated to the constant "3"
and i ts second, to a l ist with three elements, we

use the predicate pe/2 previously defined as fol lows:

?- pe(member(3, [- , - , -]) , Tree).

t *

c lause(H, B) is a bui l t - in predicate which is t rue i f there is a c lause H' : - B ' in the PROLOG
database, such that H and H' unify and B and B' unify. If B is the constant "true" then H is a
fact.
append/3 is true if its third argument is syntactically equal to the concatenation of the first two
areuments.

Towards Efficient Partial Evaluation in Logic Programming

to obtain the instant iat ion of var iable Tree : member(3, [3, Y, Z]) . Using
PROLOG's backtracking feature, we obtain the instantiations of Tree shown in
F ie . 3 .

Tree : member (3 , [X , 3 , Z]) : - 3 \ : : X , member (3 , [3 , Z]) .
member(3, [3, Z]) .

T ree : member (3 , [X , Y , 3]) : - 3 \ : : X , member (3 , [Y , 3]) .
member (3 , tY , 3]) : - 3 \ : : Y , member (3 , [3]) .
member (3 , [3]) .

Fig.3 Backtracking the partial evaluation of memberf 2.

At partial evaluation time we have less information than at execution
time. This presents problems for the expansion of the proof tree, especially if the
search space is infinite. This, nonetheless, is not an uncommon situation in
partial evaluation. Uninstantiated variables can lead us to infinite solutions or
infinite depth proof trees. Ways of handling this problem will be discussed in the
following sections.

2 .2 Suspens ion
The process of constructing the proof tree for a predicate may not

terminate. It seems, therefore, necessary to determine the predicates that are not
safe to expand during this process.

These predicates have to be suspended, i.e. expansion has to be avoided.
We will define a meta-predicate unsafe/ | to be true if its predicate argument is
not safe to expand, i.e. it may lead to a non-termination situation or to incorrect
evaluations due to the lack of appropriate information (such as the treatment of
negated predicates discussed in a latter section). If the expansion of a predicate
p is suspended during the construction of its proof tree, p wil l become a leaf in
the proof tree.

The expansion of a predicate p is suspended if p is considered unsafe. The
problem at this point is how to decide which predicates are unsafe. To solve this
problem there are several 4pproaches. A simple and inexpensive way (during
partial evaluation time) is to keep a depth counter, and suspend the expansion
of a predicate when depth level h is reached. We call this procedure depth
suspension control (DSC). Although this method is known in PROLOG pro-
gram execution, it has not yet been used in partial evaluation. In this case, the
condition for expansion is checked at partial evaluation time.

The implementation of a DSC parial evaluator is shown in Fig. 4. We
add two new parameters to the meta-predicate pe/?, which will be used to
handle the DSC mechanism. The first, has to be init ialized to zero. The second
parameter is a constant corresponding to the desired depth level.

A second technique to suspend predicates at partial evaluation time is
based on predicate subsumption. It consists of keeping a record of the predicates

241

242 D. A. Fuller. S. A. Bocic. and L. E. Bertossi

: - m o d e p e (+ , - , + , +) .
pe (Goa l , [Goa l] , H , H) : - ! .

pe (Goa l , IGoa l] , N , H) : - c lause(Goa t , t rue) .

pe((Goal , Others) , Tree, N, H) : -
pe(Goal , SubTree | , N, H),
pe(Others, SubTree2, N, H),
append(SubTree l , SubTree2, Tree).

pe(Goal , Tree, N, H) : - c lause(Goal , Body),
N l i s N * I ,
pe(Body, SubTree, N l , H),
append([(Goal : - Body)] , SubTree, Tree).

Fig.4 Partial evaluation with depth suspension control.

that have been expanded. This prevents the expansion of a predicate that can be
subsumed to one predicate in the l ist of already expanded predicates.T'e) This
technique is expensive in terms of time and memory usage. Each predicate has
to be checked, at partial evaluation time, from the l ist being produced.

However, the less expensive solution is to specify the unsafe predicates
before the partial evaluation process. A manual method would allow the user to
specify the predicates to be suspended through a process of user annotations,
using a meta-predicate unsafe/ | to be true if its argument is a predicate defined
as unsafe. The implementation of meta-predicate pe/2 in Fig. I only needs to
add, as first definit ion of pe/2, the clause:

pe(Goal, [eoal]) : - unsafe(Goal) .

With this extension to pe/2, the unsafe predicates wil l be "captured" and wil l
not be expanded. Consider, for example, a predicate length/2 as unsafe if i ts f irst
argument is an uninstantiated variable. In this case, it is possible to define
unsafe/l for predicate length as follows.

unsafe(length(X, N)) : - \ * ground(X).*

Note that a predicate might be unsafe to expand under certain conditions,
but it could be safe under others. For this reason, it is important to specify those
conditions. The definit ion of unsafe predicates depends on the context in which
a predicate is used. In some cases, it is possible to specify only a subset of all the
conditions that make a predicate unsafe.

It should be noted that this annotation process involves the users in a
programming problem. There is work on automatizing the predicate annota-
tions as a process done before partial evaluation time8'13) based on abstract
interpretation of logic programs. However, this is sti l l matter of on-going
research.

