Appendix: Intermediate Results and Proofs

Proofs for Section 3

Proof of Lemma 1: This result extends a similar result in [3]. We concen-
trate on the cases not covered there. We have to show M (DB, DB') = p():
fo V Ay(g(Z',y):ta A q(T',y):te) V y(q(T', y):fa A q(Z',y):te). We have that IC
contains the formula p(Z) — Jyq(z',y). As DB' =5 IC we must analyze two
cases. The first one is DB’ =5 —p(a@). Then Ip(p(a)) = f or Ip(p(a)) = fa,
so M(DB,DB') & p(a):f.. The second case is DB' Eyx q(@',by),...,q(@',by)
for elements by,...,b, in the domain (n > 1). Hence, Ip(q(a’,b;)) = t or
Ip(q(a’',b;)) = ta, for every 1 < i < n. Then, M(DB,DB") E Jy(q(@,y):
ta Aq(@,y):te) or M(DB,DB') | 3y(q(a',y):fa A q(@,y):tc). As the analysis
was done for an arbitrary value @, we have that M(DB,DB') & T(DB,IC). O

Proof of Lemma 2: This result extends a similar result in [3]. We concentrate
on the cases not covered there. We have to show DB Ex p(Z) — Jyq(Z',y). Let
us suppose first M | p(a)f.. Then, we either have M [= p(a)f or M = p(a)fa.
Hence, DBy Ex —p(a), and from there DBy Ex p(a) — Jyq(a’,y). Let us
suppose now M = Jy(q(@', y)taAq(@', y)tc). Therefore, M = g(@’, b):t for some
element b in the domain. Hence DBy Ex ¢(a@',b), and from there DBy Ex
p(a) = Jyq(a', y). Finally, we will assume M |= y(q(a’,y):faAq(@', y):tc). Then,
M = g(a',b):t, for some element b in the domain. Hence, DBy Ex q(a',b),
and from there DBy Ex p(a) — Jyq(a’, y). As this is valid for any value a, we
have that DB Ex p(Z) — Jyq(Z,y). O

Proof of Proposition 1: By Lemma 1, we conclude that M (DB, DB') =
T(DB, IC). Let us suppose that M (DB, DB') is not A-minimal in the class of
models of T(DB, IC). Then, there exists M = T (DB, IC), such that M <a
M(DB, DB'). By using this it is possible to prove that A(DB, DB ) ; A(DB,
DB').

1. Let us suppose that p(a) € A(DB,DBus). Then p(a) € DB and p(a) ¢
DBy, or p(a) ¢ DB and p(a) € DBay. In the first case we can conclude
that p(a):ta € T(DB,IC) and M |= p(a):f V p(a):fa. If we suppose that
M [ p(a)f, then M [~ p(a):tq, a contradiction. Thus, we have that M |=
p(@):fa. But M <a M(DB,DB’), and therefore M(DB,DB') |= p(a):fa.
Then, we conclude that p(@) ¢ DB’, and therefore in this case it is possible
to conclude that p(a) € A(DB, DB'). In the second case we can conclude
that p(a):fa € T(DB,IC) and M [ p(a):t V p(a):ta. If we suppose that
M E p(@):t, then M [ p(a):fq, a contradiction. Thus, we have that
M = p(@):ta. But M <a M(DB,DB'), and therefore M(DB,DB') =
p(@):ta. Then, we conclude that p(a) € DB’, and therefore in this case it is
possible to conclude that p(a) € A(DB, DB'). Thus, we can conclude that
A(DB, DB A) C A(DB, DB').

2. Since M(DB,DB') £a M, there exists p(a@) such that M(DB,DB') =
p(a):ta V p(a):fa and M = p(a):t V p(a):f. By using the first fact it is



possible to conclude that p(a) € A(DB, DB'). If we suppose that p(a) € DB,
then p(a):ta € T(DB,IC), and therefore by considering the second fact it
is possible to deduce that M must satisfy p(a):t. Thus, we can conclude
that in this case p(a@) € DBy, and therefore p(a) ¢ A(DB, DB ). By the
other hand, if we suppose that p(a) ¢ DB, then p(a):fq € T(DB, IC), and
therefore by considering the second fact it is possible to deduce that M must
satisfy p(a):f. Thus, we can conclude that in this case p(a) ¢ DBy, and
therefore p(a) ¢ A(DB, DB ). Finally, we conclude that A(DB, DB') &
A(DB, DB ).

