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Abstract

Consistent query answering (CQA) is an inconsistency tolerant approach to obtaining semantically cor-
rect answers from a database that may be inconsistent with respect to a set of integrity constraints. In this
work, we formalize the notion ofconsistent query answerfor spatial databases with respect to a special
but relevant class of spatial semantic integrity constraints (SICs). In order to do this, we first character-
ize conflicting spatial data, and next, define admissible instances that restore consistency while staying
close to the original instance. In this way we obtain arepair semantics, which is used as an instrumen-
tal concept to define consistent answers as a set-theoretic and geometric aggregation of answers from
all admissible repairs. After establishing the intractability of consistent query answering, we identify
and investigate a class of denial SICs (IDSICs) and spatial queries for which it is possible to efficiently
compute consistent query answers via core computation.

1 Introduction

Consistency in database systems is defined as the satisfaction by a database instance of a set of integrity
constraints (ICs) that restricts the admissible database states. Although consistency is a desirable and usually
enforced property of databases, it is common to find inconsistent spatial databases due to data integration,
unforced integrity constraints, legacy data, or time lag updates. In the presence of inconsistencies, there are
alternative courses of action: (a) ignore inconsistencies, (b) restore consistency via updates on the database,
or (c) accept inconsistencies, without changing the database, but computing the “consistent or correct”
answers to queries [2]. For many reasons, the first two alternatives may not be appropriate, specially in the
case of virtual data integration [6], where centralized andglobal changes to the data sources are not allowed.
In this work, we follow and develop the latter approach, called consistent query answering, for the spatial
domain.

Consistent query answering (CQA) is about characterizing and computing query answers from a database
instance that are semantically correct, in spite of the possible violation of the integrity constraints by the
database. CQA has been extensively investigated in the relational case (cf. [8, 4, 13, 5] for surveys of the
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area). Extracting consistent data from inconsistent databases could be qualified as an “inconsistency toler-
ant” approach to querying databases [9]. The basic idea of this approach is that even though a database may
violate its integrity constraints, it can still be used to compute consistent answers to queries. In this way, it
shifts the goal from the consistency of a spatial database tothe consistency of query answering.

In this paper, we develop CQA for spatial databases and certain classes of denial SICs. The spatial
domain offers several new challenges in comparison with therelational case, which is specially due to the
use of complex attributes to represent geometries, their combination with thematic attributes, and the nature
of spatial (topological) relations.

We introduce this idea using the following informal and simple example.

Example 1 Consider a database instance with a relationLandP, denoting land parcels, with thematic at-
tributesidl andname, and a spatial attributegeometry, of data typepolygon. A SIC stating that geome-
tries of two different land parcels must be disjoint or just touch is expected to be satisfied, i.e., land parcels
cannot internally intersect. However, the instance in Figure 1 does not satisfy this SIC and, therefore, it is
inconsistent: the land parcels with identifiersidl2 andidl3 overlap. Notice that these geometries partially
intersect, and what is not intersecting can be considered asconsistent data.

LandP
idl name geometry
idl1 n1 g1
idl2 n1 g2
idl3 n1 g3

g1 g2

g3

Figure 1: An inconsistent spatial database.

Suppose that a query requests the attributeidl of all land parcels whose geometries intersect with a query
window, which represents the spatial region shown in Figure1 as a rectangle with dashed boundaries. Al-
though the database instance is inconsistent with respect to the SIC, we can still obtain useful and meaningful
answers. In this case, only the intersection betweeng2 andg3 participates in the violation of the SIC, but
what is left, after eliminating this intersection fromg2 or g3, can be considered consistent and should be part
of any “database repair” if we decide to restore consistencyby means of minimal geometric changes. Thus,
since the non-intersecting parts of geometriesg2 andg3 intersect the query window, we would expect the
following answers:〈dl1〉,〈idl2〉, and〈idl3〉.

For a query as above, that only requests theidl of land parcels, and the given database instance, the
consistent answers coincide with the traditional answers (obtained ignoring the inconsistency). However,
there is a difference between these two approaches when the query does not only request the identifica-
tion, but also the geometries of land parcels that intersectthe query window. In such case, the answers
under the traditional approach, oblivious to inconsistencies, will return tuples with the original values in
attributesidl andgeometry, whereas consistent answers may return tuples with the original values inidl
and modified values in thegeometry attribute of land parcels. These modifications are due to therepair
and CQA semantics we use. For the new query, for example, the consistent answers would be three tu-
ples: 〈id1, g1〉,〈id2, g′2〉,〈id3, g

′
3〉, whereg1 is the original geometry of land parcelid1, andg′2 andg′3 are

geometries derived from the intersection of geometries, grouped by thematic attributes, in answers from all
admissible repairs. 2

If we just concentrate on (in)consistency issues in databases (leaving aside consistent query answering for
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a moment), we can see that, in contrast to (in)consistency handling in relational databases, that has been
largely investigated, not much research of this kind has been done for spatial databases. In particular,
there is not much work around the formalization, satisfaction, checking or maintenance of SICs. However,
some papers address the specification of some kinds of integrity constraints [10, 26], and check topological
consistency at multiple representations and for data integration [18, 21, 36].

More recently, [16] proposes qualitative reasoning with description logic to describe consistency be-
tween geographic data sets. In [27], a set of abstract relations between entity classes is defined; and they
could be used to discover redundancies and conflicts in sets of SICs. In [11], a formalization of a SICs
is given and the study of the satisfiability problem of these constraints is analyzed. A proposal for fixing
(changing) spatial database instances under different types of spatial inconsistencies is given in [34]. Ac-
cording to it, changes are applied over geometries in isolation; that is, they are not analyzed in combination
with multiple SICs. In [32], some issues around query answering under violations of functional dependen-
cies involving geometric attributes were raised. Despite de previous results, the problem of dealing with an
inconsistent spatial database, while still obtaining meaningful answers, has not been systematically studied
so far.

Consistent query answering from inconsistent databases was introduced and studied in the context of
relational databases [2]. In that case, consistent answersto first-order queries are defined as those that are
invariant under all the minimal forms of restoring consistency of the original database. Thus, the notion of
repair of an instance with respect to a set of ICs becomes a fundamental concept for defining consistent query
answers. Arepair semanticsdefines the admissible and consistent alternative instances to an inconsistent
database at hand. More precisely, arepair of an inconsistent relational instanceD is a consistent instance
D ′ obtained fromD by deleting or inserting whole tuples. The set of tuples by which D andD ′ differ is
minimal under set inclusion [2]. Other types of repair semantics have been studied in the relational case.
For example, in [22, 37], repairs are obtained by allowing updates of attribute values in tuples. See [5] for
more details and an extensive list of references.

In this work, we define a repair semantics for spatial databases with respect to a subset of SICs (also
known as topo-semantic integrity constraints [34]), whichimpose semantic restrictions on topological re-
lations and combinations thereof. In particular, we treat SICs that can be expressed by denials constraints.
For example, they can specify that “two land parcels cannot internally intersect”. These constraints are nei-
ther standardized nor integrated into current spatial database management systems (SDBMSs). They rather
depend on the application, and must be defined and handled by the database developers. We concentrate on
topological relations because they have spurred much research [19, 31, 15] and they are implemented in cur-
rent Spatial SQL Languages (SSQLs). They are considered to capture the essence of a spatial configuration
−topology matters, metric refines [20].

Other important spatial integrity constraints [14] aredomain (topological or geometric) constraints,
which refer to the geometry, topology, and spatial relations of the spatial data types. One of them could
specify that “polygons must be closed”. Many of these geometric constraints are now commonly integrated
into SDBMSs [28].

The main contributions of this paper are:

• We formalize a spatio-relational schema and a subset of spatial semantic constraints, calleddenial
spatial integrity constraints(DSICs).

• We formalize a repair semantics for spatial database instances under violations of DSICs. This is
done through virtual changes of geometries that participate in violations of the DSICs. We provide a
general definition ofdatabase repairthat is based on shrinking geometries.
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Unlike the preliminary work presented in [33], where database repairs are defined, inductively, by
sequences of admissible geometric transformations applied over geometries, we rely now on a more
general idea of shrinking geometries that may produce emptygeometries or smaller geometries with
respect to geometric inclusion. This makes it possible to define geometric operators for shrinking
geometries that are more suitable than others, depending onan application; and also use global mini-
mality as the principal criterion for selecting alternative repairs.

• We analyze the complexity of repair checking for spatial databases with respect to DSICs.

• Based on this formalization, we define the notion of consistent answer to arangeand join query as
an answer obtained by aset-theoretic and geometricaggregation of the answers obtained from all the
admissible repairs.

• We show that computing consistent answers in the general case is intractable.

• In spite of the complexity results just mentioned, we show that CQA for a subclass of DSICs (IDSICs),
and basic range and join queries, can be done efficiently via acore computation. This amounts
to querying directly the intersection of all repairs of an inconsistent database instance, but without
actually computing the repairs. We identify cases for whichthe core can be specified as a SSQL view
of the original, inconsistent database.

• We present an experimental evaluation with real and synthetic data sets that compares the cost of CQA
with the cost of evaluating queries directly over the inconsistent database (i.e., ignoring inconsisten-
cies).

This work builds on, and extends, the results obtained in [33]. More precisely, we formalize consistent
query answers on the basis of a repair semantics that shrink geometries. It assumes that we can shrink
geometries in different ways, and considers global minimality of changes as the fundamental criterion to
compare alternative repairs. Proceeding in this way gives us a semantics that does not provide only one
possible transformation to solve a particular conflict, butmakes possible alternative transformations that,
when analyzed globally, define a repair that minimally differs from the original database instance. It also
provides the theoretical foundations to define and investigate application-dependent geometric operators that
shrink geometries. This work also extends [33] by considering, not only range queries, but also join queries.
We also provide complexity results for repair checking of DSICs and CQA, and present experimental results,
in particular, the evaluation of the proposed algorithms for CQA for a subset of DSICs and queries.

The remaining of the paper is organized as follows. In Section 2, we describe the spatial data model
upon which we define the repair semantics and consistent query answers. A formal definition of a repair
semantics for spatial inconsistent databases under DSICs is introduced in Section 3. In Section 4, we define
consistent answers to conjunctive queries. We also analyzethe computational properties of CQA. This leads
us, in Section 5, to propose polynomial time algorithms (in data complexity) for consistent query answering
with respect to a relevant class of DSICs and queries. An experimental evaluation of the cost of CQA is
provided in Section 6. Final conclusions and future research directions are given in Section 7.

2 Preliminaries

Current models of spatial databases are typically seen as extensions of the relational data model (known as
extended-relational or object-relational models) with the definition of abstract data types to specify spatial
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attributes. We now introduce a general spatio-relational database model that includes spatio-relational pred-
icates (they could also be purely relational) and DSICs. It uses some of the definitions introduced in [30].
The model is independent of the geometric data model (e.g. Spaghetti [35], topological [24, 35], raster [25],
or polynomial model [29]) underlying the representation ofspatial data types.

A spatio-relational database schemais of the formΣ = (U ,A,R, T ,O,B), where: (a)U is the possibly
infinite database domain of atomic thematic values. (b)A is a set of thematic, non-spatial, attributes. (c)R
is a finite set of spatio-relational predicates (relations)whose attributes belong toA or are spatial attributes.
Spatial attributes take admissible values1 in P(Rm), the power set ofRm, for a fixedm that depends on the
dimension of the spatial attribute. (d)T is a fixed set of binary spatial predicates, with a built-in interpreta-
tion. (e)O is a fixed set of geometric operators that take spatial arguments, also with built-in interpretations.
(f) B is a fixed set of built-in relational predicates, like comparison predicates, e.g.<,>,=, 6=, which apply
to thematic attribute values.

We assume that each relationR has only one spatial attribute. Furthermore, each relationis subject to a
key constraintof the general form (1), with a key formed by thematic attributes only.

∀x̄1x̄2x̄3s1s2 (R(x̄1, x̄2; s1) ∧R(x̄1, x̄3; s2) → x̄2 = x̄3 ∧ Equals(s1, s2). (1)

Here,x̄1 is a non-empty sequence,x̄2 andx̄3 are possible empty sequences, of distinct variables represent-
ing values for thematic attributes ofR, andsi are variables for values of spatial attributes2. Furthermore,
Equals(s1, s2) is a built-in spatial predicate (see Table 1).