{< * ground(X) is true if it is not the case that X is instantiated to a sround term.

Towards Efficient Partial Evaluation in Logic programming 243

Sf New Powerful Operations

3. I Freezing and Mett ing
An uninstantiated variable could trigger the suspension of a predicate.

Given PROLOG's resolution mechanism, it is possible that a variable, not
instantiated during the process of partial evaluation of a predicate, could
instantiate later during the partial evaluation of other predicates. Let us consider
the example shown in Fig. 5. In this example, length/z is considered unsafe
(because of an uninstantiated variable). The partial evaluation of this predicate,
therefore, is suspended.

foo(N) : - length(X, N),
1 : [, t h i s , , , i s , , , an , , ,examp le ,] .

unsafe(length(X, _)) : - \ * ground(X).

Fig.5 Freezing a predicate.

During the expansion of the second predicate in the body of foof l,
variable X is instantiated, therefore, lengh/\ at this point, is no longer unsafe.
This example proposes the necessity of temporarily suspending the expansion of
an unsafe predicate, and trying its expansion at a later t ime.

In logic programming, these techniques are known as freezing and
melting predicates and are well known in PROLOG interpreters. They, however,
have never been used in partial evaluation. Our contribution is the definit ion of
the semantics of such operations in the context of partial evaluation and to
introduce them as extensions to efficient partial evaluation.

A necessary condition for freezing the expansion of a predicate is that
there should be the possibil i ty of melting it. In other words, the uninstantiated
variables which made us consider the predicate as unsafe, appear in other
predicates with a possibil i ty of instantiation. Now we wil l give a more formal
treatment of freezing and melting in partial evaluation.

Given a logic program P and an atom p(X), let:

p (X) P l : - P l .

p(X) dn :- Pn.
(3 . 1)

be the residual program corresponding to a part ia l evaluat ion of p(X) wrt p. p l ,
. . . , P n a r e s u b g o a l s a n d 0 1 , . . . , 0 n a r e s u b s t i t u t i o n s . t u) L e t r b e a n a t o m , s i s a
subgoal, i.e. a sequence of l i terals, and rS a subgoal in an OR proof tree for p(X)
wrt P, as shown in Fig. 6.
Then, at this stage we have for a substitution p, the clause:

p(X) p : - rS . (3.2)

244 D. A. Fuller, S. A. Bocic, and L. E. Bertossi

o

r S

Fig.6 Fragment of the expansion of p(X).

Let us assume that r becomes frozen. For simplicity, we wil l only consider the
case where S is an atom. We could further extend S. Let us assume that.

S o ' l : - S l .

Som : - Sm.

is a residual program corresponding to the partial evaluation of S
substitutions dl, ..., dffi. Figure 7 shows the expansion of S.

PCX)
o

r S

d l
/

S 1

*

Sm

,/

Fig.7 Expansion of S.

At this stage we could think of melting r. Notice that at the nodes S l, ..., Sm, the
variables originally appearing in S (and also in r) are partially instantiated.
Then, in the melting process for r we should further expand this partially
instantiated r. That is, for each substitution o'i, we have a residual program
corresponding to the partial evaluation of roi, the instantiation of r according
to o'i, as shown in Fig. 8.

The residual program obtained by the substitution oi is:

(3 .3)

wrt P, with

Towards Efficient Partial Evaluation in Logic Programming

ro i
a

, ' / \ p t (i)

Rr Rk(i)

Fig.8 Expansion of ro i .

r o i p l : - R l .

r 6i pkxl :- Rk<ir.

245

(3.4)

To obtain a partial evaluation of p(X), i.e. the original goal, that represents this
freezing-melting process at this stage, we have to combine(3.2), (3.3) and (3.4).
Thus, the residual program of p(X) contains the new clauses:

p(X) poip | : - RlSi .

p(X) poipk<ir : - Rk<irSi .
(3 .5)

for i : l , ..., f l . To these clauses we should add the clauses corresponding to the
other branches in the OR proof tree for a parial evaluation of p(X). In this proof
tree one of the subgoals is S. This subgoal was further expanded by first freezing
r and then melting it. If rS is Pl in (3.1), then the residual program for a partial
evaluation of p(X) is given by (3.1) with the first clause replaced by (3.5).

From Fig. 7, we can see that the expansion of S after freezing r can avoid
the generation of fail ing branches for r, thus producing an improvement during
the execution of the residual program. Notice that the instantiations for S
constrain the non-fail ing instantiations for r since we have to satisfy the whole
subgoal rS.

In order to explore necessary conditions to characterize a predicate as
frozen, we need to consider PROLOG's resolution strategy (such as left-to-right
and top-down). Also, we need to use variable modes, either by user annotations
(many PROLOG systems allow the user to declare parameter modes) or by an
automatic process through static analysis.lT)

Definit ion 3.1.1
A predicate p is a descendant of predicate q iff there is a clause q :- pl, p2,..., pn
such that p unifies with any predicate pi; or p is a descendant of any predicate
pi in that body. tr

Definit ion 3.1.2
A predicate p is a right-ancestor of a predicate q iff q is a descendant of a
predicate r; so that r and p belong to the body of any rule, and p is at the right
of r in that body. I

246 D. A. Fuller, S. A. Bocic, and L' E' Bertossi

Thus, we can formulate the necessary conditions for freezing and melting

a predicate, as follows.

