Roof for PADL'03

Lemma 1. If \mathcal{M} is a coherent and minimal model of $(\Pi^*(DB, IC))^{\mathcal{M}}$, then exactly one of the following cases holds:

- $-p(\bar{a}, \mathbf{t_d}), \ p(\bar{a}, \mathbf{t^*}) \ and \ p(\bar{a}, \mathbf{t^{**}}) \ belong \ to \ \mathcal{M}, \ and \ no \ other \ p(\bar{a}, v), \ for \ v \ an \ annotation \ value, \ belongs \ to \ \mathcal{M}.$
- $-p(\bar{a}, \mathbf{t_d}), p(\bar{a}, \mathbf{t^*}), p(\bar{a}, \mathbf{f_a}), p(\bar{a}, \mathbf{f^*})$ and $p(\bar{a}, \mathbf{f^{**}})$ belong to \mathcal{M} , and no other $p(\bar{a}, v)$, for v an annotation value, belongs to \mathcal{M} .
- $-p(\bar{a}, \mathbf{t_a}), \ p(\bar{a}, \mathbf{f^*}), \ p(\bar{a}, \mathbf{t^*}) \ and \ p(\bar{a}, \mathbf{t^{**}}) \ belong \ to \ \mathcal{M}, \ and \ no \ other \ p(\bar{a}, v), \ for \ v \ an \ annotation \ value, \ belongs \ to \ \mathcal{M}.$
- $p(\bar{a}, \mathbf{f}^*)$ and $p(\bar{a}, \mathbf{f}^{**})$ belongs to \mathcal{M} , and no other $p(\bar{a}, v)$, for v an annotation value, belongs to \mathcal{M} .

Proof. For an atom $p(\bar{a})$ we have two possibilities:

- 1. $p(\bar{a}, \mathbf{t_d}) \in \mathcal{M}$. Then, $p(\bar{a}, \mathbf{t^*}) \in \mathcal{M}$. Two cases are possible now: $p(\bar{a}, \mathbf{f_a}) \in \mathcal{M}$ or $p(\bar{a}, \mathbf{f_a}) \notin \mathcal{M}$. For the first one we also have $p(\bar{a}, \mathbf{f^*}) \in \mathcal{M}$ and $p(\bar{a}, \mathbf{t_a}) \notin \mathcal{M}$ (because \mathcal{M} is coherent). For the second one, $p(\bar{a}, \mathbf{f^*}) \notin \mathcal{M}$ (since \mathcal{M} is minimal) and $p(\bar{a}, \mathbf{t_a}) \notin \mathcal{M}$ (because $p(\bar{a}, \mathbf{f^*}) \notin \mathcal{M}$ and \mathcal{M} is minimal). This covers the first two items in the lemma.
- 2. $p(\bar{a}, \mathbf{t_d}) \not\in \mathcal{M}$. Then, $p(\bar{a}, \mathbf{f^*}) \in \mathcal{M}$. Two cases are possible now: $p(\bar{a}, \mathbf{t_a}) \in \mathcal{M}$ or $p(\bar{a}, \mathbf{t_a}) \not\in \mathcal{M}$. For the first one we also have $p(\bar{a}, \mathbf{t^*}) \in \mathcal{M}$ and $p(\bar{a}, \mathbf{f_a}) \not\in \mathcal{M}$ (because \mathcal{M} is coherent). For the second one, $p(\bar{a}, \mathbf{t^*}) \not\in \mathcal{M}$ (since \mathcal{M} is minimal) and $p(\bar{a}, \mathbf{f_a}) \not\in \mathcal{M}$ (because $p(\bar{a}, \mathbf{t^*}) \not\in \mathcal{M}$ and \mathcal{M} is minimal). This covers the last two items in the lemma.

From two database instances we can define a structure.