A database instanceD of a spatio-relational schemaΣ is composed of relation instances, which are finite
collections of tuples of the formR(c1, ..., cn; g), whereR ∈ R, 〈c1, ..., cn〉 ∈ Un contains the thematic
attribute values, andg ∈ Ad ⊆ P(Rm), with Ad is the class of admissible geometries (cf. below). The
extension in a particular instance of the relationR is a subset ofUn × Ad . To fix ideas, we concentrate in
this work on the case wherem = 2, however, we could generalize the work with geometries in a 3D space.

Among the different abstraction mechanisms for modelling single spatial objects, we concentrate on
regionsfor modelling real objects that have an extent. They are useful in a broad class of applications in
Geographic Information Systems (GISs). We will be interested in a finite representation of geometries,
which is compatible with the specification of spatial data types and spatial relations as found in current
SDBMSs [28]. Actually, in current implementations of SDBMSs, regions are defined as finite sets of poly-
gons that, in their turn, are defined through a finite sequenceof boundary points. We can call thempolygonal
regions. In consequence, anadmissible geometryof the Euclidean plane will be either the empty geome-
try, g⊘, which corresponds to the empty subset of the plane, or a (closed and bounded) polygonal region
with a positive area. An immediate consequence of this is that admissible geometries become finitely repre-
sentable. By definition, these admissible geometries ofR

2 form the classAd mentioned above. Notice that
it holdsg⊘ ∩ g = g ∩ g⊘ = g⊘ andg⊘ ∪ g = g ∪ g⊘ = g , for every regiong. We introduce a built-in atom
NonEmpty(s) that is true if regions is different from the empty region.

It is important to notice that, although the space is continuous and there exist infinitely many points
between two given points, the representation of a geometry in a computer is discrete and finite. Spatial
attributes are complex data types, and their manipulation may have an important effect on the computational
complexity of certain decision problems and algorithms. Inparticular, thesizeof the relation instance is one
of the parameters that contribute to the computational complexity. This size can be defined as a function of
the number of tuples and the representation size of geometries in those tuples.

1We also refer to values of spatial attributes as geometries.
2Whenx̄2 andx̄3 are empty sequences, the key constraint takes the form∀x̄1s1s2 (R(x̄1; s1)∧R(x̄1; s2) → Equals(s1, s2)).
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Among different types of binary spatial relations (i.e., qualitative distance, orientation and topological
relations), we concentrate on spatial predicates that representtopological relationsbetweenregions. Unlike
orientation and qualitative distance relations, topological relations are currently implemented in SSQLs.
Topological relations have a fixed semantics, and become theelements ofT . There are eightbasebinary
relations over non-empty regions [19, 31].3 For non-empty regions inR2, the definition of topological rela-
tions based on point-set theory [19] has its correspondencewith topological relations defined by first-order
logic, which uses a basic primitive relation ofconnectionbetween regions [31]. In what follows, we use
the definition based on point-set theory, because it is the one adopted by current SSQLs. According to [19],
an atomT (x, y) becomes true if four conditions are simultaneously true. Those conditions are expressed in
terms of emptiness (∅) and non-emptiness (¬∅) of the intersection of their boundaries (∂) and interiors (◦).
The definitions can be found in Table 1. For example, for non-empty regionsx, y, Touches(x, y) is true if
and only if all ofδ(x) ∩ δ(y) 6= ∅, ◦(x) ∩ ◦(y) = ∅, δ(x) ∩ ◦(y) = ∅, and◦(x) ∩ δ(y) = ∅ simultaneously
hold.

Relation Description ∂(x) ∩ ∂(y) ◦(x) ∩ ◦(y) ∂(x) ∩ ◦(y) ◦(x) ∩ ∂(y)
Disjoint(x, y) disconnected ∅ ∅ ∅ ∅

Touches(x, y) externally connected ¬∅ ∅ ∅ ∅

Equals(x, y) equal ¬∅ ¬∅ ∅ ∅

Inside(x, y) non-tangential proper part ∅ ¬∅ ¬∅ ∅

Covered by(x, y) tangential proper part ¬∅ ¬∅ ¬∅ ∅

Includes(x, y) non-tangential proper part inverse ∅ ¬∅ ∅ ¬∅

Covers(x, y) tangential proper part inverse ¬∅ ¬∅ ∅ ¬∅

Overlaps(x, y) partially overlapping ¬∅ ¬∅ ¬∅ ¬∅

Table 1: Definition ofbasetopological relations between non-empty regions based on point-set theory.

In addition to the base topological relations, we consider threederived relationsthat exist in current
SSQLs, and can be logically defined in terms of the other basicpredicates:Intersects,Within, andContains.
We also introduce relationIIntersects, which holds when the interiors of two geometries intersect, and
relation notEquals (NE), which holds when two geometries are not equal.IIntersects can be logically
defined as the disjunction ofOverlaps, Within andContains, whereasnotEquals is the disjunction of all
base relations butEquals (cf. Figure 2). For every topological relationsT in T , its converse (inverse)
relation, denoted byT c, is in T . Some of them are symmetric, likeEquals, Touches, andOverlaps. For the
non-symmetric relations, the converse relation ofCovered by is Covers, of Inside is Includes, and ofWithin

is Contains.
As mentioned before, the formal definitions of topological relations [19, 31] do not consider the empty

geometry as an argument. Indeed, at the best of our knowledge, no clear semantics for topological relations
with empty geometries exists. However, in our case, we extent the definitions in order to deal with this
case. This will allow us to use a classical two-valued logic,where atoms are always true or false, but never
undefined. Accordingly, in our extended definition, for every T ∈ T , andg1, g2 ∈ Ad : If g1 = g⊘ or
g2 = g⊘, thenT (g1, g2) is false.

Given a database instance, additional spatial informationis usually computed from the explicit geometric
data by means of a setO of geometric operatorsassociated withΣ. These operators are of different kinds,
but all of them use at least one geometry as a parameter and return geometries or real numbers. We will
be using the following spatial operators when defining a distance function to compare geometries and when

3The names of relations chosen here are in agreement with the names used in current SSQL [28], but differ slightly from the
names found in the research literature. The relations foundin SSQLs are represented in Figure 2 with thick boundaries.
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Figure 2: Subsumption lattice of topological relations between non-empty regions:OV (Overlaps),
CB (Covered by), IS (Inside), EQ (Equals), CV (Covers), IC (Includes), TO (Touches),DJ(Disjoint),
IT (Intersects), II (IIntersects), WI (Within), CO(Contains), andNE(notEquals).

defining the core-based computation of CQA:4

(i) Intersection (∩) returns the topological closure of the set intersection of two admissible geometries.
(ii) Difference (\) returns the topological closure of the set difference between two admissible geometries.
(iii) GeomUnion (

⋃
) returns the topological closure of the union of a finite set ofadmissible geometries.

(iv) Area returns the area of an admissible region.
A schemaΣ determines a first-order (FO) languageL(Σ) of predicate logic. It can be used to syntacti-

cally characterize and express DSICs. For simplicity, we concentrate ondenial spatial integrity constraints
(DSICs),5 which are sentences of the form:

∀s̄x̄ ¬(
m∧

i=1

Ri(x̄i; si) ∧
∧

i

NonEmpty(si) ∧ ϕ ∧
n∧

j=1

Tj(vj, wj)), (2)

wheres̄ = s1 · · · sm, x̄ = x̄1 · · · x̄m are finite sequences of geometric and thematic variables, respectively,
and 0 < m,n ∈ N. Thus, each̄xi is a finite tuple of thematic variables and will be treated as aset
of attributes, such that̄xi ⊆ x̄j means that the variables in̄xi are also variables in̄xj . Also, ∀x̄ stands
for ∀x1 · · · ∀xm; and∀s̄ stands for∀s1 · · · ∀sm, with the universal quantifiers ranging over all admissible
geometries (i.e. regions). Here,vj , wj ∈ s̄,R1, . . . , Rm ∈ R, ϕ is an optional formula that is a conjunction
of built-in atoms over thematic attributes, andTj , . . . , Tn are predicates inT .

A constraint of the form (2) prohibits certain combinationsof database atoms. Since topological relations
for empty geometries are always false, the explicit condition for non-empty geometries in the constraints

4Cf. [28] for the complete set of spatial predicates defined within the Open GIS Consortium. AlthoughGeomUnion is part of
SSQLs for several spatial databases (Postgres/PostGIS, Oracle), it is not explicitly defined in the OGC specification [28].

5Denial constraints are easier to handle in the relational case as consistency with respect to them is achieved by tuple deletions
only [8].
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LandP
idl name geometry
idl1 n1 g1
idl2 n2 g2
idl3 n3 g3

Building
idb geometry
idb1 g4
idb2 g5 g3

g2g1

g4

g5

Figure 3: A spatial database instance.

could be eliminated. However, we do not want to make the satisfaction of the constraints relies on our
particular definition of the topological relations for the empty region. In this way, our framework becomes
more general and modular, in the sense that it would be possible to redefine the topological predicates for
the empty region without affecting the semantics of the constraint.

Example 2 Figure 3 shows an instance for the schemaR = {LandP(idl , name ; geometry),Building(idb;
geometry)}. Dark rectangles represent buildings and white rectanglesrepresent land parcels. InLandP , the
thematic attributes areidl andname , whereasgeometry is the spatial attribute of dimension2. Similarly
for Building , which has onlyidl as a thematic attribute.

The following sentences are DSICs:

∀ idl1 . . . s2 ¬(LandP(idl1, n1; s1) ∧ LandP(idl2, n2; s2) ∧ idl1 6= idl2 ∧

NonEmpty(s1) ∧ NonEmpty(s2) ∧ IIntersects(s1, s2)). (3)

∀ idb . . . s2 ¬(Building(idb; s1) ∧ LandP(idl, n; s2) ∧ NonEmpty(s1) ∧

NonEmpty(s2) ∧ Overlaps(s1, s2)). (4)

The DSIC (3) says that land parcels with differentids cannot internally intersect (i.e., they can only be
disjoint or touch). The DSIC (4) establishes that building blocks cannot (partially) overlap land parcels.2

A database instanceD for schemaΣ can be seen as an interpretation structure for the languageL(Σ). For
a setΨ of DSICs inL(Σ), D |= Ψ denotes that each of the constraints inΨ is true in (or satisfied by)D .
In this case, we say thatD is consistentwith respect toΨ. Correspondingly,D is inconsistentwith respect
to Ψ, denotedD 6|= Ψ, when there is aψ ∈ Ψ that isviolatedby D , i.e., not satisfied byD . A conflict for a
DSICψ of the form (2) is a pair of tuplesR1(ū1; g1) andR2(ū2; g2) in D that violatesψ.

Given a schemaΣ and a set of integrity constraintsΨ, a relevant problem is to determine if the set of
constraints is satisfiable. The satisfiability problem for adatabase schemaΣ and a set of spatial integrity
constraints DSICΨ consists in determining if there exists a non-empty database instanceD overΣ such
thatD |= Ψ. This problem restricted to schemas without empty regions,has been studied in [11] for a set of
topological dependency constraints(TDs). This kind of dependencies can be transformed into DSICs of the
form (2), excluding theNonEmpty(s) built-in atoms. The study in [11] shows that for a database schema
with only one spatial attribute in its relations, satisfiability of a set of TDs can be checked in polynomial
time with respect to the size of the schema, and the set of constraints. However, for a database schema with
more than one spatial attribute in its relations, there exists a set of topological dependency constraints for
which the satisfiability problem isNP -hard.

For a setΨ of spatial integrity constraints of the form (2), it is easy to show that there always exists a
non-empty instanceD for an schemaΣ, with empty regions, such thatD |= Ψ. This is trivially proved since
empty geometries always satisfy DSICs.
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3 A Repair Semantics

In this section, we specify an update-based notion of repairsemantics. For simplicity, in what follows
we have considered denial constraints with at most two database relations and one topological relation.
However, a denial constraint of the form (2) may have more spatio-relational predicates and topological
relations.