We know that DB’ is a database instance, and therefore A(DB, DB') must be
a finite set. Thus, we can conclude that A(DB, DB ) is a finite set, and there-
fore DB 4 is a database instance. With the help of Lemma 2, we deduce that
DB | IC. But this is a contradiction, since DB’ is a repair of DB with respect
to IC and A(DB, DB ) ; A(DB, DB'). |

Proof of Proposition 2: By Lemma 2, we conclude that DB =5 IC. Now,
we need to prove that DB is minimal. Let us suppose this is not true. Then,
there is a database instance DB" such that DB* |=x IC and A(DB,DB*) G
A(DB, DB ).

1. From Lemma 1, we conclude that M (DB, DB*) = T (DB, IC).

2. Now, we are going to prove that M(DB, DB*) <o M.
If M(DB, DB") |= p(a):ta, then we can conclude that p(@) ¢ DB and p(a) €
DB*, and therefore p(a) € A(DB, DB*). But A(DB, DB*) G A(DB, DB ),
and therefore p(a) € DB 4. Thus, we can conclude that M = p(a)tVp(a):ta.
If we suppose that M = p(a):t, then M [~ p(a):fq, but we know that M =
T(DB,IC) and p(a):fqa € T(DB,IC), since p(a) ¢ DB, a contradiction.
Therefore, M = p(a):t,.
If M(DB, DB*) = p(a)fa, then we can conclude that p(a) 6 DB and p(a) ¢
DB*, and therefore p(a) € A(DB, DB"). But A(DB, DB*) G A(DB DBM)
and therefore p(a) ¢ DB x4. Thus, we can conclude that M ﬁ p(a)fVvp(a
If we suppose that M |= p(a)f, then M [~ p(@):tq, but we know that /\/l |—
T(DB,IC) and p(a):tq € T(DB,IC), since p(a) € DB, a contradiction.
Therefore, M = p(a):f,. Thus, we can deduce that M(DB, DB*) <a M.
Finally, we know that there exists p(@) such that it is not in A(DB, DB*)
and it is in A(DB, DB ). Thus, p(a) € DB and p(a) € DB*, and therefore
M(DB,DB*) = p(@):t, or p(@) € DB and p(a) ¢ DB*, and therefore
M(DB, DB*) = p(a):f. Then, we have that M (DB, DB*) [~ p(a):t, and
M(DB, DB*) ¥~ p(a):fa. Additionally, since p(a) € A(DB, DB ), we can
conclude that p(a) € DB and p(a) € DB, or p(a) € DB and p(a) € DB .
In the first case we can conclude that M |= p(a):fa. In the second case we
can conclude that M |= p(a):t,. Thus, we can conclude that M |= p(a):
ta V p(a):fa. Therefore we can deduce that M £, M (DB, DB*).

Finally, we deduce that M is not minimal in the class of the models of T (DB, IC),
with respect to A, a contradiction. O



Proofs for Section 4

Lemma 3. For a minimal model M of T(DB,IC) and APC formula ¢(Z),
M Eapc (—)™ (1) iff M Eapc ~™ ().

Proof: By induction on ¢.

Initial step: ¢(f) = p(f). Trivial, by the fact that every model of T(DB,IC)
annotates atoms either with t, f, t, or f,.

Inductive step:

— p(d) = —all). M = (~ma)*™ (D) i M = ()*(D) if M ~(a) (D) iff
M £ (=a)®™ (%) (by induction hypothesis) iff M | —(=a)?™ ().

— o(t) = a(ty) V B(t2) = (@ V B)(t), where ¢; is the restriction of ¢ to « (the
same for ¢, and ). Now, M E (=(aV 3))*"(t) if M | (=a)*"(t1) and
M = (=8)"(t) if M E —()*(f;) and M = —(8)*"(¢2) (by induction
hypothesis) iff M E =(aV B)*"(1). O

Proof of of Proposition 3: We will prove it by induction on .

Initial step: (%) = p(Z). DB [=. p(t) iff for every repair DB’ of DB, DB' =5
p(t) iff for every minimal model M of T(DB,IC), M E p(t):t V p(l):t, iff
T (DB, IC) =a p(t)t V p(f)ta.

Inductive step:

— p(z) = =a(z). DB . —aff) iff for every repair DB’ of DB we have that
DB' }£x a(t) iff for every minimal model M of T (DB, IC), M [~ a%*(t)
(by induction hypothesis) iff for every minimal model M of T (DB, IC),
M —a® (1) iff M E (-a)*(t) (by Lemma 3).