Definition 4. From two database instances DB_1 and DB_2 over the same domain, $\mathcal{M}^*(DB_1, DB_2)$ is the Herbrand structure $\langle D, I_P, I_B \rangle$, where D is the domain of the database 1 and I_P , I_B are the interpretations for the database predicates (extended with annotation arguments) and the built-ins, respectively. I_P is defined as follows:

- If $p(\bar{a}) \in DB_1$ and $p(\bar{a}) \in DB_2$, then $p(\bar{a}, \mathbf{t_d})$, $p(\bar{a}, \mathbf{t^*})$ and $p(\bar{a}, \mathbf{t^{**}}) \in I_P$.
- $\text{ If } p(\bar{a}) \in DB_1 \text{ and } p(\bar{a}) \notin DB_2, \text{ then } p(\bar{a}, \mathbf{t_d}), p(\bar{a}, \mathbf{t^*}), p(\bar{a}, \mathbf{f_a}), p(\bar{a}, \mathbf{f^*}) \text{ and } p(\bar{a}, \mathbf{f^{**}}) \in I_P.$
- If $p(\bar{a}) \notin DB_1$ and $p(\bar{a}) \notin DB_2$, then $p(\bar{a}, \mathbf{f}^*)$ and $p(\bar{a}, \mathbf{f}^{**}) \in I_P$.
- $\text{If } p(\bar{a}) \not\in DB_1 \text{ and } p(\bar{a}) \in DB_2, \text{ then } p(\bar{a}, \mathbf{f^*}), p(\bar{a}, \mathbf{t_a}), p(\bar{a}, \mathbf{t^*}) \text{ and } p(\bar{a}, \mathbf{t^{**}}) \in I_P.$

The interpretation I_B is defined as expected: if q is a built-in, then $q(\bar{a}) \in I_B$ iff $q(\bar{a})$ is true in classical logic, and $q(\bar{a}) \not\in I_B$ iff $q(\bar{a})$ is false.

From an interpretation model we can obtain a database instance.

Definition 5. Let \mathcal{M} be a coherent stable model of program $\Pi^*(DB, IC)$. The database associated to \mathcal{M} is $DB_{\mathcal{M}} = \{p(\bar{a}) \mid p(\bar{a}, t^{\star\star}) \in \mathcal{M}\}$.

¹ Strictly speaking, the domain D now also contains the annotations values.

The next lemma shows that if \mathcal{M} is a coherent and minimal model of the program $(\Pi^*(DB,IC))^{\mathcal{M}}$, such that \mathcal{M} represents a finite database instance, then that instance satisfies the constraints.

Lemma 2. Let us suppose M is a coherent and minimal model of the program $(\Pi^*(DB,IC))^{\mathcal{M}}$ and $DB_{\mathcal{M}}$ is finite, then $DB_{\mathcal{M}} \models_{\Sigma} IC$.

Proof. We want to show $DB_{\mathcal{M}} \models_{\Sigma} \bigvee_{i=1}^{n} \neg p_{i}(\bar{x}_{i}) \vee \bigvee_{j=1}^{m} q_{j}(\bar{y}_{j}) \vee \varphi$, for every constraint in IC. Since \mathcal{M} is a model of $(\Pi^*(DB, IC))^{\mathcal{M}}$, we have that $\mathcal{M} \models \bigvee_{i=1}^n p_i(\bar{x_i}, \mathbf{f_a}) \vee \bigvee_{j=1}^m q_j(\bar{y_j}, \mathbf{t_a}) \leftarrow \bigwedge_{i=1}^n p_i(\bar{x_i}, \mathbf{t^*}) \wedge \bigwedge_{j=1}^m q_j(\bar{y_j}, \mathbf{f^*}) \wedge \bar{\varphi}$. Then, at least one of the following cases is satisfied:

- $-\mathcal{M} \models p_i(\bar{a}, \mathbf{f_a})$. Then, $\mathcal{M} \models p_i(\bar{a}, \mathbf{f}^{\star\star})$ and $p(\bar{a}) \notin DB_{\mathcal{M}}$ (by lemma 1). Hence, $DB_{\mathcal{M}} \models_{\Sigma} \neg p_i(\bar{a})$. Since the analysis was done for an arbitrary value

Thence, $DB_{\mathcal{M}} \models_{\Sigma} \neg p_{i}(a)$. Since the analysis was done for an arbitrary value \bar{a} , $DB_{\mathcal{M}} \models_{\Sigma} \bigvee_{i=1}^{n} \neg p_{i}(\bar{x_{i}}) \vee \bigvee_{j=1}^{m} q_{j}(\bar{y_{j}}) \vee \varphi$ holds.

