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Abstract. Data quality assessment and data cleaning are context dependent ac-
tivities. Starting from this observation, in previous work a context model for the
assessment of the quality of a database was proposed. A context takes the form
of a possibly virtual database or a data integration system into which the database
under assessment is mapped, for additional analysis, processing, and quality data
extraction. In this work, we extend contexts with dimensions, and by doing so,
multidimensional data quality assessment becomes possible. At the core of mul-
tidimensional contexts we find ontologies written as Datalog± programs with
provably good properties in terms of query answering. We use this language to
represent dimension hierarchies, dimensional constraints, dimensional rules, and
specifying quality data. Query answering relies on- and triggers dimensional nav-
igation, and becomes an important tool for the extraction of quality data.

1 Introduction

Data quality assessment and data cleaning are context-dependent activities. More pre-
cisely, the quality of data has to be assessed with some form of contextual knowledge, in
particular, about the production and the use of data, among other possible dimensions
of data quality. Data quality refers to the degree in which data fits or fulfills a form
of usage [3, 22]. As expected, context-based data quality assessment requires a formal
model of context. Accordingly, we propose a model of context that addresses quality
concerns that are related to the production and use of data.

Here we follow and extend the approach in [4] that provides a model of context for
data quality assessment. In that work, the assessment of a database D is performed by
putting D in context, more precisely, by mapping it into a context C (Fig. 1, left), which
is represented as another database, or as a database schema with partial information,
or, more generally, as a virtual data integration system [24]. The latter may have some
materialized data and access to external data sources.

The quality of data in D is determined through additional processing, material or
virtual, of the data within the context. These contextual data may be imported from D
or may be already available at the context. The context may also contain application-
dependent knowledge associated to data quality, in the form of rules or semantic con-
straints. Data processing in the context leads to possible several quality versions of
D, forming a class Dq of intended, clean versions of D (Fig. 1, right). The quality
of D is measured in terms of how much D departs from (its quality versions in) D q:
dist(D,Dq). Of course, different distance measures may be used for this purpose [4].

In some cases, we may want to assess the quality of answers to a queryQ posed to
instance D or to obtain “quality answers” from D. This can be done appealing to the
class Dq of intended clean versions of D. For assessment, the set of query answers to



Q from D can be compared with the certain answers for Q, i.e. the intersection of the
sets of answers toQ from each of the instances inDq [21]. The certain answers become
what we could call the clean answers toQ from D [4]. So, if we want the clean answers
toQ from D, instead of computing the answers from D as usual, we compute the clean
answers (cf. bottom of Fig. 1).
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Fig. 1. Clean instances and query answers

When computing clean query
answers, instead of computing, ma-
terializing and querying all the in-
stances in class D, a form of query
rewriting can be attempted: a new query Qq is posed to D to obtain the clean answers
forQ. Some cases of rewriting were investigated in [4]. In this work we continue adopt-
ing this approach to data quality assessment and clean query answering. However, as we
will see, the contexts we consider in this work are more complex than those considered
in [4], and for good reasons.

Actually, an important contextual element was not considered in [4]: dimensions.
They were not considered as contextual elements for data quality analysis, but in prac-
tice, dimensions are naturally associated to contexts. Here, in order to capture general
dimensional aspects of data for inclusion in contexts, we take advantage of- and start
from the Hurtado-Mendelzon (HM) multidimensional data model [20], whose inception
was mainly motivated by data warehouses (DWH) and OLAP applications.

We extend the HM model by adding categorical relations associated to categories,
at different levels of the dimension hierarchies, possibly to more than one dimension
(think of generalized fact tables as found in data warehouses). It also include dimen-
sional constraints and dimensional rules, which could be treated both as dimensional
integrity constraints on categorical relations that involve values from dimension cate-
gories. However, dimensional constraints are intended to be used as denial constraints
that forbid certain combinations of values, whereas the dimensional rules are intended
to be used for data completion, to generate data through their enforcement via dimen-
sional navigation.

In this work we propose an ontological representation in Datalog± [8, 9] of the
extended HM model, and also mechanisms for data quality assessment based on query
answering from the ontology via dimensional navigation. As already suggested, the idea
is that a query to the ontology triggers dimensional navigation and the creation of miss-
ing data, in possible upward and downward directions, and on multiple dimensions.
Datalog± supports data generation through the ontological rules. This is particularly
useful, and also much in line with the way we understand and use contexts in every-
day life: Contexts allows us to extend or expand information that, otherwise, without
this extension, would be impossible or difficult to understand or make sense of. Fur-
thermore, this ontological approach captures well our general philosophy according to
which, contexts should be represented as formal theories into which other objects, like
database instances, are mapped, for contextual analysis, assessment, interpretation, and
additional processing [4].

Datalog± is an extension of classical Datalog, mainly through the use of existen-
tially quantified variables (aka. value invention) in rule heads. It has been successfully
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applied to the logical representations of data models and ontologies [11, 13]. Actually,
a multidimensional context -corresponding to the formalization of the extension of HM-
becomes a Datalog± ontology,M, that belongs to an interesting syntactic class of pro-
grams, for which some results are known. This allows us to give a semantics to our
ontologies, and apply some established and new algorithms for query answering.

More precisely, the core multidimensional ontologyM is a weakly-sticky Datalog ±

program [12], for which (conjunctive) query answering has polynomial-time data com-
plexity. In our case, weak-stickiness is due to the -as we argue, natural- assumptions
that: (a) dimension navigation (as captured by data generation) happens through rules
with body joins on categorical attributes (i.e. in categorical relations), whose values
come from dimension categories; and (b) there is no value invention for categorical
attributes. (We also discuss cases where these assumptions do not hold.)

Multidimensional ontologies are used to support quality data specification and ex-
traction.1 More precisely, and continuing with the above idea on this use of contexts,
it amounts to: (a) defining application-dependent quality predicates (they can be seen
as views capturing data quality concerns), (b) using them to define the quality versions
of the original predicates (relations) in the database D under quality assessment, and
(c) retrieving quality data by querying the (possibly virtual extensions of the) latter
predicates [4]. These predicate definitions may be based on data quality guidelines that
are captured as rules or semantic constraints, both of which may refer to categorical
attributes of predicates inM, without being part ofM. Rather, this “quality part” of
the context comes on top ofM. We establish that under reasonable conditions on these
extra definitions, the resulting extension ofM still retains the tractability of query an-
swering (even when weak-stickiness may be compromised).

About related work, in [6] dimensions become the basis for building contexts, or
more precisely database instances that are tailored according to certain dimensional
elements. This is done through a process of selection of relevant dimensional elements:
the dimension leaves a footprint on the data. As a result, the constructed database is
implicitly dimensional, and the dimensions as such may be lost as first-class objects in
the generated context.

In [26, 27] the authors consider the generation of data at different levels of a cate-
gory hierarchy, and at query answering time. This involves hierarchy navigation and an
extension of relational algebra that computes data by appealing to data at other levels
of the hierarchy. Actually, in our work we show how this process can be captured via
our Datalog± MD ontologies.

DWHs have been represented in expressive description logics (DL) [16, 17]. Pre-
liminary research on extensions in DL of the HM model, also for data quality purposes,
can be found in [23].

Summarizing, in this work we make the following contributions: 2

1. We extend HM data model and represent the extension as a Datalog± ontology that
contains: (a) categorical relations, (b) tuple-generating-dependencies, TGDs (a rule

1 In this work we do not explicitly address the problem of assessing the quality of the original
data through a numerical comparison with the quality data [4].

2 This work considerably extends [28], which contains basically the material of Section 2 here.
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incarnation of referential constraints), to connect the original data to categorical
relations, and the latter to dimensions; and (c) dimensional constraints.