Definition 3.1.3

A predicate p belonging to the body of a rule R is freezable, if for every variable

X in the set of variables that make it unsafe (a set denoted by X,) it is true that:

(l) X appears as an output variable in a predicate at the right of p in rule r,

or;
(2) X is instantiated to an output variable in a right-ancestor of p. !

Definition 3.1.4

If all the variables belonging to Xu of a predicate p satisly the first condition of

Definition 3.1.3, we say that p can be locally frozen. !

Definit ion 3.1.5

If a predicate p has been frozen, and at least one of the variables that belong to

Xu satisfy the second condition of Definit ion 3.1.3, we say that p has been

globally frozen. tr

A condition for melting a predicate p is when the set X, of p has been

instantiated, in which case the predicate is not longer unsafe for expansion. Note

that this condition is independent of the manner in which a predicate has been

frozen.

Remark 3.1.6
predicate o will never be melted if it has been locally frozen and if the partial

evaluation of the body of the rule to which it belongs to has no effect on the

state of p (it is sti l l unsafe). n

If during the partial evaluation of an input program, a predicate p (which

has been frozen) instantiates its arguments so that it is no longer considered

unsafe, we say that p can be melted.

We now require an algorithm to handle frozen predicates. The predicates

considered here are those predicates p which are unsafe to expand, but have

necessary conditions to be melted. In this case, one can take one of two actions.

If the predicate gets enough instantiated, one could reflect it (as explained in

next section). Otherwise, expand p according to rules (3.5).

3 .2 Ref lec t ion
Operationally, a partial evaluator translates a program in one meta-level

to a lower meta-level. Sometimes, it is possible to directly execute operations

which are in a higher meta-level in lower levels. This is called reflection, and is

also a well known operation in PROLOG interpreters. However, this is new as

an operation in partial evaluation, which we will define and introduce as an

extension in efficient partial evaluators'

Towards Efficient Partial Evaluation in Logic Programming 247

The implementations of partial evaluators, shown in this paper, use the

PROLOG unification mechanism to unify terms belonging to the predicates that

are being partially evaluated. In other words, the implementations we propose

are using lower meta-level features (the PROLOG interpreter) to handle predi-

cates of an upper meta-level.

We can use this concept in a more general context. For instance, we can

take an operation of a level k, send it to a level j0 < k) execute it, and return

the result to level k. To implement reflection in our partial evaluator, we only

have to extend the definit ion of predicate pe/Z of Fig. 1, as shown in Fig. 9.

pe(Goa l , 111 , r .e t ,e [t t] e (eoa t) ,

Fig.9 Extending partial evaluation with reflection.

This clause produces an empty residual program since the effect on the

expansion of the predicate Goal is shown as an instantiation of its arguments

only. In this definition, we consider as reflectable a predicate if it satisfies a

certain "reflectability criterion", which is defined using the user defined predi-

cate reflectable/|. It is clear that the evaluation of higher meta-level built- in

predicates can be reflected to the PROLOG meta-level, if all their input mode

parameters are instantiated. The reflection of those built-in predicates whose

reflection might produce side-effects, should be avoided. Finally, no other

necessary conditions to define a predicate as reflectable, have been identified.

$l Operationalization
The technique of operationalization is "borrowed" from the theory of

explanation based generalization (known as EBG).tt) EBG is a deductive learn-

ing technique, and its similarities with partial evaluation were first reported in

Ref. 23) and later in Ref. 1l). In Ref. 23), the authors established certain

similarit ies between partial evaluation and EBG, but comparisons were done

based on specific cases of such techniques. On the other hand, U. Hoppe presents

a much deeper analysis of EBG but its relation to partial evaluation is poorly

developed. l t)
In this perspective, the operationalization of a predicate is related to its

reformulation in terms of other predicates, which are easier to calculate, called
"operational predicates". Operationalization is not yet reported as an operation

in partial evaluation. In this section, we wil l define it and include it as a

powerful extension to partial evaluators in logic programming.

The main idea is to expand the proof tree of a predicate unti l i t reaches

the operational predicates, obtaining a reformulation in terms of these predi-

cates. This reformulation is the conjunction of the leaves in the proof tree. As

an example, let us consider the set of rules of Fig. 10 and consider as operational

the predicates son/Z and parents/Z'

248 D. A. Fuller. S. A. Bocic. and L. E. Bertossi

re lat ive(X, Y) : - cousin(X, Y).
cousin(X, Y) : - son(X, Z) , son(Y, W), brothers(z, W).
brothers(X, Y) :- parents(X, W), parents(Y, W).

Fig. 10 Set of rules for operationalization.

Using the EBG algorithm, the reformulation of relative /2 is:

relative(X, Y) :- son(X, Z), son(Y, W), parents(2, V), parents(W, V).