- $\mathcal{M} \models q_{j}(\bar{a}, \mathbf{t_{a}})$. It is symmetrical to the previous one.

- It is not true that $\mathcal{M} \models \bar{\varphi}$. Then $\mathcal{M} \models \varphi$. Hence, φ is true, and $DB_{\mathcal{M}} \models_{\Sigma} \bigvee_{i=1}^{n} \neg p_{i}(\bar{x_{i}}) \vee \bigvee_{j=1}^{m} q_{j}(\bar{y_{j}}) \vee \varphi$ holds.

- $\mathcal{M} \not\models p_{i}(\bar{a}, \mathbf{t^{*}})$. Given the model is coherent and minimal, just the last item

in lemma 1 holds. This means $\mathcal{M} \models p_i(\bar{a}, \mathbf{f}^{\star\star}), p_i(\bar{a}) \notin DB_{\mathcal{M}}$ and $DB_{\mathcal{M}} \models_{\Sigma}$ $\neg p_i(\bar{a})$. Since the analysis was done for an arbitrary value \bar{a} , $DB_{\mathcal{M}} \models_{\Sigma} \bigvee_{i=1}^n \neg p_i(\bar{x_i}) \vee \bigvee_{j=1}^m q_j(\bar{y_j}) \vee \varphi$ holds. $-\mathcal{M} \not\models q_j(\bar{a}, \mathbf{f}^*)$. Given the model is coherent and minimal, just the first item

in lemma 1 holds. Then, $\mathcal{M} \models q_j(\bar{a}, \mathbf{t}^{\star\star}), q_j(\bar{a}) \in DB_{\mathcal{M}} \text{ and } DB_{\mathcal{M}} \models_{\Sigma}$ $q_j(\bar{a})$. Since the analysis was done for an arbitrary value \bar{a} , $DB_{\mathcal{M}} \models_{\Sigma} \bigvee_{i=1}^n$ $\neg p_i(\bar{x_i}) \vee \bigvee_{j=1}^m q_j(\bar{y_j}) \vee \varphi$ holds.

Lemma 3. If $DB' \models_{\Sigma} IC$, then $\mathcal{M}^{\star}(DB, DB')$ is a coherent model of the program $(\Pi^{\star}(DB, IC))^{\mathcal{M}^{\star}(DB, DB')}$.

Proof. We will first show $\mathcal{M}^*(DB, DB')$ is a model of $(II^*(DB, IC))^{\mathcal{M}^*(DB, DB')}$. Since $DB' \models_{\Sigma} \bigvee_{i=1}^{n} \neg p_{i}(\bar{a_{i}}) \vee \bigvee_{j=1}^{m} q_{j}(\bar{b_{j}}) \vee \varphi$, we have three possibilities to analyze with respect to the satisfaction of this clause. The first possibility is $DB' \models_{\Sigma} \neg p_i(\bar{a})$. Then, two cases arise