2. We establish that the multidimensional ontology is a weakly-sticky Datalog± pro-
gram [12]. As a consequence, query answering can be done in polynomial time.

3. We analyze the effect of dimensional constraints on query answering, specifically
the separability condition [12] between TGDs and constraints that are equality-
genera-ting-dependencies, EGDs. We show that, by restricting variables in equali-
ties to appear categorical attributes, separability holds.

4. We propose a general approach for contextual data quality specification and ex-
traction that is based on MD ontologies, emphasizing the dimensional navigation
process that is triggered by queries about quality data. We illustrate the application
of this approach by means of an extended example.

2 An Extended, Motivating Example

This section illustrates the intuition behind categorical relations, dimensional rules and
constraints, and how they are used for data quality purposes. We assume, according to
the HM model (cf. Section 3), that a dimension consists of a finite set of categories
related to each other by a partial order.

 
 
 
 
 

 

 

  

    

Fig. 2. An extended multidimensional model

Example 1. The relational table Measurements (Table 1) shows body temperatures of
patients in an institution. A doctor wants to know “The body temperatures of Tom Waits
for September 5 taken around noon with a thermometer of brand B1” (as he expected).
Possible a nurse, unaware of this requirement, used a thermometer of brand B2, storing
the data in Measurements. In this case, not all the measurements in the table are up to the
expected quality. However, table Measurements alone does not discriminate between
intended values (those taken with brand B1) and the others.

For assessing the quality of the data in Measurements according to the doctor’s
quality requirement, extra contextual information about the thermometers in use may
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help. In this case, the table PatientWard, linked to the Ward category (Fig. 2, middle,
bottom). This categorical relation stores patient names for each ward of the institution.

Table 1. Measurements

Time Patient Value

1 Sep/5-12:10 Tom Waits 38.2

2 Sep/6-11:50 Tom Waits 37.1

3 Sep/7-12:15 Tom Waits 37.7

4 Sep/9-12:00 Tom Waits 37.0

5 Sep/6-11:05 Lou Reed 37.5

6 Sep/5-12:05 Lou Reed 38.0

Furthermore, the institution has a guideline
prescribing that: “Temperature measurement for
patients in a standard care unit have to be taken
with thermometers of Brand B1”. It can be used
for data quality assessment when combined with
categorical table PatientUnit (Fig. 2, middle,
top), which is linked to the Unit category, and
whose data are (at least partially) generated from
PatientWard by upward-navigation through dimension Hospital (Fig. 2, left), from cat-
egory Ward to category Unit.

Table 2. Measurements q

Time Patient Value
1 Sep/5-12:10 Tom Waits 38.2

2 Sep/6-11:50 Tom Waits 37.1

According to the guideline, it is now possi-
ble to conclude that, on days when Tom Waits
was in the standard care unit, his temperature val-
ues were taken with the expected thermometer:
for patients in wards W1 or W2 a thermometer of
brand B1 was used. These “clean data” -in rela-
tion to the doctor’s expectations- appear in relation Measurements q (Table 2).

Elaborating on this example, there could be a dimensional constraint: “No patient
in intensive care unit at any time after August /2005”. As stated, this constraint could be
represented as a “static” constraint on the categorical relation PatientUnit. However, it
could also be represented as one on the data generation process via upward-navigation
from PatientWard to PatientUnit, preventing the use of the third tuple in table Patient-
Ward. As such, this becomes a navigational constraint that also involves dimensions
Hospital and Time (Fig. 2, right). A third alternative is handling the constraint as a
“static” constraint on the join of PatientWard and PatientUnit via the patient name (Tom
Waits could not be both in ward W3 and intensive care on some dates). Our approach
will allow to handle the constraint in any of these three forms. �

Categorical relations may be incomplete, and new data can be generated for them,
which will be enabled through rules (tgds) of a Datalog± dimensional ontology. The
previous example shows data generation via upward navigation. Our next example
shows that downward navigation may also be useful. Our approach to multidimensional
contexts will support both.
Example 2. (ex. 1 cont.) Consider two additional categorical relations, WorkingSched-
ules (Table 3) and Shifts (Table 4), linked to categories Unit and Ward, resp. They store
schedules of nurses in units and shifts of nurses in wards, resp. A query to Shifts asks
for dates when Mark was working in ward W2, which has no answer with the data in
Table 4. A new guideline states: “If a nurse works in a unit on a specific day, he/she has
shifts in every ward of that unit on the same day”. It can be captured as a dimensional
rule connecting WorkingSchedules to Shifts via the dimension hierarchy. Downward
data generation using this rule, tuple 5 in Table 3, and the dimensional connection of
Standard to W1, W2, makes Mark have shifts in both W1 and W2 on Sep/9. �
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Table 3. WorkingSchedules

Unit Day Nurse Type
1 Intensive Sep/5 Cathy cert.

2 Standard Sep/5 Helen cert.

3 Standard Sep/6 Helen cert.

4 Terminal Sep/5 Susan non-c.

5 Standard Sep/9 Mark non-c.

Table 4. Shifts

Ward Day Nurse Shift

1 W4 Sep/5 Cathy night

2 W1 Sep/6 Helen morning

3 W4 Sep/5 Susan evening

3 Preliminaries

We first briefly review previous work in [4] on context-based data quality assessment.
The starting point is that data quality is context dependent. A context provides knowl-
edge about the way data are interrelated, produced and used, which allows us to make
sense of the data. In our view, both the database under quality assessment and the con-
text can be formalized as logical theories. The former is then put in context by mapping
it into the latter, though logical mappings and possibly shared predicates.

CS S

E

…

C

P

S’
’

Fig. 3. A context for data quality assessment

In Fig. 3, D is a
relational database (with
schema S) under quality
assessment. It can be rep-
resented as a logical theory
[31]. The context, C in the
middle, resembles a vir-
tual data integration sys-
tem, which can also be rep-
resented as a logical theory
[24]. The context has a re-
lational schema (or signa-
ture), C, in particular predicates with possibly partial extensions (incomplete relations).
The mappings in between are of the kind used in data integration or data exchange [19],
that can be expressed as logical formulas. In this paper, we are not concerned with how
such a context is created [4].

A subschema of C may have an instance I , but C have nicknames (copies) R ′ for
predicates R in S. Nicknames are used to to map (via the α i) the data in D into C, for
further logical processing. So, schema C can be seen as an expansion of S through a
subschema S ′. Some predicates in C are meant to be quality predicates (in P), which
are used to specify single quality requirements. There may be semantic constraints on
schema C, and also access (mappings) to external data sources, in E , that could be used
for data assessment or cleaning.

A clean version of D, obtained through the mapping into- and processing within
context C, is a possibly virtual instance Dq (or a collection thereof, as suggested in Fig.
1), for schema Sq (a “quality” copy of schema S). The extension of every predicate
in it, say Rq , is the “quality version” of relation R in D, and is defined as a view (via
the αq

i ) in terms of the nickname predicates in S ′, those in P , and other contextual
predicates. The quality of (the data in) instance D can be measured by comparing D
with the instanceDq or the set,Dq , of them. This latter set can also be used to define and
possibly compute the quality answers to queries originally posed to D, as the certain
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answers wrt. Dq . See [4] for more details, and different cases that may occur. In any
case, the main idea is that quality data can be extracted fromD by querying the possibly
virtual class Dq .