— () = a(z1) V B(z2) = (aV B)(z). DB =, (aV B)(t) iff for every repair
DB' of DB it is true that DB’ =5 a(f1) or DB' =5 ((f2), where #; is the
restriction of substitution # to the variables z;, iff for every minimal model
M of T(DB,IC), M E a*(t1) or M |= °"(¢2) (by induction hypothesis)
iff T(DB,IC) =a (a® v B9 (%) iff T(DB,IC) =a (aV B)%(1). O

Proofs for Section 5

Lemma 4. If M is a coherent stable model of IT*(DB,IC), i.e. a coherent
minimal model of (IT*(DB, IC))™, then exactly one of the following cases holds:

— p(a,ta), p(a,t*) and p(a,t**) belong to M, and no other p(a,v), for v an
annotation value, belongs to M.

— p(@,ta), p(a,t*), p(a,f.), p(a,t*) and p(a,f**) belong to M, and no other
p(a,v), for v an annotation value, belongs to M.

- p(a,ta), p(a,f*), p(a,t*) and p(a,t**) belong to M, and no other p(a,v),
for v an annotation value, belongs to M.

— p(a,f*) and p(a, £**) belongs to M, and no other p(a,v), for v an annotation
value, belongs to M.



Proof: For an atom p(a) we have two possibilities:

1. p(a,ta) € M. Then, p(a, t*) € M. Two cases are possible now: p(a, f,) € M
or p(a,fa) ¢ M. For the first one we also have p(a,f**), p(a,f*) € M
and p(a,ta) € M (because M is coherent). For the second one, p(a,f*) &
M (since M is minimal), p(a,ta) ¢ M (because p(a,f*) ¢ M and M is
minimal) and p(a, t**) € M. This covers the first two items in the lemma.

2. p(a,tq) ¢ M. Then, p(a, f*) € M. Two cases are possible now: p(a, ta) € M
or p(a,ta) & M. For the first one we also have p(a, t**), p(a,t*) € M and
p(a,fa) & M (because M is coherent).

For the second one, p(a,t*) ¢ M (since M is minimal), p(a,f.) ¢ M (be-
cause p(a,t*) ¢ M and M is minimal) and p(a, f**) € M. This covers the
last two items in the lemma. |

From two database instances we can define a structure.

Definition 11. For two database instances DB and DB over the same schema
and domain, M*(DB;,DB>) is the Herbrand structure (D, Ip,Ig), where D is
the domain of the database® and Ip, Ip are the interpretations for the database
predicates (extended with annotation arguments) and the built-ins, respectively.
Ip is defined as follows:

— Ifp(a) € DBy and p(a) € DB,, then p(a,ta), p(a,t*) and p(a,t**) € Ip.

— If p(a) € DBy and p(a) & DBs, then p(a,ta), p(a,t*), p(a,fa), p(a,f*) and
p(a,f**) € Ip.

— Ifp(a) € DBy and p(a) ¢ DB, then p(a,f*) and p(a,f**) € Ip.

— Ifp(a) ¢ DBy andp(a) € DB, then p(a,f*), p(a, ta), p(a, t*) and p(a, t**) €
Ip.

l

-

The interpretation Ig is defined as expected: if q is a built-in, then q(a) € Ig iff
q(a) is true in classical logic, and q(a) & I iff q(a) is false. m|

Notice that the database associated to M*(DBy, DB>) corresponds exactly to
DBQ, i.e. DBM*(DBl,DBQ) = DB2

Lemma 5. If DB’ |=5. IC, then there is a coherent model M of the program
(IT*(DB, IC))™ such that DB r = DB'. Furthermore, the model M corresponds
to M*(DB, DB).

Proof: As DB\ (pp,ppy = DB', we only need to show that M*(DB, DB') is a
model of (IT*(DB, IC))M"(PB:PB") "Since DB' Ex \/1, —pi(di) V Vit 4i(bj) v
o, we have three possibilities to analyze with respect to the satisfaction of this
clause. The first possibility is DB’ =5 —p;(a). Then, two cases arise

6 Strictly speaking, the domain D now also contains the annotations values.



— pi(a) € DB. Then, p;(a,f*), pi(a, ta), pi(a, fa), pi(a, t )andpz( , £**) belong
to M*(DB, DB'), and the program (IT*(DB, IC)) (PB.DB') contains the
following clauses: p;(a,ta) <, pi(a,t*) < pi(a,ta), pi(a,t*) < pi(a,ta),
pi((_l,f*) — pi(aafa)a pi((_l,t**) « pi(aat ) and pz( f**) « pz(a f, ) Thena
all these formulas are satisfied by M*(DB, DB'). The program also contains
the clause \/i_, pi(a, fa) V)L, ¢j(a, ta) < Aizy pi(a, t*)ANGL, 4j(a, £*) Ao,
which is satisfied since p;(a, fa) belongs to M*(DB, DB').