A databaseD violates the constraint∀x̄1x̄2∀s1s2 ¬(R1(x̄1; s1) ∧ R2(x̄2; s2) ∧ NonEmpty(s1) ∧
NonEmpty(s2) ∧ ϕ ∧ T (s1, s2)), when there are data valuesā1, ā2, g1, g2, with g1, g2 non-empty geome-
tries, for the variables in the constraint such that(R1(x̄1; s1) ∧R2(x̄2; s2) ∧ ϕ ∧ T (s1, s2)) becomes true in
the database under those values. This is denoted withD |= (R1(x̄1; s1) ∧ R2(x̄2; s2) ∧ NonEmpty(s1) ∧
NonEmpty(s2) ∧ ϕ ∧ T (s1, s2))[ā1, ā2, g1, g2]. When this is the case, it is possible to restore consistency
of D by modifyingg1 or g2, to makeT (g1, g2) false.

A preliminary discussion of update-based consistency restoration of spatial databases is in [33]. One
of the key criteria to decide what update to apply is minimality of geometric changes. Another important
element to consider is the semantics of spatial objects, which makes changes over the geometry of one type
of object more appropriate than others. This work assumes that no previous knowledge about the quality
and relevance of geometries exists and, therefore, it assumes that geometries are all equally important.

To define a repair semantics, we identify certain anti-monotonicity properties of topological relations,
with respect to geometric inclusion of non-empty regions. Table 2 shows (anti-)monotonicity properties for
topological relations over non-empty regions. For considerations of space, we have omitted the proof of
these (anti-)monotonicity properties, which can be done byusing composition of topological relations [17].

RelationsT (Anti) Monotonicity Property
Inside,Within T (s1, s2) ∧Within(s′

1
, s1) ⇒ T (s′

1
, s2)

Intersects, IIntersects, Includes,Contains T (s1, s2) ∧Within(s1, s′1) ⇒ T (s′
1
, s2)

Intersects, IIntersects, Inside,Within T (s1, s2) ∧Within(s2, s′2) ⇒ T (s1, s′2)
Includes,Contains T (s1, s2) ∧Within(s′

2
, s2) ⇒ T (s1, s′2)

Inside,Within ¬T (s1, s2) ∧Within(s1, s′1) ⇒ ¬T (s′
1
, s2)

Disjoint, Intersects, IIntersects, Includes,Contains ¬T (s1, s2) ∧Within(s′
1
, s1) ⇒ ¬T (s′

1
, s2)

Includes,Contains ¬T (s1, s2) ∧Within(s2, s′2) ⇒ ¬T (s1, s′2)
Disjoint, Intersects, IIntersects, Inside,Within ¬T (s1, s2) ∧Within(s′

2
, s2) ⇒ ¬T (s1, s′2)

Inside,Within ¬T (s1, s2) ∧Within(s1, s′1) ⇒ ¬T (s1, s′2)

Table 2: Monotonicity of topological relations between non-empty regions.

The table shows that if atomsIntersects(g1, g2) andIIntersects(g1, g2) are true, and we enlarge geome-
triesg1 or g2 to g′1 or g′2, respectively,Intersects(g′1, g

′
2) andIIntersects(g′1, g

′
2) will continue being true. In

contrast, if we shrink geometriesg1 or g2 to g′1 or g′2, respectively,Intersects(g′1, g
′
2) andIIntersects(g′1, g

′
2)

may become false. Even more, when shrinking a geometryg to g′, g′ will not intersect other geometry
g′′, unless geometriesg andg′′ previously intersect. The latter is very important becauseit implies that by
shrinking geometries, no new conflicts involving these topological relations will appear.

We propose to solve inconsistencies with respect to DSICs ofthe form (2) by shrinking geometries.
This repair semantics will be used as an instrumental concept to formalize the notion of consistent query
answer. In particular, this way to solve inconsistencies ofDSICs does not require, necessarily, making or
materializing changes on the original database. We disregard translating geometries because there is no
(anti-)monotonicity properties that could reduce the interaction of conflicts. We also disregard the creation
of new objects (object splitting), because we would have to deal with null or unknown thematic attributes.
We will see that even with our relatively simple repair semantics, we obtain hard cases of complexity in
relation to determining repairs and CQA.
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Proposition 1 Let T (g1, g2) be a topological relation inT between admissible geometriesg1 andg2 that is
true. Then,T (g′1, g

′
2) can be false if one the following condition occurs: (i)g′1 or g′2 are empty geometries

or (exclusive) (ii)Inside(g′1, g1), Covered by(g′1, g1), Inside(g
′
2, g2), orCovered by(g′2, g2) is true.

Proof: When geometries are empty, the proof is trivial, since no topological relation with empty geometries
is true. Then, we proof that a true atomT (g1, g2) can be falsified by shrinkingg1 or g2 to g′1 andg′2, respec-
tively, using the notion of composition of topological relations. The composition of two topological relations
T1(g1, g2) andT2(g2, g3), denoted byT1(g1, g2)⊗T2(g2, g3), defined over a common geometryg2, enables
to derive the set of possible topological relations that mayhold between objectsg1 andg3. For example,
the compositionTouches(g1, g2) ⊗ Inside(g2, g3) results in the set{Overlaps(g1, g3),Covered by(g1, g3),
Inside(g1, g3)} of possible topological relations betweeng1 andg3. The composition of base topological
relations has been studied previously and can be found in [17].

The composition of topological relations imposes constraints on the possible relations between geome-
tries when they are shrunk. Letg′1 be the corresponding shrunk geometry with respect tog1 andT (g1, g2)
be the topological relation that must be falsify. It holds that Inside(g′1, g1) or Covered by(g′1, g1) must be
true. By definition of the composition of topological relations and topological consistency [21], relation
T ′(g′1, g2) can be true ifT ′(g′1, g2) ∈ Inside(g′1, g1) ⊗ T (g1, g2) ∪ Covered by(g′1, g1) ⊗ T (g1, g2), with ∪
denoting set union. Consequently,T (g′1, g2) can be false, ifInside(g′1, g1)⊗T (g1, g2)∪Covered by(g′1, g1)⊗
T (g1, g2) \ {T (g

′
1, g2)} 6= ∅, with \ denoting set difference.

As an illustration, let us consider the case of atomEquals(g1, g2) that is true and must be false. By
shrinking g1, we have a geometryg′1 such thatCovered by(g′1, g1) or Inside(g′1, g1) is true. By com-
position of topological relations,Covered by(g′1, g1) ⊗ Equals(g1, g2) ∪ Inside(g′1, g1) ⊗ Equals(g1, g2)
= {Covered by(g′1, g2), Inside(g

′
1, g2)}. Consequently,Equals(g′1, g2) is false.

The same analysis can be done when shrinkingg2 and when shrinking bothg1 andg2. We can prove
exhaustively, by using the compositions defined in [17], that for all topological relations, except relation
Disjoint, we can always falsify a topological atom by shrinking geometries. For relationDisjoint, we can
always falsify an atom by making one of the geometries empty. 2

Notice that due to the interaction of different DSICs, even if in isolation a topological relation can be falsified
by shrinking a geometry, this geometry must need to become empty to satisfy all constraints. This related
to the satisfiability problem of a set of integrity constraints discussed at the end of the last section.

In what follows, we formalize our repair semantics based on shrinking geometries.
Given a databaseD , possibly inconsistent, the repairs ofD will be among the instancesD ′ that are

consistent, i.e.,D ′ |= Ψ, and also correlated toD .

Definition 1 LetD ,D ′ be database instances of schemaΣ that satisfy the key constraints (1).D andD ′ are
(mutually)correlatedif and only if, for every ground tuple of the formR(c1, . . . , cn; g), if R(c1, . . . , cn; g) ∈
D , then there is a tupleR(c1, . . . , cn; g′), with R(c1, . . . , cn; g′) ∈ D ′; and the inverse also holds. IfD is
fixed, then we also say thatD′ isD-correlated. 2

Notice that due to the satisfaction of the key constraints, two mutually correlated instances have the same
cardinality and the same values for the thematic attributesin tuples. This correlation implicitly defines a
correlation functionf , such thatf(D) = D′ andf−1(D′) = D. Typically, the fixed instanceD will be
the initial, inconsistent instance, and the repairs will beD-correlated (cf. Definition 4). In aD -correlated
instanceD ′, we can compare tuples one by one with their counterparts in instanceD . In particular, we can
see how the spatial-attribute values differ.
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Example 3 (example 2 cont.) Consider the relational schemaLandP(idl , name ;geometry). For the in-
stanceD given in Example 2, the following instanceD ′ isD -correlated.

LandP
idl name geometry
idl1 n1 g7
idl2 n2 g8
idl3 n3 g9

Here, for the correlation function, it holdsf(LandP(idl1, n1; g1)) = LandP(idl1, n1; g7), etc. 2

Any two D -correlated instancesD ′ andD ′′ can be compared tuple by tuple. This comparison between
tuples will be done by means of a distance function that refers to the areas of geometries in tuples, since
only geometries are modified.

Definition 2 For regionsg1, g2, δ(g1, g2) = Area((g1 r g2) ∪ (g2 r g1)). 2

When restoring consistency, it may be necessary to considerdifferent combinations of tuples and DSICs.
Eventually, we should obtain a new instance, hopefully consistent, that we have to compare to the original
instance in terms of their distance.

Definition 3 Let D ,D ′ be spatial database instances over the same schemaΣ, whereD ′ is D -correlated.
Thedistance∆(D ,D ′) betweenD andD ′ is the numerical value∆(D , D ′) = Σt̄∈Dδ(ΠS(t̄), ΠS(f(t̄))),
whereΠS(t̄) is the projection of tuplēt on its spatial attributeS. 2

For the repair semantics considered in this paper, the distance function can be simplified toδ(g1, g2) =
Area(g1 r g2), because we are always shrining geometries such thatg2 is geometrically included ing1 or is
empty.
Now it is possible to define a “repair semantics” as follows.

Definition 4 Let D be a spatial database instance over schemaΣ andΨ a set of DSICs. (a) Arepair of D
with respect toΨ is a database instanceD ′ overΣ, such that: (i)D ′ |= Ψ. (ii) D ′ isD-correlated. (iii) For
every tupleR(c1, . . . , cn; g) ∈ D , if f(R(c1, . . . , cn; g)) = R(c1, . . . , cn; g

′), with R(c1, . . . , cn; g′) ∈ D ′,
thenWithin(g′, g) or g′ is g⊘. (b) A minimal repairD ′ of D is a repair ofD such that, for every repairD ′′

of D , it holds∆(D ,D ′′) ≥ ∆(D ,D ′). Rep(D ,Ψ) denotes the set of minimal repairs. 2

Example 4 Consider the database instance in Figure 4 that is inconsistent with respect to DSICs (3) and
(4). Figure 5 shows three possible minimal repairs of this instance.

The original database instance contains fours conflicts, i.e., four pairs of tuples (geometries) that violate
the integrity constraints. Geometriesg1 and g2, and geometriesg2 and g3, violate DSIC (3) since they
internally intersect. Geometriesg2 andg6, andg3 andg6, violate DSIC (4) sinceg6 partially overlapsg2 and
g3. Figure 5 shows only three of the possible minimal repairs using a shrinking-based semantics. Repair
(a) considers that the whole intersection betweeng1 and g2 is eliminated fromg1. Repair (b) considers
that the whole intersection betweeng1 andg2 is eliminated fromg2. Finally, repair (c) considers that we
take part of the overlapping area fromg1 and part fromg2. We could have infinitive ways to solve this
conflict, since there are infinite possibilities in between taking the whole intersection fromg1 and the whole
intersection fromg2. Therefore, for an inconsistent database instance there will be, in general, an infinite
number, actually, a “continuum”, of repairs. In principle,the same applies with minimal repairs.
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LandP
idl name geometry
idl1 n1 g1
idl2 n2 g2
idl3 n3 g3

Building
idb geometry
idb1 g4
idb2 g5
idb2 g6

Figure 4: An inconsistent database instance.

