A Proofs and Intermediate Results

Proof of lemma 1:

1. If \(M \models p(\bar{a}) : t \), then \(M \models p(\bar{a}) : t_c \) and \(M \models p(\bar{a}) : f_c \). Thus, \(M \not\models T(\text{IC}) \), a contradiction.

2. We know that \(M \models p(\bar{a}) : t_c \lor p(\bar{a}) : f_c \) and \(M \models p(\bar{a}) : t_d \lor p(\bar{a}) : f_d \) (since \(p(\bar{a}) : t_d \in T(\text{DB}, IC') \) or \(p(\bar{a}) : f_d \in T(\text{DB}, IC') \)). Thus, one of the following cases must be true: (1) \(M \models p(\bar{a}) : t_c \) and \(M \models p(\bar{a}) : t_d \), and therefore \(M \models p(\bar{a}) : t \), (2) \(M \models p(\bar{a}) : t_c \) and \(M \models p(\bar{a}) : f_d \), and therefore \(M \models p(\bar{a}) : t_a \), (3) \(M \models p(\bar{a}) : f_c \) and \(M \models p(\bar{a}) : t_d \), and therefore \(M \models p(\bar{a}) : f_a \), (4) \(M \models p(\bar{a}) : f_c \) and \(M \models p(\bar{a}) : f_d \), and therefore \(M \models p(\bar{a}) : f \).

\[\square \]

Proof of lemma 2: We have to prove that \(M(\text{DB}, \text{DB}') \models T(\text{DB}) \) and \(M(\text{DB}, \text{DB}') \models T(\text{IC}) \).

1. Let us consider \(p(\bar{a}) : \alpha \in T(\text{DB}) \). If \(\alpha = t_d \), then \(p(\bar{a}) \in \text{DB} \), and then by considering (1) we obtain that \(I_F(p(\bar{a})) = t \) or \(I_F(p(\bar{a})) = f \), and therefore \(M(\text{DB}, \text{DB}') \models p(\bar{a}) : \alpha \). If \(\alpha = f_d \), then \(p(\bar{a}) \notin \text{DB} \), and then by considering (1) we obtain that \(I_F(p(\bar{a})) = f \) or \(I_F(p(\bar{a})) = t \), and therefore \(M(\text{DB}, \text{DB}') \models p(\bar{a}) : \alpha \).

2. (a) Let us suppose that \(p_1 (\bar{T}_1) : t_c \lor \cdots \lor p_n (\bar{T}_n) : t_c \lor q_1 (\bar{b}_1) : f_c \lor \cdots \lor q_m (\bar{b}_m) : f_c \in T(\text{IC}) \), and let us assume that \(p_1 (\bar{a}_1) : t_c \lor \cdots \lor p_n (\bar{a}_n) : t_c \lor q_1 (\bar{b}_1) : f_c \lor \cdots \lor q_m (\bar{b}_m) : f_c \) was obtained from this constraint by instantiating in the domain of the database. In this case we have that \(p_1 (\bar{T}_1) \lor \cdots \lor p_n (\bar{T}_n) \lor \neg q_1 (\bar{T}_1) \lor \cdots \lor \neg q_m (\bar{T}_m) \) is an element of \(\text{IC} \), and therefore we have that \(\text{DB} \models p_1 (\bar{a}_1) \lor \cdots \lor p_n (\bar{a}_n) \lor \neg q_1 (\bar{b}_1) \lor \cdots \lor \neg q_m (\bar{b}_m) \).

Firstly, we are going to consider what happens if \(\text{DB}' \models_\text{DB} p_i (\bar{a}_i) \) \((1 \leq i \leq n) \). If \(p_i \) is a built-in predicate, then \(I_R(p_i (\bar{a}_i)) = t \), since \(M(\text{DB}, \text{DB}') \) gives to the built-in predicates in the database the appropriate truth values, and therefore \(M(\text{DB}, \text{DB}') \models p_i (\bar{a}_i) : t_c \). If \(p_i \) is not a built-in predicate, then \(I_F(p_i (\bar{a}_i)) = t \) or \(I_F(p_i (\bar{a}_i)) = f \), and therefore \(M(\text{DB}, \text{DB}') \models p_i (\bar{a}_i) : t_c \).