- pi(a) g DB. Thena pi(aaf*) and pi(aaf**) € M*(DBaDBI)a and pi(aaf*)a
pi(a,t*) < pi(a,ta), pi(@,t*) < pi(ata), pi(a,f*) < pi(a,fa), pi(a £*)
«—, pi(a,t**) « pi(a,ta) and p;(a,f**) < pi(a,f.) are in the program
(IT*(DB, IC))M (PB.DB') A these are satisfied by the model considered.
Also the clause /[, pi(a, fa)VVL, (@ ta) < Az, pi(@, t)AATL, g;(a, £)
A @ is present, and is trivially satisfied since p;(a,t*) ¢ M*(DB, DB').

The second possibility is DB’ =5 ¢;(@). The following cases arise:

— ¢;(a) € DB. Then, M*(DB, DB') contains ¢;(a, ta), ¢;(a,t*) and ¢;(a, t**),
and program (IT*(DB, IC))M"(PB.DB') contains the formulas ¢;(a,ta) <,
qj(a'at*) A (]j(d,td), qj(dvt*) A qj(dvta)7 q]'(a'af*) A qj(a'afa)’ q]'((l,t**)
«— gj(a,ta), gj(a,t**) < g¢;(a,ta) and ¢;(@,f**) < g¢;(@,fa). The struc-
ture M*(DB, DB') satisfies all these clauses. The clause /[, p;i(a,fa) V
Vity 45(@,ta) < AjZy pi(@t*) A AJZ, ¢;(@,£%) A @ is also in the program,
and is trivially satisfied since it holds that g;(a@,f*) does not belong to
M*(DB, DB').

— gj(a) ¢ DB. Then, g¢;(a,f*), ¢;(a,ta), g;(@,t*) and g¢;(a,t**) are in the
structure M*(DB, DB'), and the following formulas are in the program
(H*(DBajo))M*(DB’DBI): qj(aaf*) <, qj(aat*) « Qj((_l,td), qj(afat*) —
7j(@,ta), q;(a,£%) < q;(a,fa), q;(a,t*) < ¢;(a,ta), ¢;(a@,t*) < ¢;(a,ta)
and g¢;(a,f**) < g;j(a,fa). These are satisfied by M*(DB, DB'). Also the
clause V?:l pi(a,fa) v \/;n:1 q; (a,ta) « /\?:1 pi(a, t*) A /\;nzl q; (@,f) A g is
in the program, and is satisfied since ¢;(@, ta) belongs to M*(DB, DB').

The third possibility is DB’ =5 ¢. Then, ¢ is true. The clause \/;_ ¥ pz(d f.) Vv
\/;.n:1 q;(@,ta) < A, pi(a, t*)/\/\] ,4; (@, £*)A@ isin (IT* (DB, IC))M (DB.DB')
and is satisfied since M*(DB, DB') [~ ¢.

As the analysis was done for an arbitrary value a, it holds that the Herbrand
structure M*(DB, DB') is a model of (IT*(DB, IC))M (PB.DB’) \oreover, it
is also coherent, since M*(DB, DB') was defined in such a way that does not
contain both p(a,t,) and p(a,f,). O

The next lemma, shows that if M is a coherent and minimal model of the program
(IT*(DB, IC))™, and represents a finite database instance, then the instance
satisfies the constraints.

Lemma 6. If M is a coherent stable model of the program II*(DB,IC) and
DBy, is finite, then DBy =5 IC.



Proof: We want to show DBy Ex Vi, —pi(@;) V \/J 14 (y;) V @, for every
constraint in IC. Since M is a model of (II (DB IC))M, we have that M =

Vici pi(@i fa) vV \/] 1 45 (5, ta) < Nizy pil(@i, t) A /\;:1 a;(y;,£*) Ap. Then, at
least one of the following cases is satisfied:

- M = pi(a,fa). Then, M E pi(a,f**) and p(a) ¢ DB (by lemma 4).
Hence, DB Ex —pi(a). Since the analysis was done for an arbitrary value
a, DBm Fx Vz L i) V V] 143 (Yj) V ¢ holds.

— M = ¢;(a,ta). It is symmetrical to the previous one.

— It is not true that M | @. Then M |= . Hence, ¢ is true, and DBy Ex
iz, =pi(@:) V VL, 4(g;) V ¢ holds.