- $-p_i(\bar{a}) \in DB$. Then, $p_i(\bar{a}, \mathbf{f}^{\star})$, $p_i(\bar{a}, \mathbf{t_d})$, $p_i(\bar{a}, \mathbf{f_a})$, $p_i(\bar{a}, \mathbf{t}^{\star})$ and $p_i(\bar{a}, \mathbf{f}^{\star\star})$ belong to $\mathcal{M}^*(DB, DB')$, and the program $(\widetilde{H}^*(DB, IC))^{\mathcal{M}^*(DB, DB')}$ contains the following clauses: $p_i(\bar{a}, \mathbf{t_d}) \leftarrow p_i(\bar{a}, \mathbf{t^*}) \leftarrow p_i(\bar{a}, \mathbf{t_d}), p_i(\bar{a}, \mathbf{t^*}) \leftarrow$ $p_i(\bar{a}, \mathbf{t_a}), p_i(\bar{a}, \mathbf{f}^*) \leftarrow p_i(\bar{a}, \mathbf{f_a}) \text{ and } p_i(\bar{a}, \mathbf{f}^{**}) \leftarrow p_i(\bar{a}, \mathbf{f_a}). \text{ Then, all these for-}$ mulas are satisfied by $\mathcal{M}^{\star}(DB,DB')$. The program also contains the clause $\bigvee_{i=1}^{n} p_{i}(\bar{a},\mathbf{f_{a}}) \vee \bigvee_{j=1}^{m} q_{j}(\bar{a},\mathbf{t_{a}}) \leftarrow \bigwedge_{i=1}^{n} p_{i}(\bar{a},\mathbf{t^{\star}}) \wedge \bigwedge_{j=1}^{m} q_{j}(\bar{a},\mathbf{f^{\star}}) \wedge \bar{\varphi}$, which is satisfied since $p_i(\bar{a}, \mathbf{f_a})$ belongs to $\mathcal{M}^*(DB, DB')$.
- $-p_i(\bar{a}) \notin DB$. Then, $p_i(\bar{a}, \mathbf{f}^*)$ and $p_i(\bar{a}, \mathbf{f}^{**}) \in \mathcal{M}^*(DB, DB')$, and $p_i(\bar{a}, \mathbf{f}^*)$, $p_i(\bar{a}, \mathbf{t}^{\star}) \leftarrow p_i(\bar{a}, \mathbf{t_d}), p_i(\bar{a}, \mathbf{t}^{\star}) \leftarrow p_i(\bar{a}, \mathbf{t_a}), p_i(\bar{a}, \mathbf{f}^{\star}) \leftarrow p_i(\bar{a}, \mathbf{f_a}) \text{ and } p_i(\bar{a}, \mathbf{f}^{\star \star}) \leftarrow \text{are in } (\Pi^{\star}(DB, IC))^{\mathcal{M}^{\star}(DB, DB')}.$ All these are satisfied by the model considered. Also in the program is the clause $\bigvee_{i=1}^n p_i(\bar{a}, \mathbf{f_a}) \vee \bigvee_{j=1}^m q_j(\bar{a}, \mathbf{t_a}) \leftarrow$ $\bigwedge_{i=1}^n p_i(\bar{a}, \mathbf{t}^*) \wedge \bigwedge_{j=1}^m q_j(\bar{a}, \mathbf{f}^*) \wedge \tilde{\varphi}$, and it is trivially satisfied since $p_i(\bar{a}, \mathbf{t}^*) \not\in$

The second possibility is $DB' \models_{\Sigma} q_j(\bar{a})$. The following cases arise:

