Consistent Query Answering under Spatial Semantic
Constraints

M. Andrea Rodriguez Leopoldo Bertossi
Universidad de Concepcion, Chile Carleton University, Canada
andr ea@dec. cl bertossi @cs. carl eton. ca

Monica Caniupan
Universidad del Bio-Bio, Chile
ncani upa@bi obi o. cl

Abstract

Consistent query answering (CQA) is an inconsistency @oleapproach to obtaining semantically cor-
rect answers from a database that may be inconsistent \sjpleceto a set of integrity constraints. In this
work, we formalize the notion afonsistent query answéor spatial databases with respect to a special
but relevant class of spatial semantic integrity constsa(8ICs). In order to do this, we first character-
ize conflicting spatial data, and next, define admissibleamses that restore consistency while staying
close to the original instance. In this way we obtaipair semanticswhich is used as an instrumen-
tal concept to define consistent answers as a set-theoretiggometric aggregation of answers from
all admissible repairs. After establishing the intradigbbf consistent query answering, we identify
and investigate a class of denial SICs (IDSICs) and spatiatigs for which it is possible to efficiently
compute consistent query answers via core computation.

1 Introduction

Consistency in database systems is defined as the satisfdgtia database instance of a set of integrity
constraints (ICs) that restricts the admissible databiasess Although consistency is a desirable and usually
enforced property of databases, it is common to find inctersispatial databases due to data integration,
unforced integrity constraints, legacy data, or time ladaips. In the presence of inconsistencies, there are
alternative courses of action: (a) ignore inconsistendl®srestore consistency via updates on the database,
or (c) accept inconsistencies, without changing the dawbbut computing the “consistent or correct”
answers to queries [2]. For many reasons, the first two alteas may not be appropriate, specially in the
case of virtual data integration [6], where centralized glathal changes to the data sources are not allowed.
In this work, we follow and develop the latter approach, edionsistent query answeringpr the spatial
domain.

Consistent query answering (CQA) is about characterizimbcamputing query answers from a database
instance that are semantically correct, in spite of theiplessiolation of the integrity constraints by the
database. CQA has been extensively investigated in thigoreda case (cf. [8, 4, 13, 5] for surveys of the
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area). Extracting consistent data from inconsistent @atd could be qualified as an “inconsistency toler-

ant” approach to querying databases [9]. The basic ideddgproach is that even though a database may
violate its integrity constraints, it can still be used torqmute consistent answers to queries. In this way, it

shifts the goal from the consistency of a spatial databatieetoonsistency of query answering.

In this paper, we develop CQA for spatial databases andicertasses of denial SICs. The spatial
domain offers several new challenges in comparison withréletional case, which is specially due to the
use of complex attributes to represent geometries, thaibamation with thematic attributes, and the nature
of spatial (topological) relations.

We introduce this idea using the following informal and sienpxample.

Example 1 Consider a database instance with a relatiandP, denoting land parcels, with thematic at-
tributesidl andname, and a spatial attributgeometry, of data typepolygon. A SIC stating that geome-
tries of two different land parcels must be disjoint or jusic¢h is expected to be satisfied, i.e., land parcels
cannot internally intersect. However, the instance in Féglidoes not satisfy this SIC and, therefore, it is
inconsistent: the land parcels with identifiétd, andidls overlap. Notice that these geometries partially
intersect, and what is not intersecting can be consideredrasistent data.

LandP
idl  name geometry g4 g
Zdl1 ny g1 ‘! Tl 11
Zdlg ny g2 L L j
Zdlg ny gs 93

Figure 1: Aninconsistent spatial database.

Suppose that a query requests the attribdteof all land parcels whose geometries intersect with a query
window, which represents the spatial region shown in Figuas a rectangle with dashed boundaries. Al-
though the database instance is inconsistent with respat S1C, we can still obtain useful and meaningful
answers. In this case, only the intersection betwgeand g; participates in the violation of the SIC, but
what is left, after eliminating this intersection fragm or g3, can be considered consistent and should be part
of any “database repair” if we decide to restore consistdrycpneans of minimal geometric changes. Thus,
since the non-intersecting parts of geometrjgsnd g3 intersect the query window, we would expect the
following answers:(dl;),(idls), and(idls).

For a query as above, that only requestsiifieof land parcels, and the given database instance, the
consistent answers coincide with the traditional answelsa{ned ignoring the inconsistency). However,
there is a difference between these two approaches wherudrg does not only request the identifica-
tion, but also the geometries of land parcels that interdextguery window. In such case, the answers
under the traditional approach, oblivious to inconsisiescwill return tuples with the original values in
attributesidl and geometry, whereas consistent answers may return tuples with thaaligalues inidl
and modified values in thgeometry attribute of land parcels. These modifications are due todpair
and CQA semantics we use. For the new query, for example,ahgistent answers would be three tu-
ples: (id1, g1),(id2, g),(ids, g5), whereg; is the original geometry of land parcél;, andg, and g} are
geometries derived from the intersection of geometriesyged by thematic attributes, in answers from all
admissible repairs. O

If we just concentrate on (in)consistency issues in daehéeaving aside consistent query answering for
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a moment), we can see that, in contrast to (in)consistenngling in relational databases, that has been
largely investigated, not much research of this kind hash ke for spatial databases. In particular,
there is not much work around the formalization, satistagtchecking or maintenance of SICs. However,
some papers address the specification of some kinds ofiigtegnstraints [10, 26], and check topological
consistency at multiple representations and for datariatiem [18, 21, 36].

More recently, [16] proposes qualitative reasoning witkadiption logic to describe consistency be-
tween geographic data sets. In [27], a set of abstract saktietween entity classes is defined; and they
could be used to discover redundancies and conflicts in $$Gs. In [11], a formalization of a SICs
is given and the study of the satisfiability problem of thesastraints is analyzed. A proposal for fixing
(changing) spatial database instances under differeestgp spatial inconsistencies is given in [34]. Ac-
cording to it, changes are applied over geometries in isplathat is, they are not analyzed in combination
with multiple SICs. In [32], some issues around query answeunder violations of functional dependen-
cies involving geometric attributes were raised. Despi@ivious results, the problem of dealing with an
inconsistent spatial database, while still obtaining nvegfnl answers, has not been systematically studied
so far.

Consistent query answering from inconsistent databasesintraduced and studied in the context of
relational databases [2]. In that case, consistent andwdirst-order queries are defined as those that are
invariant under all the minimal forms of restoring consistg of the original database. Thus, the notion of
repair of an instance with respect to a set of ICs becomes a fundahwamicept for defining consistent query
answers. Arepair semanticglefines the admissible and consistent alternative inssaiocan inconsistent
database at hand. More preciselyepair of an inconsistent relational instanéeis a consistent instance
D’ obtained fromD by deleting or inserting whole tuples. The set of tuples bycWwhD and D’ differ is
minimal under set inclusion [2]. Other types of repair setitarhave been studied in the relational case.
For example, in [22, 37], repairs are obtained by allowindaips of attribute values in tuples. See [5] for
more details and an extensive list of references.

In this work, we define a repair semantics for spatial datebagth respect to a subset of SICs (also
known as topo-semantic integrity constraints [34]), whirtipose semantic restrictions on topological re-
lations and combinations thereof. In particular, we trd&sShat can be expressed by denials constraints.
For example, they can specify that “two land parcels camtetmally intersect”. These constraints are nei-
ther standardized nor integrated into current spatialbdesta management systems (SDBMSs). They rather
depend on the application, and must be defined and handldtelatabase developers. We concentrate on
topological relations because they have spurred muchrasf®, 31, 15] and they are implemented in cur-
rent Spatial SQL Languages (SSQLs). They are consideregptare the essence of a spatial configuration
—topology matters, metric refines [20].

Other important spatial integrity constraints [14] alemain (topological or geometric) constraints
which refer to the geometry, topology, and spatial relaiohthe spatial data types. One of them could
specify that “polygons must be closed”. Many of these gedmebnstraints are now commonly integrated
into SDBMSs [28].

The main contributions of this paper are:

e We formalize a spatio-relational schema and a subset oiasgaimantic constraints, calleténial
spatial integrity constraint§DSICs).

e We formalize a repair semantics for spatial database iostannder violations of DSICs. This is
done through virtual changes of geometries that partieipaviolations of the DSICs. We provide a
general definition oflatabase repaithat is based on shrinking geometries.



Unlike the preliminary work presented in [33], where datbaepairs are defined, inductively, by
sequences of admissible geometric transformations applier geometries, we rely now on a more
general idea of shrinking geometries that may produce eggynetries or smaller geometries with
respect to geometric inclusion. This makes it possible ftndegeometric operators for shrinking
geometries that are more suitable than others, dependiag application; and also use global mini-
mality as the principal criterion for selecting alternatiepairs.

e We analyze the complexity of repair checking for spatiabtlases with respect to DSICs.

e Based on this formalization, we define the notion of constsémswer to aangeandjoin query as
an answer obtained byset-theoretic and geometraggregation of the answers obtained from all the
admissible repairs.

e We show that computing consistent answers in the generalisastractable.

e In spite of the complexity results just mentioned, we shaat @QA for a subclass of DSICs (IDSICs),
and basic range and join queries, can be done efficiently vieoee computation This amounts
to querying directly the intersection of all repairs of agansistent database instance, but without
actually computing the repairs. We identify cases for whi@hcore can be specified as a SSQL view
of the original, inconsistent database.

e We present an experimental evaluation with real and syinttata sets that compares the cost of CQA
with the cost of evaluating queries directly over the inéstent database (i.e., ignoring inconsisten-
cies).

This work builds on, and extends, the results obtained ih [B®re precisely, we formalize consistent
guery answers on the basis of a repair semantics that sheioknetries. It assumes that we can shrink
geometries in different ways, and considers global minigmalf changes as the fundamental criterion to
compare alternative repairs. Proceeding in this way gigea gemantics that does not provide only one
possible transformation to solve a particular conflict, imatkes possible alternative transformations that,
when analyzed globally, define a repair that minimally d&f&om the original database instance. It also
provides the theoretical foundations to define and invatigpplication-dependent geometric operators that
shrink geometries. This work also extends [33] by considgnnot only range queries, but also join queries.
We also provide complexity results for repair checking olOSand CQA, and present experimental results,
in particular, the evaluation of the proposed algorithmtsSGQA for a subset of DSICs and queries.

The remaining of the paper is organized as follows. In SacZowe describe the spatial data model
upon which we define the repair semantics and consisteny queswers. A formal definition of a repair
semantics for spatial inconsistent databases under DSIli@saduced in Section 3. In Section 4, we define
consistent answers to conjunctive queries. We also antiigzeomputational properties of CQA. This leads
us, in Section 5, to propose polynomial time algorithms @taccomplexity) for consistent query answering
with respect to a relevant class of DSICs and queries. Anrarpatal evaluation of the cost of CQA is
provided in Section 6. Final conclusions and future resednections are given in Section 7.