Notice that the reformulation contains the root of the proof tree and the
operational predicates only, eliminating internal nodes of the proof tree. In
partial evaluation, we can use this technique to both operationally defined
predicates and to suspended predicates.

In order to apply this technique, it is necessary to define an operational
criterion capable of identifying the operational predicates during the construc-
tion of the proof tree. Obviously, suspended predicates wil l be defined as
operational. Also, we could decide to keep some predicates in the reformulated
clauses, e.g. to handle incomplete programs. For this, we use a meta-predicate
operational/ | to define the predicates in its argument as operational.

In Fig. I l, we present the implementation of a partial evaluator extended
with the operational capacity (OPE). Note that the satisfaction of the opera-
tional criterion is implemented by the meta-predicate operational/1, which is
defined in terms of the predicate memberf 2. In order to be consistent with the
previous example, sonf 2 and parentsf 2 are considered operational.

: - m o d e p e (+ , -) .

pe(Goal , GoalOut) : - operat ional(Goal) ,
copy(Goal , GoalOut) ,*
ca l l (Goa l) , ! .

pe ((Goa l , Goa ls) , (T ree l , T ree2)) : - pe (Goa l , T ree l) ,
pe(Goals, TreeZ).

pe(Goal , Tree) : - c lause(Goal , Body),
pe(Body, Tree).

operat ional(Goal) : - member(Goal , [son(- , -) , parents(- , -)]) .**

Fig. 11 Implementation of OPE.

During the construction of a proof tree in partial evaluation, it is possible

to face the problem of not having enough information to decide which node to
expand (in or-nodes). We can either try to expand all possible branches (with an
imminent combinatorial explosion) or to abort the expansion (meaning that we
operation alize the node).

At present we do not know how to predict the number of reformulations

* copy(Goal, GoalOut) is true if GoalOut is a copy of Goal with fresh variables.
€ member/Z as defined in Fis. 2.

Towards Efficient Partial Evaluation

obtained from the expansion
process concludes with m (m
tze the "offending predicate"

in Logic Programming 249

of a certain predicate. If the operationalization
(n) reformulations, it is possible to operational-
in order to obtain a shorter residual program.

$S Treatment of Negated Predicates
Negation.wil l be treated based on techniques shown in previous sections,

i.e. we will consider expansion, reflection and freezing of negated predicates in
partial evaluation of logic programs.

5. I Expansion of Negated Predicates
Expansion of negated predicates cannot be treated in the same way as the

expansion of any other predicate, and the problem arises when the predicate is
insufficiently instantiated.a) With the purpose of partially evaluating the nega-
tion of a predicate p(X), i.e. not p(X), where not stands for negation as failure, we
will introduce new clauses to the residual program. These clauses have not p(X)
in their heads. Obviously, since negation as failure is not allowed in the heads
of clauses, we wil l replace not p(X) by a new atom not -p(X). The expansion of a
negated predicate is not equivalent to the negation of the expansion of the
predicate, when uninstantiated arguments are involved. If we want an answer to
the query not p(X) 0, we evaluate the query not -p(X) 0 with respect to the residual
program corresponding to the partial evaluation of not p(X).

As an example, let us analyze the partial evaluation of not p(X) in the
context of Fig. 12. The partial evaluation of p(X) produces p(l) after elimination
of true formulas (which wil l be shown later). We might be tempted to evaluate
not p(X) wrt the partial evaluation of p(X). If we do this, we obtain the non-
intuit ively expected answer folse.In consequence, if we evaluate not p(xo) (for a
constant value xo) wrt this partial evaluation, we wil l always obtain the answer
false. Notice that we would expect the answer yes for xo : 2. An explanation for
this phenomenon is that X was instantiated and then eliminated, losing solu-
t ions.

Intuit ively, the negation of p(X) is true if X does not unify with " 1". It is
clear then, that the problem arises because variable X is being uninstantiated
during partial evaluation.

p(X) :- q(X), r(X).
q (l) .
r (l) .

Fig. 12 Example of problems for partial evaluation with negation.

Now we wil l describe a general procedure to construct a residual program
for the partial evaluation of not p(X). Let,

p (x) 0 | : - G t .

250

p(X)dn : - Gn.

be the new clauses that we replace for the definit ion of p(X) in the original
program P in order to obtain the partial evaluation of the program wrt p(X).16)
G l, ..., Gn are subgoals in the non-fail ing branches in a proof tree for p(X) wrt
program P. This residual program will be used in the partial evaluation of not
p(X). Then,

not p(X) succeeds <+ p(X) fails
< + X + X ? l A . . . n X * X ? n ,

V
x : x ? t n c t f a i l s
V

;
X : X?n A Gn fai ls

According to this, the partial evaluation of not p(X) wrt P can be defined as the
partial evaluation of p(X), plus the following rules:

no t -P(X) : - X : / : X0 l , . . . , X : / : X1n.
n o t - p (X) : - X : : X 9 l , n o t G l .

not -p(X) : - X : : X?n, not Gn.

The first clause corresponds to the case where the construction of the proof tree
passes through a fa i l ing branch, wi thout gett ing to any of the G l , . . . , Gn.

