
l

a medi-
junctive
er the

works
respect
with

is allows
and

means
and is
Journal of Applied Logic 3 (2005) 329–367

www.elsevier.com/locate/ja

Deductive databases for computing certain
and consistent answers from mediated data

integration systems

Loreto Bravo∗, Leopoldo Bertossi

Carleton University, School of Computer Science, Ottawa, Canada

Available online 18 August 2004

Abstract

We address the problem of retrieving certain and consistent answers to queries posed to
ated data integration system under the local-as-view paradigm with open sources and con
and disjunctive view definitions. For obtaining certain answers a query program is run und
cautious stable model semantics on top of a normal deductive database withchoiceoperator that
specifies the class of minimal legal instances of the integration system. This methodology
for all monotone Datalog queries. To compute answers to queries that are consistent with
to given global integrity constraints, the specification of minimal legal instances is combined
another disjunctive deductive database that specifies the repairs of those legal instances. Th
to retrieve the answers to any Datalog¬ query that are consistent with respect to global universal
referential integrity constraints.
 2004 Elsevier B.V. All rights reserved.

Keywords:Databases; Virtual data integration; Integrity constraints; Answer Set Programming

1. Introduction

Usually independent and autonomous data sources are virtually integrated by
of a mediator, which is a program that provides a global schema as an interface,

* Corresponding author.
E-mail addresses:lbravo@scs.carleton.ca(L. Bravo),bertossi@scs.carleton.ca(L. Bertossi).
1570-8683/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2004.07.023

http://www.elsevier.com/locate/jal
mailto:lbravo@scs.carleton.ca
mailto:bertossi@scs.carleton.ca

330 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

ta sets
user.

data
Global-
tions
ing is
se

con-
his is
mech-

er the

s

o single
cy may
is

nt under
rsions
as
ossible

wering
sistent

ncon-
lved at
fining
evalu-
at, for

nswer

ith
responsible for generating query plans to answer global queries by retrieving da
from the sources and combining them into a final answer set to be given back to the

The “Local-As-View” (LAV) approach to virtual data integration requires that each
source is described as a set of views over the global schema. On the other side, the “
As-View” (GAV) approach, defines every global relation as a view of the set of rela
in the sources (see[33] for a survey on these and mixed approaches). Query answer
harder under LAV[2]. On the other side, LAV offers more flexibility to accept or relea
sources into/from an existing system.

In these virtual integration setting, inconsistencies with respect to global integrity
straints (ICs), i.e., that refer to the relations at the virtual level, are likely to occur. T
due to the autonomy of the participating sources, the lack of a central maintenance
anism; and also to the flexibility to add or delete sources, without having to consid
other sources in the system.

Example 1. Consider the LAV based global integration systemG1 with a global relation
R(X,Y) and two source relationsv1 = {V1(a, b),V1(c, d)} andv2 = {V2(a, c),V2(d, e)}
that are described by the view definitionsV1(X,Y) ← R(X,Y);V2(X,Y) ← R(X,Y).
The global functional dependency (FD)R :X → Y is violated through the pair of tuple
{(a, b), (a, c)}.

Inconsistencies are not exclusive to integration systems. For several reasons als
databases may become inconsistent with respect to certain ICs. Restoring consisten
be undesirable, difficult or impossible[10]. In such a situation, possibly most of the data
still consistent and can be retrieved when queries are posed to the database. In[3] consistent
data in a stand-alone relational database is characterized as the data that is invaria
all minimal restorations of consistency, i.e., as data that is present in all repaired ve
of the original instance (therepairs). In particular, an answer to a query is defined
consistent when it can be obtained as a standard answer to the query from every p
repair.

In [3–5,17,30], some mechanisms have been developed for consistent query ans
(CQA), i.e., for retrieving consistent answer when queries are posed to such an incon
database. All those mechanisms, in different degrees, work only with the original, i
sistent database, without restoring its consistency. That is, inconsistencies are so
query time. The above mentioned repairs provide an auxiliary concept that allows de
the right semantics for consistent query answers. Furthermore, in some of the query
ation methodologies, repairs are also an auxiliary computational intermediate step th
complexity reasons, has to be kept to a minimum.

In virtual data integration systems, there is also an intuitive notion of consistent a
to a query.

Example 2 (Example 1continued). If we pose to the global system the queryQ : Ans(X,

Y) ← R(X,Y), we obtain the answers{Ans(a, b),Ans(c, d),Ans(a, c),Ans(d, e)}. How-
ever, only the tuplesAns(c, d),Ans(d, e) should be returned as consistent answers w
respect to the FDR :X → Y .