— M £ pi(a, t*). Given the model is coherent and minimal, just the last item in
Lemma 4 holds. This means M = p;(a, £**), p;(a) € DBy and DBy Ex
—p;(a). Since the analysis was done for an arbitrary value a, DBy Ex
Visi (@) V VL, 4;(y;) V o holds.

— M [~ ¢;(a, £*). Given the model is coherent and minimal, just the first item
in lemma 4 holds. Then, M = ¢;(@,t**), ¢;(@) € DBy and DBy Ex
¢j(@). Since the analysis was done for an arbitrary value @, DBap Ex iy

—pi(%i) V Vj-y ¢;(F) V ¢ holds. 2

Lemma 7. Consider two database instances DB and DB’ over the same schema
and domain. If M is a coherent and minimal model of (II* (DB, IC))M" (PB.DB")
such that M'G M*(DB, DB'), then there ezists model M" such that M' is a co-
herent and mzmmal model of (IT*(DB, IC))™" and A(DB, DBm) & C A(DB,DB").

Proof: Since M is a coherent and minimal model of (IT*(DB, IC))M (PB.DE)
we have that p(a, ta) € M iff p(a) € DB. By the way we defined M*(DB,DB')
and given M ; M*(DB,DB'), the only two ways that both models can differ
is that, for some p(a) € DB, {p(a,f.),p(a,f*),p(a,f**)} C M*(DB,DB') and
none of these atoms belong to M, or for some p(a) ¢ DB, {p(a,ta),p(a,t*),
p(@,t**)} C M*(DB,DB') and none of these atoms belong to M. Now, some
of the atoms in M may have not received an interpretation in terms of t** and
f**, i.e. M is not a minimal model of (IT*(DB, IC))™. Anyway, if we use the
interpretation rules over M, we will finish with a model M’ that is a minimal
model of (IT*(DB, IC))™". From M the model M’ is constructed as follows:

— If p(a,ta) € M and p(a,fa) ¢ M, then p(a, ta), p(a,t*) and p(a,t**) € M'.

— If p(@,ta) € M and p(a,f,) € M, then p(a, ta), p(a, t*), p(a,fa), p(a, f*) and
p(a,f**) e M'.

— If p(a, tqa) € M and p(a,t,) € M, then p(a,f*) and p(_, * e M.

— Ifp(a,ta) € M and p(a, ta) € M, then p(a, f*), p(a, ta), p(a, t*) and p(a, t**)
e M.

It is clear that M’ is a coherent and minimal model of (IT*(DB,IC))™

just rests to prove that A(DB, DBay) ; A(DB, DB'). First, we will prove
A(DB, DB ) C A(DB,DB'). Let us suppose p(a) € A(DB, DBy ). Then,
either p(a) € DB and p(a) ¢ DBy or p(a) ¢ DB and p(a) € DBay. In



the first case, p(a,ta), p(a,t*), p(a,f.) and p(a,f*) are in M’'. These atoms
are also in M and, by our assumption, they are also in M*(DB, DB'). Hence,
p(a) € A(DB,DB’). In the second case, p(a,f*), p(a,ta) and p(a,t*) are in
M'. These atoms are also in M and, by our assumption, these are also in
M*(DB, DB'). Hence, p(a) € A(DB, DB").
We will now prove A(DB, DBy) G A(DB, DB'). We know for some fact
p(a) there is an element related to it Wthh is in M*(DB, DB') and which is
not in M. One possible case is p(a,fa) and p(a,f*) are in M*(DB, DB') and
not in M. Then, p(a) € A(DB,DB'), but p(a) ¢ A(DB, DB ). The other
possible case is that p(a,t,) and p(@,t*) are in M*(DB, DB') and not in M.
Then, p(a) € A(DB, DB'), but p(a) ¢ A(DB, DB y). |

Proposition 5. If DB' is a repair of DB with respect to IC, then there is a
coherent stable model M of the program IT*(DB,IC) such that DBy = DB'.
Furthermore, the model M corresponds to M*(DB, DB').

Proof: By Lemma 5 we have M*(DB, DB') is a coherent model of the program
IT*(DB, IC)M"(PB.DB') e just have to show it is minimal. Let us suppose first
there exists a model M of (IT*(DB, IC))M" (PB.DB') gych that it is the case that
M G M*(DB, DB') (it is also coherent since it is contained in M*(DB, DB")).
Since M & M*(DB, DB'), the model M contains the atom p(a, tq) iff p(a) €
DB. Then, we can assume without loss of generality that M is minimal (if it
is not minimal, we can always generate from it a minimal model M’ such that
M' G M, by deleting its non-supported atoms).