I 

C 

i
q 

schema C 

quality predicates 

P 

categorical 
 relations 

dimensions 

M 

i 

S’ 

nicknames 

Ri
’ 

Fig. 4. A multidimensional context

In this paper, we extend the approach
to data quality specification and extraction
we just described, by adding dimensions to
contexts, for multidimensional data quality
specification and extraction. In this case, the
context contains a generic multidimensional
ontology, the shadedM in Fig. 4, aka. “core
ontology” (and described in Section 4). This
ontology can be extended, within the context, with additional rules and constraints that
depend on specific data quality concerns (cf. Section 6).

According to the Hurtado-Mendelzon (HM) multidimensional data model [20], a
dimension schema, S = 〈K,↗〉, is a directed acyclic graph (a lattice), with K a set of
categories (represented as unary predicates), and↗ the parent-child relation between
categories.↗∗ denotes the transitive and reflexive closure of↗, and is a partial order
with a top category, All, which is reachable from every other category. There is a unique
base category, which does not have children. A dimension instance for schema S is a
tuple D = 〈N , <, σ〉, with N a set of elements, < is a parent-child relation between
elements, and σ : N → K, the membership function, is total and injective. A dimension
instance is shown in Fig. 2, left. The partial order < parallels (is consistent with) ↗:
a < b implies σ(a) ↗ σ(b). σ(e) = k is also denoted as e ∈ k or k(e) (holds). <∗ is
the transitive and reflexive closure of <, and is used to define the roll-up relations for
any pair of categories k and k ′: Lk′

k (D) = {(e, e′) | e ∈ k, e′ ∈ k′ and e <∗ e′}.
Datalog± [8, 9] is a family of rule languages that properly extends plain Datalog: (a)

rules (aka. tgds) may have existential quantifiers in the heads; (b) equality-generating
dependencies (egds), i.e. rules with only equality in the head; and (c) negative con-
straints (NCs ), that are rules with⊥, a false propositional atom, in the heads, indicating
that the rule body cannot be true.

Example 3. This Datalog± program shows a tgd, an egd, and an NC, in this or-
der: ∃xAssist(d, x) ← Doctor(d); x = x′ ← Assist(d, x),Assist(d, x′);
⊥ ← Specialist(d, x, n),Nurse(d, n). �

Datalog± has been used to represent ontological knowledge and conceptual data mod-
els [11, 13]; and for ontology-based data access [15, 18]. The underlying extensional,
relational database (the facts) I for a program may be incomplete, and the chase is the
standard procedure for completing the database, through the enforcement of the pro-
gram rules. When a tgd is applied, new atoms are created, possibly including fresh nulls
(for the existential variables), and the whole run of the chase may be non-terminating,
leading to an infinite complete database. The enforcement of an egd equates nulls with
nulls or nulls with constants or fails. For a set Σ of tgds and egds, chase(I, Σ) denotes
the possibly infinite instance resulting from the non-failing chase of Σ on I.

Even with an infinite chase(I, Σ) it is possible that conjunctive query answering
(QA) is decidable (or computable). The − in Datalog± stands for syntactic restrictions
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on the interaction of tgds in Σ that ensure decidability of QA, and, in some cases, also
tractability (in data). So, Datalog± is family of languages, with different degrees of
expressivity and computational properties. Some of them are: linear, guarded, weakly-
guarded, sticky, and weakly-sticky Datalog± [8, 9, 10, 11, 12]. In this work (cf. [30, ap-
pendix A]), we are particularly interested in weakly-sticky (WS) Datalog± [12], which
extends sticky Datalog± [10].

4 Extending the HM Model with Datalog±

We extend the HM model introducing categorical relations, each of them having a rela-
tional schema with a name, and attributes, some of which are categorical and the other,
non-categorical. The former take values that are members of a dimension category. The
latter take values from an arbitrary domain. Categorical relations have to be logically
connected to dimensions. For this we use a Datalog± ontology M, which has a re-
lational schema SM, an instance DM, and a set ΣM of dimensional rules, and a set
κM of constraints. Here, SM = K ∪ O ∪ R, with K a set of unary category predi-
cates,O a set of parent-child predicates, capturing<-relationships for pairs of adjacent
categories, and R a set of categorical predicates, say R(C1, . . . ;N1, . . .), where, to
highlight, categorical and non-categorical attributes (C is vs. Njs) are separated by “;”.
Example 4. Categorical relation PatientWard(Ward ,Day;Patient) in Fig. 2 has cat-
egorical attributes Ward and Day, connected to the Hospital andTime dimensions, resp.
Patient is non-categorical. Ward(·),Unit(·) ∈ K; O contains, e.g. a binary predicate
connecting Ward to Unit; andR contains, e.g. PatientWard. �
The (extensional) data, DM, associated to the ontologyM’s schema are the complete
extensions for categories in K and predicates in O that come from the dimension in-
stances. The categorical relations (with predicates in R) may contain partial data, i.e.
they may have incomplete. They can belong to instance I in Fig. 4. Dimensional rules
in ΣM are those in (c) below; and constraints in κM, those in (a) and (b).
(a) Referential constraints between categorical attributes and categories as negative

constraint:3 (R ∈ R, K ∈ K; ē, ā are categorical, non-categorical, resp.; e ∈ ē)
⊥ ← R(ē; ā),¬K(e). (1)

Notice that K , to which negation is applied, is a closed, extensional predicate.
(b) Additional dimensional constraints, as egds or NCs: (R i ∈ R, Dj ∈ O, and x, x′

stand both for either categorical or non-categorical attributes in the body of (2))
x = x′ ← R1(ē1; ā1), ..., Rn(ēn; ān), D1(e1, e

′
1), ..., Dm(em, e′m). (2)

⊥ ← R1(ē1; ā1), ..., Rn(ēn; ān), D1(e1, e
′
1), ..., Dm(em, e′m). (3)

(c) Dimensional rules as Datalog± tgds:

∃āz Rk(ēk; āk)← R1(ē1; ā1), ..., Rn(ēn; ān), D1(e1, e
′
1), ..., Dm(em, e′m). (4)

Here, āz ⊆ āk, ēk ⊆ ē1∪ ...∪ ēn ∪{e1, ..., em, e′1, ..., e
′
m}, āk�āz ⊆ ā1 ∪ ...∪ ān;

and body joins are only between categorical attributes (in the categorical relations
Ri(ēi; āi)), and attributes in parent-child predicates Dj(ej , e

′
j). Value invention is

only on non-categorical attributes (we will consider relaxing this later on).

3 An alternative and more problematic approach, may use tgds between categorical attributes
and categories, making it possible to generate elements in categories or categorical attributes.
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Some of the lists in the bodies of (2)-(4) may be empty, i.e. n = 0 or m = 0. This
allows us to represent, in addition to properly “navigational” constraints, also classical
constraints on categorical relations, e.g. keys or FDs.
Example 5. (ex. 1 and 4 cont.) In relation PatientUnit, the categorical attribute Unit
takes values from the Unit category. We use a constraint of the form (1), namely:
⊥ ← PatientUnit(u, d ; p),¬Unit(u). The constraint “No patient in intensive care
unit after August 2005” becomes a dimensional (navigation) constraint of the form (3):

⊥ ← [PatientWard(w , d ; p),UnitWard(Intensive, w), (5)

MonthDay(August/2005, d)].

Alternatively, we could apply a constraint directly on PatientUnit , without explicit
navigation in the Hospital dimension, but we still need mention navigation in the Time
dimension: ⊥ ← PatientUnit(Intensive, d ; p),MonthDay(August/2005, d).

An egd of the form (2) says that “All thermometers in a unit are of the same type”:

t = t′ ← Therm(w , t ; n),Therm(w ′, t ′; n ′),UnitWard(u,w),UnitWard(u,w ′) (6)

with Therm(Ward ,Thertype ;Nurse) a categorical relation, and Ward, Thertype cate-
gorical attributes (the latter for an Instrument dimension). This egd illustrates the flexi-
bility of our approach. Even without having a categorical relation at the Unit, we could
still impose a condition at that level.4

The following tgds generate data from PatientWard to PatientUnit, and from
WorkingSchedules to Shifts, resp. They are of the form (4).