Secondly, we are going to consider what happens if \(\text{DB}' \models_\text{DB} \neg q_i (\bar{b}_i) \) \((1 \leq i \leq m) \). If \(q_i \) is a built-in predicate, then \(I_R(q_i (\bar{b}_i)) = f \), since \(M(\text{DB}, \text{DB}') \) gives to the built-in predicates in the database the appropriate truth values, and therefore \(M(\text{DB}, \text{DB}') \models q_i (\bar{b}_i) : f_c \). If \(q_i \) is not a built-in predicate, then \(I_F(q_i (\bar{b}_i)) = f \) or \(I_F(q_i (\bar{b}_i)) = f \), and therefore \(M(\text{DB}, \text{DB}') \models q_i (\bar{b}_i) : f_c \).

(b) Let us consider a predicate \(p \in P \). By considering (1) we know that for every tuple \(\bar{a} \) (of appropriate arity) \(I_F(p(\bar{a})) = t \), \(I_F(p(\bar{a})) = f \), \(I_F(p(\bar{a})) = t_a \) or \(I_F(p(\bar{a})) = f_a \), and therefore \(M(\text{DB}, \text{DB}') \models p(\bar{a}) : t_c \lor p(\bar{a}) : f_c \). Thus, we conclude that \(M(\text{DB}, \text{DB}') \models \forall x(p(x)) : t_c \lor p(x) : f_c \).
t_c \lor p(x) : f_c). Additionally, if \(I_P(p(\overline{a})) = t \) or \(I_P(p(\overline{a})) = t_a \), then
\(M(DB, DB') \not\models p(\overline{a}) : t_c \), and if \(I_P(p(\overline{a})) = f \) or \(I_P(p(\overline{a})) = f_a \), then
\(M(DB, DB') \not\models p(\overline{a}) : t_c \). Thus, we also conclude that
\(M(DB, DB') \models \forall \overline{x} (\neg p(x) : t_c \lor \neg p(x) : f_c) \).

\[\square \]

Proof of lemma 3: We are going to prove that \(DB_M \models_{DB} IC \). Let us suppose that \(p_1(T_1) \lor \cdots \lor p_n(T_n) \lor \neg q_1(T_1) \lor \cdots \lor \neg q_m(T_m) \) is an integrity constraint in IC, and let us assume that \(p_1(\overline{a_1}) \lor \cdots \lor p_n(\overline{a_n}) \lor \neg q_1(\overline{b_1}) \lor \cdots \lor \neg q_m(\overline{b_m}) \) was obtained from it by instantiated in the domain of the database. In this case we have that \(p_1(\overline{a_1}) : t_c \lor \cdots \lor p_n(\overline{a_n}) : t_c \lor q_1(\overline{b_1}) : f_c \lor \cdots \lor q_m(\overline{b_m}) : f_c \). Could be obtained by instantiated an integrity constraint in \(T(\text{IC}) \). Thus, we have that
\(M \models p_1(\overline{a_1}) : t_c \lor \cdots \lor p_n(\overline{a_n}) : t_c \lor q_1(\overline{b_1}) : f_c \lor \cdots \lor q_m(\overline{b_m}) : f_c \).

Firstly, we are going to consider what happens if \(M \models p_i(\overline{a_i}) : t_c \) (1 \(\leq i \leq n \)). If \(p_i \) is a built-in predicate, then \(I_R(p_i(\overline{a_i})) = t \), since \(M \) gives to the built-in predicates in the database the value \(t \) or \(f \), and if in this case we suppose that \(I_R(p_i(\overline{a_i})) = f \) then \(M \not\models p_i(\overline{a_i}) : t_a \), a contradiction. Therefore
\(DB_M \models_{DB} p_i(\overline{a_i}) \). If \(p_i \) is not a built-in predicate, then \(p_i(\overline{a_i}) : t_d \in T(DB) \) or \(p_i(\overline{a_i}) : f_d \in T(DB) \). In the first case we have that \(M \models p_i(\overline{a_i}) : t \), and therefore \(p_i(\overline{a_i}) \in DB_M \). In the second case \(M \models p_i(\overline{a_i}) : t_n \), and therefore \(p_i(\overline{a_i}) \in DB_M \).