(a) (b) (c)

Figure 5: A subset of possible minimal repairs.

Notice that, based on minimality of geometric changes, there is only one way to repair conflict between
g2 andg3 due to the interaction with the conflict betweeng2 andg6, and betweeng3 andg6. By taking half
of the intersection betweeng2 andg3 from g2 and the other half fromg3, we solve conflict betweeng3 and
g6, and also betweeng2 andg6. These are the minimal geometric changes to repair these twoconflicts. 2

It is easy to show that for a database instanceD and a set of DSICsΨ, there is always a possible repair, since
we could always make geometries that participate in the violation of an integrity constraint empty. Also, for
a database instanceD that is consistent with respect toΨ, thenD is its only minimal repair.

Notice that although there is always a repair ofD with respect toΨ, there is not always a minimal repair.
To show a case when there is no minimal repairs, consider an atomTouches(g1, g2) that must be falsified.
In such case, there are infinite ways to shrink geometryg1 into g′1 and makeTouches(g′1, g2) false. Even
more, since space is continuous, it is always possible to have g′′1 such thatCovered by(g′1, g

′′
1 ) is true and

Touches(g′′1 , g2) is false. Thus, we do not have a lower bound of what must be eliminated from a geometry
to obtain a minimal repair. Consequently, although we can restore consistency with respect to a topological
predicateTouches, it is not possible to have a minimal repair.

To show a case when there are minimal repairs, considerIIntersects(g1, g2) that must be falsified. Like in
the previous case, there are infinite ways to shrink geometriesg1 or g2 into g′1 andg′2, respectively, and make
IIntersects(g′1, g

′
2) false. In all these cases, however, the intersection between g1 andg2 must be eliminated,

which represents the lower bound of the area that has to be eliminated fromg1 or g2. Consequently, we have
minimal repairs.

We now introduce a first complexity result in terms of data complexity.

Proposition 2 For a setΨ of DSICs, deciding if an instanceD ′ is a minimal repair of an input database
instanceD is CO-NP-completein data (complexity). That is, there is a schemaΣ and a setΨ of DSICs, such
that the decision problem
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MinRep(Ψ) := {(D,D′) | D is instance ofΣ andD′ is a minimaml repair ofD wrt Ψ}

is CO-NP-complete.

Proof:
(a)Membership ofCO-NP: For input database instancesD andD ′. D′ is not a minimal repair ofD if there
is a witnessesD ′′ for which it is possible to check in polynomial time in the size ofD (andD′) that: (i)
D ′′ is D -correlated, for a certain functionf ; (ii) D ′′ |= Ψ; (iii) for every tupleR(c1, . . . , cn; g) ∈ D , if
f(R(c1, . . . , cn; g)) = R(c1, . . . , cn; g

′), with R(c1, . . . , cn; g′) ∈ D ′′, thenWithin(g′, g) or g′ is g⊘; and
(iv) ∆(D ,D ′′) < ∆(D ,D ′).

(b) Hardness: For a fixed schemaΣ and setΨ of DSICs, we reduce the complement of 3-SAT to the
problem of deciding if an instanceD ′ is a minimal repair of an input instanceD . More precisely, for an
instanceΦ of 3-SAT , we construct instancesD andD ′, such thatΦ is unsatisfiable if and only ifD ′ is a
minimal repair ofD with respect toΨ.

We will assume that each clause in a formula in CNF has exactly3 literals. They are of the form
Φ : c1 ∧ . . . ∧ cn, with ci = li1 ∨ l

i
2 ∨ l

i
3. A clause may have repeated literals, e.g.c1 : x ∨ ¬y ∨ x. We

consider the following database predicates inΣ:

• Clauses(I,K;G): It will contain tuples of the form〈Iij , l; g⊘〉, whereIij identifies the position,j, of
a literal inci, andl is the literal in that position. For example, forc1 : x ∨ ¬y ∨ x we would have the
tuples〈I11 , x; g⊘〉, 〈I

1
2 ,¬y; g⊘〉, and〈I13 , x; g⊘〉. The key ofClauses is attributeI.

• Lit(K,K ′;G): It will contain tuples of the form〈l, l′; g⊘〉, with l andl′ complementary literals that
appear both inΦ. For example,〈x,¬x; g⊘〉 for the formula above. The key ofLit is 〈K,K ′〉.

• V (K;G), VT (K;G), VF (K;G): Each of them will contain literals that appear inΦ. That is, if literall
appears inΦ, thenVT will contain the tuple〈l; gT 〉, with gT a geometry to be defined below. Similarly
for VF andV , but with geometriesgF , gI , respectively. AttributeK is always the key. The idea is that
a literal l is considered to be true if geometries with key valuel in VT andV are equal. Likewise, it is
considered to be false if the geometries with key valuel in VF andV are equal.

• Aux(M ;G) is an auxiliary predicate. It will be used to enforce particular repair transformations. The
key ofAux is attributeM .

With these predicates we are in position to define the fixed setΨ of DSICs. They are given in (5)-(8) below.
They are independent from any propositional formulaΦ or instanceD associated with the former. However,
to better understand the role of the DSICs, we will indicate how the predicates above are filled with tuples,
obtaining an initial instanceD.

Given an instanceΦ for 3-SAT , of the formΦ : c1 ∧ . . . ∧ cn, with ci = li1 ∨ li2 ∨ li3, we construct
an instanceD for schemaΣ as follows.Clauses contains exactly the tuples〈Iij , l

i
j , g⊘〉, with Iij being an

identification symbol, i.e.Iij 6= Ii
′

j′ for j 6= j′ or i 6= i′, andlij is the literal in positionj of clausei. In
consequence, the number of tuples in the extension ofClauses is tree times the number of clauses inΦ.

We insert a tupleLit(a,¬a, g⊘), with a an atom, whenever botha and¬a appear inΦ.
The extensions forV, VT andVF in D were described above. The extension of each of those predicates

has as many tuples as different literals that appear inΦ. Letα be the number of different literals. It will be
used below.
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For predicateAux, the only tuple in its extension is〈p; gI′〉, wherep is a constant. e.g., an arbitrary
propositional variable.

Now the geometriesgI , gI′ , gT andgF , to be used in the tuples above, can be arbitrary as long as they
satisfy the following properties:

1. gI′ is disjoint fromgI , gT andgF ,

2. gI = gT ∩ gF ,

3. Area(gT ) = Area(gF ),

4. Area(gT r gI) = Area(gF r gI), and

5. Area(gI) > Area(gI′) > α× Area(gT r gI), whereα is the number of different literals inΦ.

The idea is to create an instanceD that is inconsistent with respect to the fixed setΨ. The choice of these
geometries will force specific repair transformations, subject to the requirement of minimally of shrinking
geometries.

As an illustration of the construction so far, consider the formulaΦ0 = (x ∨ ¬y ∨ x) ∧ (z ∨ ¬x ∨ ¬x)
that hasx, y, z as propositional variables, and the four different literals x,¬x,¬y, z. Thenα = 4. Figure 6
shows an example of possible geometries forΦ0. In this example, possible areas are:Area(gT ) = 5.5,
Area(gF ) = 5.5, Area(gI) = 5, andArea(gI′) = 4.5. In this case, the relations inD0 associated with
formulaΦ0 are as shown in Figure 7.

Figure 6: GeometriesgI , gI′ , gT , gF for 3-SAT instance with four literals.

V T
K G
x gT

¬y gT
z gT

¬x gT

V F
K G
x gF

¬y gF
z gF

¬x gF

V
K G
x gI

¬y gI
z gI

¬x gI

Lit
K K’ G
x ¬x g⊘

Aux
K G
p gI′

Clauses
C I K G
c1 I1

1
x g⊘

c1 I1
2

¬y g⊘
c1 I1

3
x g⊘

c2 I2
1

z g⊘
c2 I2

2
¬x g⊘

c2 I2
3

¬x g⊘

Figure 7: Database instanceD0 for formulaΦ0.

Now we define the set of DSICs. The first one ensures that each literal is true or false.

∀l∀x∀s1 · · · ∀s4¬(V (l; s1) ∧ VT (l; s2) ∧ VF (l; s3) ∧Aux(x; s4) ∧

NonEmpty(s1) ∧ NonEmpty(s2) ∧ NonEmpty(s3) ∧ NonEmpty(s4) ∧

notEquals(s1, s2) ∧ notEquals(s1, s3) ∧ Disjoint(s1, s4)). (5)
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A second DSIC ensures that a literal cannot be true an false atthe same time:

∀l∀x∀s1 · · · ∀s4¬(V (l; s1) ∧ VT (l; s2) ∧ VF (l; s3) ∧Aux(x; s4) ∧

NonEmpty(s1) ∧ NonEmpty(s2) ∧ NonEmpty(s3) ∧ NonEmpty(s4) ∧

Equals(s1, s2) ∧ Equals(s1, s3) ∧ Disjoint(s1, s4)). (6)

Using DSICs (5) and (6), the truth value of a literall will be true if the geometries inV andVT of literal
l are equal. Likewise, the truth value of a literall will be false if the geometries inV andVF of literal l are
equal.

A third constraint ensures that complementary literals cannot take the same truth value:

∀l∀l′∀x∀s1 · · · ∀s7¬(Lit(l, l
′; g⊘) ∧ V (l; s1) ∧ VT (l; s2) ∧ VF (l; s3) ∧

V (l′; s4) ∧ VT (l
′; s5) ∧ VF (l

′; s6) ∧Aux(x; s7) ∧ NonEmpty(s1) ∧ NonEmpty(s2) ∧

NonEmpty(s3) ∧ NonEmpty(s4) ∧ NonEmpty(s5) ∧ NonEmpty(s6) ∧ NonEmpty(s7) ∧

Equals(s2, s5) ∧ Equals(s3, s6) ∧ Disjoint(s1, s7) ∧ Disjoint(s4, s7)). (7)

A last constraint states that, for each clause of the form(li1 ∨ l
i
2 ∨ l

i
3), at least one of thelji must be true.

∀c∀l∀l′∀l′′∀x∀s1 · · · ∀s7¬(Clauses(i, l; g⊘) ∧ Clauses(i
′, l′; g⊘) ∧ Clauses(i

′′, l′′; g⊘) ∧

V (l; s1) ∧ V (l′; s2) ∧ V (l′′; s3) ∧ VF (l; s4) ∧ VF (l
′; s5) ∧ VF (l

′′; s6) ∧Aux(x; s7) ∧

∧i 6= i′ ∧ i 6= i′′∧ 6= i′ 6= i′′ ∧ NonEmpty(s1) ∧ NonEmpty(s2) ∧ NonEmpty(s3) ∧

NonEmpty(s4) ∧ NonEmpty(s5) ∧ NonEmpty(s6) ∧ NonEmpty(s7) ∧ Equals(s1, s4) ∧

Equals(s2, s5) ∧ Equals(s3, s6) ∧ Disjoint(s1, s7) ∧Disjoint(s2, s7) ∧ Disjoint(s3, s7)). (8)

The instanceD constructed above for formulaΦ is inconsistent with respect toΨ: The DSIC (5) is false
because, initially, neithergT nor gF are equal togI . Also, depending on the existence of complementary
literals inΦ, DSIC (7) may also be false, since truth values of complementary literals are the same.

Now we construct an instanceD′, fromD (and alsoΦ). It is the same asD, except for predicateAux
whose single tuple now becomes〈p; g⊘〉. In this way, the topological atomDisjoint in each constraint is
false. In consequence,D′ |= Ψ, which makesD′ a repair ofD with respect toΨ. Furthermore,∆(D ,D ′) =
Area(gI′). Its possible minimality as a repair will depend onΦ, as analyzed below.

To continue with our illustration, consider again the instanceD0 for the formulaΦ0. InstanceD ′
0 is

shown in Figure 8. In this case,∆(D0,D
′
0) = Area(gI′) = 4.5.

It is clear that the reduction fromΦ to (D,D′) can be done in polynomial time in the size ofΦ. Now we
establish that it also answer preserving.