PatientUnit(u, d ; p) ← PatientWard(w , d ; p),UnitWard(u,w). (7)

∃z Shifts(w , d ; n, z ) ← WorkingSchedules(u, d ; n, t),UnitWard(u,w). (8)

The existential variable in (8) makes up for the missing, non-categorical attribute in the
“parent” relation WorkingSchedules. This is not needed in (7). �
Remark 1. A general tgd of the form (4) enables upward- or downward-navigation,
depending on the body joins. The direction is determined by the dimension levels of
categorical attributes in the joins. For simplicity, assume that there is a single D j ∈ O
in the body (as in (7) and (8)). If the join is between R i(ēi; āi) and Dj(ej , e

′
j) then: (a)

(one-step) upward navigation is enabled, from e ′
j to ej , when e′j ∈ ēi (i.e. e′j appears

in Ri(ēi; āi)) and ej ∈ ēk, i.e in the head). (b) (one-step) downward navigation is
enabled, from ej to e′j , when ej occurs in Ri and e′j occurs in Rk. Several occurrences
of parent-child predicates in a body capture multi-step navigation. �

Example 6. (ex. 5 cont.) Rule (8) captures downward-navigation; and this is a gen-
eral behavior with tgds of the form (4), when drilling-down via (8), from a tuple,
say WorkingSchedules(u, d;n, t) via the category member u (for Unit), for each
child w of u in the Ward category, a tuple for Shifts is generated, as specified in
the body of (8). For example, chasing (8) with the last tuple in Table 3, generates
the new tuple 〈W1, Sep/9, Mark,⊥〉 in Table 4, with a fresh null for the shift (simi-
larly for W2). This allows us to answer the query about the dates Mark works in W1:
Q′(d) : ∃sShifts(W1, d, Mark, s). We obtain Sep/9.

4 If we have that relation, as in Example 1, then (6) could be replaced by a “static”, non-
navigational FD. This issue is further discussed in [30, appendix B].
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Instead, the join between PatientWard and UnitWard in (7) enables upward-
dimension navigation; and generates only one tuple for PatientUnit from each tuple
in PatientWard, because each Ward member has only one Unit parent. �

5 Properties of MD Datalog± Ontologies

Here, we first establish the membership of our MD ontologies,M (cf. Section 4) of
a class of the Datalog± family. Membership is determined by the set ΣM of its tgds.
Next, we analyze the role of the constraints in κM, in particular, of the set εM of egds.

Proposition 1. MD ontologies are weakly-sticky Datalog± programs. �

The proof (as other proofs) and a review of weakly-sticky Datalog± [12] can be found in
the extended version [30, appendix A.]. A consequence of this result is that conjunctive
query answering (QA) from ΣM is in polynomial-time in data [12]. The complexity
stays the same if we add negative constraints, NCs, of the forms (1) and (3), because
they can be checked through the conjunctive queries in their bodies [12]. However,
combining the egds in εM with ΣM could change things, and, in principle, even lead
to undecidability of QA [7].

Example 7. Consider I = {Surgery(W1, John)} and a weakly-sticky set ΣT of tgds:
σ1 : ∃z Surgeon(w, z) ← Surgery(w, p); σ2 : ∃y Assist(w, y) ← Surgery(w, p);
σ3 :∃z Surgery(z, x)←Assist(w, x),Surgeon(w′, x). Here, chase(I,ΣT )={Surgery
(W1, John),Assist(W1,⊥1), Surgeon(W1,⊥2)}.

Now, if we add the egd ε: y=z ← Assist(w, z), Surgeon(w, y), the chase is infi-
nite: chase(I, ΣT ∪ {ε}) = {Surgery(W1, John), Assist(W1,⊥1), Surgeon(W1,⊥1),
Surgery(⊥2,⊥1), Assist(⊥2,⊥3), Surgeon(⊥2,⊥3), Surgery(⊥4,⊥3), . . .}.

These non-failing chases give different answers to the boolean conjunctive query
(BCQ) Q : ∃wxw′(Assist(w;x) ∧ Surgeon(w′;x)): chase(I, ΣT ∪ {ε}) |= Q, but
chase(I, ΣT ) 
|= Q. �

This example shows a harmful interaction between the tgds and an egd. They infinitely
fire each other, making infinite an initially finite chase. The interaction also has an
effect on QA. A separability condition on the combination of egds and tgds guarantees
a harmless interaction wrt. QA.

Definition 1. [11, 14] Let Σ be formed by a set ΣT of tgds and a set ΣE of egds. ΣE

and ΣT are separable if, for every instance I for which the chase of Σ on I does not
fail, and BCQ Q, chase(I, Σ) |= Q if and only if chase(I, ΣT ) |= Q. �

Example 7 shows a case of non-separability. Separability tells us that we can safely
ignore ΣE for QA. More precisely, if separability holds and QA is decidable under the
tgds, then it is also decidable under the combination of tgds and egds : (a) (combined)
chase failure can be decided by posing conjunctive queries associated to the bodies of
the egds [14, theo. 1]; (b) if it does not fail, QA can be done with the tgds alone.
Even more, under separability, the complexity of QA on I ∪ Σ is the same as for
I ∪ΣT [11, 13, 14].
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Proposition 2. For an MD ontologyM with a set ΣM of tgds as in (4) and set εM of
egds as in (2), separability holds if, for every egd in εM, the variables in the equality (in
the head) occur in categorical positions in the body. �
In combination with Proposition 1, we obtain:

Corollary 1. Under the hypothesis of Proposition 2, QA from an MD ontology can be
done in polynomial-time in data. �
Under the hypothesis of Proposition 2, our MD ontologies are separable and enjoy
the good properties we just mentioned. However, some good properties can still be
preserved with non-separable MD ontologies. The next example motivates this result.
Example 8. (ex. 7 cont.) Let us modify our ontology. Now, Σ ′

T = {σ1, σ2},
and the egd is still ε. Now, both chases are finite: chase(I, Σ ′

T ∪ {ε})
= {Surgery(W1; John), Assist(W1;⊥1), Surgeon(W1;⊥1)}; and chase(I, Σ ′

T ) =
{Surgery(W1; John), Assist(W1;⊥1), Surgeon(W1;⊥2)}. (As before, we use “;” to
separate categorical from non-categorical attributes.) The egd is not separable from
the tgds. Actually, for the same query Q of Example 7, and the non-failing chases, it
holds: chase(I, Σ ′

T ∪ {ε}) |= Q, but chase(I, Σ ′
T ) 
|= Q. �

In this example, despite the lack of separability, the application of egds does not trigger
new tgds during the chase (as happens in Example 7). This is due (cf. Lemma 1 below)
to the fact that Σ ′

T ∪ {ε} respects a condition imposed on our MD ontologies: joins
in tgd bodies only between categorical attributes. (The ontology in Example 7 had
σ3, which violates this condition.) Lemma 1 below tells us that with MD ontologies,
applying egd chase steps does not increase the number of tgd chase steps. 5

Lemma 1. For an MD ontologyMwith a set ΣM of tgds as in (4) and a set εM of egds
as in (2), applying an egd chase step does not cause any new application of a ground
tgd, i.e. a tgd body ground instantiation that did not appear without the egds. �

With weakly-sticky sets of tgds the chase may not terminate, due to an infinite number
of tgd chase steps. This is in particular the case for the set of tgds in our MD ontologies.
However, QA on weakly-sticky tgds can be done in polynomial-time by querying an
initial portion of the chase that has a polynomial depth [12]. By Lemma 1, if we add
egds, QA can still be done by querying an initial portion of the chase (including egds
now) that has the same (polynomial) depth as that for tgds alone. So, although egds in
our MD ontologies may have an effect on QA (the two initial portions can be different),
the complexity does not change wrt. to having only the tgds.