2 Preliminaries

Current models of spatial databases are typically seentesstans of the relational data model (known as
extended-relational or object-relational models) witl tiefinition of abstract data types to specify spatial



attributes. We now introduce a general spatio-relatioashlohse model that includes spatio-relational pred-
icates (they could also be purely relational) and DSICssésusome of the definitions introduced in [30].
The model is independent of the geometric data model (e agisaiti [35], topological [24, 35], raster [25],
or polynomial model [29]) underlying the representatiorspétial data types.

A spatio-relational database scherisaof the form¥: = (U, A, R, T, O, B), where: (a}/ is the possibly
infinite database domain of atomic thematic values.Ali§ a set of thematic, non-spatial, attributes. )
is a finite set of spatio-relational predicates (relatiomkpse attributes belong td or are spatial attributes.
Spatial attributes take admissible vattias?(R™), the power set oR™, for a fixedm that depends on the
dimension of the spatial attribute. (@)is a fixed set of binary spatial predicates, with a built-iterpreta-
tion. (e)O is a fixed set of geometric operators that take spatial argtsnalso with built-in interpretations.
(H Bis a fixed set of built-in relational predicates, like comgan predicates, e.g, >, =, #, which apply
to thematic attribute values.

We assume that each relatiéhhas only one spatial attribute. Furthermore, each relagisabject to a
key constrainbf the general form (1), with a key formed by thematic attr@suonly.

VZ1Z2Z35152 (R(Z1,%2;51) A R(Z1,Z3; 52) — To = T3 A Equals(sy, s2). 1)

Here,z; is a non-empty sequence; andzs are possible empty sequences, of distinct variables reptes
ing values for thematic attributes &f, ands; are variables for values of spatial attribdte§urthermore,
Equals(s1, s2) is a built-in spatial predicate (see Table 1).

A database instanc@ of a spatio-relational schemais composed of relation instances, which are finite
collections of tuples of the fornR(cy, ..., ¢,; g), whereR € R, (c1,...,¢,) € U™ contains the thematic
attribute values, and € Ad C P(R™), with Ad is the class of admissible geometries (cf. below). The
extension in a particular instance of the relati®nis a subset of{" x Ad. To fix ideas, we concentrate in
this work on the case where = 2, however, we could generalize the work with geometries iDaBace.

Among the different abstraction mechanisms for modellimgle spatial objects, we concentrate on
regionsfor modelling real objects that have an extent. They areulisefa broad class of applications in
Geographic Information Systems (GISs). We will be interdsn a finite representation of geometries,
which is compatible with the specification of spatial datpety and spatial relations as found in current
SDBMSs [28]. Actually, in current implementations of SDBB]$egions are defined as finite sets of poly-
gons that, in their turn, are defined through a finite sequehlbeundary points. We can call thgmlygonal
regions In consequence, admissible geometrgf the Euclidean plane will be either the empty geome-
try, g, which corresponds to the empty subset of the plane, or addland bounded) polygonal region
with a positive area. An immediate consequence of this tsatimissible geometries become finitely repre-
sentable. By definition, these admissible geometriéR’dorm the class4d mentioned above. Notice that
it holdsg, Ng = gNgp = g andg, Ug = g U gp, = g, for every regiony. We introduce a built-in atom
NonEmpty(s) that is true if regiors is different from the empty region.

It is important to notice that, although the space is comtirsuand there exist infinitely many points
between two given points, the representation of a geometey domputer is discrete and finite. Spatial
attributes are complex data types, and their manipulatiay Imave an important effect on the computational
complexity of certain decision problems and algorithmsparticular, thesizeof the relation instance is one
of the parameters that contribute to the computational ¢exitp. This size can be defined as a function of
the number of tuples and the representation size of geasétrithose tuples.

1We also refer to values of spatial attributes as geometries.
2Whenz, andz; are empty sequences, the key constraint takes theats s> (R(Z1;51) A R(Z1; s2) — Equals(s1, 52)).



Among different types of binary spatial relations (i.e.aliiative distance, orientation and topological
relations), we concentrate on spatial predicates thatsepitopological relationsbetweerregions Unlike
orientation and qualitative distance relations, topalabrelations are currently implemented in SSQLs.
Topological relations have a fixed semantics, and becomelémeents of/. There are eighbasebinary
relations over non-empty regions [19, $1For non-empty regions ii2, the definition of topological rela-
tions based on point-set theory [19] has its correspondetitbetopological relations defined by first-order
logic, which uses a basic primitive relation odnnectionbetween regions [31]. In what follows, we use
the definition based on point-set theory, because it is tkeadopted by current SSQLs. According to [19],
an atomI’(z,y) becomes true if four conditions are simultaneously trueaserconditions are expressed in
terms of emptinesg)] and non-emptiness-()) of the intersection of their boundaried)(@nd interiors §).
The definitions can be found in Table 1. For example, for nopty regionsz, y, Touches(z, y) is true if
and only if all of §(x) N d(y) # B, o(z) No(y) =0, §(x) No(y) = 0, ando(z) N d(y) = () simultaneously

hold.

Relation Description O(x)NI(y) o(z)Nol(y) 9O(x)No(y) No(y)
Disjoint(z, v) disconnected 0 0 0 0
Touches(z, y) externally connected -0 0 0 0
Equals(z,y) equal -0 -0 0 0
Inside(z, y) non-tangential proper part 0 -0 -0 0
Covered_by(z,y) tangential proper part -0 -0 -0 0
Includes(z, v) non-tangential proper part inverse 0 -0 0 =0
Covers(z, y) tangential proper part inverse -0 -0 0 -0
Overlaps(z, y) partially overlapping =0 -0 -0 -0

Table 1: Definition obasetopological relations between non-empty regions basedart-pet theory.

In addition to the base topological relations, we consitieegderived relationsthat exist in current
SSQLs, and can be logically defined in terms of the other lpasiticatesintersects, Within, andContains.

We also introduce relatiofintersects, which holds when the interiors of two geometries intersecid
relation notEquals (NE), which holds when two geometries are not equihtersects can be logically
defined as the disjunction @verlaps, Within and Contains, whereasmotEquals is the disjunction of all
base relations butquals (cf. Figure 2). For every topological relatios in 7T, its converse (inverse)
relation, denoted b§“, is in7. Some of them are symmetric, liuals, Touches, andOverlaps. For the
non-symmetric relations, the converse relatioiCofered_by is Covers, of Inside is Includes, and ofWithin
is Contains.

As mentioned before, the formal definitions of topologiadations [19, 31] do not consider the empty
geometry as an argument. Indeed, at the best of our knowledgeear semantics for topological relations
with empty geometries exists. However, in our case, we &xtendefinitions in order to deal with this
case. This will allow us to use a classical two-valued logibere atoms are always true or false, but never
undefined. Accordingly, in our extended definition, for gvér € 7, andg;y, g2 € Ad: If g1 = g, OF
92 = 9o, thenT'(g1, go) is false.

Given a database instance, additional spatial informagiasually computed from the explicit geometric
data by means of a sét of geometric operatorassociated witht. These operators are of different kinds,
but all of them use at least one geometry as a parameter amd geometries or real numbers. We will
be using the following spatial operators when defining aadise function to compare geometries and when

3The names of relations chosen here are in agreement withathesiused in current SSQL [28], but differ slightly from the
names found in the research literature. The relations fauSSQLs are represented in Figure 2 with thick boundaries.



Figure 2: Subsumption lattice of topological relationswmgn non-empty regionsOV (Overlaps),
CB (Covered_by), IS (Inside), EQ (Equals), CV (Covers), IC (Includes), TO (Touches), DJ(Disjoint),
IT (Intersects), II (lIntersects), WI(Within), CO(Contains), and NE(notEquals).

defining the core-based computation of COA:
(i) Intersection (N) returns the topological closure of the set intersectiomofadmissible geometries.
(i) Difference (\) returns the topological closure of the set difference betwte/o admissible geometries.
(i) GeomUnion (|J) returns the topological closure of the union of a finite seddrissible geometries.
(iv) Area returns the area of an admissible region.

A schema determines a first-order (FO) languagé&>) of predicate logic. It can be used to syntacti-
cally characterize and express DSICs. For simplicity, weceatrate omenial spatial integrity constraints
(DSICs)? which are sentences of the form:

Vsz —|(/\ Ri(Z;8:) A /\ NonEmpty(s;) Ay A /\ Tj(vj,w;)), 2
i=1 i j=1

wheres = sy -+ s, T = Z1 -+ - Ty, are finite sequences of geometric and thematic variablsgectively,
and0 < m,n € N. Thus, eachz; is a finite tuple of thematic variables and will be treated aet
of attributes, such that; C z; means that the variables i) are also variables ;. Also, Vz stands
for Vaq - - - Va,,,; andVs stands fovs; - - - Vs,,, with the universal quantifiers ranging over all admissible
geometries (i.e. regions). Herg, w; € 5, R1,..., R, € R, ¢ is an optional formula that is a conjunction
of built-in atoms over thematic attributes, afid . . ., 7;, are predicates iff .

A constraint of the form (2) prohibits certain combinatiafslatabase atoms. Since topological relations
for empty geometries are always false, the explicit coadifior non-empty geometries in the constraints

4Cf. [28] for the complete set of spatial predicates definetthiwithe Open GIS Consortium. AlthougheomUnion is part of
SSQLs for several spatial databases (Postgres/PostGd8leQrit is not explicitly defined in the OGC specification8]2

®Denial constraints are easier to handle in the relatiorse es consistency with respect to them is achieved by tupdéates
only [8].
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Figure 3: A spatial database instance.

could be eliminated. However, we do not want to make thefaatisn of the constraints relies on our
particular definition of the topological relations for thegty region. In this way, our framework becomes
more general and modular, in the sense that it would be gessilsedefine the topological predicates for
the empty region without affecting the semantics of the trairg.

Example 2 Figure 3 shows an instance for the schéfa { LandP(idl, name; geometry), Building(idb;
geometry)}. Dark rectangles represent buildings and white rectangfgesent land parcels. lundP, the
thematic attributes argll and name, whereasgeometry is the spatial attribute of dimensiéh Similarly
for Building, which has onlyidl as a thematic attribute.

The following sentences are DSICs:

Vidly...s9 ﬂ(LandP(idll,nl; 81) A LandP(z'dlg, n9; 82) Aidly # idly A
NonEmpty(s;) A NonEmpty(s2) A lIntersects(si, s2)). (3)

Vidb...sy =(Building(idb; s1) A LandP(idl,n;s2) A NonEmpty(si) A
NonEmpty(s2) A Overlaps(sy, s2)). 4)

The DSIC (3) says that land parcels with differaei$ cannot internally intersect (i.e., they can only be
disjoint or touch). The DSIC (4) establishes that builditgcks cannot (partially) overlap land parcels)

A database instancP for schemaX can be seen as an interpretation structure for the langdé&ge For
a set? of DSICs inL(X), D = W denotes that each of the constraintslinis true in (or satisfied byp.