Secondly, we are going to consider what happens if \(M \models q_i(\overline{b_i}) : f_c \) (1 \(\leq i \leq m \)). If \(q_i \) is a built-in predicate, then \(I_R(q_i(\overline{b_i})) = f \), since \(M \) gives to the built-in predicates in the database the value \(t \) or \(f \), and if in this case we suppose that \(I_R(q_i(\overline{b_i})) = t \) then \(M \not\models q_i(\overline{b_i}) : f_c \), a contradiction. Therefore
\(DB_M \models_{DB} \neg q_i(\overline{b_i}) \). If \(q_i \) is not a built-in predicate, then \(q_i(\overline{b_i}) : t_d \in T(DB) \) or \(q_i(\overline{b_i}) : f_d \in T(DB) \). In the first case we have that \(M \models q_i(\overline{b_i}) : f_a \), and therefore \(q_i(\overline{b_i}) \not\in DB_M \). In the second case \(M \models q_i(\overline{b_i}) : f \), and therefore \(q_i(\overline{b_i}) \not\in DB_M \).

\[\square \]

Proof of proposition 1:

1. By Lemma 3, we conclude that \(DB_M \models_{DB} IC \).
2. Now, we need to prove that \(DB_M \) is minimal. Let us suppose this is not true. Then, there is a database instance \(DB^* \) such that \(DB^* \models_{DB} IC \) and
\(\Delta(DB, DB^*) \subseteq \Delta(DB, DB_M) \).
 (a) From Lemma 2, we conclude that \(M((DB, DB^*) \models T(DB, IC)) \).
 (b) Now, we are going to prove that \(M(DB, DB^*) \preceq M \).
 If \(M(DB, DB^*) \models p(\overline{a}) : t_a \), then by considering (1) we can conclude that
\(p(\overline{a}) \not\in DB \) and \(p(\overline{a}) \in DB^* \), and therefore \(p(\overline{a}) \in \Delta(DB, DB^*) \).
 But \(\Delta(DB, DB^*) \subseteq \Delta(DB, DB_M) \), and therefore \(p(\overline{a}) \in DB_M \). Thus,
we can conclude that \(M \models p(\overline{a}) : t \lor p(\overline{a}) : f_a \). If we suppose that
\(M \models p(\overline{a}) : t \), then \(M \not\models p(\overline{a}) : f_a \), but we know that
\(M \models T(DB, IC) \) and \(p(\overline{a}) : t_d \in T(DB, IC) \), since \(p(\overline{a}) \not\in DB \), a contradiction. Therefore,
\(M \models p(\overline{a}) : t_a \).
 If \(M(DB, DB^*) \models p(\overline{a}) : f_a \), then by considering (1) we can conclude that
\(p(\overline{a}) \in DB \) and \(p(\overline{a}) \not\in DB^* \), and therefore \(p(\overline{a}) \in \Delta(DB, DB^*) \).
But $\Delta(\text{DB}, \text{DB}') \triangleq \Delta(\text{DB}, \text{DB}_M)$, and therefore $p(\bar{a}) \notin \text{DB}_M$. Thus, we can conclude that $\mathcal{M} \models p(\bar{a}) : f \lor p(\bar{a}) : f_a$. If we suppose that $\mathcal{M} \models p(\bar{a}) : f$, then $\mathcal{M} \not\models p(\bar{a}) : t_d$, but we know that $\mathcal{M} \models T(\text{DB}, \text{IC})$ and $p(\bar{a}) : t_d \in T(\text{DB}, \text{IC})$, since $p(\bar{a}) \in \text{DB}$, a contradiction. Therefore, $\mathcal{M} \models p(\bar{a}) : f_a$. Thus, we can deduce that $\mathcal{M}(\text{DB}, \text{DB}') \leq_{\Delta} \mathcal{M}$. Finally, we know that there exists $p(\bar{a})$ such that it is not in $\Delta(\text{DB}, \text{DB}')$ and it is in $\Delta(\text{DB}, \text{DB}_M)$. Thus, $p(\bar{a}) \in \text{DB}$ and $p(\bar{a}) \notin \text{DB}'$, and therefore $\mathcal{M}(\text{DB}, \text{DB}') \models p(\bar{a}) : t$, or $p(\bar{a}) \notin \text{DB}$ and $p(\bar{a}) \notin \text{DB}'$, and therefore $\mathcal{M}(\text{DB}, \text{DB}') \models p(\bar{a}) : f$. Then, we have that $\mathcal{M}(\text{DB}, \text{DB}') \not\models p(\bar{a}) : t_a$ and $\mathcal{M}(\text{DB}, \text{DB}') \not\models p(\bar{a}) : f_a$. Additionally, since $p(\bar{a}) \in \Delta(\text{DB}, \text{DB}_M)$, we can conclude that $p(\bar{a}) \in \text{DB}$ and $p(\bar{a}) \notin \text{DB}_M$, or $p(\bar{a}) \notin \text{DB}$ and $p(\bar{a}) \notin \text{DB}_M$. In the first case we can conclude that $\mathcal{M} \models p(\bar{a}) : f_a$, since \mathcal{M} must be satisfied $p(\bar{a}) : f \lor p(\bar{a}) : f_a$, and if we suppose that $\mathcal{M} \models p(\bar{a}) : f$, then $\mathcal{M} \not\models p(\bar{a}) : t_d$, but $p(\bar{a}) : t_d \in T(\text{DB}, \text{IC})$ in this case, a contradiction. In the second case we can conclude that $\mathcal{M} \models p(\bar{a}) : t_a$, since \mathcal{M} must be satisfied $p(\bar{a}) : t \lor p(\bar{a}) : t_a$, and if we suppose that $\mathcal{M} \models p(\bar{a}) : t$, then $\mathcal{M} \not\models p(\bar{a}) : f_a$, but $p(\bar{a}) : f_a \in T(\text{DB}, \text{IC})$ in this case, a contradiction. Thus, we can conclude that $\mathcal{M} \models p(\bar{a}) : t_a \lor p(\bar{a}) : f_a$. Therefore we can deduce that $\mathcal{M} \not\models \mathcal{M}(\text{DB}, \text{DB}')$.