(i) If Φ is unsatisfiable, thenD ′ is the minimal repair ofD : WhenΦ is unsatisfiable, every truth assign-
ment to literals inΦ will violate DSIC (8), even in the case that all others DSICs are satisfied. There-
fore, for an unsatisfiableΦ, Ψ can be satisfied if and only if geometries of literals inV, VT or VF be-
come empty, or if the geometry in the single tuple ofAux becomes empty. Due to the way geometries
gV , gF , gI , andgI′ are defined,Area(gT ) = Area(gF ) > Area(gI) > Area(gI′) > αArea(gT \ gI),
with α the number of literals in clauses ofΦ. Therefore, under consideration of minimality, there is
no other instanceD ′′ such thatD ′′ |= Ψ and∆(D ,D ′′) < Area(g′I).
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V T
K G
x gT

¬y gT
z gT

¬x gT

V F
K G
x gF

¬y gF
z gF

¬x gF

V
K G
x gI

¬y gI
z gI

¬x gI

Lit
K K’ G
x ¬x g⊘

Aux
K G
p g⊘

Clauses
C I K G
c1 I1

1
x g⊘

c1 I1
2

¬y g⊘
c1 I1

3
x g⊘

c2 I2
1

z g⊘
c2 I2

2
¬x g⊘

c2 I2
3

¬x g⊘

Figure 8: A repairD ′
0 of D0 wrt Ψ.

(ii) If Φ is satisfiable, thenD ′ is not a minimal repair: WhenΦ is satisfiable, there exists a truth assign-
ment of theα literals inΦ that satisfiesΨ. Thus, it is possible to construct an instanceD ′′ that shrinks
the geometry inVT or VF of each literallk in Φ to become equal to the geometry oflk in V . By
making the right assignment, no conflicts with respect to DSICs (6), (7), and (8) occur, which is the
minimal transformation over geometries. For each literal,the truth assignment has a cost equivalent to
Area(gT \gI) = Area(gF \gI), which sums up toαArea(gT \gI) < Area(gI′). Thus, for a satisfiable
Φ, there is an instanceD ′′ such thatD ′′ |= Ψ and∆(D ,D ′′) = αArea(gT \ gI) < ∆(D ,D ′).

2

4 Consistent Query Answers

We can use the concept of minimal repairs as an auxiliary concept to define, and possibly compute, consistent
answers to a relevant class of queries inL(Σ).

We study two conjunctive queries that are important in the spatial domain:

(a) Range queriesare of the form

Q(ū; s) : ∃z̄(R(x̄; s) ∧ T (s,w)), (9)

whereū are free thematic variables such thatū = ((x̄)r z̄), s is a free spatial variable,w is a spatial
constant that represents the spatial window of the query, and z̄ ⊆ x̄.

(b) Join queriesare of the form

Q(ū; s1, s2) : ∃z̄(R1(x̄1; s1) ∧R2(x̄2; s2) ∧ T (s1, s2)), (10)

with T ∈ T , and z̄ ⊆ x̄1 ∪ x̄2, ū are free thematic variables such thatū = ((x̄1 ∪ x̄2) r z̄), and
{s1, s2} are free spatial variables.

A basic conjunctive query(i.e., basic range or basic join query) is a query of the form (9) or (10) with
T = IIntersects. Basic conjunctive queries are relevant in the spatial domain, since they retrieve spatial
features that are internally connected (i.e., they overlap, are equal, or are related by geometric inclusion).
Notice that for range and join queries (and also for basic conjunctive queries) we project on all the spatial
attributes to exploit the CQA semantics latter in this section.
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LandP
idl name geometry
idl1 n1 g1
idl2 n2 g2
idl3 n3 g3

Building
idb geometry
idb1 g4
idb2 g5

Figure 9: Example of a range query.

Remark 1 We will assume that the free variables correspond to a set of attributes ofR with its key of the
form (1). More precisely, for range queries, the attributesassociated with̄u contain the key ofR. For join
queries,̄u ∩ x̄1 andū ∩ x̄2 contain the key for relationsR1, R2, respectively. This is a common situation in
spatial databases, where a geometry is retrieved together with its key value. 2

A given queryQ(x̄; s̄), with free thematic variables̄x and free geometric variables̄s, can be interpreted in
an instanceD for the schema. Accordingly, a sequence of thematic/spatial constants〈c̄; ḡ〉 is an answer to
the query inD if and only if D |= Q(c̄; ḡ), that is, the queryQ becomes true inD as a formula when its
free variables̄x, s̄ are replaced by the constants inc̄, ḡ, respectively. We denote withQ(D) the answer toQ
in instanceD .

Example 5 Figure 9 shows an instance for the schemaR = {LandP(idl ,name; geometry),Building(idb;
geometry)}. Here,idl andidb are keys for relationsLandP andBuilding , respectively. Dark rectangles
represent buildings, and white rectangles represent land parcels. The queriesQ1 andQ2 below are a range
and a join query, respectively.Q1 specifies the spatial window of the query by the list of constant points
([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1]), which are represented in Figure 9 by the rectangle with dashed
boundary.

Q1(idb; g) : Building(idb; g) ∧

Intersects(g, ([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1])).

Q2(idl, idl
′; g, g′) : LandP (idb, n; g) ∧ LandP (idb′, n′; g′) ∧ Touches(g, g′).

The answers toQ1 are〈idb2; g5〉. The answer toQ2 is: {〈idl1, idl2; g1, g2〉, 〈idl2, idl3; g2, g3〉, 〈idl1, idl3;
g1, g3〉, 〈idl2, idl1; g2, g1〉, 〈idl3, idl2; g3, g2〉, 〈idl3, idl1; g3, g1〉}. Notice that the answers contain the key
values. 2

Now we define the notion of consistent answer to a conjunctivequery.

Definition 5 Consider an instanceD , a setΨ of DSICs overD .

• Let Q(x̄; s) be a query of the form (9). A tuple〈c1, . . . , cm; g1〉 is aconsistent answerto Q from D

with respect toΨ if the following two conditions hold: (a) for every repairD′ ∈ Rep(D ,Ψ), there is
g′1 such thatD′ |= Q(c1, . . . , cm; g′1), and (b)g1 =

⋂
{g′1 | D′ |= Q(c1, . . . , cm; g′1) for everyD′ ∈

Rep(D ,Ψ)}

• Let Q(x̄; s1, s2) be a query of the form (10). A tuple〈c1, . . . , cm; g1, g2〉 is a consistent answer
to Q from D with respect toΨ if the following two conditions hold: (a) for every repairD ′ ∈
Rep(D ,Ψ), there existg′1 and g′2 such thatD ′ |= Q(c1, . . . , cm; g′1, g

′
2). (b) g1 =

⋂
{g′1 | D′ |=

Q(c1, . . . , cm; g′1, g
′
2) for everyD′ ∈ Rep(D ,Ψ)}, andg2 =

⋂
{g′2 | D

′ |= Q(c1, . . . , cm; g′1, g
′
2) for

everyD ′ ∈ Rep(D ,Ψ)}.
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Con(Q,D ,Ψ) denotes the set of consistent answers to a conjunctive queryQ, overD with respect toΨ. 2

Intuitively, a consistent answer to a range query (of the form (9)) is a tuple containing thematic values and a
geometric valueg1, such thatg1 is the intersection over all regionsg′1 ∈ Q(D ′) that belong to each different
repairD ′ ∈ Rep(D ,Ψ) and correlate6 to the same tuple inD . Similarly, a consistent answer to a join query
(of the form (10)) is a tuple with thematic values and two geometries values, such that these geometries
are also defined by the intersection of all geometries, grouped by thematic attributes, in answers from all
admissible repairs.

Notice that, sinceQ is operator free, the regionsg′i that appear in the repairs are regions obtained by
shrinking original geometries stored in the database. Also, since we project key values in queries,f−1 can
be applied. However, due to the intersection of geometries,the geometries in a consistent answer may not
belong to the original instance or to any of its repairs (c.f.Example 6).

In contrast to the definition of consistent answer to a relational query [2], where a consistent answer is
an answer in every repair, here we have an aggregation of query answers via the geometric intersection and
grouped-by thematic attribute values. This definition is similar to that of consistent answers to aggregate
relational queries with group-by [3, 12], in the sense that consistent answers are obtained by processing the
collection of answers from individual repairs.

Definition 5 allows us to obtain more significative answers than in the relational case, because when
shrinking geometries, we cannot expect to have, for a fixed tuple of thematic attribute values, the same
geometry in every repair. If we do not use the intersection ofgeometries, we might lose or not have consistent
answers due to the absence of geometries that are shared by all repairs.

Example 6 (example 4 cont.) Consider the setΨ of DSICs, the instanceD of Example 4, and the range
query in Figure 10, which is expressed in logic as

Q(idl ; geometry ) : ∃name owner (LandP(idl ,name; geometry) ∧
Intersects(geometry, ([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1])),

with [xi, yi] constant points. This query can be expressed in the SSQL as:7

SELECT idl , geometry

FROM LandP

WHERE Intersects(geometry , ([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1])).

Although in Example 4 we showed only three of the possible minimal repairs, we could still derive the
consistent answer to this query from the fact that this is obtained from the geometric intersection of the
geometries that are an answer in each repair. As we showed in Example 4, all minimal repairs solve the
conflict between geometriesg2 andg3 by eliminating their intersection. However, the conflict betweeng1
andg2 can be solved in infinite ways, having in one extreme the wholeintersection eliminated fromg1, and
in the other extreme, the whole intersection eliminated from g2. For anyD ′ of D , however, we have tuples
LandP (idl1, n1; g

′
1),LandP (idl2, n2; g

′
2), andLandP (idl3, n3; g′3) such thatg′1, g′2, g

′
3 intersect the spatial

window of the query. Consequently, the answers to this queryare tuples〈idl1, g′′1 〉, 〈idl2, g
′′
2 〉, 〈idl3, g

′′
3 〉 (see

6
D

′s areD-correlated, cf. Definition 1.
7For simplification, we omit the real definition of the query window as it is done in current SSQL, which uses constructors for

spatial data types.
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g1
g2

g3

g6

g5

g4

[x1,y1]

[x2,y2]

Figure 10: Querying an inconsistent database instance.

idl geometry
idl1 g′′1
idl2 g′′2
idl3 g′′3

g''1
g''2

g''3

Figure 11: Consistent answers.

Figure 11), whereg′′1 , g
′′
2 , g

′′
3 are defined as follows, and where

⋂
represents geometric intersection over a

set of geometries8:

g′′1 =
⋂

{g′1 | D
′ |= Q(idl1; g

′
1) for everyD′ ∈ Rep(D ,Ψ)}

g′′2 =
⋂

{g′2 | D
′ |= Q(idl2; g

′
2) for everyD′ ∈ Rep(D ,Ψ)}

g′′3 =
⋂

{g′3 | D
′ |= Q(idl3; g

′
3) for everyD′ ∈ Rep(D ,Ψ)}

2

Proposition 3 For a setΨ of DSICs, CQA is inΠP
2 in data complexity.

Proof: Let Ψ be a set of DSICs andQ be a given query of the form (9) or (10). The complement of
CQA is in NP coNP : Given an instanceD , nondeterministically choose an instanceD ′ and check that
D ′ 6|= Q and thatD ′ is a minimal repair ofD . The latter can be tested incoNP by Proposition 2. But
NP coNP = NPΣP

1 = ΣP
2 . Therefore, CQA belongs tocoΣP

2 = ΠP
2 . 2

From a practical point of view, consistent query answers could include additional information about the
degree in which geometries differ from their correspondingoriginal geometries. For example, for the con-
sistent answer〈idl1; g′′1 〉 in Example 6, an additional information could be the relative difference between
areasg1 andg′′1 , which could be calculated byδ(g1, g′′1 )/area(g1).