Proposition 3. For an MD ontology, QA is in polynomial-time in data. �

6 MD Contexts for Quality Data

We now show in general how to use a MD context, C, containing MD ontologies for
quality data specification and extraction wrt. a database instance D for schema S. We
will at the same time, for illustration and fixing ideas, revisit the example in Section 2,
putting it in terms of the MD context elements we presented in Section 4. Context C, as
shown in Fig. 4, contains:

5 We assume the chase, after the enforcement of a (ground) tgd, applies all the egds.
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1. Nickname predicates R′ ∈ S ′ for predicates R of original schema S. In this case,
the R′ have the same extensions as in D, producing a material or virtual instance D ′

within C.
For example, Measurements ′ ∈ S ′ is a nickname predicate for Measurements ∈

S, whose initial contents (in D) is under quality assessment.

2. The core MD ontology,M, that includes a partial instance, DM, containing dimen-
sional, categorical data; and the Datalog± ontology with tgds ΣM, and constraints
κK, among them, the egds εM of Section 4. We assume that application dependent
guidelines and constraints are all represented as components ofM.

In our running example, PatientUnit , PatientWard , WorkingSchedules and
WorkingTimes are categorical relations. UnitWard , DayTime are parent-child rela-
tions in the Hospital and Time dimensions, resp. The followings are dimensional rules
(tgds) of ΣM: (with (9) a new version of (7) allowing upward-navigation in two dimensions)6

WorkingTimes(u, t;n, y) ← WorkingSchedules(u, d;n, y),DayTime(d, t).

PatientUnit(u, t; p) ← PatientWard (w, d; p),DayTime(d, t),UnitWard(u,w). (9)

3. The set of quality predicates,P , with their definitions in non-recursive Datalog (pos-
sibly with negation,not ), in terms of categorical predicates inR and built-in predicates.
They may have partial or full extensions in the contextual instance I (that includes
DM). A quality predicate reflects an application dependent specific quality concern.

Now, TakenByNurse and TakenWithTherm are quality predicates with defini-
tions on top ofM, addressing quality concerns about the nurses and the thermometers:

TakenByNurse(t, p, n, y)←WorkingTimes(u, t;n, y),PatientUnit(u, t; p). (10)

TakenWithTherm(t, p, b)← PatientUnit(u, t; p), u = Standard, b = B1. (11)

Furthermore, and not strictly inside context C, there are predicates R q
1, ..., R

q
n ∈ Sq ,

the quality versions ofR1, ..., Rn ∈ S. They are defined through quality data extraction
rules written in non-recursive Datalog, in terms of nickname predicates (in S ′), categor-
ical predicates (in R), and the quality predicates (in P), and built-in predicates. Their
definitions (the αq

i in Fig. 4) impose conditions corresponding to user’s data quality
profiles, and their extensions form the quality data (instance).

The quality version of Measurements is Measurement q ∈ Sq , with the following
definition, which captures the intended, clean contents of the former:

Measurementq(t, p, v)← Measurement ′(t, p, v),TakenByNurse(t, p, n, y), (12)

TakenWithTherm(t, p, b), b = B1, y = certified.

Quality data can be obtained from the interaction between the original source D
and the context C, in particular using the MD ontologyM. For that, queries have to be
posed to the context, in terms of predicates S q , the quality versions of those of D. A
query could be as direct as asking, e.g. about the contents of predicate Measurement q

above, or a conjunctive query involving predicates S q.
A naive user -not familiar with the exact interaction with the context- who expects

to obtain quality data from D will express a query Q is terms of the original schema

6 A tgd may support multidimensional navigation and in multiple directions.
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S. However, the information system will rewrite the query into Q q , in terms of the
predicates in Sq . Consequently, the quality answers to Q, are defined as those that are
certain through the context:

Definition 2. For D an instance for schema S, C the context containing MD ontology
M, and definitions ΣP , Σq of quality and quality version predicates, resp., the set of
clean answers to a conjunctive queryQ(x̄) on schema S is:

QAnsCD(Q) = {c̄ | D ∪M∪ΣP ∪Σq |= Qq[c̄]}. �

For example, this is the initial query asking for (quality) values for Tom Waits’
temperature: Q(t, v) : Measurements(t, Tom Waits, v) ∧ Sep5-11:45 ≤ t ≤
Sep5-12:15, which, in order to be answered, has to be first rewritten into: Q q(t, v) :
Measurementsq(t , Tom Waits, v) ∧ Sep5-11:45 ≤ t ≤ Sep5-12:15.

To answer this query, first (12) can be used, obtaining a contextual query:

QC(t, v) : Measurement ′(t, p, v) ∧ TakenByNurse(t, p, n, certified) ∧
TakenWithTherm(t, p, B1) ∧ p = Tom Waits ∧
Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

This query will in turn, use the contents for Measurement ′ coming from D, and the
quality predicate definitions (10) and (11), eventually leading to a conjunctive query
expressed in terms of Measurement ′ and MD predicates only, namely:

QM(t, v) : Measurement ′(t, p, v) ∧WorkingTimes(u, t;n, y) ∧
PatientUnit(u, t; p) ∧ u=Standard ∧ y=certified ∧
p = Tom Waits ∧ Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

At this point, QA from a weakly-sticky ontology has to be performed. We know that
this can be done in polynomial time in data. However, there is still a need for practical
QA algorithms. Doing this goes beyond the scope of this paper. In [29] we describe
some ideas on the development and optimization of such an algorithm.

7 Conclusions
Contexts, in particular, the multidimensional ones introduced in this work, allow us to
specify data quality conditions, and to retrieve quality data. This is done by first map-
ping a data source, possibly with dirty data, into the context. The quality data can be
materialized (possibly generating more than one intended clean instance) or be virtually
defined. In both cases, it can be retrieved via queries. This latter idea of cleaning data
on-the-fly is reminiscent of consistent query answering [5]. The main and important
difference is that, instead of having (possibly violated) integrity constraints, with con-
texts we have a much more complex semantic framework for the definition of “repairs”
(intended clean instances in our case) and consistent answers (the certain clean answers
here).

There is still much to do in terms of development and optimization of practical
query answering algorithms for weakly-sticky ontologies. Some first steps are reported
in [29]. Implementation and experiments are matter of future work.
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Several extensions of the current work have been or are being investigated. Those
extensions can be found in the extended version of this paper [30, appendix B]. Some
of them are as follows:

1. Uncertain downward-navigation when, tgds allow existentials on categorical at-
tributes. A parent in a category may have multiple children in the next lower category.
Under the assumption of complete categorical data, we know it is one of them, but not
which one.

2. Our MD ontologies fully capture the taxonomy-based data model [26, 27] and its tax-
onomy relational algebra (TRA) for query answering. Our appraoch goes beyond [27]
in the sense that, first, our categorical relations, by having non-categorical attributes,
generalize t-relations. Secondly, the dimensional rules in our MD ontologies capture
the TRA, and offer existential variables for handling incomplete data. Finally, we also
include and support ontological constraints, such as NCs and egds for restricting di-
mension navigation.

3. The negative constraints (and egds, mainly in the separable case) can and are checked
on the result of the chase. We think a more natural and practical approach would be to
integrate constraint checking with data generation, restricting the latter process. This
would amount to compiling constraints into tgds, which might lead to the use of nega-
tion in tgd bodies. This opens new problems. However, limited forms of negations have
been introduced in Datalog± [13].