By Lemma 7, there exists model M’ such that A(DB, DBy) G A(DB, DB')
and M’ is a coherent and minimal model of (IT*(DB,IC))M' . By Lemma, 6,
DBy =5 IC. This contradicts our fact that DB' is a repair. ad

Proposition 6. If M is a coherent and minimal model of (II*(DB, IC))™ and
DB is finite, then DBy is a repair of DB with respect to IC'.

Proof: From Lemma 6, we have DB, |=x IC. We just have to show mini-
mality. Let us suppose there is a database instance DB’, such that DB’ =y IC
and A(DB,DB') G A(DB, DBM) Then, by Lemma 5, M*(DB, DB') is a co-
herent model of (H*(DB IC))M"(PB.DB) ‘We will first show it is the case that
M*(DB, DB') € M and that M*(DB, DB') is a model of (IT*(DB, IC'))™. No-
tice that since M is a minimal model of (IT*(DB, IC))™, this program contains
the clause p(a, f*) < for every p(a) ¢ DB. The rest of the program must look ex-
actly like (IT*(DB, IC))M (PB.PB') This is true because the only other clauses
in IT*(DB, IC) that contain negation in their bodies are the interpretation rules
p(a, f**) < not p(a,tq), not p(a,t,) and p(a,t**) < p(a,tq),not p(a,fs). Since
A(DB, DB’ ) S C A(DB, DB ), if M does not satisfy p(a, fa) then M*(DB DB')
does not satlsfy it either (this is, either both programs, (IT*(DB, IC'))M’ (PB.DB")
and (IT*(DB,IC))™, contain the clause p(a,t**) < p(a,ta) or both do not



contain it) and if M does not satisfy p(a,t.) then M*(DB, DB') does not
satisfy it either (this is, either both programs, (II*(DB,IC))M (PB.DB') 4nd
(IT*(DB, IC))™, contain the clause p(a, f**) < or both do not contain it). By
Definition 11, for an arbitrary atom p(a) in a model M*(DB, DB'), we just have
to analyze four cases:

1. Let us suppose just p(a,t**), p(a,t*) and p(a,tq) belong to M*(DB, DB').
Then p(a) € DB and p(a) € DB'. Since p(a) ¢ A(DB,DB'), we have
two possibilities. The first one saying p(a) ¢ A(DB, DB a4). Then, p(a,t*),
p(@,ta) and p(a, t**) also belong to M and M*(DB, DB') is clearly a model
of the clauses in (IT*(DB, IC))™ concerning p(a). The second one saying
p(a) € A(DB,DBy). Again, p(a,t*), p(a,ta) and p(a,t**) belong to M
and M*(DB, DB') is clearly a model of the clauses in (IT*(DB, IC))™ con-
cerning p(a).

2. Let us suppose now, just p(a,f*) and p(a,f**) belong to M*(DB, DB'").
Again we have two possibilities. The first one says that p(a) ¢ A(DB, DB ).
Then, p(a, f*) and p(a, f**) also belong to M. The program (IT*(DB, IC'))M
contains (among others) the clause p(a,f*) «, that is satisfied by the pro-
gram M*(DB, DB'). The rest of the clauses concerning p(a) are satisfied
because are also present in (I7*(DB, IC))M (PB.DB') The second one says
that p(a) € A(DB, DB ). Again, p(a,f*) and p(a,f**) belong to M. The
program (IT*(DB,IC))™ contains (among others) the clause p(a,f*) <,
that is satisfied by M*(DB, DB'). The rest of the clauses concerning p(a)
are satisfied because they are also present in (II*(DB, IC))M (PB.DB')

3. Let us suppose just p(a,t*), p(a,ta), p(a,fa), p(a,f*) and p(a, **) belong
to the model M*(DB, DB'). Then p(a) € DB and p(a) ¢ DB'. Hence,
p(a) € A(DB,DB'), and due to our assumption p(a) € A(DB,DB ).
Therefore, p(a,t*), p(a,ta), p(a,fa), p(a,f*) and p(a,f**) belong to M.
Moreover, M*(DB, DB') is clearly a model of the clauses in (IT*(DB, IC))M
concerning p(a).