5 Core-Based CQA

The definition of consistent query answer relies on the auxiliary notion of minimal repair. However, due to
the intractability of deciding if a database instance is a minimal repair, and the potentially infinite number

8Do not confuse
⋂

with the geometric operator∩ in O over two geometries defined in Section 2.
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LandP⋆

idl1 n1 o1 g⋆1
idl2 n2 o2 g⋆2
idl3 n3 o3 g⋆3

Building⋆

idb1 g⋆4
idb2 g⋆5
idb3 g⋆6

g*1
g*2

g*3

g*4

g*5

g*6

Figure 12: The core of an instance.

of repairs, determining consistent answers by computing, materializing, and finally querying all minimal
repairs, must be avoided whenever there are more efficient mechanisms at hand. Along these lines, in this
section, we present a methodology for computing consistentquery answers for subclasses of conjunctive
queries and DSICs. It works in polynomial time (in data complexity), and does not require the explicit
computation of the database repairs.

We start by defining thecore , which, intuitively, is the “geometric intersection” of the repairs. It is
obtained by intersecting the geometries in the different repair instances that correlate to the same thematic
tuple.

Definition 6 For an instanceD and a setΨ of DSICs, thecore of D is the instanceD⋆ given by D⋆ :=
{R(ā; g⋆) | R ∈ R, there isR(ā; g) ∈ D andg⋆ =

⋂
{g′ | R(ā; g′) ∈ D ′ for some D ′ ∈ Rep(D ,Ψ)

and R(ā; g′) = f(R(ā; g))}}. Here,f is the correlation function ofD′ with respect toD. 2

Sometimes we will refer toD⋆ by
⋂g

Rep(D ,Ψ). However, it cannot be understood as the set-theoretic
intersection of the repairs ofD . Rather it is a form of geometric intersection of geometriesbelonging to
different repairs and grouped by common thematic attributes.

Example 7 (example 6 cont.) Figure 12 shows thecore of the database instance in Figure 4, where gray
rectangles represent geometries in the core that differ from their correlated geometries in the original incon-
sistent database instance. Here,g⋆4 , g⋆5 , andg⋆6 are equivalent to the geometriesg4, g5, andg6 in the original
database instance. Geometriesg⋆1 , g⋆2 , andg⋆3 , in contrast, are obtained by considering the intersectionof
correlated geometries in minimal repairs. 2

Notice the resemblance between the definitions of consistent answer and the core. Actually, it is easy to see
thatD⋆ =

⋃
R∈R Con(QR,D ,Ψ), where the queryQR(x̄; s) : R(x̄; s) asks for the tuples in relationR.

Thecore is defined in terms of minimal repairs. However, as we will show, for a subset of DSICs, we
can actually determine thecore without computing those repairs. This is possible for DSICsof the form:

∀x̄1x̄2s1s2¬(R(x̄1; s1)∧R(x̄2; s2)∧x̄
′
1 6= x̄′2∧NonEmpty(s1)∧NonEmpty(s2)∧IIntersects(s1, s2)), (11)

wherex̄′1 ⊆ x̄1, x̄′2 ⊆ x̄2, and bothx̄′1 and x̄′2 are variables that capture the key ofR. In these kind of
DSICs, which will be called IDSICs, there are two occurrences of the same database predicate. Let us also
denote byΨ(R) the IDSIC inΨ over predicateR. Although this kind of DSICs uses only the topological
relation IIntersects, it is of practical interest. By using this type of constraints, we are allowing regions to
touch or be disjoint, which is a typical constraint for administrate boundaries or other geographic features
(e.g. buildings, land parcels, and so on).

Remark 2 This class of IDSICs has the following properties hold, which will be useful when trying to
compute the core:
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County
idl name geometry
idc1 n1 g1
idc2 n2 g2
idc3 n3 g3

Reserve
idr geometry
idr1 g4
idr2 g5

g3
g1

g2

g4

g5

Figure 13: An inconsistent database with IDSICs of the form (11).

(i) To solve conflicts between tuples with respect to IDSICs,the intersection (internal intersection) of
geometries must be eliminated so that geometries touch or become disjoint. Eliminating only the
internal intersection represents a minimal way to restore consistency and, consequently, it leads to
find minimal repairs. Notice however, that there may be infinite ways to eliminate this intersection.

(ii) Solving inconsistencies of IDSICs over different database predicates is independent. This is, solving
conflicts between two tuples, with respect to a specific IDSICϕ1 over a predicateR1, is independent
from solving a conflict with respect to any other another IDSICϕ2 over a different database predicate.

(iii) Solving a conflict between two tuples with respect to a specific IDSIC does not introduce new con-
flicts. This is due to the anti-monotonicity property of predicatesIIntersects, which prevents a shrunk
geometry from participating in a new conflict with an existing geometry in the database.

(iv) For any two geometriesg1 andg2 in conflict with respect to a IDSIC, there always exists aminimal
versionof each geometry whose intersection with the original geometries in conflict has been elim-
inated (cf. Lemma 1). This can even means that the minimal version is the empty geometry. As a
consequence, the core can be computed by eliminating from a geometry all its intersections with other
geometries in conflict, disregarding the order in which these intersections are eliminated.

This property is not guaranteed for other kinds of DSICs. Forinstance, consider Example 6 with the
instance in Figure 4 and its corresponding subset of minimalrepairs in Figure 5. Althoughg6 was
originally in conflict with respect tog2, there is no minimal repair where geometryg6 has been shrunk.
2

We illustrate some of these properties with the following example.

Example 8 Consider the schemaR = {County(idc, name; geometry), Reserve(idr ; geometry)}, with
idc the key ofCounty andidr the key ofReserve, and the following setΨ of IDSICs:

∀ idc1 . . . s2¬(County(idc1, n1; s1) ∧ County(idc2, n2; s2) ∧ idc1 6= idc2 ∧

NonEmpty(s1) ∧ NonEmpty(s2) ∧ IIntersects(s1, s2)). (12)

∀ idl1 . . . s2¬(Reserve(idr1; s1) ∧ Reserve(idr2; s2) ∧ idr1 6= idr2 ∧ NonEmpty(s1) ∧

NonEmpty(s2) ∧ IIntersects(s1, s2)). (13)
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County⋆

idl name geometry
idc1 n1 g⋆

1

idc2 n2 g⋆2
idc3 n3 g⋆

3

Reserve⋆

idr geometry
idr1 g⋆

4

idr2 g⋆5

Figure 14: The core for the instanceD in Figure 13.

An inconsistent instanceD of this schemaR is shown in Figure 13. In it, counties with geometriesg1,
g2 andg3 are inconsistent with respect to the IDSIC (12), because they internally intersect. Geometriesg4
andg5 violate the IDSIC (13), because they also internally intersect.

Conflicts with respect to IDSICs (12) and (13) can be solved inan independent way, since they do not
share predicates (cf. Remark 2(ii)). To obtain a minimal repair, consider first IDSIC (12) and the conflict
betweeng1 andg2, which can be solved by eliminating the intersectiong1∩g2 only fromg1, only fromg2 or
partially fromg1 andg2. Any of these alternative transformations does not producegeometries that could be
in conflict with other geometries unless they were originally in conflict (cf. Remark 2(iii)). For instance, if
we eliminateg1∩ g2 from fromg1, we obtain a new geometryg′1 that will not be now in conflict withg2, but
will still be in conflict with geometryg3. This conflict is not new, sinceg1 was originally in conflict withg3.
By eliminating fromg1 its intersection withg2, however, we also eliminate part of the original intersection
betweeng1 andg3.

Notice that, like Example 4 also illustrates, there are infinitely many, actually, a continuum of, alternative
transformations that eliminate the intersectiong1 ∩ g2 partially from both geometries. Consequently, there
is potentially an infinite number of minimal repairs. However, we still can ensure that there exists a minimal
repair where the whole intersecting area is eliminated fromone of the geometries in conflict, which is used
latter to obtain the core ofD without actually computing each minimal repair. The coreD⋆ is shown
in Figure 14, where black areas have been eliminated from their corresponding original geometries. 2

We introduce the setGR,Ψ,D(ā, g) that contains, for a given tupleR(ā; g) in a database instanceD , all the
possible versions of geometryg in the minimal repairs ofD .

Definition 7 Let D be a database instance,Ψ a set of IDSICs andR(ā; g) ∈ D a fixed tuple. Then,
GR,Ψ,D(ā; g) = {g′|R(ā; g′) ∈ D ′,D ′ ∈ Rep(D ,Ψ), f−1(R(ā; g′)) = R(ā; g)}. 2

To simplify the notation, we also introduce a logical formula that captures a conflict around a tuple of
relationR ∈ D and a IDSIC:

∀x̄1x̄2s1s2(ConflD ,R(x̄1, s1, x̄2, s2) ⇔ (R(x̄1; s1) ∧ R(x̄2; s2) ∧ x̄′1 6= x̄′2 ∧ NonEmpty(s1)

∧NonEmpty(s2) ∧ IIntersects(s1, s2))), (14)

wherex̄′1 ⊆ x̄1, x̄′2 ⊆ x̄2, and both̄x′1 andx̄′2 are a non-empty sequence of variables that capture the key of
R. By imposing that̄x′1 6= x̄′2, only different tuples can be checked for topological relation IIntersects.

The following lemma establishes that when a geometryg is involved in conflicts of IDSICs, there exists
a version ofg in the repairs that isg⊘ or is minimum with respect to geometric inclusion. This result is
useful to show that the minimum version ofg is the one that is in the core.
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Lemma 1 ConsiderD a database instance, a setΨ of IDSICs and a fixed tupleR(ā; g) ∈ D . The set of
geometriesGR,Ψ,D(ā, g) has a minimum elementgmin that is the empty geometryg⊘ or a geometry defined
under geometric inclusion.

Proof: By definition of a minimal repair, for everyD′ ∈ Rep(D ,Ψ) andR(ā; g) ∈ D , there must
beR(ā; g′) ∈ D ′ andf−1(R(ā; g′)) = R(ā; g). Consequently,|GR,Ψ(ā; g)| 6= 0. If |GR,Ψ(ā; g)| = 1,
this means thatg is the same in all minimal repairs and, therefore, it is the minimum elementgmin. If
|GR,Ψ(ā; g)| > 1, theng must undergo repair transformations.

Let us define a geometryt =
⋃
{g′| R(b̄; g′) ∈ D ,D |= ConflD ,R(ā, g, b̄, g

′)}. This geometryt defines
the union of geometries inD that are in conflict withg with respect to a IDSIC inΨ.

For a IDSIC, the intersection betweent andg must be eliminated by using alternative geometric transfor-
mations that shrink geometries, where there is always one alternative that eliminates the whole intersection
from g. Thus, we must have a sequence of transformations that includes eliminating, per each conflict in
whichR(ā; g) participates, the whole intersection from geometryg. This produces a geometryg⋆ = g \ t,
with g⋆ ∈ GR,Ψ,D(ā; g). Also, due to anti-monotonicity property of topological relation IIntersects, solv-
ing conflicts for IDSICs will not introduce new conflicts and,consequently, the intersection betweent and
g is the only part ofg that must to be eliminated. Consequently,g⋆ = g \ t is the minimum element in
GR,Ψ,D(ā; g), which isg⊘ o is a minimum geometry inGR,Ψ,D(ā; g) under geometric inclusion. 2

Example 9 (example 8 cont.) The inconsistent instanceD in Figure 13 has tupleCounty(idc1, n1; g1)
that is in conflict with tuplesCounty(idc2, n2; g2) andCounty(idc3, n3; g3) with respect to IDSIC (12).
A possible repair transformation eliminates fromg1 its intersection withg2, generating a resulting geom-
etry g′1. Then, to solve the conflict betweeng′1 andg3, a possible repair transformation eliminates from
g′1 its intersection withg3, resulting a geometryg′′1 . Notice thatWithin(g′′1 , g

′
1) holds, and thatg′′1 is the

result of eliminating fromg1 all conflicting intersections with geometries. Then, it holds that there exists
g′′1 in GCounty ,Ψ,D(idc1, n1; g1). Even more,g′′1 is the minimal element inGCounty ,Ψ,D(idc1, n1; g1)(see
Figure 14). 2

Corollary 1 Consider a database instanceD , a setΨ of IDSICs, and a fixed tupleR(ā; g) ∈ D . For the
minimum geometrygmin in GR,Ψ(ā, g), it holdsR(ā; gmin) ∈ D⋆.