In this case, we say thd? is consistentwvith respect tol. CorrespondinglyD is inconsistenwith respect
to W, denotedD [~ W, when there is @ € U that isviolatedby D, i.e., not satisfied by). A conflictfor a
DSIC ¢ of the form (2) is a pair of tuple®; (u1; g1) and Ry (us9; g2) in D that violatesy.

Given a schema& and a set of integrity constraint®, a relevant problem is to determine if the set of
constraints is satisfiable. The satisfiability problem fatatabase schenta and a set of spatial integrity
constraints DSIGP consists in determining if there exists a non-empty daeliastanceD over ¥ such
that D = . This problem restricted to schemas without empty regibas,been studied in [11] for a set of
topological dependency constraiffEDs). This kind of dependencies can be transformed intdI3%9if the
form (2), excluding theNonEmpty(s) built-in atoms. The study in [11] shows that for a databases@a
with only one spatial attribute in its relations, satisfiggiof a set of TDs can be checked in polynomial
time with respect to the size of the schema, and the set ofreams. However, for a database schema with
more than one spatial attribute in its relations, theretgxsset of topological dependency constraints for
which the satisfiability problem i P-hard.

For a set¥ of spatial integrity constraints of the form (2), it is easyshow that there always exists a
non-empty instanc® for an schema&:, with empty regions, such th@ = ¥. This is trivially proved since
empty geometries always satisfy DSICs.



3 A Repair Semantics

In this section, we specify an update-based notion of regainantics. For simplicity, in what follows

we have considered denial constraints with at most two datlbelations and one topological relation.
However, a denial constraint of the form (2) may have mordigelational predicates and topological
relations.

A databaseD violates the constraintz,zoVs1so =(R1(Z1;81) A Ra(Z2;s2) A NonEmpty(sy) A
NonEmpty(s2) A @ A T(s1,s2)), when there are data values, az, g1, g2, With g1, go non-empty geome-
tries, for the variables in the constraint such thaf (z; s1) AR2(Z2;s2) A o AT (s1, s2)) becomes true in
the database under those values. This is denotedWith (R;(Z1;s1) A Ra2(Z2;s2) A NonEmpty(s1) A
NonEmpty(s2) A AT(s1,s2))[a1,asz,g1,g92]. When this is the case, it is possible to restore consistency
of D by modifying g; or g2, to makeT'(gy, g2) false.

A preliminary discussion of update-based consistencyraton of spatial databases is in [33]. One
of the key criteria to decide what update to apply is minityadf geometric changes. Another important
element to consider is the semantics of spatial objectg;twiiakes changes over the geometry of one type
of object more appropriate than others. This work assunmesnih previous knowledge about the quality
and relevance of geometries exists and, therefore, it asstimt geometries are all equally important.

To define a repair semantics, we identify certain anti-mamicity properties of topological relations,
with respect to geometric inclusion of non-empty regiorehl& 2 shows (anti-)monotonicity properties for
topological relations over non-empty regions. For consitiens of space, we have omitted the proof of
these (anti-)monotonicity properties, which can be donadiyg composition of topological relations [17].

RelationsT’ (Anti) Monotonicity Property
Inside, Within T (s1,s2) A Within(s], s1) = T(s], s2)
Intersects, lIntersects, Includes, Contains T(s1,s2) AWithin(s1,s]) = T(s], s2)
Intersects, lIntersects, Inside, Within T(s1,s2) AWithin(sz2, ) = T(s1,s})
Includes, Contains T(s1,s2) AWithin(s),, s2) = T(s1,s))
Inside, Within —T(s1,52) AWithin(s1, s]) = =T (s, s2)
Disjoint, Intersects, lIntersects, Includes, Contains | =T (s1, s2) A Within(s],s1) = ~T(s], s2)
Includes, Contains T(sl,sg) A Within(sz, s5) = =T (s1, s5)
Disjoint, Intersects, lIntersects, Inside, Within T (s1,s2) AWithin(s}, s2) = =T (s1,s5)
Inside, Within T(s1,s2) AWithin(s1,s)) = =T (s1,s5)

Table 2: Monotonicity of topological relations between rempty regions.

The table shows that if atonistersects(g;, g2) andlintersects(g1, g2) are true, and we enlarge geome-
tries g, or g2 to g} or g}, respectively)ntersects(g, g5) andlintersects(g, g5) will continue being true. In
contrast, if we shrink geometrigs or g, to g or g, respectivelylntersects(g}, g5 ) andlintersects(g}, g5)
may become false. Even more, when shrinking a geomgtryg’, ¢’ will not intersect other geometry
g”, unless geometriegandg” previously intersect. The latter is very important becatisaplies that by
shrinking geometries, no new conflicts involving these togical relations will appear.

We propose to solve inconsistencies with respect to DSIGeeoform (2) by shrinking geometries.
This repair semantics will be used as an instrumental cdrtoefprmalize the notion of consistent query
answer. In particular, this way to solve inconsistencie®8fCs does not require, necessarily, making or
materializing changes on the original database. We dislleganslating geometries because there is no
(anti-)monotonicity properties that could reduce thermtéion of conflicts. We also disregard the creation
of new objects (object splitting), because we would haveei dith null or unknown thematic attributes.
We will see that even with our relatively simple repair setita we obtain hard cases of complexity in
relation to determining repairs and CQA.



Proposition 1 LetT'(g1, g2) be a topological relation ifi” between admissible geometrigsandg, that is
true. ThenT'(g,,45) can be false if one the following condition occurs: {f)or ¢}, are empty geometries
or (exclusive) (ii)Inside(g, g1), Covered_by(g], g1), Inside(g}, g2), or Covered_by(gb, g2) is true.

Proof: When geometries are empty, the proof is trivial, since noltagical relation with empty geometries
is true. Then, we proof that a true atdifg, g2) can be falsified by shrinking, or g» to ¢} andg), respec-
tively, using the notion of composition of topological rites. The composition of two topological relations
T (g1, g2) andTx(g2, g3), denoted byl (g1, g2) ® (g2, g3), defined over a common geometry, enables
to derive the set of possible topological relations that felg between objectg; andgs. For example,
the compositionTouches(gy, g2) ® Inside(ga, g3) results in the sefOverlaps(g:, g3), Covered_by(g1, g3),
Inside(g1, g3)} of possible topological relations betwegnandgs. The composition of base topological
relations has been studied previously and can be found in [17

The composition of topological relations imposes constsabn the possible relations between geome-
tries when they are shrunk. Legt be the corresponding shrunk geometry with respegt tand7'(g1, g2)
be the topological relation that must be falsify. It holdattimside(g], g1) or Covered_by(g}, g1) must be
true. By definition of the composition of topological retais and topological consistency [21], relation
T'(gy,g2) can be true ifl" (g}, g2) € Inside(g},91) ® T(g1,92) U Covered_by(g},91) ® T(g1,92), with U
denoting set union. Consequently(g}, g») can be false, ifnside(g}, g1)®T (g1, g2) UCovered_by (g}, g1)®
T(g1,92) \{T(g7,92)} # 0, with \ denoting set difference.

As an illustration, let us consider the case of atBguals(g1, g2) that is true and must be false. By
shrinking g1, we have a geometry; such thatCovered_by(¢/,g1) or Inside(g},¢1) is true. By com-
position of topological relationsCovered_by(g}, g1) ® Equals(g1,g2) U Inside(g}, 91) ® Equals(g1,g2)
= {Covered_by (g}, g2), Inside(¢g}, g2) }. ConsequentlyEquals(g}, g2) is false.

The same analysis can be done when shrinkingnd when shrinking both; andg,. We can prove
exhaustively, by using the compositions defined in [17]t fba all topological relations, except relation
Disjoint, we can always falsify a topological atom by shrinking getiias. For relatiorDisjoint, we can
always falsify an atom by making one of the geometries empty. O

Notice that due to the interaction of different DSICs, evién isolation a topological relation can be falsified
by shrinking a geometry, this geometry must need to beconpyetm satisfy all constraints. This related
to the satisfiability problem of a set of integrity consttaidiscussed at the end of the last section.

In what follows, we formalize our repair semantics basedtoinking geometries.

Given a databas®, possibly inconsistent, the repairs Bf will be among the instanceB’ that are
consistent, i.e.D’ = ¥, and also correlated tb.

Definition 1 Let D, D’ be database instances of schexithat satisfy the key constraints (1).andD’ are
(mutually)correlatedif and only if, for every ground tuple of the fori(cy, . . ., ¢4; 9), if R(cq,...,cn59) €
D, then there is a tupl®(cy, ..., cn; '), with R(cy,...,cn;¢") € D’; and the inverse also holds. I is
fixed, then we also say thal’ is D-correlated. O

Notice that due to the satisfaction of the key constraints, mutually correlated instances have the same
cardinality and the same values for the thematic attribitdaples. This correlation implicitly defines a
correlation functionf, such thatf(D) = D’ and f~1(D’) = D. Typically, the fixed instancé will be

the initial, inconsistent instance, and the repairs willlbeorrelated (cf. Definition 4). In &-correlated
instanceD’, we can compare tuples one by one with their counterpartsstamceD. In particular, we can
see how the spatial-attribute values differ.
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Example 3 (example 2 cont.) Consider the relational schefnadP (idl, name ;geometry) For the in-
stanceD given in Example 2, the following instand#’ is D-correlated.

LandP
idl name geometry
Zdl1 ny1 gr
idly  ng gs
idly  n3 99
Here, for the correlation function, it holdg LandP (idly,n1;¢1)) = LandP(idl1,n1; g7), €tc. 0

Any two D-correlated instance®’ and D” can be compared tuple by tuple. This comparison between
tuples will be done by means of a distance function that setieithe areas of geometries in tuples, since
only geometries are modified.

Definition 2 For regionsyy, g2, 0(g1,92) = Area((g1 \ g2) U (92 ~ g1))- U

When restoring consistency, it may be necessary to condifferent combinations of tuples and DSICs.
Eventually, we should obtain a new instance, hopefully sbast, that we have to compare to the original
instance in terms of their distance.

Definition 3 Let D, D’ be spatial database instances over the same schemvhere D’ is D-correlated.
ThedistanceA(D, D’) betweenD andD’ is the numerical valué\(D, D’) = 3z pd(Ilg (%), Is(f(¢))),
wherells(¢) is the projection of tuple on its spatial attributes.

For the repair semantics considered in this paper, thendistiunction can be simplified g1, g2) =
Area(g; \ g2), because we are always shrining geometries suclythatgeometrically included ig; or is
empty.

Now it is possible to define a “repair semantics” as follows.