4. We may relax the assumption on complete categorical data. This brings many new
issues and problems that require investigation; from query answering to the mainte-
nance of structural semantic constraints, such as strictness and homogeneity, on the
HM model and our extension of it.
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A Appendix

A.1 Brief review of weakly sticky Datalog±
Sticky Datalog± programs are defined by means of a body variable marking procedure
that takes as input the set Σ of tgds. It uses positions, that indicate arguments (or their
numbers) in predicates, and has two steps:
(1) Preliminary step: for each σ ∈ Σ and variable x ∈ body(σ), if there is an atom
a ∈ head(σ) such that x does not appear in a, mark each occurrence of x in body(σ).
(2) Propagation step: for each σ ∈ Σ, if a marked variable in body(σ) appears at
position p, then for every σ ′ ∈ Σ (including σ), mark each occurrence of the variables
in body(σ′) that appear in head(σ′) in the same position p.

Example 9. The following program shows the marked variables (underlined) after ap-
plying the preliminary step:

Specialist(d, x, n)← Assist(d, x),Nurse(d, n).

Doctor(x)← Specialist(d, x, n).

In the first rule, variables d and n are marked after applying one propagation step since
they appear in head in marked positions only (Specialist [1], Specialist [3]), and the final,
marked program is:

Specialist(d, x, n)← Assist(d, x),Nurse(d, n).

Doctor(x)← Specialist(d, x, n). �

A set of tgds is sticky when, at the end of the marking procedure, there is no tgd with a
marked variable in its body that occurs more than once. From Example 9, we can see
that the program is not sticky since d in the first rule is marked and occurs twice in
Assist [1] and Nurse[1].

The definition of weakly-sticky (WS) Datalog± programs appeals to conditions on
repeated variables in tgd bodies, and is based on the notion of dependency graph and
the finite positions in such a graph. More precisely, given a set of tgds Σ over schema S,
a directed dependency graph GΣ(V,E) is constructed. The vertices in V are positions
of the predicates in S, and the edges in E are defined as it follows. For every σ ∈ Σ
and non-existential variable x in head(σ) and in position p in body(σ): (1) for each
occurrence of x in position p ′ in head(σ), create an edge from p to p′; (2) for each
existential variable z in position p′′ in head(σ), create a special edge from p to p ′′.

Example 10. Consider a set of tgds Σ:

∃x Assist(x, n)← Assist(n, d).

Specialist(d, x, n)← Assist(d, x),Nurse(d, n).

Doctor(x)← Specialist(d, x, n).
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Fig. 5. Dependency graph for a set of tgds

First of all, the marked variables
are the result of the marking procedure
used to characterize the sticky programs
(This is not required for the construction
of the dependency graph, but will be
needed to identify WS programs). The
marking already shows that the program is not sticky (due to the doubly marked vari-
able d in the body of the second rule).

Fig. 5 shows the dependency graph of Σ, where special edges are shown by dashed
arcs. �

The rank of a position is the maximum number of special edges over all (finite or
infinite) paths ending at that position. Accordingly,ΠF (Σ) denotes the set of positions
of finite rank, and Π∞(Σ) the set of positions of infinite rank. Intuitively, ΠF (Σ)
captures positions where finitely many values may appear during the chase; andΠ∞(Σ)
those where infinitely many fresh null values may occur during the chase. A set of tgds,
Σ, is weakly-sticky when, for every tgd and every variable in its body that occurs more
that once, the variable is either non-marked or appears at least once in a position in
ΠF (Σ)

Example 11. (example 10 cont.) According to the graph in Fig. 5, Π F (Σ) contains
Specialist [3], Nurse[1] and Nurse[2] and the other positions of the predicates in Σ
are in Π∞(Σ). The program in Example 10 is weakly-sticky. Notice that, the shared
variable d in the second rule body is marked, but it appears at least once in a finite
position, that is Nurse[1]. �

A.2 Some Proofs

Proof of Proposition 1: We consider the set ΣM of dimensional rules of the form (4).
To prove the weak-stickiness, it suffices to show that every variable that occurs more
than once in the rule body, appears at least once in a finite position (ΠF (ΣM)). Due
to the syntactic restrictions on the tgds in (4), repeated variables are allowed only in
categorical positions (i.e. for categorical attributes). So, it is good enough to verify that
categorical positions are in ΠF (Σ).

Actually, in a rule of the form (4), a variable appears either in categorical positions
or in non-categorical positions (but not both). Furthermore, special edges can only end
with non-categorical positions, because existential variables are allowed only in those
positions. Therefore, in the dependency graph of ΣM, although there might be a path
from a categorical position to a non-categorical position (by a special edge), there is no
path from a non-categorical position to a categorical position. This establishes that there
is no path ending with a categorical position that includes a special edge. Therefore,
every categorical position is in ΠF (Σ). (In fact, every categorical position has zero
rank.) �
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Proof of Proposition 2: We have to show that, for every instance DM, if
chase(DM, ΣM) does not fail, then chase(DM, ΣM ∪ εM) |= Q if and only if
chase(DM, ΣM) |= Q. For this, notice that our egds never equate two nulls or a
null with a constant. This is because the equality is on variables that appear in categor-
ical positions, and no null value will appear in them during the chase (cf. the proof of
Proposition 1). Therefore, there is an applicable egd iff the chase fails (by equating two
constants). So, either the chase fails, in which case the result is immediate, or it does
not fail, but the egds have no effect on QA �
.

Proof of Lemma 1: Let’s assume there is an applicable egd σ ∈ εM during the chase
procedure. Notice that, σ equates either two categorical variables or two non-categorical
variables. We assume they are non-categorical because equating categorical variables
causes failure (there is no value invention in categorical positions) and the proof is
immediate. Since, the shared variables in tgds of ΣM as in (4) are categorical, applying
σ does not change the applicability of any tgd in ΣM. �

B Appendix: Discussion and Extensions

In this section we describe several extensions of the material presented in the main body
of the paper. We also point to further developments are are matter of ongoing and future
research. In this section we still make the assumption that categorical data are complete.
We relax this assumption only in the final subsection, Section B.6.

B.1 Uncertain downward-navigation
Table 5. DischargePatients

Inst. Day Patient
1 H1 Sep/9 Tom Waits
2 H1 Sep/6 Lou Reed
3 H2 Oct/5 Elvis Costello

General dimensional tgds of the form (4) re-
strict existential variables to non-categorical at-
tributes. Under complete categorical data -the as-
sumption we have made so far- we might want ex-
istentials on categorical attributes. These existentials are not relevant for upward nav-
igation since every category member has a unique parent at the next upper level. But,
downward navigation may find multiple children for category members, which creates
uncertainty about the categorical values the existential values are associated to.