Finally, we deduce that \mathcal{M} is not e-consistent maximal in the class of the models of $T(\text{DB}, \text{IC})$, with respect to Δ, a contradiction.

\hspace{1cm} \Box

Proof of proposition 2:

1. By Lemma 2, we conclude that $\mathcal{M}(\text{DB}, \text{DB}') \models T(\text{DB}, \text{IC})$.

2. Let us suppose that $\mathcal{M}(\text{DB}, \text{DB}')$ is not e-consistent maximal in the class of models of $T(\text{DB}, \text{IC})$ with respect to Δ. Then, there exists $\mathcal{M} \models T(\text{DB}, \text{IC})$, such that $\mathcal{M} <_{\Delta} \mathcal{M}(\text{DB}, \text{DB}')$. By using this it is possible to prove that $\Delta(\text{DB}, \text{DB}_M) \triangleq \Delta(\text{DB}, \text{DB}')$.

(a) Let us suppose that $p(\bar{a}) \in \Delta(\text{DB}, \text{DB}_M)$. Then $p(\bar{a}) \in \text{DB}$ and $p(\bar{a}) \notin \text{DB}_M$, or $p(\bar{a}) \notin \text{DB}$ and $p(\bar{a}) \notin \text{DB}_M$. In the first case we can conclude that $p(\bar{a}) : t_d \in T(\text{DB}, \text{IC})$ and $\mathcal{M} \models p(\bar{a}) : f \lor p(\bar{a}) : f_a$. If we suppose that $\mathcal{M} \models p(\bar{a}) : f$, then $\mathcal{M} \not\models p(\bar{a}) : t_d$, a contradiction. Thus, we have that $\mathcal{M} \models p(\bar{a}) : f_a$. But $\mathcal{M} <_{\Delta} \mathcal{M}(\text{DB}, \text{DB}')$, and therefore $\mathcal{M}(\text{DB}, \text{DB}') \models p(\bar{a}) : f_a$. Then, by considering (1) we conclude that $p(\bar{a}) \notin \text{DB}'$, and therefore in this case it is possible to conclude that $p(\bar{a}) \notin \Delta(\text{DB}, \text{DB}')$.