Definition 4 Let D be a spatial database instance over schEraad¥ a set of DSICs. (a) Aepair of D
with respect tol is a database instand# over, such that: (i)D’ = V. (ii) D’ is D-correlated. (iii) For
every tupleR(cy,...,cn;9) € D, if f(R(c1, ... cn;9)) = R(c1, ... en;g), With R(cq, ... cn; ') € D,
thenWithin(¢’, g) or ¢’ is g. (b) A minimal repair D’ of D is a repair ofD such that, for every repaip”
of D, itholdsA(D, D") > A(D, D’). Rep(D, ¥) denotes the set of minimal repairs. O

Example 4 Consider the database instance in Figure 4 that is incensigtith respect to DSICs (3) and
(4). Figure 5 shows three possible minimal repairs of thésaince.

The original database instance contains fours confliets, four pairs of tuples (geometries) that violate
the integrity constraints. Geometrigs and go, and geometrieg, and g3, violate DSIC (3) since they
internally intersect. Geometrigs andgg, andgs andgg, violate DSIC (4) sinceg partially overlapsy, and
g3. Figure 5 shows only three of the possible minimal repaiisgua shrinking-based semantics. Repair
(a) considers that the whole intersection betweemnd g, is eliminated fromg;. Repair (b) considers
that the whole intersection betweenand g; is eliminated fromgs. Finally, repair (c) considers that we
take part of the overlapping area frogm and part fromgs. We could have infinitive ways to solve this
conflict, since there are infinite possibilities in betweakirig the whole intersection frog and the whole
intersection frony,. Therefore, for an inconsistent database instance théréeyiin general, an infinite
number, actually, a “continuum”, of repairs. In principlbe same applies with minimal repairs.
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LandP Building 5
idl  name geometny idb  geometry 2 R
’Ldll ni1 a1 ’Ldbl ga
idly no g2 1dbo (75 = (]
1dl3 n3 93 1dbo g6
&

Figure 4: An inconsistent database instance.

Figure 5: A subset of possible minimal repairs.

Notice that, based on minimality of geometric changes etieonly one way to repair conflict between
g2 andgs due to the interaction with the conflict betwegnand gs, and betweelgs; andgg. By taking half
of the intersection betweeayp andgs from g, and the other half frongs, we solve conflict betweeg; and
gs, and also betweeg, andgs. These are the minimal geometric changes to repair thesedmfticts. O

Itis easy to show that for a database instabcand a set of DSIC¥, there is always a possible repair, since
we could always make geometries that participate in thetian of an integrity constraint empty. Also, for
a database instande that is consistent with respect g then D is its only minimal repair.

Notice that although there is always a repailbivith respect tal, there is not always a minimal repair.
To show a case when there is no minimal repairs, considercen Bbuches(g1, g2) that must be falsified.
In such case, there are infinite ways to shrink geometrinto ¢; and makeTouches(g], g2) false. Even
more, since space is continuous, it is always possible te flasuch thatCovered_by(¢}, ¢{) is true and
Touches(g/, g2) is false. Thus, we do not have a lower bound of what must bareied from a geometry
to obtain a minimal repair. Consequently, although we catore consistency with respect to a topological
predicateTouches, it is not possible to have a minimal repair.

To show a case when there are minimal repairs, conHigkefsects (g1, g2) that must be falsified. Like in
the previous case, there are infinite ways to shrink geoesgfyior g, into ¢ andgj, respectively, and make
lIntersects(g}, g) false. In all these cases, however, the intersection betyeandg, must be eliminated,
which represents the lower bound of the area that has toré@elied fromg; or go. Consequently, we have
minimal repairs.

We now introduce a first complexity result in terms of data ptanity.

Proposition 2 For a set? of DSICs, deciding if an instanc®’ is a minimal repair of an input database

instanceD is co-NP-completein data (complexity). That is, there is a schemand a setl of DSICs, such
that the decision problem
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MinRep(¥) := {(D,D') | D is instance of2 and D’ is a minimaml repair oD wrt ¥}

is Co-NP-complete

Proof:

(a) Membership ofco-NP: For input database instancBsand D’. D’ is nota minimal repair ofD if there
is a witnessedD” for which it is possible to check in polynomial time in theesiaf D (and D’) that: (i)
D" is D-correlated for a certain functionf; (i) D” = ; (iii) for every tuple R(cy,...,cn;9) € D, if
f(R(c1y . .-yen;9)) = Rler, ... cn3d'), with R(cy, ..., cn;g') € D", thenWithin(¢', g) or ¢’ is g¢; and
(iv) A(D,D") < A(D, D’).

(b) Hardness For a fixed schem& and set¥ of DSICs, we reduce the complement ofS3-T' to the
problem of deciding if an instancB’ is a minimal repair of an input instande. More precisely, for an
instance® of 3-SAT, we construct instance® and D’, such thatd is unsatisfiable if and only iD’ is a
minimal repair ofD with respect tol.

We will assume that each clause in a formula in CNF has ex&ctlterals. They are of the form
d: AL A withe =18 v IE v IL. A clause may have repeated literals, exy: = vV —y vV . We
consider the following database predicateXin

e Clauses(I, K;G): It will contain tuples of the form(?, 1; g,,), wherel? identifies the positionj, of
aliteral in¢?, and! is the literal in that position. For example, fér: = v —y v = we would have the
tuples(Ii, x; go), (I3, ~y; 9o ), and(I3, z; g» ). The key ofClauses is attributel.

e Lit(K,K';G): It will contain tuples of the form(,’; g5 ), with [ and!’ complementary literals that
appear both irb. For example{z, —z; g, ) for the formula above. The key dfit is (K, K').

o V(K;G), Vr(K;G), Vr(K;G): Each of them will contain literals that appeadin That is, if literall
appears irb, thenV will contain the tuple(l; gr), with gr a geometry to be defined below. Similarly
for Vi andV/, but with geometrieg, g5, respectively. Attributds is always the key. The idea is that
a literall is considered to be true if geometries with key valire v, andV are equal. Likewise, itis
considered to be false if the geometries with key vdliureV andV are equal.

e Aux(M; Q) is an auxiliary predicate. It will be used to enforce patticuepair transformations. The
key of Aux is attribute.

With these predicates we are in position to define the fixe@s#tDSICs. They are given in (5)-(8) below.
They are independent from any propositional formblar instanceD associated with the former. However,
to better understand the role of the DSICs, we will indicaie lthe predicates above are filled with tuples,
obtaining an initial instanc®.

Given an instance@ for 3-SAT, of the form®: ¢! A ... A ¢, with ¢t = 14 v [§ v I4, we construct
an instanceD for schemaX as follows. Clauses contains exactly the tupIe(sz’;ﬁ, l§,g@>, with I]’ﬁ being an
identification symbol, i.eJ;ﬁ # I}ﬁ for j # j ori # ¢, andl;'. is the literal in position; of clausei. In
consequence, the number of tuples in the extensiaif@ises is tree times the number of clausesiin

We insert a tupld.it(a, —a, g5 ), with a an atom, whenever bothand—a appear ind.

The extensions foV, V; andV in D were described above. The extension of each of those pteslica
has as many tuples as different literals that appeadr. inet « be the number of different literals. It will be
used below.
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For predicatedAuz, the only tuple in its extension i®; g;/), wherep is a constant. e.g., an arbitrary

propositional variable.
Now the geometriesg;, g/, gr andgp, to be used in the tuples above, can be arbitrary as long @s the

satisfy the following properties:
1. gp is disjoint fromg;, gr andgg,
2. g1 =91 Ngr,
3. Area(gr) = Area(gr),
4. Area(gr ~ gr) = Area(gr \ gr), and

5. Area(gr) > Area(gp) > o x Area(gr ~ gr), Wherea is the number of different literals .

The idea is to create an instanBethat is inconsistent with respect to the fixed §etThe choice of these
geometries will force specific repair transformations,jeabto the requirement of minimally of shrinking
geometries.

As an illustration of the construction so far, consider therfula®, = (z V -y V z) A (2 V -z V )
that hasr, y, z as propositional variables, and the four different literal-x, -y, z. Thena = 4. Figure 6
shows an example of possible geometries®gr In this example, possible areas aterea(gr) = 5.5,
Area(gr) = 5.5, Area(gr) = 5, andArea(g;r) = 4.5. In this case, the relations i, associated with
formula®, are as shown in Figure 7.

N 7

ar

Figure 6: Geometriegy, g1/, g7, g for 3-SAT instance with four literals.

Clauses

VT V_F vV c | K G
K G K G K G - I T go
@ gr T gF z  gr K Lrl(t, S KAUXG I -y g0
Y gr Y gF Y g1 o o ct L%% r  go

- ’

z gr zZ  gr z g1 b0 L9 e Iz 9o
-z __gr| |-~z gr| [ -z g1 & Iy -z go
c2 I§ T gp

Figure 7: Database instanég for formula ®.

Now we define the set of DSICs. The first one ensures that gachl lis true or false.

ViIVaVsy -+ - Vsg—(V(1;81) A Vel s2) A VE(l;s3) A Aux(z; sq) A
NonEmpty(s1) A NonEmpty(s2) A NonEmpty(s3) A NonEmpty(s4) A
notEquals(sy, s2) A notEquals(si, s3) A Disjoint(s1, s4)). (5)
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A second DSIC ensures that a literal cannot be true an fatbe aame time:

ViIVzVsy -+ Vsga(V (1 s1) A V(L s2) A Ve(l;s3) A Auz(x; sq) A
NonEmpty(s1) A NonEmpty(sa2) A NonEmpty(s3) A NonEmpty(s4) A
Equals(sy, s2) A Equals(si, s3) A Disjoint(s1, s4)). (6)

Using DSICs (5) and (6), the truth value of a litetalill be true if the geometries i and V7 of literal
[ are equal. Likewise, the truth value of a litetalill be false if the geometries iiv and V- of literal [ are

equal.
A third constraint ensures that complementary literalsroaitake the same truth value:

VIVIN GV sy - Vs (Lit (1,15 go) AV (15 81) A V(I 82) A Ve(l;s3) A

V(l's s4) N Vp(l's85) AVEe(l';56) A Auz(z; s7) A NonEmpty(s1) A NonEmpty(s2) A

NonEmpty(s3) A NonEmpty(ss) A NonEmpty(s5) A NonEmpty(sg) A NonEmpty(s7) A
Equals(sg, s5) A Equals(ss, s¢) A Disjoint(s1, s7) A Disjoint(sy, s7)). (7)

A last constraint states that, for each clause of the f@ﬁn&v z; Vv lg), at least one of thé{ must be true.