Example 12. (ex. 1 cont.) Consider an additional categorical relation DischargePa-
tients (Table 5), about patients leaving an institution. Since patient was in a unit, we
expect DischargePatient to generate data for PatientUnit, at the Unit level, down from
the Institution level. For example, through a tgd such as:

∃uInstitutionUnit(i , u),PatientUnit(u, d ; p)←DischargePatients(i, d; p). (13)
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Due to the existential on Unit, this tgd is not of the form (4) (the conjunction in the
head can be eliminated with extra rules). More importantly, it involves a choice from
the finitely many and fixed members of Unit associated to a member of Institution. The
uniqueness of this member of the Unit category can be implied by an egd as follows:

u = u′ ← PatientUnit(u, d; p),PatientUnit(u′, d; p). �
The existential variable in (13) represents a choice between the child elements

while navigating downward from a parent element. This is fundamentally different from
usual existential variables as in (4) that express value invention. The existential variable
in (13) can be captured by the following rules, as one of them uses disjunction for
uncertainty:

[PatientUnit(Standard,d; p)∨
PatientUnit(Intensive,d; p)]← DischargePatients(H1,d; p). (14)

PatientUnit(Terminal,d; p)← DischargePatients(H2,d; p). (15)

As these partially grounded rules show, uncertainty only appears in (14) when we have
multiple child elements (Standard and Intensive) with a parent element (H1).
There is no uncertainly in (15) that navigates downward from a single parent (H2)
to its child (Terminal). Clearly, this partial grounding depends on categorical data.
Alternatively, we can employ a new data-independent syntactic form to allow a different
kind of existential variable (e.g.u) that extends over existing values of a unary predicate,
Unit(·):
∃u[∨Unit ] InstitutionUnit(i , u),PatientUnit(u, d ; p)←DischargePatients(i, d; p).

This idea is similar to nominals in DL [1] where each individual (e.g. Standard,
Intensive and Terminal) in a concept (e.g. Unit), itself is treated as a new concept.

The semantics of such rules can be defined as disjunctive Datalog programs with ex-
istential variables (Datalog∃,∨ [2]). That is extending universal models with the notion
of universal model sets. They allows multiple universal models each of which captures
a choice between the elements in the head of the rules. As a future work, we intend to
study the complexity of QA on an MD ontology enhanced with these rules. We also
want to extend existing QA algorithms [29] on weakly-sticky ontologies to be used for
an enhanced MD ontology with these rules. This possibly involves changing the chase
procedure to make choices that results to generating multiple chase instances.

B.2 Categorical keys

In Section 4 we did not make the assumption that the combination of categorical at-
tributes in categorical relations for a key for them. Notice that this is usually the case
in fact tables in DWHs. Making this assumption would add extra egds to our MD on-
tologies. According to Lemma 1, such egds do not increase the complexity of query
answering. The categorical keys assumption simplifies the MD ontology in the sense
that the chase for such an MD ontology always terminates. That is due to finitely many
possible key combinations which in turn follows from our assumption about complete
categorical data.
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B.3 Interaction of quality predicate definitions and MD ontologies

As we saw in Section 6, quality predicates (and quality version predicates) are defined
on top of the weakly-sticky MD ontologyM. The following example shows that the
combination may lead to a non-weakly-sticky ontology, even when the extra definitions
are in plain Datalog.

Example 13. Consider (8) and the following tgd inΣM for categorical relations Shifts ,
PatientWard , and WorkingSchedules from Section 2:

∃n′∃t WorkingSchedules(u, d;n′, t)← Shifts(w, d;n, z),UnitWard(u,w).

Let us add a definition of a quality predicate PreferredUnits(Unit):

σ : PreferredUnits(u)← Shifts(w, d;n, z),WorkingSchedules(u, d;n, t),

z = morning, t = certified.

Although the tgds above for a weakly-sticky ontology, the combination with σ breaks
this property. That is because Shifts [3] and WorkingSchedules [3] are positions in
Π∞(ΣM ∪ {σ}), and n in σ’s body is repeated in only marked positions. �

This kind of loss of weakly-stickiness is not a problem. The quality predicate exten-
sions (or parts thereof) can still be computed as conjunctive queries on a weakly-sticky
ontology, adding an extra, upper layer to the ontology that can be computed in polyno-
mial time. QA can be done via quality predicate unfolding as a first step, as illustrated
in Section 6.

B.4 Navigational vs. static constraints

In Section 4, we introduced the general syntactic forms of (2) and (3) for egds and NCs.
These syntactic forms impose some semantic constraints while performing dimension
navigation in their bodies. They are also general enough to represent navigation free
static egds and negative constraints that can encode general integrity constraints such
as functional dependencies and key constraints.

In Example 14, we show that, in principle, the dimension navigation can be sepa-
rated to be done in a preliminary phase using a rule of the form 4. Then, the semantic
constraints are imposed on the result after navigation is done.

Example 14. Consider the egd of (6). We can split it into a dimensional rule of the
form (4) and a static egd as follows:

ThermTemp(u, t ; n)←Therm(w , t ; n),UnitWard(u,w).

t = t′ ←ThermTemp(u, t ; n),ThermTemp(u, t ′; n ′).

Similarly, for (5), the following dimensional rule and static NC imply the same con-
straint:

PatientTemp(u,m; p)←PatientWard(w, d; p),UnitWard(u,w),MonthDay(m, d).

⊥ ← PatientTemp(Intensive, August/2005; p). �
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The flexible syntactic forms of (2) and (3) are particularly important since they
impose constraints while performing navigation. As a result, they remove some unnec-
essary chase steps during the chase procedure by avoiding additional predicates (e.g.
ThermTemp and PatientTemp).

The negative constraints (and egds , mainly in the separable case) can and are
checked on the result of the chase. We think a more natural and practical approach
would be to integrate constraint checking with data generation, restricting the latter
process. This would amount to compiling constraints into tgds, which might lead to the
use of negation in tgd bodies. This opens new problems. However, limited forms of
negations have been introduced in Datalog± [13].

B.5 Datalog± and taxonomy-based queries

In this section, we propose a reconstruction of taxonomy-based data model [27] us-
ing the MD ontology. The main elements of this data model are taxonomy, t-relations
(taxonomy-relations) and TRA (taxonomy-based relational algebra) for QA on t-
relations. First, we shortly review the taxonomy-based model and then show how it
can be captured by the MD ontology.

A taxonomy T is a set of h-domains (hierarchical domains). An h-domain is a set
of levels with a partial order between them (similar to dimensions in HM data model,
where levels are categories). A level has a set of members. An h-domain and its levels
must satisfy some basic conditions, similar to dimensions in HM data model , to be a
valid h-domain (cf. [27]).

A t-relation schema (t-schema) is defined over a taxonomy T by R = (C 1 :
l1, ..., Ck : lk) where R is relation name, each Ci is a distinct attribute name and each li
is a level of some h-domain in T . A t-tuple t over a t-schema R = (C1 : l1, ..., Ck : lk)
for a taxonomyT is a function mapping each attributeC i to a member of li . A t-relation
over R is a set of t-tuples over R.

A t-relation is represented in an MD ontology by a categorical relation. Let R(C 1 :
l1, ..., Ck : lk) be a t-schema. The t-relation is captured in the MD ontology by a cat-
egorical relation with the schema, R(C1, ..., Cn; ) (without non-categorical attribute).
Each categorical attribute Ci replacing an attributes Ci of t-relation has a category that
correspond to the level li.

Example 15. PatientWard in Example 1 can be represented in the taxonomy-aware data
model as a t-relation with schema, PatientWard =(ward :Ward , day :Day , patient :
Patients) where Ward, Day and Patient are levels from the Hospital, Time and Patient
h-domains. �

Taxonomy-based relational algebra (TRA) is an extension of relational algebra over t-
relations. It includes standard operations such as selection, σ, projection, π and natural
join, 
� and two new operators, upward extension and downward extension.

Consider R to be a t-relation with schema R(C1 : l1, ..., Ck : lk), C be a contextual
attribute in {C1, ..., Ck} defined over a level l, and l ′ be a level such that l ≤L l′ (≤L is
the partial order relation between levels, as↗∗ in HM data model). The upward exten-
sion of R on l′, denoted by ε̂C

′:l′
C:l (R), is a t-relation over R′(C1 : l1, ..., Ck : lk, C

′ : l′).
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For every tuple t = (c1, ..., ck) in t-relation R there is a tuple t′ = (c1, ..., ck, c
′) in R′

such that c′ = CMAP l′
l (c) st. CMAP l′

l is the roll-up mapping from members if l to l ′.
Similarly, the downward extension of R on l ′ referred to as ε̂C:l

C′:l′(R) is defined as a
t-relation over R′(C1 : l1, ..., Ck : lk, C

′ : l′), where for every tuple t = (c1, ..., ck) in
R there are tuples t′ = (c1, ..., ck, c

′) in R′ such that c′ = CMAP l
l′(c).