Proof: Direct from Lemma 1 and the definition of the core as a geometric intersection. 2

Corollary 2 Consider the coreD⋆ of a database instanceD with respect to a setΨ of IDSICs. Then,
D⋆ |= Ψ.

Proof: By Corollary 1, for anyR(ā1; g1min
) ∈ D⋆, g1min

is the minimum geometry inGR,Ψ(ā1; g1). If
g1min

is the empty geometry, theng1min
does not participate in any possible conflict. Let us consider now the

case wheng1min
is not empty. By definition of a minimal repair, ifR(ā1; g′1) ∈ D ′ with D ′ ∈ Rep(D ,Ψ),

there exists noR(ā2; g′2) in D ′ that is in conflict withR(ā1; g′1). By anti-monotonicity of topological relation
IIntersects, if Within(g1min

, g′1) andWithin(g2min
, g′2), with g2min

the minimum geometry inGR,Ψ(ā2; g2),
thenR(ā1; g1min

) ∈ D⋆ is not in conflict withR(ā2; g2min
) ∈ D⋆. Then,D⋆ |= Ψ. 2

AlthoughD⋆ |= Ψ holds,D⋆ is not necessarily equivalent to a minimal repair inRep(D ,Ψ).
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5.1 Properties of the Core

In this section we establish that for the set of IDSICs and basic conjunctive queries, it is possible to compute
consistent answers on the basis of the core of an inconsistent instance, avoiding the computation of queries
in every minimal repair. This is established in Theorems 1 and 2, respectively.

Theorem 1 For an instanceD , a setΨ of IDSICs, and a basic range queryQ(ū; s), thenCon(Q,D ,Ψ) =
Q(D⋆).

Proof: The projection of range queries always includes the key of the relation. Thus, if〈ā; g′′〉 ∈
Con(Q,D ,Ψ), then for everyD ′ ∈ Rep(D ,Ψ), there existsR(b̄; g′), such that̄a ⊆ b̄, f−1(R(b̄; g′)) =
R(b̄; g) andR(b̄; g) ∈ D , whereIIntersects(g′, w) is true for the spatial constantw of the basic range query
andg′′ =

⋂
{g′ | for everyg′ ∈ GR,Ψ,D(b̄, g)}.

On one direction, by Lemma 1, there exists a tupleR(b̄; gmin) ∈ D ′ ∈ Rep(D ,Ψ), with gmin the
minimum geometry inGR,Ψ,D(b̄; g). By definition of consistent answer, if〈ā; g′′〉 ∈ Con(Q,D ,Ψ), with
ā ⊆ b̄, thenEquals(g′′, gmin). By Corollary 1,R(b̄; gmin) ∈ D⋆. Consequently,〈ā; gmin〉 ∈ Q(D⋆).

In the other direction, if〈ā; gmin〉 ∈ Q(D⋆) (with D⋆ =
⋂g

Rep(D ,Ψ)), then there exists a tu-
ple R(b̄; gmin) ∈ D⋆, with ā ⊆ b̄ and IIntersects(gmin, w) true. By the monotonicity ofIIntersects, if
IIntersects(gmin, w) is true, then for all geometriesg′ ∈ GR,Ψ,D(b̄, g), IIntersects(g′, w) is also true. Then,
by definition of consistent answer〈ā; gmin〉 ∈ Con(Q,D ,Ψ). 2

A similar result can be obtained for basic join queries, i.e., queries that consider two database predicates
(not necessarily different). The following example illustrates how to compute consistent answers to basic
join queries. This example will be used to illustrate the proof of Theorem 2.

Example 10 (example 8 cont.) Consider the following basic join query posed to the instanceD in Exam-
ple 8. It is asking for the identifiers and geometries of counties and reserves that internally intersect.

Q(idc, idr; g1, g2) : ∃n(County(idc, n; g1) ∧Reserve(idr; g2) ∧ IIntersects(g1, g2)).

Without using the core, the answers are obtained by intersecting all answers that result from every possible
minimal repair.

Let GR,Ψ,D(ū; g) be the set of correlated geometries in each minimal repair with tupleR(ū, g) in D ,
then we have five different sets (one for each geometry in the original database instance), each of them with
a minimum geometry that is equivalent to the geometry in the core (see Figure 14).

For the database relationsCounty andReserve, there are two sets containing the possible extensions
of these relations in the repairs:{County(D ′)|D ′ ∈ Rep(D ,Ψ)} and{Reserve(D ′)|D ′ ∈ Rep(D ,Ψ)},
which are combined to produce different minimal repairs. Thus, for any two tuplesCounty(idci, ni; gi) ∈
D andReserve(idrj ; gj) ∈ D , theres exists a minimal repairD ′ inRep(D ,Ψ) such thatCounty(idci, ni; g⋆i ) ∈
D ′ andReserve(idrj ; g⋆j ) ∈ D ′, with g⋆1 andg⋆j the minimum geometries in setsGCounty,Ψ,D (idci, ni; gi)
andGReserve,Ψ,D(idrj ; gj) , respectively.

Letg⋆1 , g⋆2 , g⋆3 , g⋆4 , andg⋆5 be the minimum geometries in setsGCounty,Ψ,D(idc1, n1; g1),GCounty,Ψ,D(idc2,
n2; g2), GCounty,Ψ,D(idc3, n3; g3), GReserve,Ψ,D(idr1; g4), andGReserve,Ψ,D(idr2; g5), respectively. Due
to the monotonicity property of topological relationIIntersects, if IIntersects(g⋆4 , g

⋆
1), IIntersects(g

⋆
5 , g

⋆
1),

IIntersects(g⋆5 , g
⋆
2) andIIntersects(g⋆5 , g

⋆
3) are true, thenIIntersects(g⋆4 , gi) is true for anygi such thatWithin(g⋆2 , gi)
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holds. Likewise,IIntersects(g⋆5 , gj) is true for anygj such thatWithin(g⋆1 , gj),Within(g⋆2 , gj) orWithin(g⋆3 , gj)
hold.

Then, by Corollary 1,County(idc1, n1; g⋆1), County(idc2, n2; g
⋆
2), County(idc3, n3; g

⋆
3), Reserve(

idr1; g
⋆
4), andReserve(idr2; g

⋆
5) are tuples in the core ofD and, by definition of consistent answer,

〈idc1, idr1, g
⋆
1 , g

⋆
4〉, 〈idc1, idr2, g

⋆
1 , g

⋆
5〉, 〈idc2, idr2, g

⋆
2 , g

⋆
5〉, 〈idc3, idr2, g

⋆
3 , g

⋆
5〉 are answers to the query.

2

Theorem 2 For an instanceD , a setΨ of IDSICs, and a basic join queryQ(x̄1, x̄2; s1, s2), thenCon(Q,D ,
Ψ) = Q(D⋆).

Proof: The projection of join queries also includes keys. Thus, if〈ā1, ā2; g
′′
1 , g

′′
2 〉 ∈ Con(Q,D ,Ψ),

then there exist tuplesR1(b̄1; g
′
1) ∈ D ′, R2(b̄2; g

′
2) ∈ D ′, for everyD ′ ∈ Rep(D ,Ψ) with ā1 ⊆ b̄1,

ā2 ⊆ b̄2, f−1(R1(b̄1; g
′
1)) = R1(b̄1; g1), f−1(R2(b̄2; g

′
2)) = R2(b̄2; g2), whereIIntersects(g′1, g

′
2) is true,

g′′1 =
⋂
{g′1 | for everyg′1 ∈ GR,Ψ,D(b̄, g1)}, andg′′2 =

⋂
{g′2 | for everyg′2 ∈ GR,Ψ,D(b̄, g3)}.

We now analyze two cases:

(i) If R = R1 = R2, 〈ā1, ā2; g′′1 , g
′′
2 〉 ∈ Con(Q,D ,Ψ) is an answer to the query if and only ifΨ(R) /∈ Ψ.

This is because by solving conflicts with respect toΨ(R), all possible internal intersections between
geometries in tuples ofR will be eliminated. Consequently, after repairing, no geometries inR will
internally intersect, which is the topological relation that geometries must satisfy to be an answer to a
basic join query.

(ii) If R1 6= R2, due to the independence of repairingR1 andR2 with respect toΨ, there exists a
D ′′ ∈ Rep(D ,Ψ), such thatR1(b̄1; g1min

) ∈ D ′′, R2(b̄2; g2min
) ∈ D ′′, with g1min

andg2min
the

minimum geometries inGR1,Ψ,D(b̄1, g1) andGR2,Ψ,D(b̄2, g2), respectively.

On one direction, by definition of consistent answer, if〈ā1, ā2; g
′′
1 , g

′′
2 〉 ∈ Con(Q,D ,Ψ), with ā1 ⊆ b̄1

andā2 ⊆ b̄2, thenEquals(g′′1 , g1min
) andEquals(g′′2 , g2min

). By Corollary 1,R(b̄1; g1min
) ∈ D⋆ and

R(b̄2; g2min
) ∈ D⋆. Consequently,〈ā1, ā2; g1min

, g2min
〉 ∈ Q(D⋆).

In the other direction, if〈ā1, ā2, g1min
, g2min

〉 ∈ Q(D⋆) (with D⋆ =
⋂g Rep(D ,Ψ)), then there exist

tuplesR(b̄1; g1min
) ∈ D⋆ andR(b̄2; g2min

) ∈ D⋆, with ā1 ⊆ b̄1, ā2 ⊆ b̄2, andIIntersects(g1min
, g2min

)
true. By monotonicity property of predicateIIntersects, if IIntersects(g1min

, g2min
) is true, then, for

anyD ′ ∈ Rep(D ,Ψ), there existR1(b̄1; g
′
1) ∈ D ′ andR2(b̄2; g

′
2) ∈ D ′ such thatWithin(g1min

, g′1)
andWithin(g2min

, g′2), andIIntersects(g′1, g
′
2) is also true. Therefore, by definition of consistent an-

swer,〈ā1, ā2, g1min
, g2min

〉 ∈ Con(Q,D ,Ψ).

2

The previous theorems tell us that we can obtain consistent answers to basic conjunctive queries by direct
and usual query evaluation on the single instanceD⋆, the core of D . This does not hold for non-basic
conjunctive queries as the following example shows.

Example 11 Consider a database instance with a database predicateR(id; geometry) whose spatial at-
tribute values are shown in Figure 15(a). This database instance is inconsistent with respect to a IDSIC
that specifies that geometries cannot internally intersect. Let us now consider a range query of the form
(R(x; g) ∧ Touches(g,w)), wherew is a user defined spatial window. Figure 15(b) shows the queryover
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Figure 15: Core vs. consistent answers.

the intersection of all repairs (thecore), obtaining geometriesg⋆1 andg⋆2 , where onlyg⋆1 touchesw. Fig-
ures 15(c) and (d) show the query over two minimal repairs, separately. The answer from the repair in (c)
is g′1, and repair (d) does not return an answer because none of the geometries in this repair touchesw.
Consequently, the intersection of all minimal repairs, independently of other minimal repairs, is empty and
differs from the answer obtained from thecore. This difference is due to the fact that the query windoww
touches geometryg′1 in only one of the minimal repairs. 2

The previous example shows the limitations of the core-based computation of CQA with respect to a
subset of denial constraints and conjunctive queries. However, basic conjunctive queries are relevant queries
in the spatial domain, and for IDSICs, we can provide an algorithm for efficiently computing consistent
query answers.

5.2 Computing the core-based CQA

By Corollary 1, we can compute the coreD⋆ with respect to a setΨ of IDSICs without having to compute
the minimal repairs. The basic idea is to determine the minimum geometrygmin in GR,Ψ,D(ā, g), for every
R(ā, g) ∈ D . By property of IDSICs, the minimum geometrygmin in GR,Ψ,D(ā, g) is the one from which it
has been eliminated the intersection ofg with any other geometry in conflict. Then, by Theorems 1 and 2,
we compute CQA overD⋆ for basic range and join queries.

We now show with the following example how our methodology tocompute CQA could be implemented
on top of current spatial database management systems by giving a specification of the coreD⋆ as a view in
SSQL.