- $q_j(\bar{a}) \in DB$. Then, $\mathcal{M}^*(DB, DB')$ contains $q_j(\bar{a}, \mathbf{t_d})$, $q_j(\bar{a}, \mathbf{t^*})$ and $q_j(\bar{a}, \mathbf{t^{**}})$, and program $(H^*(DB, IC))^{\mathcal{M}^*(DB, DB')}$ contains the formulas $q_j(\bar{a}, \mathbf{t_d}) \leftarrow$, $q_j(\bar{a}, \mathbf{t^*}) \leftarrow q_j(\bar{a}, \mathbf{t_d})$, $q_j(\bar{a}, \mathbf{t^*}) \leftarrow q_j(\bar{a}, \mathbf{t_d})$, $q_j(\bar{a}, \mathbf{t^*}) \leftarrow q_j(\bar{a}, \mathbf{t_d})$ and $q_j(\bar{a}, \mathbf{t^{**}}) \leftarrow q_j(\bar{a}, \mathbf{t_d})$. The structure $\mathcal{M}^*(DB, DB')$ satisfies all these clauses. The clause $\bigvee_{i=1}^n p_i(\bar{a}, \mathbf{f_a}) \vee \bigvee_{j=1}^m q_j(\bar{a}, \mathbf{t_d}) \leftarrow \bigwedge_{i=1}^n p_i(\bar{a}, \mathbf{t^{**}}) \wedge \bigwedge_{j=1}^m q_j(\bar{a}, \mathbf{f^{**}}) \wedge \bar{\varphi}$ is also in the program, and is satisfied trivially since it holds that $q_j(\bar{a}, \mathbf{f^{**}})$ does not belong to $\mathcal{M}^*(DB, DB')$.
- $-q_j(\bar{a}) \notin DB$. Then, $q_j(\bar{a}, \mathbf{f}^*)$, $q_j(\bar{a}, \mathbf{t_a})$, $q_j(\bar{a}, \mathbf{t}^*)$ and $q_j(\bar{a}, \mathbf{t}^{**})$ are in the structure $\mathcal{M}^*(DB, DB')$, and the following formulas are in the program $(H^*(DB, IC))^{\mathcal{M}^*(DB, DB')}$: $q_j(\bar{a}, \mathbf{f}^*) \leftarrow q_j(\bar{a}, \mathbf{t}^*) \leftarrow q_j(\bar{a}, \mathbf{t_d})$, $q_j(\bar{a}, \mathbf{t}^*) \leftarrow q_j(\bar{a}, \mathbf{t_a})$, $q_j(\bar{a}, \mathbf{f}^*) \leftarrow q_j(\bar{a}, \mathbf{t_a})$ and $q_j(\bar{a}, \mathbf{t}^{**}) \leftarrow q_j(\bar{a}, \mathbf{t_a})$. These are satisfied by $\mathcal{M}^*(DB, DB')$. Also in the program is the clause $\bigvee_{i=1}^n p_i(\bar{a}, \mathbf{f_a}) \vee \bigvee_{j=1}^m q_j(\bar{a}, \mathbf{t_a}) \leftarrow \bigwedge_{i=1}^n p_i(\bar{a}, \mathbf{t}^*) \wedge \bigwedge_{j=1}^m q_j(\bar{a}, \mathbf{f}^*) \wedge \bar{\varphi}$, which is satisfied since $q_j(\bar{a}, \mathbf{t_a})$ belongs to $\mathcal{M}^*(DB, DB')$.

The third possibility is $DB' \models_{\Sigma} \varphi$. Then, φ is true. The clause $\bigvee_{i=1}^{n} p_{i}(\bar{a}, \mathbf{f_{a}}) \vee \bigvee_{j=1}^{m} q_{j}(\bar{a}, \mathbf{t_{a}}) \leftarrow \bigwedge_{i=1}^{n} p_{i}(\bar{a}, \mathbf{t^{\star}}) \wedge \bigwedge_{j=1}^{m} q_{j}(\bar{a}, \mathbf{f^{\star}}) \wedge \bar{\varphi}$ is in $(\Pi^{\star}(DB, IC))^{\mathcal{M}^{\star}(DB, DB')}$, and it is satisfied since $\mathcal{M}^{\star}(DB, DB') \not\models \bar{\varphi}$.

As the analysis was done for an arbitrary value \bar{a} , it holds that the Herbrand structure $\mathcal{M}^{\star}(DB,DB')$ is a model of $(\Pi^{\star}(DB,IC))^{\mathcal{M}^{\star}(DB,DB')}$. Moreover, it is also coherent, since $\mathcal{M}^{\star}(DB,DB')$ was defined for not containing both $p(\bar{a},\mathbf{t_a})$ and $p(\bar{a},\mathbf{f_a})$.

The following theorem establishes the one-to-one correspondence between coherent stable models of the program and the repairs of the original instance.

Theorem 1. If \mathcal{M} is a coherent stable model of $\Pi^*(DB, IC)$, and $DB_{\mathcal{M}}$ is finite, then $DB_{\mathcal{M}}$ is a repair of DB with respect to IC. Furthermore, the repairs obtained in this way are all the repairs of DB.

Proof. From propositions 1 and 2 below.

Proposition 1. If \mathcal{M} is a coherent and minimal model of $(\Pi^*(DB, IC))^{\mathcal{M}}$, and $DB_{\mathcal{M}}$ is finite, then $DB_{\mathcal{M}}$ is a repair of DB with respect to IC.