In the second case we can conclude that $p(\bar{a}) : f_d \in T(\text{DB}, \text{IC})$ and $\mathcal{M} \models p(\bar{a}) : t \lor p(\bar{a}) : t_a$. If we suppose that $\mathcal{M} \models p(\bar{a}) : t$, then $\mathcal{M} \not\models p(\bar{a}) : f_a$, a contradiction. Thus, we have that $\mathcal{M} \models p(\bar{a}) : t_a$. But $\mathcal{M} <_{\Delta} \mathcal{M}(\text{DB}, \text{DB}')$, and therefore $\mathcal{M}(\text{DB}, \text{DB}') \models p(\bar{a}) : t_a$. Then, by considering (1) we conclude that $p(\bar{a}) \in \text{DB}'$, and therefore in this case it is possible to conclude that $p(\bar{a}) \notin \Delta(\text{DB}, \text{DB}')$. Thus, we can conclude that $\Delta(\text{DB}, \text{DB}_M) \triangleq \Delta(\text{DB}, \text{DB}')$.
(b) Since $\mathcal{M}(\text{DB}, \text{DB}') \notin \Delta \mathcal{M}$, there exists $p(\bar{a})$ such that $\mathcal{M}(\text{DB}, \text{DB}') \models p(\bar{a}) : t_a \lor p(\bar{a}) : f_a$ and $\mathcal{M} \models p(\bar{a}) : t \lor p(\bar{a}) : f$. By using (1) and the first fact it is possible to conclude that $p(\bar{a}) \in \Delta(\text{DB}, \text{DB}')$. If we suppose that $p(\bar{a}) \in \text{DB}$, then $p(\bar{a}) : t_a \in \mathcal{T}(\text{DB}, \text{IC})$, and therefore by considering the second fact it is possible to deduce that \mathcal{M} must satisfy $p(\bar{a}) : t$. Thus, we can conclude that in this case $p(\bar{a}) \in \text{DB}_M$, and therefore $p(\bar{a}) \notin \Delta(\text{DB}, \text{DB}_M)$. By the other hand, if we suppose that $p(\bar{a}) \notin \text{DB}$, then $p(\bar{a}) : f_a \in \mathcal{T}(\text{DB}, \text{IC})$, and therefore by considering the second fact it is possible to deduce that \mathcal{M} must satisfy $p(\bar{a}) : f$. Thus, we can conclude that in this case $p(\bar{a}) \notin \text{DB}_M$, and therefore $p(\bar{a}) \notin \Delta(\text{DB}, \text{DB}_M)$. Finally, we conclude that $\Delta(\text{DB}, \text{DB}_M) \subseteq \Delta(\text{DB}, \text{DB}')$.

We know that DB' is a database instance, and therefore $\Delta(\text{DB}, \text{DB}')$ must be a finite set. Thus, we can conclude that $\Delta(\text{DB}, \text{DB}_M)$ is a finite set, and therefore DB_M is a database instance. With the help of Lemma 3, we deduce that $\text{DB}_M \models \text{IC}$. But this is a contradiction, since DB' is a repair of DB with respect to IC and $\Delta(\text{DB}, \text{DB}_M) \subseteq \Delta(\text{DB}, \text{DB}')$.

\[\square\]

Proof of Lemma 4: Let us suppose that

$$\mathcal{T}(\text{DB}, \text{IC}) \models r_1(\bar{a}_1) : t_a \lor \cdots \lor r_k(\bar{a}_k) : t_a.$$

(5)

Because of the form of the clauses in $\mathcal{T}(\text{DB}, \text{IC})$, the above a-clause can be obtained by applying a series of reduction and resolution rules to the clauses in $\mathcal{T}(\text{DB}) \cup \mathcal{T}(\mathcal{B})$ (the database part of $\mathcal{T}(\text{DB}, \text{IC})$ plus builtins) and a clause of the form

$$r_1(\bar{t}_1) : f_c \lor \cdots \lor r_j(\bar{t}_j) : f_c \lor r_{j+1}(\bar{t}_{j+1}) : t_c \lor \cdots \lor r_k(\bar{t}_k) : t_c,$$

(6)

where the latter is a clause obtained from $\mathcal{T}(\text{IC})$ (the constraint part of $\mathcal{T}(\text{DB}, \text{IC})$) by resolution (and factorization) alone.

Furthermore, it is easy to show that resolution applied to a pair of range-restricted constraints yields a range-restricted constraint. Thus, (6) is range restricted.