VeVIVIVI'YxV sy - - - Vs (Clauses(i, 1; g) A Clauses(i',1'; go) A Clauses(i” 1”5 go) A

V(l;81) AV (U58) ANV (1"583) AVe(l;84) ANVE(;585) AVE(1"; 56) A Auz(z; s7) A

Ni# i Ni# "N #1 #47" A NonEmpty(s1) A NonEmpty(s3) A NonEmpty(s3) A

NonEmpty(ss4) A NonEmpty(s5) A NonEmpty(sg) A NonEmpty(s7) A Equals(sy, s4) A
Equals(se, s5) A Equals(ss, s¢) A Disjoint(s1, s7) A Disjoint(sg, s7) A Disjoint(ss, s7)). (8)

The instance) constructed above for formufhis inconsistent with respect th: The DSIC (5) is false
because, initially, neithegr nor gr are equal tgy;. Also, depending on the existence of complementary
literals in®, DSIC (7) may also be false, since truth values of compleargiiterals are the same.

Now we construct an instande’, from D (and alsod). It is the same a®), except for predicatel uz
whose single tuple now becomés g ). In this way, the topological atorDisjoint in each constraint is
false. In consequencé)’ = ¥, which makesD’ a repair ofD with respect tol. FurthermoreA (D, D’) =
Area(g;/). Its possible minimality as a repair will depend @nas analyzed below.

To continue with our illustration, consider again the ins&D, for the formula®,. InstanceD) is
shown in Figure 8. In this casé& (Dy, D)) = Area(gy) = 4.5.

It is clear that the reduction frodh to (D, D’) can be done in polynomial time in the sizedof Now we
establish that it also answer preserving.

(i) If @ is unsatisfiablethen D’ is the minimal repair ofD: When® is unsatisfiable, every truth assign-
ment to literals in® will violate DSIC (8), even in the case that all others DSI@s satisfied. There-
fore, for an unsatisfiablé, ¥ can be satisfied if and only if geometries of literald/in/; or Vx be-
come empty, or if the geometry in the single tupledafr becomes empty. Due to the way geometries
9v, gr, g1, andgp are definedArea(gr) = Area(gr) > Area(gr) > Area(gr) > aArea(gr \ g1),
with « the number of literals in clauses ®f Therefore, under consideration of minimality, there is
no other instanc®” such thatD” = ¥ andA(D, D”) < Area(q}).

15



Clauses
V_T V_F Vv C | K G
K G K G K G it AUX ci 111 T 9o
A I SR B RO O . S S = A
- T - F - I ®
X -
zZ gr z  gF z g1 9o P90 c? 1% zZ 9o
-z gr -z gr -z g1 A I3 —x o go
c? I% - gp

Figure 8: A repairD; of Dy wrt W.

(i) If @ is satisfiablethenD’ is not a minimal repair When® is satisfiable there exists a truth assign-
ment of thex literals in® that satisfiesV. Thus, it is possible to construct an instar¢éthat shrinks
the geometry inVp or Vi of each literall in ® to become equal to the geometry lpfin V. By
making the right assignment, no conflicts with respect to@Sb), (7), and (8) occur, which is the
minimal transformation over geometries. For each litedhad, truth assignment has a cost equivalent to
Area(gr \ gr) = Area(gr \ gr), which sums up teArea(gr \ gr) < Area(gy/). Thus, for a satisfiable
®, there is an instancB” such thatD” = ¥ andA(D, D”) = aArea(gr \ g1) < A(D, D’).

4 Consistent Query Answers

We can use the concept of minimal repairs as an auxiliaryequirio define, and possibly compute, consistent
answers to a relevant class of querie£(ix).
We study two conjunctive queries that are important in tregiapdomain:

(a) Range querieare of the form
Q(u;s) + Iz(R(T55) AT (s,w)), )

whereu are free thematic variables such thiat ((z) \ z), s is a free spatial variabley is a spatial
constant that represents the spatial window of the quedyzan z.

(b) Join queriesare of the form
Q(u; 51, 82) : FZ(R1(T1; 51) A Ra(T2;582) ANT(s1,52)), (10)

with T € T, andz C z; U Zo, u are free thematic variables such that= ((z; U Z2) \ Z), and
{s1, s2} are free spatial variables.

A basic conjunctive querti.e., basic range or basic join query) is a query of the fodjnof (10) with
T = lintersects. Basic conjunctive queries are relevant in the spatial dioyrsince they retrieve spatial
features that are internally connected (i.e., they ovedap equal, or are related by geometric inclusion).
Notice that for range and join queries (and also for basigurmtive queries) we project on all the spatial
attributes to exploit the CQA semantics latter in this setti
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LandP Building g1 &
idl  name geometry idb  geometry _[iy_g -
idly g1 idby 94 | @fectangle ,
idly  ne g2 idbo gs ! :

Zdlg ns gs O

Figure 9: Example of a range query.

Remark 1 We will assume that the free variables correspond to a sdtriflaes of R with its key of the
form (1). More precisely, for range queries, the attribigesociated withu contain the key ofR. For join
queries,u N 27 anda N 23 contain the key for relation®,, Ry, respectively. This is a common situation in
spatial databases, where a geometry is retrieved togeitteitskey value. O

A given queryQ(z; s), with free thematic variableg and free geometric variablas can be interpreted in
an instanceD for the schema. Accordingly, a sequence of thematic/dpaiizstants(c; g) is an answer to
the query inD if and only if D = Q(c; g), that is, the quen@ becomes true iD as a formula when its
free variables, s are replaced by the constantscirg, respectively. We denote wit@( D) the answer t@
in instanceD.

Example 5 Figure 9 shows an instance for the schefe: { LandP (idl,name geometry), Building(idb;
geometry)}. Here,idl andidb are keys for relationdandP and Building, respectively. Dark rectangles
represent buildings, and white rectangles represent larekfs. The querie®; and Q5 below are a range
and a join query, respectivelyQ, specifies the spatial window of the query by the list of camsteints
([x1,91], [x2, y1], [x2, y2l, [x1,y2], [r1, y1]), which are represented in Figure 9 by the rectangle withethsh
boundary.

Q1(idb;g) : Building(idb; g) A

Intersects(g, ([x1,y1], [72, y1], [z2, 2], [21, 92, [71, y1]))-
Qs (idl,idl';g,g') :  LandP(idb,n;g) A LandP(idb',n’;g") A Touches(g,d’).

The answers t@; are(idbs; g5). The answer t@, is: {(idly, idls; g1, g2), (idls, idls; g2, g3), (idly,idls;
91,93), (idls,idly; g2, q1), (idls, idl2; g3, g2), (idls,idly; g3, g1)}. Notice that the answers contain the key
values. O

Now we define the notion of consistent answer to a conjuncjiley.
Definition 5 Consider an instancB, a set¥ of DSICs overD.

e Let OQ(z;s) be a query of the form (9). A tuplé:,...,cn;g1) is aconsistent answepo Q from D
with respect toV if the following two conditions hold: (a) for every repa?’ € Rep(D, V), there is
g; such thatD’ = Q(cy,...,cm;91), and (b)g1 = N{¢) | D' E Qlc1,...,cm;g)) foreveryD' e
Rep(D, W)}

e Let Q(7;s1,s2) be a query of the form (10). A tuplé:,...,cn;91,92) IS aconsistent answer
to Q from D with respect toV if the following two conditions hold: (a) for every repaip’ <
Rep(D, W), there existy; and ¢, such thatD’ = Q(ey,...,cm;97,65). 0®) g = N{g) | D' =
Qer, ... 7Cm§g/17gé) for every D’ € Rep(D, \Ij)}’ andgs = ﬂ{gé ‘ D' ): e, - 7cm§g/17gé) for
everyD’ € Rep(D, W)},

17



Con(Q, D, ¥) denotes the set of consistent answers to a conjunctive @ievyer D with respect tol. O

Intuitively, a consistent answer to a range query (of thenf(®)) is a tuple containing thematic values and a
geometric valuegy, such thay; is the intersection over all regiog$ € Q(D’) that belong to each different
repairD’ € Rep(D,¥) and correlat®to the same tuple ih. Similarly, a consistent answer to a join query
(of the form (10)) is a tuple with thematic values and two getes values, such that these geometries
are also defined by the intersection of all geometries, grodyy thematic attributes, in answers from all
admissible repairs.

Notice that, sinceQ is operator free, the regiong that appear in the repairs are regions obtained by
shrinking original geometries stored in the database. Alswe we project key values in querigs;' can
be applied. However, due to the intersection of geomettimsgeometries in a consistent answer may not
belong to the original instance or to any of its repairs EXample 6).

In contrast to the definition of consistent answer to a reteti query [2], where a consistent answer is
an answer in every repair, here we have an aggregation of quewers via the geometric intersection and
grouped-by thematic attribute values. This definition mikir to that of consistent answers to aggregate
relational queries with group-by [3, 12], in the sense tloaisistent answers are obtained by processing the
collection of answers from individual repairs.

Definition 5 allows us to obtain more significative answermntlin the relational case, because when
shrinking geometries, we cannot expect to have, for a fixptetaf thematic attribute values, the same
geometry in every repair. If we do not use the intersectiageaimetries, we might lose or not have consistent
answers due to the absence of geometries that are shardddyyadls.

Example 6 (example 4 cont.) Consider the sktof DSICs, the instancé® of Example 4, and the range
query in Figure 10, which is expressed in logic as

Q(idl; geometry) : Iname owner(LandP (idl, name; geometry) A
Intersects(geometry, ([xlv 91]7 [1’27 2/1]7 [.%'2, y2]7 [.%'1, 2/2]7 [1'17 yl]))v

with [z;, ;] constant points. This query can be expressed in the SSOL as:

SELECT idl, geometry
FROM  LandP

WHERE Intersects(geometry, ([x1,y1], [x2, y1], (T2, 2], [1, 2], [x1, ¥1]))-

Although in Example 4 we showed only three of the possibleimmih repairs, we could still derive the
consistent answer to this query from the fact that this igiold from the geometric intersection of the
geometries that are an answer in each repair. As we showegamide 4, all minimal repairs solve the
conflict between geometries andgs by eliminating their intersection. However, the conflictweeng,
andg, can be solved in infinite ways, having in one extreme the wimdésection eliminated frony,, and
in the other extreme, the whole intersection eliminatedhfrg. For anyD’ of D, however, we have tuples
LandP(idly,n1; g)), LandP(idla, ne; g5), andLand P (idls, ng; g4 ) such that], ¢, g5 intersect the spatial
window of the query. Consequently, the answers to this qaeryuplesidly, g{), (idls, g5), (idls, g4 ) (see

6D’s areD-correlated, cf. Definition 1.
"For simplification, we omit the real definition of the querynafow as it is done in current SSQL, which uses constructars fo
spatial data types.
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Figure 10: Querying an inconsistent database instance.
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Figure 11: Consistent answers.

Figure 11), wheregy/, ¢, ¢4 are defined as follows, and wheferepresents geometric intersection over a
set of geometriés

gl = (g1 | D' |= Qlidly; g7) for everyD' € Rep(D, W)}
g5 = (b | D' = Qidlz; gb) for everyD' € Rep(D, W)}
g5 = ({5 | D' k= QUidly; g3) for everyD' € Rep(D, W)}

Proposition 3 For a setl of DSICs, CQA is inlI{’ in data complexity.