Proof. From Lemma 2, we have $DB_{\mathcal{M}} \models_{\Sigma} IC$. We just have to show minimality. Let us suppose there is a database instance DB', such that $DB' \models_{\Sigma} IC$ and $\Delta(DB,DB') \subsetneq \Delta(DB,DB_{\mathcal{M}})$. Then, by lemma 3, $\mathcal{M}^{\star}(DB,DB')$ is a coherent model of $(II^{\star}(DB,IC))^{\mathcal{M}^{\star}(DB,DB')}$. We will first show $\mathcal{M}^{\star}(DB,DB') \subseteq \mathcal{M}$ and that $\mathcal{M}^{\star}(DB,DB')$ is a model of $(II^{\star}(DB,IC))^{\mathcal{M}}$. Notice that since \mathcal{M} is a minimal model of $(II^{\star}(DB,IC))^{\mathcal{M}}$, this program contains the clause $p(\bar{a},\mathbf{f}^{\star}) \leftarrow$ for every $p(\bar{a}) \notin DB$. The rest of the program must look exactly like $(II^{\star}(DB,IC))^{\mathcal{M}^{\star}(DB,DB')}$, except probably for the interpretation clauses. By definition 4, for an arbitrary atom $p(\bar{a})$ in a model $\mathcal{M}^{\star}(DB,DB')$, we just have to analyze four cases:

- 1. Let us suppose just $p(\bar{a}, \mathbf{t}^{**})$, $p(\bar{a}, \mathbf{t}^{*})$ and $p(\bar{a}, \mathbf{t}_{\mathbf{d}})$ belong to $\mathcal{M}^{*}(DB, DB')$. Then $p(\bar{a}) \in DB$ and $p(\bar{a}) \in DB'$. Since $p(\bar{a}) \notin \Delta(DB, DB')$, we have two possibilities. The first one saying $p(\bar{a}) \notin \Delta(DB, DB_{\mathcal{M}})$. Then, $p(\bar{a}, \mathbf{t}^{*})$, $p(\bar{a}, \mathbf{t}_{\mathbf{d}})$ and $p(\bar{a}, \mathbf{t}^{**})$ also belong to \mathcal{M} and $\mathcal{M}^{*}(DB, DB')$ is clearly a model of $(\Pi^{*}(DB, IC))^{\mathcal{M}}$. The second one saying $p(\bar{a}) \in \Delta(DB, DB_{\mathcal{M}})$. Again, $p(\bar{a}, \mathbf{t}^{*})$, $p(\bar{a}, \mathbf{t}_{\mathbf{d}})$ and $p(\bar{a}, \mathbf{t}^{**})$ belong to \mathcal{M} and $\mathcal{M}^{*}(DB, DB')$ is clearly a model of the program $(\Pi^{*}(DB, IC))^{\mathcal{M}}$.
- 2. Let us suppose now, just $p(\bar{a}, \mathbf{f}^*)$ and $p(\bar{a}, \mathbf{f}^{**})$ belong to $\mathcal{M}^*(DB, DB')$. Again we have two possibilities. The first one says that $p(\bar{a}) \notin \Delta(DB, DB_{\mathcal{M}})$. Then, $p(\bar{a}, \mathbf{f}^*)$ and $p(\bar{a}, \mathbf{f}^{**})$ also belong to \mathcal{M} . The program $(\Pi^*(DB, IC))^{\mathcal{M}}$ contains (among others) the clause $p(\bar{a}, \mathbf{f}^*) \leftarrow$, that is satisfied by the program $\mathcal{M}^*(DB, DB')$. The rest of the clauses concerning $p(\bar{a})$ are satisfied because are also present in $(\Pi^*(DB, IC))^{\mathcal{M}^*(DB, DB')}$. The second one says that $p(\bar{a}) \in \Delta(DB, DB_{i(\mathcal{M})}^{\mathcal{H}})$. Again, $p(\bar{a}, \mathbf{f}^*)$ and $p(\bar{a}, \mathbf{f}^{**})$ belong to \mathcal{M} . The program $(\Pi^*(DB, IC))^{\mathcal{M}}$ contains (among others) the clause $p(\bar{a}, \mathbf{f}^*) \leftarrow$, that is satisfied by $\mathcal{M}^*(DB, DB')$. The rest of the clauses concerning $p(\bar{a})$ are satisfied because are also present in $(\Pi^*(DB, IC))^{\mathcal{M}^*(DB, DB')}$.
- 3. Let us suppose just $p(\bar{a}, \mathbf{t}^{\star})$, $p(\bar{a}, \mathbf{t_d})$, $p(\bar{a}, \mathbf{f_a})$, $p(\bar{a}, \mathbf{f}^{\star})$ and $p(\bar{a}, \mathbf{f}^{\star \star})$ belong to the model $\mathcal{M}^{\star}(DB, DB')$. Then $p(\bar{a}) \in DB$ and $p(\bar{a}) \notin DB'$. Hence, $p(\bar{a}) \in \Delta(DB, DB')$, and due to our assumption $p(\bar{a}) \in \Delta(DB, DB_{\mathcal{M}})$. Therefore, $p(\bar{a}, \mathbf{t}^{\star})$, $p(\bar{a}, \mathbf{t_d})$, $p(\bar{a}, \mathbf{f_a})$, $p(\bar{a}, \mathbf{f}^{\star})$ and $p(\bar{a}, \mathbf{f}^{\star \star})$ belong to \mathcal{M} . Moreover, $\mathcal{M}^{\star}(DB, DB')$ is clearly a model of the program $(\Pi^{\star}(DB, IC))^{\mathcal{M}}$.
- 4. Finally, we will suppose just $p(\bar{a}, \mathbf{f}^*)$, $p(\bar{a}, \mathbf{t_a})$, $p(\bar{a}, \mathbf{t}^*)$ and $p(\bar{a}, \mathbf{t}^{**})$ belong to the model $\mathcal{M}^*(DB, DB')$. Then, $p(\bar{a}) \notin DB$ and $p(\bar{a}) \in DB'$. Hence, $p(\bar{a}) \in \Delta(DB, DB')$, and due to our assumption $p(\bar{a}) \in \Delta(DB, DB_{\mathcal{M}})$. Therefore, $p(\bar{a}, \mathbf{f}^*)$, $p(\bar{a}, \mathbf{t}^*)$, $p(\bar{a}, \mathbf{t_a})$ and $p(\bar{a}, \mathbf{t}^{**})$ belong to \mathcal{M} . The program $(H^*(DB, IC))^{\mathcal{M}}$ contains (among others) the clause $p(\bar{a}, \mathbf{f}^*) \leftarrow$, that is satisfied by $\mathcal{M}^*(DB, DB')$. The rest of the clauses concerning $p(\bar{a})$ are satisfied because are also present in $(H^*(DB, IC))^{\mathcal{M}^*(DB, DB')}$.

We will now show $\mathcal{M}^{\star}(DB,DB') \subsetneq \mathcal{M}$. We have assumed there is an element of $\Delta(DB,DB_{i(\mathcal{M})}^{H})$ that is not an element of $\Delta(DB,DB')$. Thus, for some element $p(\bar{a})$, either $p(\bar{a}) \in DB$, $p(\bar{a}) \in DB'$ and $p(\bar{a}) \notin DB_{i(\mathcal{M})}^{H}$, or $p(\bar{a}) \notin DB$, $p(\bar{a}) \notin DB'$ and $p(\bar{a}) \in DB_{i(\mathcal{M})}^{H}$. For the first one we have $\mathcal{M}^{\star}(DB,DB')$ satisfies $p(\bar{a},\mathbf{t_d})$ and $p(\bar{a},\mathbf{t^{\star}})$, and \mathcal{M} satisfies $p(\bar{a},\mathbf{t_d})$ and $p(\bar{a},\mathbf{t^{\star}})$, but also satisfies $p(\bar{a},\mathbf{t_d})$ and $p(\bar{a},\mathbf{t^{\star}})$, but also $p(\bar{a},\mathbf{t_d})$ and $p(\bar{a},\mathbf{t^{\star}})$, but also $p(\bar{a},\mathbf{t_d})$ and $p(\bar{a},\mathbf{t^{\star}})$, but also $p(\bar{a},\mathbf{t_d})$ and $p(\bar{a},\mathbf{t^{\star}})$.