Since (5) is obtained from (6) by resolution and reduction with the clauses in $\mathcal{T}(\text{DB})$, there must be clauses $r_i(\bar{c}_i) : T \in \mathcal{T}(\text{DB})$, $1 \leq i \leq j$ (which are resolved with (6)), and clauses $r_{i'}(\bar{e}_{i'}) : T \in \mathcal{T}(\text{DB})$, $j < i' \leq k$ (which are reduced with (6)), such that there is a substitution θ for which $\bar{t}_i - \bar{a}_i$ (1 $\leq i \leq h$).

Therefore, due to the range-restrictedness of (6), every constant in $\bar{e}_{i'}$ ($j < i' \leq k$) occurs in some \bar{c}_i (1 $\leq i \leq j$). Since every constant in \bar{c}_i is in the active domain of DB, we conclude that every constant mentioned in (5) belongs to the active domain of DB.

\[\square\]
Proof of corollary 1: By Lemma 4, the clauses in $T^o(DB, IC)$ can mention only the constants that occur in the active domain of DB, which is a finite set.

Proof of theorem 3: At the end of section 6 we showed that the decision problem is equivalent to the problem of deciding, given a finite collection of sets, and a subset of the union of the family, whether the subset can be extended to a minimal hitting set of the family. In the following lemmas we prove that this is NP-complete.

Lemma 5. Given a finite collection of sets S and a hitting set of it H, H is a minimal hitting set of S if and only if for each $h \in H$ there exists an $A \in S$ such that $A \cap H = \{h\}$.

Proof

(\Rightarrow) Let us suppose that the lemma is not true. Then there exists $h \in H$ such that for every $A \in S, A \cap H \neq \{h\}$. We are going to prove $H' = H - \{h\}$ is also a hitting set. Let us consider $A \in S$. If $h \in A$, then there exists another $h' \in H$ such that $h' \in A$, since $A \cap H \neq \{h\}$, and therefore $A \cap H' \neq \emptyset$. If $h \notin A$, then there exist $h' \neq h$ such that $h' \in A \cap H$, and therefore $A \cap H' \neq \emptyset$. Thus, we obtain a contradiction.

(\Leftarrow) If $H' \subseteq H$, then there exists $h \in H$ such that $h \notin H'$. But we know that there is a set $A \in S$ such that $A \uparrow H = \{h\}$, and therefore $A \uparrow H' = \emptyset$. Thus, H' is not a hitting set of S.

Lemma 6. Given a finite collection of sets S and a set $H \subseteq \cup S$, the problem of deciding if there exists a minimal hitting set H' of S such that $H \subseteq H'$ is NP.

Proof We are going to reduce our problem to SAT. For each $x \in \cup S$ we introduce a propositional letter x, and we define:

$$f(S, H) = (\bigwedge_{h \in H} \bigvee_{\{A \in S \mid h \in A\}} \bigwedge_{\{a \in A \mid a \neq h\}} \neg a) \wedge \left(\bigwedge_{h \in H} \left(\bigwedge_{\{A \in S \mid A \cap H = \emptyset\}} \bigvee_{a \in A} a\right)\right).$$

There exists a minimal hitting set H' of S which contains H if and only if $f(H, S)$ is a satisfied formula.

(\Rightarrow) For every proposition letter x in $f(H, S)$ we define $\sigma(x) = 1$ if and only if $x \in H'$.

1. If $h \in H$, then $h \notin H'$, and therefore by lemma 5 we conclude that there exists $A \in S$ such that $A \cap H' = \{h\}$. Thus, for every $a \in A - \{h\}$ we have that $a \notin H'$ and then $\sigma(a) = 0$. We conclude that $\sigma(\bigvee_{\{A \in S \mid h \in A\}} \bigwedge_{\{a \in A \mid a \neq h\}} \neg a) = 1$.

2. $\sigma(\bigwedge_{h \notin H} h) = 1$, since $H \subseteq H'$.
3. If \(A \subseteq S \) and \(A \cap H = \emptyset \), then \(A \cap (H' - H) \neq \emptyset \), since \(H' \) is a hitting set of \(S \). Thus, there exists \(a \in H' \) such that \(a \in A \), and therefore \(\sigma(a) = 1 \). We conclude that \(\sigma(\bigvee_{a \in A} a) = 1 \).