Proof: Let ¥ be a set of DSICs an@ be a given query of the form (9) or (10). The complement of
CQA is in NPNP: Given an instance), nondeterministically choose an instanbé and check that
D' |~ Q and thatD’ is a minimal repair ofD. The latter can be tested iwN P by Proposition 2. But
NPeoNP — NP — 5P Therefore, CQA belongs t@x] = I12. O

From a practical point of view, consistent query answerdccaclude additional information about the
degree in which geometries differ from their correspondiniginal geometries. For example, for the con-
sistent answetidly; ¢7) in Example 6, an additional information could be the reltilifference between
areasy; andg/, which could be calculated by(g1, g{)/area(g1).

5 Core-Based CQA

The definition of consistent query answer relies on the &uryilhotion of minimal repair. However, due to
the intractability of deciding if a database instance is aimal repair, and the potentially infinite number

®Do not confusg with the geometric operatatn in © over two geometries defined in Section 2.
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Figure 12: The core of an instance.

of repairs, determining consistent answers by computirgterializing, and finally querying all minimal
repairs, must be avoided whenever there are more efficiechhanésms at hand. Along these lines, in this
section, we present a methodology for computing consisteaty answers for subclasses of conjunctive
queries and DSICs. It works in polynomial time (in data commjil), and does not require the explicit
computation of the database repairs.

We start by defining theore, which, intuitively, is the “geometric intersection” ofdfrepairs. It is
obtained by intersecting the geometries in the differepaireinstances that correlate to the same thematic
tuple.

Definition 6 For an instance) and a seW of DSICs, thecore of D is the instanceD* given by D* :
{R(a;g*) | R € R, thereisR(a;g) € Dandg* = (\{¢' | R(a;g') € D' forsome D’ € Rep(D,¥
and R(a;¢') = f(R(a;g))}}. Here,f is the correlation function ab’ with respect taD.

~—

O

Sometimes we will refer td* by (7 Rep(D, V). However, it cannot be understood as the set-theoretic
intersection of the repairs d?. Rather it is a form of geometric intersection of geomethefnging to
different repairs and grouped by common thematic attribute

Example 7 (example 6 cont.) Figure 12 shows tbere of the database instance in Figure 4, where gray
rectangles represent geometries in the core that diffen freeir correlated geometries in the original incon-
sistent database instance. Heyg, g%, andgg are equivalent to the geometrigs gs, andgg in the original
database instance. Geometrigs g5, andgz, in contrast, are obtained by considering the interseatfon
correlated geometries in minimal repairs. O

Notice the resemblance between the definitions of consiateswer and the core. Actually, it is easy to see
that D* = | per Con(Qr, D, V), where the quer@r(z; s) : R(7;s) asks for the tuples in relatioR.

The core is defined in terms of minimal repairs. However, as we willghifor a subset of DSICs, we
can actually determine th@re without computing those repairs. This is possible for DS€the form:

VZ1T95152(R(T1; s1)AR(Tg; s9) AT # T ANonEmpty(s1) ANonEmpty (so)Allntersects(sy, s2)), (11)

wherez] C 7, z, C Iy, and bothz| and z} are variables that capture the key Bf In these kind of
DSICs, which will be called IDSICs, there are two occurrenoéthe same database predicate. Let us also
denote byW(R) the IDSIC in¥ over predicateR. Although this kind of DSICs uses only the topological
relationlintersects, it is of practical interest. By using this type of consttajnwe are allowing regions to
touch or be disjoint, which is a typical constraint for adisirate boundaries or other geographic features
(e.g. buildings, land parcels, and so on).

Remark 2 This class of IDSICs has the following properties hold, viahwgill be useful when trying to
compute the core:
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Figure 13: An inconsistent database with IDSICs of the fotd).(

(i) To solve conflicts between tuples with respect to IDSI®s, intersection (internal intersection) of
geometries must be eliminated so that geometries touch aambe disjoint. Eliminating only the
internal intersection represents a minimal way to restamgsistency and, consequently, it leads to
find minimal repairs. Notice however, that there may be itdimiays to eliminate this intersection.

(i) Solving inconsistencies of IDSICs over different dadéige predicates is independent. This is, solving
conflicts between two tuples, with respect to a specific IDS{@ver a predicatd?,, is independent
from solving a conflict with respect to any other another ID$}, over a different database predicate.

(iii) Solving a conflict between two tuples with respect topeafic IDSIC does not introduce new con-
flicts. This is due to the anti-monotonicity property of padeslintersects, which prevents a shrunk
geometry from participating in a new conflict with an exigtigeometry in the database.

(iv) For any two geometrieg; andg- in conflict with respect to a IDSIC, there always existsimimal
versionof each geometry whose intersection with the original gedegein conflict has been elim-
inated (cf. Lemma 1). This can even means that the minimaioeris the empty geometry. As a
consequence, the core can be computed by eliminating fraometry all its intersections with other
geometries in conflict, disregarding the order in which ¢hiesersections are eliminated.

This property is not guaranteed for other kinds of DSICs. iRstance, consider Example 6 with the
instance in Figure 4 and its corresponding subset of minneeirs in Figure 5. Althoughs was
originally in conflict with respect tg-, there is no minimal repair where geomedgyhas been shrunk.
O

We illustrate some of these properties with the followingreple.
Example 8 Consider the schem® = { County(idc, name; geometry), Reserve(idr; geometry)}, with

idc the key of County andidr the key of Reserve, and the following sef of IDSICs:

Videy ... s9=(County(idey, ny; s1) A County(idea, ng; s2) Aidey # ideg A
NonEmpty(si) A NonEmpty(s2) A lIntersects(sy, s2)). (12)

Vidly ... so—(Reserve(idry; s1) A Reserve(idra; sa) Aidry # idre A NonEmpty(s1) A
NonEmpty(s2) A lIntersects(sy, s2)). (13)
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Figure 14: The core for the instanégin Figure 13.

An inconsistent instanc® of this schemak is shown in Figure 13. In it, counties with geometrigs
go andgs are inconsistent with respect to the IDSIC (12), becausgititernally intersect. Geometrigg
andgs violate the IDSIC (13), because they also internally irgets

Conflicts with respect to IDSICs (12) and (13) can be solvedniindependent way, since they do not
share predicates (cf. Remark 2(ii)). To obtain a minimahneonsider first IDSIC (12) and the conflict
betweery; andgs, which can be solved by eliminating the intersectigm g, only from g;, only from g or
partially fromg; andgs. Any of these alternative transformations does not prodiecenetries that could be
in conflict with other geometries unless they were originail conflict (cf. Remark 2(iii)). For instance, if
we eliminateg; N g2 from from g1, we obtain a new geometgj that will not be now in conflict withy,, but
will still be in conflict with geometryys. This conflict is not new, sinceg, was originally in conflict withys.

By eliminating fromg; its intersection withys, however, we also eliminate part of the original intersecti
betweery,; andgs.

Notice that, like Example 4 also illustrates, there are itdip many, actually, a continuum of, alternative
transformations that eliminate the intersectigm g, partially from both geometries. Consequently, there
is potentially an infinite number of minimal repairs. Howgwee still can ensure that there exists a minimal
repair where the whole intersecting area is eliminated foo of the geometries in conflict, which is used
latter to obtain the core ob without actually computing each minimal repair. The cd@é is shown
in Figure 14, where black areas have been eliminated fromd¢beesponding original geometries. O

We introduce the s&ir v, p(a, g) that contains, for a given tuplB(a; g) in a database instande, all the
possible versions of geometgyin the minimal repairs oD.

Definition 7 Let D be a database instancé, a set of IDSICs andk(a;g) € D a fixed tuple. Then,
Grw,p(a;g9) ={J|R(a;g’) € D', D" € Rep(D, V), f'(R(a;g')) = R(a; g)} O

To simplify the notation, we also introduce a logical formuhat captures a conflict around a tuple of
relationR € D and a IDSIC:

Vilfgslsg(ConﬂDﬁ(fl,31,3?2,32) =2 (R(fl;sl) AN R(.’Z’Q;Sg) /\.’Z'll 7&{2',2 /\NonEmpty(sl)
ANonEmpty(s2) A lIntersects(sy, s2))), (14)

wherez)| C 71, Z, C Zy, and bothz| andz/, are a non-empty sequence of variables that capture the key of
R. By imposing thatt} # 7, only different tuples can be checked for topological iefatintersects.

The following lemma establishes that when a geomeisjinvolved in conflicts of IDSICs, there exists
a version ofg in the repairs that ig, or is minimum with respect to geometric inclusion. This tegu
useful to show that the minimum version @fs the one that is in the core.
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Lemma 1 ConsiderD a database instance, a 9eof IDSICs and a fixed tuplé:(a;g) € D. The set of
geometriesir v, p(a, g) has a minimum element,,;,, that is the empty geometry, or a geometry defined
under geometric inclusion.

Proof: By definition of a minimal repair, for every)’ € Rep(D,V) and R(a;g) € D, there must
be R(a;¢') € D' and f~(R(a;¢')) = R(a;g). ConsequentlylGrw(a;g)| # 0. If |[Gru(a;g)| = 1,
this means thay is the same in all minimal repairs and, therefore, it is theimum elementy,,;,,. If
|Grw(a;g)| > 1, theng must undergo repair transformations.

Let us define a geometty= | J{¢'| R(b;¢') € D, D |= Confl, (a,g,b,d')}. This geometry defines
the union of geometries i that are in conflict withy with respect to a IDSIC in.

For aIDSIC, the intersection betweeandg must be eliminated by using alternative geometric transfor
mations that shrink geometries, where there is always damative that eliminates the whole intersection
from g. Thus, we must have a sequence of transformations thadeglaliminating, per each conflict in
which R(a; g) participates, the whole intersection from geometryl'his produces a geometry = ¢ \ t,
with ¢* € Grw, p(a;g). Also, due to anti-monotonicity property of topologicalaton |Intersects, solv-
ing conflicts for IDSICs will not introduce new conflicts armhnsequently, the intersection betweemnd
g is the only part ofg that must to be eliminated. Consequenyy,= ¢ \ ¢ is the minimum element in
Gr.w,p(a;g), which isgg 0 is a minimum geometry iGr v, p(a; g) under geometric inclusion. O

Example 9 (example 8 cont.) The inconsistent instan@ein Figure 13 has tupl&ounty(idcy, n1; g1)
that is in conflict with tuplesCounty (idca, no; g2) and County(ides, ns; g3) with respect to IDSIC (12).
A possible repair transformation eliminates frgmits intersection withy,, generating a resulting geom-
etry ¢i. Then, to solve the conflict between and g3, a possible repair transformation eliminates from
g] its intersection withgs, resulting a geometry/. Notice thatWithin(g¢{,¢}) holds, and thay/ is the
result of eliminating fromy; all conflicting intersections with geometries. Then, itdothat there exists
g7 N Gcounty,w,p(idcr,n1;g1). Even moregy is the minimal element it§ county v, p (ider, n1; g1)(see
Figure 14). O

Corollary 1 Consider a database instanbe a set¥ of IDSICs, and a fixed tupld&(a; g) € D. For the
minimum geometry,,;, in Gr w(a, g), it holds R(a; gmin) € D*.