Example 16. Consider PatientWard as a t-relation. The upward extension of Patient-
Ward on the unit attribute is a t-relation ε̂unitward (PatientWard) with schema (ward :
Ward , day :Day , patient :Patient ,unit :Unit). �

The operators of TRA that are inherited from relation algebra (projection, selection
and natural join) are naturally supported by Datalog±. Here, we show that upward and
downward extensions can also be expressed in an MD ontology. For a t-relation R(C 1 :
l1, ..., Ck : lk) captured in the ontology by a categorical relation R(C1, ..., Ck; ), the
result of an upward extension ε̂C:l

C′:l′(R) (C ∈ {C1, ..., Ck}) is expressed in the on-
tology as a new categorical relation with schema R ′(C1, ..., Ck, C

′) such that the new
categorical attribute is from the category/level l ′. The data for this new categorical rela-
tion is generated by the following dimensional rule of the general form (4) (underlines
variables participate in up/down extension):

R′(e1, ..., e, ..., en, e′)←[R(e1, ..., e, ..., en),

D1(e
′,m1), D2(m1,m2), ..., Dk(mk, e)].

A similar dimensional rule performs downward extension, ε̂C′:l′
C:l (R):

R′(e1, ..., e, ..., en, e′)←[R(e1, ..., e, ..., en),

D1(e,m1), D2(m1,m2), ..., Dk(mk, e
′)].

Example 17. Consider the PatientWard as a t-relation in Example 15 that corresponds
to the PatientWard categorical relation in the proposed MD ontology. An upward exten-
sion operator, ε̂unitward(PatientWard) is a new categorical relations PatientWardUnit
defined as follows:

PatientWardUnit(w, t, p, u)←PatientWard(w, t, p),UnitWard(u,w). �

The taxonomy-based data model is motivated by an earlier work in [26] that introduces
a context-aware data model. The same results about capturing taxonomy-based data
model in a MD ontology applies to context-aware data model.

B.6 Incomplete categorical data

So far in this work we have made the assumption that categorical data, i.e. in categories
and categorical attributes, are complete. But we might want to consider incomplete
categorical data, and we could have tgds that generate categorical data, upwards or
downwards. The latter, in particular for dealing with uncertainty in downward navi-
gation. This could be the case in Example 12, specifically in (13), we could assume
the existential variable invents new elements in categorical positions. In the following,
we discuss several issues in relation to the relaxation of this complete categorical data
assumption, and of the corresponding value invention restriction.
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B.6.1 Dimension modification. The immediate result of incomplete categorical
data and element invention is that referential constraints of the form (1) may not hold,
and the ontology becomes inconsistent. Therefore, we need to replace the referential
constraints of the form (1) by rules that propagate invented values as new elements in
categories: K(e) ← Ri(ēi; āi). These new elements in categories might also trigger a
sequence of changes to preserve the structure of dimension structure (cf. Section B.6.4).

B.6.2 Weakly-stickiness of the MD ontology. An important effect of incomplete
categorical data is that Proposition 1 does not necessarily hold (the MD ontology is
not generally weakly-sticky). The existential variables in categorical positions can cre-
ate infinitely many new elements in these positions. As a result, there is possibility of
repeated marked variables in these positions that violates weakly-stickiness.

Interestingly, adding categorical keys (Section B.2) while having incomplete cate-
gorical data, we can still preserve not only weakly-stickiness but also chase termina-
tion mentioned in Section B.2. This is basically due to the fact that element invention
only happens while navigating downward and no new key is generated while doing
upward navigation. Therefore still finitely many values can appear in categorical posi-
tions which proves repeated marked variables are always in these finite positions and so
weakly-stickiness holds. The chase still terminates since there are finitely many combi-
nation of keys (some of them include new elements).

B.6.3 Adding egds and separability. These new elements also have effect on
Lemma 1 and Proposition 2 since they both assume fixed elements. Lemma 1 does not
necessarily hold since the equality in the heads of egds may equate two categorical
values. That can trigger a join in the body of a tgd rule making new applicable tgds
steps. Proposition 2 is not valid either since, even if we restrict equalities to categorical
variables, they involve null values and equating them can break separability.

Also notice that, assuming incomplete categorical data, Lemma 1 does not generally
hold. Consequently, other restriction must be imposed to make sure adding the extra
egds of categorical keys does not increase complexity of QA over the ontology (i.e.
non-conflicting keys [7, 12]).

B.6.4 Taking care of MD structural semantic constraints. Several “structural
semantic constraints” have been proposed for HM dimensions (cf. Section 3). Among
them, strictness and homogeneity are the most important since they ensure the summa-
rizability property of the dimension, which, in essence, guarantees that cube views can
be reused to correctly compute cube views at higher levels of the lattice [20].

Strictness requires that, for every elements e1, e2, e3 and category c, if e1 <∗ e2,
e1 <∗ e3, σ(e2) = c and σ(e3) = c, then e2 = e3. Homogeneity requires that, for
every element e and categories c, c′, if σ(e) = c, and c ↗∗ c′, then there is an element
e′ such that σ(e′) = c′ and e <∗ e′. These two properties together .

When we make the assumption that categorical data is complete, we can make sure
before anything that the MD semantic constrains above are satisfied. Whatever we do
next in terms of data generation will not harm them. However, this may change if we
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have incomplete categorical data and data is generated. We may want the MD semantic
constraints to be kept satisfied.

To express the strictness property, we define new predicates in the MD ontology to
represent < and its transitive closure, <∗. For a dimension D, we refer to the new pred-
icate (its transitive closure) as D(., .) (D∗(., .)) which defined by rules of the following
form (Di is a parent-child predicate in dimension D): D(x, y)← D i(x, y).

In the Hospital dimension, we represent <Hospital by Hospital (., .) defined by
the following rules: Hospital (e, e′) ← UnitWard(e, e′) and Hospital(e, e′) ←
InstitutionUnit(e, e′) and Hospital (e, e′)← AllInstitution(e, e′).

Now, we can check the strictness using egds of the following form (K is a category
in the dimension , D): e1 = e2 ← D∗(e, e1), D∗(e, e2),K(e1),K(e2).

For example, the strictness property for the Hospital dimension is represented by
the following constraints:

e1 = e2 ← Hospital∗(e, e1),Hospital∗(e, e2), Institution(e1), Institution(e2).
e1 = e2 ← Hospital∗(e, e1),Hospital∗(e, e2), Unit(e1), Unit(e2).

e1 = e2 ← Hospital∗(e, e1),Hospital∗(e, e2),Ward(e1),Ward(e2).

The homogeneity constraint is captured in an MD ontology by rules of this form:
∃e′ D∗(e, e′),K ′(e′) ← K(e). There will be a rule for every child category K and
ancestor category K ′. In the Hospital dimension, an example for these rules is the
following:∃i Hospital ∗(w, i), Institution(i)←Ward(w).

Note that, such a rule must be evaluated not as a normal tgd rule (in tgd chase
steps) but as a constraint. In the sense that, if the rule is applicable during a (restricted)
tgd chase step, the chase procedure reports an inconsistency in the ontology instead of
generating new null value to satisfy the rule.

24