Let us use the example of Fig. 12 to i l lustrate the new procedure. The
partial evaluation of p(X) is:

p (|) : - q (l) , r (l) .
q (l) .
r (l) .

In this case, the substitution d has the value {x/ l} , and G I stands for the subgoal
q(l) , r (l) . Then, the part ia l evaluat ion of not p(X) is given by the program:

not _p(X) : - X : / : l .
no t -p (X) : - X : : l , no t (q (l) , r (l)) .
p (l) : - q (l) , r (l) .
q (t) .
r (l) .

Notice that the second clause should be split into the two clauses:

no t -p (X) : - X : : l , no t q (l) .
no t -p (X) : - X : : l , no t r (l) .

Towards Efficient Partial Evaluation in Logic Programming

In this case, if we evaluate not _p(2) we wil l obtain the
ves.

251

intuitively expected value

5.2 Freezing Negated Predicates
Freezing can be used successfully for the treatment of negated predicates.

It is possible to freeze negated predicates considered unsafe if variable instantia-
tions during partial evaluation wil l revert the unsafe situation, allowing predi-
cates to melt. Here the same considerations regarding local and glob al freezing
are valid.

5.3 Ref lect ion in Negat ion
Reflection can be applied to the treatment of negated predicates, expand-

ing the proof tree as much as possible, in order to obtain better residual
programs. Let us consider the definit ion of a predicate p:

p l - Lr , Lz, . . . , Ln.

where L'(1 < i < n) is a negated predicate such as not q. If the proof of q
produces an empty set,* it is possible to express p as follows:

p : - L r , . . . , L i - r , L i+ r , . . . , L . , .

Note that this is possible since predicate q failed, and therefore, no
instantiation of variables is done during the process of partial evaluation.

To determine if the solution set of a predicate q is empty, we define the
meta-predicate noSolution / I to be true if the proof of the predicate in its argument
produces a truth value false.

Here, reflection is used to execute a predicate of a higher meta-level in the
lower PROLOG meta-level. A PROLOG implementation is shown in Fig. 13.
One of the major advantages of this technique is that it is possible to handle part
of the negated predicates considered unsafe.

noSolut ion(q) : - cal l (q) , l , fa i l .
noSolut ion(-) .

F ig. 13 Implementat ion of meta-predicate noSolut ion/1.

If the solution set of q is partit ioned into Sr U Sz U ... U Sn where Sr(Si not
empty) represents the solution i, we wil l have:

not q : not Sr A not Sz A ... A not Sn

allowing us to reformulate predicate p as follows:

p : -L r n . . . n L i - r A no t Sr n . . . n no t Sn A L i+r n . . . n Ln .

{< An empty solution set means that q is always false.

252 D. A. Fuller, S. A. Bocic, and L. E. Bertossi

Obviously, this method works for n finite. Unfortunately, we do not yet

know how to detect the unsafe cases. As an example, let us consider an example

from Ref.l8) shown in Fig. 14. Even though fat and weight are finite relations,

eats has a breadth-infinite solution space. A simple solution to this problem is

to consider a breadth counter control mechanism (BCC).

eats(X, Y) :- fat(X).
fat(X) : - weight(X, Y), Y > 100.

Fig. 14 Predicate with breadth-infinite solutions.

$0 Local Optimizations
Local optimization techniques can be used in order to reduce the com-

plexity of the residual program.

6 . I Elimination of True Formulas
This technique consists on the elimination of formulas which are true in

the residual program. There are two kind of formulas which can be eliminated,

facts and clauses.
First, we can eliminate those predicates in the body of a clause of the

residual program that are true independently of input variables. As an example,

consider the set of ru les shown in Fie. 15.

p(a, Y) : - q(a) , r (a, Y), s(Y).
q(a) .
r (a , Y) : - . . .
s (Y) : - . . .

Fig. 15 Eliminating true facts.

It is possible to eliminate q(a) lrom the body of the first rule without

changing the semantics of the residual program. Built- in operators such as
"X : < X" also represent true facts which can be eliminated from the body of a

clause.
An implementation for this technique is simple. We define a meta-

predicate unique/ | to be true if the predicate in its argument has only one

solution. Please note that it is not necessary to determine if such a predicate has

all i ts arguments instantiated. Also, note that unique/l needs to take care of

unsafe predicates.
A second way of eliminating true formulas is when the body of a clause

contains a fact which is false independently of its parameters, such as "X>X".

This makes the clause a true clause, being able to eliminate it from the residual

program. The early detection of true formulas during partial evaluation can

avoid expanding further subtrees to the right of such predicate, improving

Towards Efficient Partial Evaluation in Logic programming

efficiency of the partial evaluator.