Proof: Direct from Lemma 1 and the definition of the core as a geomeitersection. O

Corollary 2 Consider the cord* of a database instande with respect to a se¥ of IDSICs. Then,
D* = 0.

Proof: By Corollary 1, for anyR(ai; ¢g1,,,,) € D*, q1,,,, iS the minimum geometry iGr v(a1;g:1). If
g1,.,,, 1S the empty geometry, then, , does not participate in any possible conflict. Let us comside the
case whery;, . is not empty. By definition of a minimal repair, R(a,; g}) € D’ with D" € Rep(D, ¥),
there exists n@(as; ¢5) in D’ that is in conflict withR(a;; g7 ). By anti-monotonicity of topological relation
lIntersects, if Within(gy,,,,,,,97) andWithin(ga, ;. g5), With go, .. the minimum geometry igr v (a2; g2),
thenR(a1;g1,,,.) € D* is notin conflict withR(as; g2 € D*. Then,D* E V. O

min min )

Although D* |= ¥ holds, D* is not necessarily equivalent to a minimal repaifiep (D, V).
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5.1 Properties of the Core

In this section we establish that for the set of IDSICs andth@amjunctive queries, it is possible to compute
consistent answers on the basis of the core of an inconsiaance, avoiding the computation of queries
in every minimal repair. This is established in Theoremsd Zrespectively.

Theorem 1 For an instance), a set¥ of IDSICs, and a basic range queB(u; s), thenCon(Q, D, ¥) =
Q(D™).

Proof:  The projection of range queries always includes the key efréiation. Thus, if(a; ¢”) €
Con(Q, D, V), then for everyD’ € Rep(D, V), there existsR(b; ¢'), such thata C b, f~H(R(b;¢")) =
R(b; g) andR(b; g) € D, wherellintersects(g’, w) is true for the spatial constant of the basic range query
andg” = N{g' | foreveryg’ € Grw p(b,9)}.

On one direction, by Lemma 1, there exists a tupl@; g,in) € D' € Rep(D, W), with g,,;,, the
minimum geometry irGr v, p(b; g). By definition of consistent answer, {f; g”) € Con(Q, D, V), with
a C b, thenEquals(g”, gmin). By Corollary 1,R(b; gmin) € D*. Consequentiy(a; gmin) € Q(D*).

In the other direction, if(@; gmin) € Q(D*) (with D* = (7 Rep(D,WV)), then there exists a tu-
ple R(b; gmin) € D*, with @ C b and lIntersects(gin, w) true. By the monotonicity ofIntersects, if
lIntersects(gmin, w) is true, then for all geometriag € Gr v p(b, g), lIntersects(g’, w) is also true. Then,
by definition of consistent answé; g,,..,) € Con(Q, D, V). O

A similar result can be obtained for basic join queries, igeleries that consider two database predicates
(not necessarily different). The following example illges how to compute consistent answers to basic
join queries. This example will be used to illustrate thegbmf Theorem 2.

Example 10 (example 8 cont.) Consider the following basic join querggubto the instanc® in Exam-
ple 8. Itis asking for the identifiers and geometries of cmsand reserves that internally intersect.

Q(ide,idr; g1, g2) : In(County(ide,n; g1) A Reserve(idr; g2) A lintersects(g1, g2)).-

Without using the core, the answers are obtained by inténgeall answers that result from every possible
minimal repair.

Let Grw p(@; g) be the set of correlated geometries in each minimal repdir tuple R(u, g) in D,
then we have five different sets (one for each geometry intiginal database instance), each of them with
a minimum geometry that is equivalent to the geometry in tire ¢see Figure 14).

For the database relatioi$ounty and Reserve, there are two sets containing the possible extensions
of these relations in the repair§County(D')|D’ € Rep(D,¥)} and{Reserve(D’)|D" € Rep(D,¥)},
which are combined to produce different minimal repairsug;Hor any two tuple€ ounty(ide;, n;; g;) €
D andReserve(idr;; g;) € D, theres exists a minimal repdt’ in Rep(D, ¥) such thatCounty(idc;, ni; gF) €
D’ and Reserve(idrj; gj*-) € D', with g} andg]*. the minimum geometries in sef&ounty,w,p (idci, ni; gi)
andGreserve,w,p(1drj; gj) , respectively.

LetgT, g5, 95, g1, andgs be the minimum geometries in S€&ounty,v,p (idci, 15 91), Goounty,w,p (idca,
n2; 92)1 gC’ounty,\I/,D(idc& ns; 93)1 gReserve,\II,D(idTU 94), and gReserve,\I/,D(idrﬁ 95)1 respeCtiVEIy- Due
to the monotonicity property of topological relatidimtersects, if lIntersects(gj, g7), lIntersects(gz, g7),
lIntersects(g%, g3 ) andlintersects(g%, g5) are true, themintersects(gj, ¢;) is true for anyy; such thawVithin(g3, ¢;)

24



holds. Likewise|Intersects(g;, g;) is true for anyg; such thawithin(gj, g;), Within(g3, g;) or Within(g3, g;)
hold.

Then, by Corollary 1County(idec,ni; gy), County(idea, no; g5), County(idces, ns; g3), Reserve(
idry;gy), and Reserve(idry; g%) are tuples in the core ob and, by definition of consistent answer,
(idcy,idry, g7, g1), (idey,idra, g7, g5), (idc, idra, g3, g%), (idcs,idrs, g5, g%) are answers to the query.

O

Theorem 2 For an instancé, a set? of IDSICs, and a basic join queQ(z1, Z2; s1, s2), thenCon(Q, D,
U) = Q(D*).

Proof:  The projection of join queries also includes keys. Thusgaif, a2; g7, d5) € Con(Q, D, V),
then there exist tuple®; (b1;¢;) € D', Ra(be;gh) € D', for every D’ € Rep(D,¥) with a; C by,
as C 62, fﬁl(Rl(Bl;gi)) = Rl(gl;gl), fﬁl(RQ(BQ;gé)) = RQ(EQ;QQ), Wherellntersects(g’l,gé) is true,
91 = {91 | foreveryg; € Gru.p(b,91)}, andgy = ({gy | foreveryg; € Gru,p(b, g3)}

We now analyze two cases:

(i) If R= Ry = Ry, (a1,a2;97,44) € Con(Q, D, V) is an answer to the query if and onlyiff( R) ¢ W.
This is because by solving conflicts with respectit@R), all possible internal intersections between
geometries in tuples ok will be eliminated. Consequently, after repairing, no getiis inR will
internally intersect, which is the topological relatiomtiyeometries must satisfy to be an answer to a
basic join query.

(i) If Ry # Ro, due to the independence of repairiy and R, with respect to¥, there exists a
D" € Rep(D, V), such thatR,(b1;91,,,,) € D", Ra(ba;92,,..) € D", with g1, andg, . the
minimum geometries iGg, v p(b1,91) andGr, v p(bs2, g2), respectively.

On one direction, by definition of consistent answefaif, a2; g7, g5) € Con(Q, D, ¥), witha; C by
anday C by, thenEquals(g7, g1,,,,,) andEquals(gy, g2,,,,, ). By Corollary 1, R(b1; g1 € D*and
R(b2; 92,,..) € D*. Consequently(a1, as; g1,,...,92,..,) € Q(D*).

In the other direction, ifay, a2, ¢1,,.,, g2,.,,) € Q(D*) (with D* = (7 Rep(D, ¥)), then there exist
tupIeSR(Bl; glmm) € D* andR(Bg; ggmm) € D*, witha; C 61, ay C 62, andllntersects(glmm,ggmm)
true. By monotonicity property of predicatintersects, if lIntersects(g1, ;. , 92,.,,) iS true, then, for
any D’ € Rep(D, V), there existR; (b1;g}) € D’ and Ry (ba; g5) € D’ such thaWithin(gs, .. ,g})
andWithin(go, .., g5), andlintersects(g}, ¢5) is also true. Therefore, by definition of consistent an-
swer, <5L1, a2y G1min s ggmm> € COTL(Q, D, \I/)

The previous theorems tell us that we can obtain consist@swers to basic conjunctive queries by direct
and usual query evaluation on the single instafce the core of D. This does not hold for non-basic
conjunctive queries as the following example shows.

Example 11 Consider a database instance with a database prediate geometry) whose spatial at-
tribute values are shown in Figure 15(a). This databasanuostis inconsistent with respect to a IDSIC
that specifies that geometries cannot internally intersket us now consider a range query of the form
(R(x; g) A Touches(g,w)), wherew is a user defined spatial window. Figure 15(b) shows the qoesy
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Figure 15: Core vs. consistent answers.

the intersection of all repairs (theore), obtaining geometries; and g3, where onlyg; touchesw. Fig-
ures 15(c) and (d) show the query over two minimal repaingasgely. The answer from the repair in (c)
is g7, and repair (d) does not return an answer because none ottmeetries in this repair touches
Consequently, the intersection of all minimal repairsejpendently of other minimal repairs, is empty and
differs from the answer obtained from there This difference is due to the fact that the query window
touches geometry] in only one of the minimal repairs. O

The previous example shows the limitations of the coredba&senputation of CQA with respect to a
subset of denial constraints and conjunctive queries. Merybasic conjunctive queries are relevant queries
in the spatial domain, and for IDSICs, we can provide an digor for efficiently computing consistent
qguery answers.

5.2 Computing the core-based CQA

By Corollary 1, we can compute the cofe with respect to a se¥ of IDSICs without having to compute
the minimal repairs. The basic idea is to determine the miningeometryy,,;,, in Gr v p(a, g), for every
R(a,g) € D. By property of IDSICs, the minimum geometyy,;, in Gr v, p(a, g) is the one from which it
has been eliminated the intersectiongofiith any other geometry in conflict. Then, by Theorems 1 and 2,
we compute CQA oveD* for basic range and join queries.

We now show with the following example how our methodologgampute CQA could be implemented
on top of current spatial database management systemsihg gispecification of the corB* as a view in
SSQL.

Example 12 Consider a schema with the only relatibandP(idl,name,owner;geometryjith primary key
idl, the IDSIC (3) of Example 2, and the instance in Figure 16. \Eetwto consistently answer the query
Iname owner(LandP (idl, name, owner; geometry) A lintersects(geometry, ([x1,y1], [2, y1], [22, y2],
[z1,92], [x1,91])), where[z;,y;] are constant points that define the query window in Figurera@/d as a
rectangle with dashed boundary.