4. Finally, we will suppose just p(a, f*), p(a,ta), p(a,t*) and p(a, t**) belong
to the model M*(DB,DB"). Then, p(a) ¢ DB and p(a) € DB'. Hence,
p(a) € A(DB,DB'), and due to our assumption p(a) € A(DB,DB ).
Therefore, p(a,f*), p(a,t*), p(a,ta) and p(a,t**) belong to M. The pro-
gram (IT*(DB, IC))™ contains (among others) the clause p(a,f*) <, that
is satisfied by M*(DB, DB'). The rest of the clauses concerning p(a) are
satisfied because are also present in (II*(DB, IC))M (PB.DB’)

We will now show M*(DB, DB') ; M. We have assumed there is an element
of A(DB,DB,) that is not an element of A(DB, DB'). Thus, for some ele-
ment p(a), either p(a) € DB, p(a) € DB’ and p(a) ¢ DB, or p(a) ¢ DB,
p(a) ¢ DB’ and p(a) € DB . For the first one we have M*(DB, DB') satis-
fies p(a, tq) and p(a,t*), and M satisfies p(a, ta) and p(a, t*), but also satisfies
p(a, fa) and p(a, £*). In the second one, M*(DB, DB') satisfies p(a, f*) and M
satisfies p(a, £*), but also p(a, ta) and p(a, t*). Then, M is not a minimal model;
a contradiction. i



Proof of of Theorem 1: From Propositions 5 and 6. O

Proofs for Section 7

The following is an extension of Lemma 4, considering the introduction of null
values.

Lemma 8. If M is a coherent stable model of II*(DB,IC), i.e. a coherent
minimal model of (IT*(DB, IC))™, then exactly one of the following cases holds:

— p(a,ta), p(a,t*) and p(a,t**) belong to M, and no other p(a,v), for v an
annotation value, belongs to M.

- p(@,ta), p(a,t*), p(a,f.), pa,t*) and p(a,f**) belong to M, and no other
p(a,v), for v an annotation value, belongs to M.

— p(@,ta), p(a,f*), p(a,t*) and p(a,t**) belong to M, and no other p(a,v),
for v an annotation value, belongs to M.

— p(a,f*) and p(a, £**) belongs to M, and no other p(a,v), for v an annotation
value, belongs to M.

— p(@,null,tq) and p(a,null,t**) belongs to M, and no other p(a,null,v) for
v an annotation value, belongs to M.

— p(@,null, t,), p(a,null, t**) belongs to M, and no other p(a,null,v), for v
an annotation value, belongs to M.

— Avp(a,null,v) for v an annotation value.

Proof: The first four cases where already proven in Lemma 4. The two new
cases are deduced directly considering the new rules involving the referential ICs
and the inclusion of null values. a

Definition 11 is extended to consider the atoms with null values as follows:

Definition 12. For two database instances DB, and DB+ over the same schema
and domain, M*(DB;,DB>) is the Herbrand structure (D, Ip,Ig), where D is
the domain of the database” and Ip, Ig are the interpretations for the database
predicates (extended with annotation arguments) and the built-ins, respectively.
Ip is defined as follows:

- pr(a’) € DBl andp(d) € DB2; then p(a’atd)’ p(a’a ) nd
- pr(a) € DBl andp(d) g DB2; then p(aatd); p(a’a

p(a,f**) € Ip.

— Ifp(a) € DBy and p(a) ¢ DB,, then p(a,f*) and p( ) e Ip.

— Ifp(a) € DBy and p(a) € DB, then p(a,f*), p(a, ta), p(a,t*) and p(a, t**) €
Ip.

— If p(a,null) € DBy and p(a,null) € DB,, then p(a,null,ta) and p(a,null,
t**) € Ip.

— If p(a,null) € DBy and p(a,null) € DB, then p(a,null,t,) and p(a,null,
t**) € Ip.

p(a,t*™) € Ip.
*), p(a, ta), p(a,f*) and

(@
a)

7 Strictly speaking, the domain D now also contains the annotations values.



The interpretation Ig is defined as expected: if q is a built-in, then q(a) € I iff
q(a) is true in classical logic, and q(a) & Ig iff q(a) is false. m|

Notice that, as before, the database associated to M*(DB;, DB5) corresponds
exactly to DBs, i.e. DBag-(pB,,pB,) = DB2. The next lemma states that
Lemma 6 still holds when considering universal and referential ICs.

Lemma 9. If M is a coherent stable model of the program II*(DB,IC) and
DB is finite, then DBy =5 IC.