253

6.2 Predicate Specialization
This process is expensive in terms of t ime. It

of a predicate, incorporating ground terms to the
reducing the number of unifications performed
run-time. It is performed for each clause:

consists of reducing the arity
name of the predicate, thus

by the residual program at

A : - B r , . . . , B . (m > 0)

in the residual program. For each Bi with at least one ground term in it, i t is
necessary to search for all the clauses in the residual program with instances of
Br. These clauses may be of two types, namely:

B, i :_ Cr, . . . , C: (j > 0)

and

A" : - B"r , . , , , B"u (k > 0)

such that Bi matches B'r and B"r. If there is at least one clause of the form:

B' i : - Cr, . . . , C:.

the predicates Bi, B'i and B"r can be specialized to their ground values.
This is accomplished by first determine the common ground term values

to all the predicates to be specialized. For example, the common ground terms
of the predicates p(a, Y, f(c)) and p(a, b, f(c)) are the first and the third. Then it is
possible to eliminate such values from the predicates and append to the predi-
cate symbols a unique symbol. In our example, the two predicates would become
p-it(Y) and p-it(b) ; respectively. The predicate symbol p-it is unique in the
residual program. This wil l create a new residual program with the specialized
clauses for Bi.

This process has also to be carried out for the user's goal. Observe that if
the total number of predicate calls in the residual program is n, the time-
complexity of the process of predicate specialization (as described) is O(n2).

A different approach for the predicate specialization based on abstract
interpretation2) which wil l lead to a much faster algorithm, is now being
investigated.

SZ Experiments
We wrote an interpreter of an imperative language, which we called

NORMA3, to be used as a basis for our experiments. This interpreter has
registers, conditional jumps, goto's, assignments, arithmetic operations over
registers, handling integer numbers, chars, strings and lists. The interpreter is
written in PROLOG. We also wrote a program in NORMA3 to sort a l ist. based
on the insertion sort alsorithm.

254 D. A. Fuller, S. A. Bocic, and L. E. Bertosst

According to Equation (1.1), the NORMA3 interpreter represents int,

and the sort program is given by 1. Some experiments were done, partially

evaluating I wrt int, instantiating the input l ist of the sorting algorithm to a

completely instantiated value and to a l ist with 3, 4 and 5 elements, obtaining

residual programs ri, 13, 14 and 15, resp. These residual programs correspond to

the compiled version of the imperative sorting program, i.e. we translated the

sorting program from NORMA3 to PROLOG.

Three different techniques were applied to generate these residual pro-

grams, which we labeled with letters A, B and C. The first one corresponds to

pure expansion (A), the second is expansion with suspension by subsumption

(B), and the third is expansion, reflection, operationalization, suspension, and

true formulas elimination (C). In the latter case, we defined via annotations,

conditions for the partial evaluator to suspend, reflect, and operationalize

predicates of the NORMA3 interpreter. The conditions to suspend NORMA3

predicates were defined using predicate unsafef I as specified in Section 2.2.

Similarly, conditions to reflect or operationalize NORMA3 predicates were

defined using predicates reflectable/l and operationalf l, as specified previously.

We used a DIGITAL Decstation 3100 with Ultrix operating system and

24MBytes of RAM, running the SICTUS PROLOG interpreter. Table 7.l shows

the values obtained during partial evaluation time, in CPU time units.

Table 7.1 Partial evaluation time.

case A B C
r l 2,331 3 3 1 6 79

r3 14,389
r4 x 64,054
r5 1 5 5

The '(-" symbol denotes that the experiment cannot be done. In the case of the

previous table, this is due to infinite branches, since technique A does not have

loop detectors. The "*" symbol denotes that the experiment was aborted after

having generated a 6 MByte residual program. Note that the time for 15 with

technique C is smaller than the ones for 13 or 14 since in the former, suspension

had to be applied closer to the root, avoiding a disjunctive explosion. Table 7.

2 shows the size of the residual programs, in number of clauses and predicates.

Trble 7.2 auses /pred lca tes ln res ldua

case A B C

t32/422 8t/244 t / r
r3 6/39

r4 24/238
r5 x 47 / 1 t4

rograms.

We can also show the execution time for the residual programs and for the sort

program on top of the NORMA3 interpreter. Since the values depend on the

Towards Efficient Partial Evaluation in Logic Programming 255

order of the l ist to be sorted, we show an average time obtained doing 30
experiments each time, where the order of the elements in the list had a uniform
distribution. Table 7.3 shows those times.

Table 7.3 Execution times.

case A B C NORMA3
r l 144 t28 0 50
r3 7 50
r4 35 82

n3.74 n4.25

From Tables 7.1 and 7.2 we see that the partial evaluation process with the
extensions presented in this paper (C) is much more efficient than traditional
partial evaluation (A, B). Also, as seen from Table 7.3, our extensions produce
a better execution time for residual programs that the ones obtained using
traditional techniques. In the case of 15 with technique C, we had to suspend the
expansion quite close to the root to avoid the combihatorial explosion, and
hence it was not possible to get a significant improvement in performance, as the
case of ri. 13 and 14.

Note that if not enough additional information is provided to a program

being partially evaluated, it wil l not be possible to build a deep proof tree,
having to suspend the predicates near the root to avoid a disjunctive explosion
due to the generation of all possible cases allowed in an algorithm. In the case
of disjunctive explosion, one would be transforming the input program to a
number of cases, simplifying the algorithm but loading the PROLOG interpreter
with top-down search of clauses.