To answer this query, we generate a view of thee. That is, we eliminate from each geometry the
union of its intersection with other land parcels. This is trefinition of the core in SSQY.:

°In current SSQUIntersects(g1, g2) is equivalent tdntersects(gi, g2) AND NOT Touches(gi, g2). Also, empty geometries
are not evaluated in current SSQLS so that this built-in @momitted from the query.
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Figure 16: An example of an inconsistency database inst@mddasic conjunctive query.

CREATEVIEW  Core
AS (SELECT l1.4dl ASidl, l[1.name AS name, l1.owner AS owner,
Difference(l1.geometry, GeomUnion(l2.geometry)) AS geometry
FROM LandP ASly, LandP AS 3
WHERE l1.idl <> l2.idl AND Intersects(l1.geometry, la.geometry) AND
NOTTouches(l1.geometry, la.geometry)
GROUP BY l1.4dl, l1.name, l1.owner,l1.geometry

UNION

SELECT 11.idl ASidl, 11 . name AS name, l1.owner AS owner, l1.geometry AS geometry
FROM LandP AS 1

WHERE NOT EXISTS(SELECTs.idl, l2.geometry

FROM LandP AS 2
WHERE!;.idl <> l2.idl AND Intersects(l1.geometry, la.geometry) AND
NOTTouches(l1.geometry, la.geometry)))

We now can evaluate the following query on the vi€lwre to compute the consistent answer to the
original query:

SELECT idl, name, owner, geometry (15)
FROM  Core

WHERE Intersects(geometry, ([x1,y1], [x2, y1], [22, y2], [1, y2], [21, y1]))

The core-based answers to the query(@i& , n1, 01, g}), (idla, na, 02, g) and(idls, ns, o3, g ), where
g1, 95, andgs are shown in Figure 17.

g
g
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1

[x9.¥5]

g3

Figure 17: Geometries in the core-based computation of CQA.
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This core-based method allows us to compute consistentesasw polynomial (quadratic) time (in data
complexity) in cases where there can be an infinite numbeegdirs. This corresponds to a polynomial
time algorithm of order polynomial with respect to the siz¢he database instance.

As opposed to the previous work in [33], where DSICs used doe-based computation of CQA can also
include topological relationbitersects and Equals, we define now IDSICs with the only possible topolog-
ical relationlintersects. This comes from the more general definition of repair seiogntvhere there is
no specific geometric operators that limit the way we shriakrgetries for solving conflicts. Indeed, by
defining admissible transformations based on specific ggamoperators to solve conflicts, we may apply
the core-based computation of CQA for a wider type of DSI@Is, &t the cost of approximating the mini-
mality of repairs. For example, the work in [33] proposesdiva repair conflicts with respect to topological
relation Equals by eliminating the smallest geometry between the two geoesein conflict. By doing so,
we may not have a minimal form of repair since we do not needinureate the whole geometry to falsify
a predicateEquals, but, as we showed in [33], we can use the core-based congoutdtCQA.

6 Experimental Evaluation

In this section, we analyze the results of the experimenablation we have done of the core-based com-
putation of CQA using synthetic and real data sets. The é@xget includes a scalability analysis that
compares the cost of CQA with increasing numbers of conilictuples and increasing sizes of database
instances. We compare these results with respect to the divaeluation of basic conjunctive queries over
the inconsistent database (i.e., ignoring inconsistehcikhe latter reflects the additional cost of computing
consistent answers against computing queries that ignoomsistencies.

6.1 Experimental Setup

We create synthetic databases to control the size of thdakdanstance and the number of conflicting
tuples. We use a database schema consisting of a singlegte@{ :d; geometry), whereid is the numeric
key andgeometry is a spatial attribute of type polygon, and the following IBS

Vrysixasy 7 (R(x1581) A R(xe;s2) A NonEmpty(s1) A NonEmpty(s2) A
x1 # w2 A lintersects(sy, s2)) (16)

We create five consistent instances including 5,000, 1020000, 30,000, and 40,000 tuples of homoge-
neously distributed spatial objects whose geometriesemtamgles (i.e., 5 points per geometric representa-
tion of rectangles). Then, we create inconsistent inswmdth respect to IDSIC (16) with 5%, 10%, 20%,
30%, and 40% of tuples in conflict. These instances wereamidat making geometries, chosen at random,
internally intersect. Due to the spatial distribution aftengles, the core of a database instance has the same
size that the size of its corresponding original instandausT we are not introducing additional storage costs
in our experiments.

To have a better understanding of the computational cosQ#,Qve also evaluate the cost of CQA over
real and free available data of administrative boundafi€hde [1]. Chilean administrative boundaries have
complex shapes with many islands, specially, in the Sou@hilk (e.g., a region can have 891 islands). For
the real database, we have two predicatlesnties and Provinces. Notice that, at the conceptual label,
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Provinces are aggregations adfounties. In this experiment, however, we have used the source data as
is, creating separated tables f@vunties and Provinces with independent spatial attributes. For this real
database, we consider IDSIC of the form:

Vaizos1se = (R(x1;81) A R(x2;s2) A NonEmpty(sy) A NonEmpty(s2) A
x1 # x9 N llntersects(sy, s2)), a7

with R being Counties or Provinces.

Table 3 summaries the data sets for the experimental ei@iudthe percentage of inconsistency is cal-
culated as the number of tuple in any conflict over the totahlber of tuples. The geometric representation
size is calculated as the number of points in the boundafigeanetries in a database instance.

| Source | Name Tuples Inconsistency (%) Geometric representatizm| si
Synthetic| Synthetic 5,000-40,000 5-40 25,000-200,000
Real Provinces 52 59 35,436
Counties 307 12.7 72,009

Table 3: Data sets of the experimental evaluation.

We measure the computational cost in terms of seconds needexinpute the SSQL statement on a
Quad Core Xeon X3220 of 2.4 GHz, 1066 MHz, and 4 GB in RAM. Weassegpatial DBMS PostgreSQL
8.3.5 with PostGIS 1.3.5.

6.2 Experimental Results

Figure 18 shows the cost of the core computation for the rdiffiesynthetic database instances. To make
this experimental evaluation easier and faster, we usedrialided views so that we computed only once
the core and applied queries on this core’s view. Howeveradded the computational cost of the core to
each individual query result to have a better understandiiige cost of applying CQA.

The cost of computing the core is largely due to the join gibgrhe topological relation of a IDSIC,
which could decrease using more efficient algorithms antapadexing structures.

For the synthetic database instance, Figures 19 and 20 Be@e$t rate between computing a CQA with
respect to simple range or join queries (with the spatiaflipege lIntersects) that ignore inconsistencies.
Range queries use a random query window created by a reetahgke side is equivalent to 1% of the total
length in each dimension. Notice that the time cost of coingud range query, for a database instance with
10,000, was approximately 15 ms was 900 times less than dorgpaijoin query on a database instance
of the same size. These reference values exhibit linear aadratic growth for range and join queries,
respectively, as we consider increasing sizes of databatmnices. The computational cost of CQA to join
gueries includes the computation of the core; howeverctiss could be amortized if we use a materialized
view of the core for computing more than one join query. Intthie cost of CQA for range queries, we have
optimized the computation by applying the core-computativer a subset of tuples previously selected by
the query range. This optimization is not possible for joireides, since no spatial window can constrain
the possible geometries in the answer.

The results indicate that CQA to a range query costs arou@difdi@s the cost of a simple query for a
database instance with 40000 tuples. This grows quadigtisiace it primarily due to the join computation
of the core. Indeed, when comparing the CQA to a join querypmig duplicate the relative cost, and in the
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Figure 18: Time cost of the core computation for differenBIDs, different levels of inconsistency, and
different sizes of databases instances.
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Figure 19: Relative cost of CQA to range queries.

best case, keep the same cost. However, join queries hageificsint larger computational cost. Notice
that the computation cost for a CQA to range query is aroursdr€he worst case (40,000 tuples).

We also evaluate the scalability of the CQA cost to rangeigsen function of the size of the query
window (i.e., spatial window). In Figure 21 we show the re&iCQA cost to range queries on a synthetic
database instance with 10,000 tuples and range querieewdiodom spatial windows varied from 1% to
5% of the size in each dimension. The results indicate treatelative cost increases logarithmical as we
increase the size of the query window.

Finally, we applied the core-based computation of CQA ta#a¢ database instances in Table 3. Table 4
summaries the results obtained with these data, which weagreement with the results obtained with the
synthetic database instances. In this tall&ints represents the relative difference in the size of the geo-
metric representation between the core and the originabdae. Notice that computing the core increased
the geometric representation &fovinces up to 5.0%, which is bounded by the shape of geometries in
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Figure 20: Relative cost of CQA to join queries.
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Figure 21: Relative cost of CQA to range queries and diffesaes of the query window (using a database
instance with 10,000 tuples).

conflict (i.e., the size of the original geometric repreaénn). In the case ofounties, however, the size
of the geometric representation of the core decreases dowi0.03%. Since the geometry of provinces
should be the geometric aggregation of counties, we coyéaxo have a relationship betwe&rPoints
for Provinces and Counties. However, the source data set uses independent geometriBgobinces and
Counties and no comparison can be made.

7 Conclusions

We have formalized a repair semantics and consistency qurewers for spatial databases with respect
to DSICs. The repair semantics is used as an auxiliary corfoefmandling inconsistency tolerance and
computing consistent answers to spatial queries. It iscbageupdates that shrink geometries of objects,
even at the point of deleting geometries for some exceftwases, as for predicafgisjoint.
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Range Join
Data A Points Core Simple CQA Simple CQA
Provinces| +5.0% 17.7 0.04 0.25 29.8 63.4
Counties | -0.03%0 18.1 0.1 2.1 40.6 55.7

Table 4: CQA cost with real data (costs of core and querieséorsds).

Complexity analysis shows that CQA is intractable. Withplhepose of avoiding to compute and query
all repairs, we have identified cases of DSICs (IDSICs) amjurwtive (basic range and join) queries where
the consistent answers can be obtained by posing a standeuyltq a single view of the original instance.
This view is equivalent to the intersection of all possiblaimal repairs, what we called there of a
database instance, which for IDSICs can be computed in potial time without determining each repair.

An experimental evaluation of the core-based computati@(@A reveals that answering range queries
has a cost that varies quadratically with the number of gipiehe databases. This is mainly due to the
spatial join involved in computing the core. These resutindt use optimizations with spatial indexing,
which has been left for future work. Even more, they assuraewre have to compute the core for each
qguery, which could be optimized by using materialized views

This work leaves many problems open. We have consideredregigns to represent spatial objects. A
natural extension of this work would be to define a repair sgits for other spatial abstractions, such as
polylines, points, networks, and so on. We would also likexplore not only DSICs, but also other classes
of semantic ICs. This includes also the possibility of cdesing combinations of spatial with relational
constraints, e.g. functional dependencies and refeté@fa
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