\((\Leftarrow) \) Let \(\sigma \) such that \(\sigma(f(H, S)) = 1 \). We construct \(H'' = \{ x \mid \sigma(x) = 1 \} \). \(H \subseteq H'' \), since \(\sigma(\bigwedge_{h \in H} h) = 1 \). \(H'' \) is a hitting set of \(S \). Let us consider \(A \subseteq S \). If \(A \cap H \neq \emptyset \), then \(A \cap H'' \neq \emptyset \). If \(A \cap H = \emptyset \), then \(\sigma(\bigvee_{a \in A} a) = 1 \), and therefore \(A \cap (H'' - H) \neq \emptyset \).

\(H'' \) is a finite set. Then there exists a minimal hitting set of \(S \) such that \(H' \subseteq H'' \). We are going to prove that \(H \subseteq H' \). By contradiction, let us suppose that there exists \(h \in H \) such that \(h \not\in H' \). We know that \(\sigma(\bigvee_{A \subseteq S} A) \bigwedge_{a \in A \bigwedge a \neq h} \neg a = 1 \). Then there exists \(A \subseteq S \) such that \(\sigma(\bigvee_{A \subseteq S} A) \bigwedge_{a \in A \bigwedge a \neq h} \neg a = 1 \), and therefore \(A \cap H'' = \emptyset \), by definition of \(H' \) and given that \(h \not\in H' \). Thus, we conclude a contradiction.

Lemma 7. Given a finite collection of sets \(S \) and a set \(H \subseteq \bigcup S \), the problem of deciding if there exists a minimal hitting set \(H' \) of \(S \) such that \(H \subseteq H' \) is NP-hard

Proof. We are going to reduce SAT(3) to our problem. Given a formula \(\varphi = C_1 \land \cdots \land C_k \), where every \(C_i \) is a clause, we define \(PL(\varphi) \) as the set of propositional letters mentioned in it. Additionally, for each clause \(C_i \), of the form \(p_1 \lor \cdots \lor p_n \lor \neg q_1 \lor \cdots \lor \neg q_m \), we define

\[
CH(C_i) = \{ p_1, \ldots, p_n, q_1, \ldots, q_m, 0 \}.
\]

After that, we define \(f(\varphi) = (S, H) \), where

\[
S = \{ \{ v.p, p.0 \} \mid p \in PL(\varphi) \} \cup \{ v.p, p.1 \} \mid p \in PL(\varphi) \} \cup \{ CH(C_i) \mid 1 \leq i \leq k \}
\]

\[
H = \{ v.p \mid p \in PL(\varphi) \}
\]

We are going to prove that \(\varphi \) is consistent if and only if there exists a minimal hitting set \(H' \) of \(S \) such that \(H \subseteq H' \).

\((\Rightarrow) \) Let \(\sigma \) that satisfies \(\varphi \). We define

\[
H'' = H \cup \{ p.0 \mid p \in PL(\varphi) \} \cup \{ p.1 \mid p \in PL(\varphi) \} \cup \{ \sigma(p) = 1 \}
\]

\(H'' \) is a hitting set of \(S \), and therefore there exists \(H' \) minimal hitting set of \(S \) such that \(H' \subseteq H'' \), since \(H'' \) is a finite set. If we suppose that there is \(v.p \in H \) such that \(v.p \not\in H' \), then \(H' \cap \{ v.p, p.0 \} = \emptyset \) or \(H' \cap \{ v.p, p.1 \} = \emptyset \), given that \(\sigma(p) = 1 \) or \(\sigma(p) = 0 \). Thus, we conclude a contradiction.

\((\Leftarrow) \) Let us suppose that there exists \(H' \) minimal hitting set of \(S \) such that \(H \subseteq H' \). Notice that for every \(p \in PL(\varphi) \) we have that \(p.0 \not\in H' \) or \(p.1 \not\in H' \), since if both elements would be in \(H' \), then \(H' - \{ v.p \} \) will be a hitting set, a contradiction given that \(H' \) is minimal. Thus, we can define a function \(\sigma : PL(\varphi) \rightarrow \{ 0, 1 \} \) by means of the rule \(\sigma(p) = 1 \) if and only if \(p.1 \in H' \). We have that \(\sigma(\varphi) = 1 \), given that for every clause \(C_i \), \(H' \cap CH(C_i) \neq \emptyset \). \(\square \)