Example 12 Consider a schema with the only relationLandP(idl,name,owner;geometry)with primary key
idl, the IDSIC (3) of Example 2, and the instance in Figure 16. We want to consistently answer the query
∃name owner (LandP (idl, name, owner; geometry) ∧ IIntersects(geometry, ([x1, y1], [x2, y1], [x2, y2],
[x1, y2], [x1, y1])), where[xi, yi] are constant points that define the query window in Figure 16 drawn as a
rectangle with dashed boundary.

To answer this query, we generate a view of thecore . That is, we eliminate from each geometry the
union of its intersection with other land parcels. This is the definition of the core in SSQL:9

9In current SSQLIIntersects(g1, g2) is equivalent toIntersects(g1, g2) AND NOTTouches(g1, g2). Also, empty geometries
are not evaluated in current SSQLs so that this built-in atomis omitted from the query.

26



LandP
idl name owner geometry
idl1 n1 o1 g1
idl2 n2 o2 g2
idl3 n3 o3 g3

g1
g2

g3

[x1,y1]

[x2,y2]

Figure 16: An example of an inconsistency database instanceand basic conjunctive query.

CREATE VIEW Core

AS (SELECT l1.idl AS idl, l1.name ASname, l1.owner AS owner,

Difference(l1.geometry,GeomUnion(l2.geometry)) AS geometry

FROM LandP AS l1, LandP AS l2

WHERE l1.idl <> l2.idl AND Intersects(l1.geometry, l2.geometry) AND

NOTTouches(l1.geometry, l2.geometry)

GROUP BY l1.idl, l1.name, l1.owner, l1.geometry

UNION

SELECT l1.idl AS idl, l1.name AS name, l1.owner AS owner, l1.geometry AS geometry

FROM LandP AS l1

WHERE NOT EXISTS(SELECTl2.idl, l2.geometry

FROMLandP AS l2

WHEREl1.idl <> l2.idl AND Intersects(l1.geometry, l2.geometry) AND

NOTTouches(l1.geometry, l2.geometry)))

We now can evaluate the following query on the viewCore to compute the consistent answer to the
original query:

SELECT idl ,name, owner , geometry (15)

FROM Core

WHERE Intersects(geometry , ([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1]))

The core-based answers to the query are〈idl1, n1, o1, g
′
1〉, 〈idl2, n2, o2, g

′
2〉 and〈idl3, n3, o3, g′3〉, where

g′1, g′2, andg′3 are shown in Figure 17.

g'3

[x1,y1]

[x2,y2]

g'2

g'1

[x1,y1]

[x2,y2]

Figure 17: Geometries in the core-based computation of CQA.
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This core-based method allows us to compute consistent answers in polynomial (quadratic) time (in data
complexity) in cases where there can be an infinite number of repairs. This corresponds to a polynomial
time algorithm of order polynomial with respect to the size of the database instance.

As opposed to the previous work in [33], where DSICs used for core-based computation of CQA can also
include topological relationsIntersects andEquals, we define now IDSICs with the only possible topolog-
ical relationIIntersects. This comes from the more general definition of repair semantics, where there is
no specific geometric operators that limit the way we shrink geometries for solving conflicts. Indeed, by
defining admissible transformations based on specific geometric operators to solve conflicts, we may apply
the core-based computation of CQA for a wider type of DSICs, this at the cost of approximating the mini-
mality of repairs. For example, the work in [33] proposes to solve repair conflicts with respect to topological
relationEquals by eliminating the smallest geometry between the two geometries in conflict. By doing so,
we may not have a minimal form of repair since we do not need to eliminate the whole geometry to falsify
a predicateEquals, but, as we showed in [33], we can use the core-based computation of CQA.

6 Experimental Evaluation

In this section, we analyze the results of the experimental evaluation we have done of the core-based com-
putation of CQA using synthetic and real data sets. The experiment includes a scalability analysis that
compares the cost of CQA with increasing numbers of conflicting tuples and increasing sizes of database
instances. We compare these results with respect to the direct evaluation of basic conjunctive queries over
the inconsistent database (i.e., ignoring inconsistencies). The latter reflects the additional cost of computing
consistent answers against computing queries that ignore inconsistencies.

6.1 Experimental Setup

We create synthetic databases to control the size of the database instance and the number of conflicting
tuples. We use a database schema consisting of a single predicateR(id; geometry), whereid is the numeric
key andgeometry is a spatial attribute of type polygon, and the following IDSIC:

∀x1s1x2s2 ¬(R(x1; s1) ∧ R(x2; s2) ∧ NonEmpty(s1) ∧ NonEmpty(s2) ∧

x1 6= x2 ∧ IIntersects(s1, s2)) (16)

We create five consistent instances including 5,000, 10,000, 20,000, 30,000, and 40,000 tuples of homoge-
neously distributed spatial objects whose geometries are rectangles (i.e., 5 points per geometric representa-
tion of rectangles). Then, we create inconsistent instances with respect to IDSIC (16) with 5%, 10%, 20%,
30%, and 40% of tuples in conflict. These instances were created by making geometries, chosen at random,
internally intersect. Due to the spatial distribution of rectangles, the core of a database instance has the same
size that the size of its corresponding original instance. Thus, we are not introducing additional storage costs
in our experiments.

To have a better understanding of the computational cost of CQA, we also evaluate the cost of CQA over
real and free available data of administrative boundaries of Chile [1]. Chilean administrative boundaries have
complex shapes with many islands, specially, in the South ofChile (e.g., a region can have 891 islands). For
the real database, we have two predicatesCounties andProvinces . Notice that, at the conceptual label,
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Provinces are aggregations ofCounties . In this experiment, however, we have used the source data asit
is, creating separated tables forCounties andProvinces with independent spatial attributes. For this real
database, we consider IDSIC of the form:

∀x1x2s1s2 ¬(R(x1; s1) ∧ R(x2; s2) ∧ NonEmpty(s1) ∧ NonEmpty(s2) ∧

x1 6= x2 ∧ IIntersects(s1, s2)), (17)

with R beingCounties or Provinces .
Table 3 summaries the data sets for the experimental evaluation. The percentage of inconsistency is cal-

culated as the number of tuple in any conflict over the total number of tuples. The geometric representation
size is calculated as the number of points in the boundaries of geometries in a database instance.

Source Name Tuples Inconsistency (%) Geometric representation size

Synthetic Synthetic 5,000-40,000 5-40 25,000-200,000
Real Provinces 52 59 35,436

Counties 307 12.7 72,009

Table 3: Data sets of the experimental evaluation.

We measure the computational cost in terms of seconds neededto compute the SSQL statement on a
Quad Core Xeon X3220 of 2.4 GHz, 1066 MHz, and 4 GB in RAM. We useas spatial DBMS PostgreSQL
8.3.5 with PostGIS 1.3.5.

6.2 Experimental Results

Figure 18 shows the cost of the core computation for the different synthetic database instances. To make
this experimental evaluation easier and faster, we used materialized views so that we computed only once
the core and applied queries on this core’s view. However, weadded the computational cost of the core to
each individual query result to have a better understandingof the cost of applying CQA.

The cost of computing the core is largely due to the join givenby the topological relation of a IDSIC,
which could decrease using more efficient algorithms and spatial indexing structures.

For the synthetic database instance, Figures 19 and 20 show the cost rate between computing a CQA with
respect to simple range or join queries (with the spatial predicateIIntersects) that ignore inconsistencies.
Range queries use a random query window created by a rectangle whose side is equivalent to 1% of the total
length in each dimension. Notice that the time cost of computing a range query, for a database instance with
10,000, was approximately 15 ms was 900 times less than computing a join query on a database instance
of the same size. These reference values exhibit linear and quadratic growth for range and join queries,
respectively, as we consider increasing sizes of database instances. The computational cost of CQA to join
queries includes the computation of the core; however, thiscost could be amortized if we use a materialized
view of the core for computing more than one join query. In thetime cost of CQA for range queries, we have
optimized the computation by applying the core-computation over a subset of tuples previously selected by
the query range. This optimization is not possible for join queries, since no spatial window can constrain
the possible geometries in the answer.

The results indicate that CQA to a range query costs around 100 times the cost of a simple query for a
database instance with 40000 tuples. This grows quadratically, since it primarily due to the join computation
of the core. Indeed, when comparing the CQA to a join query, weonly duplicate the relative cost, and in the
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Figure 18: Time cost of the core computation for different IDSICs, different levels of inconsistency, and
different sizes of databases instances.
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Figure 19: Relative cost of CQA to range queries.

best case, keep the same cost. However, join queries have a significant larger computational cost. Notice
that the computation cost for a CQA to range query is around 60s in the worst case (40,000 tuples).

We also evaluate the scalability of the CQA cost to range queries in function of the size of the query
window (i.e., spatial window). In Figure 21 we show the relative CQA cost to range queries on a synthetic
database instance with 10,000 tuples and range queries whose random spatial windows varied from 1% to
5% of the size in each dimension. The results indicate that the relative cost increases logarithmical as we
increase the size of the query window.

Finally, we applied the core-based computation of CQA to thereal database instances in Table 3. Table 4
summaries the results obtained with these data, which were in agreement with the results obtained with the
synthetic database instances. In this table,∆Points represents the relative difference in the size of the geo-
metric representation between the core and the original database. Notice that computing the core increased
the geometric representation ofProvinces up to 5.0%, which is bounded by the shape of geometries in
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Figure 21: Relative cost of CQA to range queries and different sizes of the query window (using a database
instance with 10,000 tuples).

conflict (i.e., the size of the original geometric representation). In the case ofCounties, however, the size
of the geometric representation of the core decreases down to −0.03%. Since the geometry of provinces
should be the geometric aggregation of counties, we could expect to have a relationship between∆Points

for Provinces andCounties . However, the source data set uses independent geometries for Provinces and
Counties and no comparison can be made.

7 Conclusions

We have formalized a repair semantics and consistency queryanswers for spatial databases with respect
to DSICs. The repair semantics is used as an auxiliary concept for handling inconsistency tolerance and
computing consistent answers to spatial queries. It is based on updates that shrink geometries of objects,
even at the point of deleting geometries for some exceptional cases, as for predicateDisjoint.
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Range Join
Data ∆ Points Core Simple CQA Simple CQA

Provinces +5.0% 17.7 0.04 0.25 29.8 63.4
Counties -0.03%0 18.1 0.1 2.1 40.6 55.7

Table 4: CQA cost with real data (costs of core and queries in seconds).

Complexity analysis shows that CQA is intractable. With thepurpose of avoiding to compute and query
all repairs, we have identified cases of DSICs (IDSICs) and conjunctive (basic range and join) queries where
the consistent answers can be obtained by posing a standard query to a single view of the original instance.
This view is equivalent to the intersection of all possible minimal repairs, what we called thecore of a
database instance, which for IDSICs can be computed in polynomial time without determining each repair.

An experimental evaluation of the core-based computation of CQA reveals that answering range queries
has a cost that varies quadratically with the number of tuples in the databases. This is mainly due to the
spatial join involved in computing the core. These results do not use optimizations with spatial indexing,
which has been left for future work. Even more, they assume that we have to compute the core for each
query, which could be optimized by using materialized views.

This work leaves many problems open. We have considered onlyregions to represent spatial objects. A
natural extension of this work would be to define a repair semantics for other spatial abstractions, such as
polylines, points, networks, and so on. We would also like toexplore not only DSICs, but also other classes
of semantic ICs. This includes also the possibility of considering combinations of spatial with relational
constraints, e.g. functional dependencies and referential ICs.
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[25] GÜTING, R. H. AND SCHNEIDER, M. Realm-based spatial data types: The rose algebra.VLDB J. 4,
2 (1995), 243–286.

[26] HADZILACOS, T. AND TRYFONA, N. A model for expressing topological integrity constraints in geo-
graphic databases. InSpatio-Temporal Reasoning(1992), A. U. Frank, I. Campari, and U. Formentini,
Eds., vol. 639 ofLecture Notes in Computer Science, Springer, pp. 252–268.
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[32] RODRÍGUEZ, M. A. Inconsistency issues in spatial databases. InInconsistency Tolerance(2005),
vol. 3300 ofLecture Notes in Computer Science, Springer, pp. 237–269.
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