It is possible to adopt the measurements used in Ref. 2l) to estimate the
optimizing effect of a partial evaluator. The CPU time (or memory size)
optimizing effect is the ratio of CPU time (memory) of the unoptimized program

to that of the optimized residual program. He distinguishes three qualitative

levels of the optimizing effect. The effect is invisible if a program is improved
by less that 1.2 with respect to CPU time and by less than 1.1 with respect to
memory size. It is visible if the improvement is up I.2to 2 in CPU time and up
to 1.3 in memory size. It is essential if the improvement is more than2 in CPU
time and more than 1.3 in memory. Table7.4 shows the CPU time optimizing
effect, based on the results shown on Table 7.3.

Tabl 7.4 CPU effect.me opt lm

case A B C
r l 0.347 0.391 oo

r < 7.143
r4 2.343
r5 L004

From this table it is clear that techniques A and B cannot be considered

256 D. A. Fuller, S. A. Bocic, and L. E. Bertossr

as optimizations. As a matter of fact, these techniques work as program pessi-

mizers. Note that P. Abrahams warned about this danger as early as 1970.1)

However, technique C shows an impressive optimization effect for the cases ri,

13 and 14, and no pessimization effect can be achieved. Within the previous

classification, these cases are considered to be essential.

SS Conclusions
In this paper we present extensions to the technique known as partial

evaluation in logic programming, obtaining important results. First, the

introduced extensions allow the processing of large examples, which is not
possible with the previous techniques. This is now possible since the extensions

use less CPU time and memory consumption during the partial evaluation
process. With the traditional partial evaluation techniques, most of the examples

did not even produce a residual program.

Second, the extended partial evaluator produces smaller residual pro-

grams, producing essential CPU time optimizing effects. Note that with the

standard techniques, a partial evaluator will most probably act as a pessimizer,

not as an optimizer.
The extensions proposed here obey the need of extending not only the

functionality of current logic programming partial evaluators (with only two
operations, expansion and suspension of predicates using the subsumption

criterion), but also allow obtaining a better performance from the partial

evaluator and the residual program. For this, these extensions are the needed to
partially evaluate large logic programming examples.

For example, depth suspension control (DSC) increases the performance

of the parial evaluator with respect to subsumption. DSC also gives the user the
flexibil i ty to obtain larger or smaller residual programs, depending on his needs,

and guarantees termination of the process. The latter does not apply to the

subsumption criterion.
The operations of freezing and melting predicates produce more in-

stantiated residual programs and, therefore, more efficient programs. Reflection

allows the partial evaluator to run operations from higher meta-levels into

PROLOG's meta-level, and then, return their values. This is obviously a gain in
partial evaluation time efficiency.

We also include operation alization of predicates, an operation "bor-

rowed" from explanation-based generalization learning techniques, which

proved to be very powerful in the construction of residual programs when it is

combined with suspension, since in the reformulation one only leaves the root

and the operational predicates.
The treatment of negated predicates in the input programs is also

introduced. This will give the partial evaluator the capacity to analyze real

programs, a lacking feature in current partial evaluators. An important develop-

ment is proposed wrt expansion of non-instantiated negated predicates. Finally,

Towards Efficient Partial Evaluation in Logic Programming 257

a number of local optimizations were proposed in order to produce a more
efficient residual program.

We have implemented a PROLOG partial evaluator which includes most
of the operations here defined, and were able to process large examples of the
kind described by Equation (1.1), i.e. as a program optimizer and, as a universal
compiler. The processed examples did not require the partial evaluation of
negated predicates. It was also not necessary to use the freezing and melting
operations, although our partial evaluator implementation considers them. We
are currently in the process of experimenting with even larger applications,
where we expect that such operations wil l be of much help in producing efficient
residual programs.

We are also in the process of extending the partial evaluator to the
problem of mix sel f -appl icat ion as descr ibed by Equar ions (1.2) and (1.3).

Acknowledgements
This work was partially supported by the Chilean National Fund for

Science and Technology (FONDECYT), grants 1920812, 1950880 and 1930554,
and by Oracle Chile.

References
l) Abrahams, P., "Compiler Pessimization," Datamation, 17, 7, pp. 32-33, lg7l.
2) Abramsky, S. and Hankin, C. (eds.), Abstract Interpretation of Declarative Languages,

Wiley, 1987.
3) Bulyonkov, M. A., "From Partial Evaluation to Mixed Computati on," Theoretical

Computer Science, 90, Elsevier, pp. 4'l-60, 1991.
4) Chan, D. and Wallace, M., "A Treatment of Negation During Part ial Evaluation," in

Meta-Programming in Logic Programming (H. Abramson and M. Rogers, eds.), MIT
Press, London, chapter 16, 1989.

5) Ershov, A. P., "On the Essence of Compilation," in Formal Description of Program-
ming Concepts (E. J. Neuhold, ed.), North-Holland, pp. 391-418, 197g.

6) Fuller, D. and Abramsky, S., "Mixed Computation of Prolog Programs," New Genera-
tion Computing, 6, Ohmsha/Springer-Verlag, Tokyo, 1988.

7) Ful ler, D., "Part ial Evaluation and Mix Computation in Logic Programming," Ph.D
thesis, Department of Computing, Imperial College of Science and Technology,
London, U.K. , 1989.