Proof: As in Lemma 6 it was already proven that universal constraints are
satisfied. As M satisfies: {auz(Z') < ¢(Z',y,ta) A not q(Z',y,fa); auz(T') +
q(Z',y,ta); p(T,£a) V(T null, ta) < p(Z,t*) A not aux(Z'), not q(&', null,tq)}
we have that it can be proved, as in Lemma 6 that the RICs of the form
p(z) = y(q(Z',y)) are satisfied by M. O

The next lemma. is a variation of Lemma 5 that considers universal and referential
ICs and the fact that a database that is inconsistent wrt a RIC of the form
p(Z) — Jy(q(Z',y)) can be repaired only deleting a tuple or inserting a tuple
with the null value.

Lemma 10. If DB' is a repair of DB, then there is a model M of IT*(DB, IC)™
such that DBy = DB'.

Proof: This lemma is proved like Lemma 5, but instead of considering that
M = M*(DB,DB'), it considers M = M*(DB,DB') U {auz;(@) | IC; €
IC and IC; is of the form p(Z) — Jyq(z',y) and Jy ((¢(@’,y,ta) € M*(DB,
DB') and q(a',y,fa) € M*(DB, DB'")) or q(a',y,ta) € M*(DB, DB"))}. O

The next proposition shows that Proposition 5 holds also for IT*(DB, IC) ex-
tended for RICs.

Proposition 7. If DB' is a repair of DB with respect to IC, then there is a
coherent stable model M of IT*(DB, IC) such that DBy = DB'.

Proof: By Lemma 10 we have that M = M*(DB,DB') U {auz;(a') | IC; €
IC and IC; is of the form p(z) — Jyq(z',y) and Jy ((¢(a’,y,ta) € M*(DB,
DB') and q(@',y,f.) ¢ M*(DB,DB"))orq(@,y,t.) € M*(DB,DB'))} is a co-
herent model of the program IT*(DB,IC)M. Its minimality can be proved as
done for M*(DB, DB') in Lemma 5. i

Proposition 8. If M is a coherent and stable model of IT*(DB, IC), and DB
is finite, then DBy is a repair of DB with respect to IC.

Proof: From Lemma 9, we have DB |Ex IC. We only need to prove that it
is <pp-minimal. This is proven in a similar way as it was done in Proposition
6, but considering <pp instead of minimality under set inclusion. O

Proof of of Theorem 2: From Propositions 7 and 8. O



Proofs for Section 8

Proof of of Theorem 3: (<) If the set of ground(IC') does not have a pair of
bilateral literals in the same IC, we want to prove that the program IT*(DB, IC')
is HC'F for any DB.

We will suppose that the program IT*(DB,IC) is not HCF. Then the pro-
gram ground(II(DB,IC)) has a directed cycle that goes through two liter-
als that belong to the head of the same rule from ground(II(DB,IC)). The
only rules with more than one literal in the head are the rules capturing the
ICs, i.e. those of the form \/I_, p;(a;,fa) V V L iy ta) — Ay piai, t*) A
/\j:l q; (b, %) A

For the program no to be HCF there has to be a cycle involving:

— Pi(@1,fa) and Py(a»,fa) or
- Q1(bl, ta) and Qz2(b2,ta) or
— Pi(ay,fa) and Q1(by, ta)

If we analyze the first case, we can consider that only P (a;,fa) might be bi-
lateral. Figure 2 shows that no directed cycle involving P; (@1, f.) and P»(a2, fa)
is possible. The dependency graph of the other two cases is analogous, and it
is not possible to have cycles involving to literals of the head of a rule. So the
program can not be HCF.

Pl(alrgépl(abt*) Py(a, 1) <———P;(at)

arch — — possiblearch

Fig. 2. Dependency Graph of P; and P>

(=) If the program II*(DB, IC) is HCF for any DBthen the set of instantiated
ICs do not have a pair of bilateral literals in the same IC.

Let us suppose there is a pair of bilateral literals, P; (a;) and Q1 (b1), in the
same IC. As P (a;) and Q1 (b1) are in the same IC, there are three different cases
to study. Note that P and @) can be the same predicate.

1. P (@1) and Qi (b;) are in the head of the IC. In this case, P;(a;,f.) and
Q1(b1,fa) are in the head of a rule of IT*(DB,IC), and as it can be seen in
Figure 3 there is a cycle that includes them, so the program is not HCF.



arch — — possiblearch

Fig. 3. Dependency Graph of P; and @1 with both of them in the head of an IC

2. Py(a;) and Q1 (b1) are in the body of the IC. Analogous to first case.
3. P;(a@y) is in the head and Q1 (by) is in the body of the IC. Analogous to the
first case.

So, if there is a pair of bilateral literals in the same IC, the program can not be
HCEF, i.e. if the program is HCF, then it can not have a pair of bilateral literals
in the same IC. O