Then, \mathcal{M} is not a minimal model; a contradiction.

Proposition 2. If DB' is a repair of DB with respect to IC, then $\mathcal{M}^*(DB, DB')$ is a coherent and minimal model of $(\Pi^*(DB, IC))^{\mathcal{M}^*(DB, DB')}$.

Proof. By Lemma 3 we have $\mathcal{M}^*(DB, DB')$ is a coherent model of the program $H^*(DB, IC)^{\mathcal{M}^*(DB, DB')}$. We just have to show it is minimal. Let us suppose first there exists a model \mathcal{M} of $(H^*(DB, IC))^{\mathcal{M}^*(DB, DB')}$ such that it is the case that $\mathcal{M} \subsetneq \mathcal{M}^*(DB, DB')$ (it is also coherent since it is contained in $\mathcal{M}^*(DB, DB')$).

It can be assumed, without loss of generality, that \mathcal{M} is minimal (if it is not minimal, we can always generate from it a minimal model \mathcal{M}' , such that $\mathcal{M}' \subsetneq \mathcal{M}$, by deleting its non-supported atoms). We will prove $\Delta(DB, DB_{\mathcal{M}}) \subsetneq \Delta(DB, DB')$.

At first, we will prove $\Delta(DB,DB_{\mathcal{M}})\subseteq\Delta(DB,DB')$. Let us suppose $p(\bar{a})\in\Delta(DB,DB_{\mathcal{M}})$. Then, either $p(\bar{a})\in DB$ and $p(\bar{a})\notin DB_{\mathcal{M}}$ or $p(\bar{a})\notin DB$ and $p(\bar{a})\in DB_{\mathcal{M}}$. In the first case, $p(\bar{a},\mathbf{t_d}),\,p(\bar{a},\mathbf{t^*}),\,p(\bar{a},\mathbf{f_a}),\,p(\bar{a},\mathbf{f^*})$ and $p(\bar{a},\mathbf{f^*})$ are in \mathcal{M} . By our assumption these are also in $\mathcal{M}^*(DB,DB')$. Hence, $p(\bar{a})\in\Delta(DB,DB')$. In the second case, $p(\bar{a},\mathbf{f^*}),\,p(\bar{a},\mathbf{t_a}),\,p(\bar{a},\mathbf{t^*})$ and $p(\bar{a},\mathbf{t^{**}})$ are in \mathcal{M} . By our assumption these are also in $\mathcal{M}^*(DB,DB')$. Hence, $p(\bar{a})\in\Delta(DB,DB')$. By our assumption these are also in $\mathcal{M}^*(DB,DB')$.

We will now prove $\Delta(DB,DB_{\mathcal{M}}) \subseteq \Delta(DB,DB')$. We know for some fact $p(\bar{a})$ there is an element related to it which is in $\mathcal{M}^*(DB,DB')$ and which is not in \mathcal{M} . One possible case is $p(\bar{a},\mathbf{f_a})$ and $p(\bar{a},\mathbf{f^*})$ are in $\mathcal{M}^*(DB,DB')$ and not in \mathcal{M} . Then, $p(\bar{a}) \in \Delta(DB,DB')$, but $p(\bar{a}) \notin \Delta(DB,DB_{\mathcal{M}})$. The other possible case $p(\bar{a},\mathbf{t_a})$ and $p(\bar{a},\mathbf{t^*})$ are in $\mathcal{M}^*(DB,DB')$ and not in \mathcal{M} . Then, $p(\bar{a}) \in \Delta(DB,DB')$, but $p(\bar{a}) \notin \Delta(DB,DB_{\mathcal{M}})$.

By Lemma 2, we have $DB_{\mathcal{M}} \models_{\Sigma} IC$. Also, $DB_{\mathcal{M}}$ is finite. This contradicts our fact that DB' is a repair.