8) Ful ler, D., "Replacing the Loop Detection Scheme in Part ial Evaluation of Logic
Programs," in Technical Report CS -93 / l4,Computer Science Dept., Pontificia Univer-
sidad Cat6l ica de Chile. 1993.

9) Ful ler, D. and Bocic, S., "Extending Part ial Evaluation in Logic Programming," in
Computer Science: Research and Applications (R. Baeza-Yates and U. Manber, eds.),
Plenum Press, NY, pp. 95-107, 1992.

l0) Futamura, Y., "Part ial Evaluation of Computation Process-An Approach to a
Compiler-Compiler," Systems, Computers, Control, 2, 5, pp. 4l-67, lg7l.

l l) Hoppe, (J., "An Analysis of EBG and Its Relat ion to Part ial Evaluation: Lessons
Learned," Technical Report, No. 572, GMD-IPSI, Darmstadt, Germany, lggl.

258 D. A. Fuller, S. A. Bocic, and L. E. Bertosst

12) Jones, N., Sestoft, P., and S/ndergaard, H., "An Experiment in Partial Evaluation: The

Generation of a Compiler Generator," in Rewriting Techniques and Applications (J.P.

Jouannaud, ed.), Lecture Notes in Computer Science, No. 202, Springer-Verlag,

pp.124-140, 1985.
13) Jones, N. D., "static Semantics, Types, and Binding Time Analysis," Theoretical

Computer Science,90, Elsevier, pp. 95-118, 1991.

14) Jones, N. D., Sestoft, P., and Sfndergaard, H., "MIX: A Self-Applicable Partial

Evaluator for Experiments in Compiler Generator," J. LISP Symbolic Computation,

1992.
l5) Levi, G. and Sardu, G., "Partial Evaluation of Metaprograms in a "Multiple Worlds"

Logic Language," New Generation Computing, 6, Springer-Verlag, Tokyo, 1988.

16) Lloyd, J. W. and Shepherdson, J. C., "Partial Evaluation in Logic Programming,"

Technical Report, Department of Computing and Mathematics, University of Bristol,

u .K . , 1991 .
17) Mellish, C., "Abstract Interpretation of PROLOG Programs," in2), Wiley, pp. l8l-198,

1987.
l8) Mendelzon, A., "Logic and Databases," VIII Conference of the Chilean Computer

Science Society, Santiago, 1988.
l9) Mitchell, T. M., Keller, R. M., and Kedar-Cabelli, S. T., "Explanation-Based Generali-

zation: A Unifying View," in Machine Learning, Vol I,1986.

20) Sterling, L. and Beer, R., "Incremental Flavor-Mixing of Meta-Interpreters for Expert

System Construction," Technical Report, TR 103-86, Center for Automation and

Intelligent Systems Research, Case Western Reserve University, 1986.

2l) Pottosin, L V., "Analysis of Program Optimization Possibilities and Further Develop-

ment," Theoretical Computer Science,90, Elsevier, pp. 17-36, 1991.

22) Takeuchi, A. and Furukawa, K., "Partial Evaluation of PROLOG Programs and Its

Application to Meta-Programming," Information Processing 86 (H. Kugler,ed.), Proc.

IFIP 86 Conference, North-Holland, 1986.
23) van Harmelen, F. and Bundy, A., "Explanation-Based Generalization : Partial Evalu-

ation," Artifcial Intelligence, 36, pp.40l-412, 1988.

David A. Fuller, Ph.D.: He received the B.S. degree in Electrical

Engineering from the Pontificia Universidad Cat6lica de Chile in 1982,

the M.S. degree in Computer Science from the University of California

at Los Angeles in 1984, and the Ph.D. degree in Computer Science from

Imperial College of Science and Technology in 1989. He worked as a

research assistant at Imperial College in the HOPE project, Currently

he is an Assistant Professor of Computer Science at the Pontificia

Universidad Cat6lica de Chile where he directs a Research Lab. on

Computer Supported Cooperative Work. His research interests include

symbolic computation and intel l igent cooperative systems.

Towards Efficient Partial Evaluation in Logic programming
259

Sacha Bocic, M.S.: He received the B.S. and the M.S. degree in
computer Science from the pontificia universidad cat6lica de chile in
l99l and 1992, resp. He is currently a Manager of the Core Technology
Group at oracle chile. His current interests include symbolic computa-
tion, distributed data base systems and multimedia.

Leopoldo E. Bertossi, Dr.: He received a Doctor in Exact sciences
(Mathematics) degree from the pontificia Universidad cat6lica de
chile in 1988. He received a DAAD scholarship (University of
Freiburg, Abteilung fuer mathematische Logic und Grundlagen der
Mathematik, Germany), and has been visiting Assistant professor at the
Department of computer Science, University of Toronto, and the
Department of Electrical Engineering and computer Science of the
University of wisconsin-Milwaukee. Since 1992 he is an Associate
Professor at the Pontificia universidad cat6lica de chile. His current
research interests are knowledge representation, deductive databases,
logic programming and foundations of probability and statistics.