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 331

l data

e, some

and the
g this

encies
m into
produce
global

ry
t to an
writing
of

les and
query.
(see

incom-
. We

t used
eof.

g a de-
l
ed by
lity

y pro-
stances
urns out
ieved
an
in the

observe
e in-

s are
ith re-
, the

eir re-
ecifies

epairs of
Several algorithms for deriving query plans to obtain query answers from virtua
integration systems have been proposed in the last few years (see[36] for a survey). How-
ever they are not designed for obtaining the consistent answers to queries. Even mor
of those algorithms assume that certain ICs hold at the global level[21,29,31]; what may
not be a realistic assumption due to the independence of the different data sources
lack of a central, global maintenance mechanism. Only a few exceptions, includin
paper, consider the problem of CQA in virtual integration systems[9,13,16,32].

In a virtual data integration system, the mediator should solve potential inconsist
when the query plan is generated; again without attempting to bring the whole syste
a global consistent material state. Such an enhanced query plan generator should
query plans that are guaranteed to retrieve all and only the consistent answers to
queries.

In this spirit and under the LAV approach, in[9] a methodology for generating que
plans to compute answers to limited forms of queries that are consistent with respec
also restricted class of universal ICs was presented. This method uses the query re
approach to CQA presented in[3]; and in consequence inherits its limitations in terms
the queries and ICs that it can handle, actually queries that are conjunctions of tab
universal ICs. Once the query is transformed, query plans are generated for the new
However,[9] provides the right semantics for CQA in mediated integrated systems
Section2).

In this paper, under the LAV approach and assuming that sources are open (or
plete) [2], we solve the problem of retrieving consistent answers to global queries
consider arbitrary universal ICs and referential ICs; that is, the ICs that are mos
in database praxis[1]. View definitions are conjunctive queries, and disjunctions ther
Global queries are expressed in Datalog and its extensions with negation.

The methodology can be summarized as follows. In a first stage, we specify, usin
ductive database withchoice operator[25] and stable model semantics[24], the class of al
minimal legal global instances of a virtual integration system. This approach is inspir
the inverse-rules algorithm[21] and uses auxiliary Skolem predicates whose functiona
is enforced with the choice operator.

In order to obtain answers to global queries from the integration system, a quer
gram has to be combined with the deductive database that specifies the minimal in
as its stable models, and then be run under the skeptical stable model semantics. It t
thatminimal answers, i.e., answers that are true in all minimal instances, can be retr
for Datalog¬ queries. Thecertain answers, i.e., those true in all legal global instances, c
be obtained for all monotone queries, a result that generalizes those found so far
literature.

In a second stage, we address the computation of consistent answers. We first
that an integration system is consistent if all of its minimal legal instances satisfy th
tegrity constraints[9]. Consistent answers from an inconsistent integration system
those that can be obtained from all the repairs of all the minimal legal instances w
spect to the global ICs[3,9]. In consequence, in order to retrieve consistent answers
specification of the minimal instances has to be combined with a specification of th
pairs with respect to given ICs. The latter is a disjunctive deductive database that sp
the repairs as its stable models; and uses annotation constants as in the case of r

332 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

ry
) with

ics of

in
tem
antics.
odels

epairs
re
ation
n pre-

ifi-
, and
arison

with
obal

ith
t-

t

ns

r
al
single relational databases[3] as presented in[5,6]. We have experimented with this que
answering mechanism (and the computation of minimal instances and their repairs
the DLV system[22,35], which implements the stable model and answer set semant
disjunctive extended deductive databases.

The paper is structured as follows. In Section2 we review some basic notions we need
the rest of this paper. In Section3, the minimal legal global instances of a mediated sys
are specified by means of logic programs with a stable model, or answer sets, sem
In Section4, the repairs of the minimal global instances are specified as the stable m
of disjunctive logic programs with annotation constants, like those used to specify r
of single relational databases for CQA[6]. In Section5, consistent answers to queries a
obtained by running a query program in combination with the previous two specific
programs. In Section6 several issues and possible extensions around the specificatio
sented in the previous sections are discussed in detail. Finally, in Section7, we draw some
final conclusions, and we point to related and future work.Appendix A.1contains the
proofs of the main results in this paper.

This paper is an extended version of[13] that now includes the most general spec
cation of minimal instances, the proofs, an extension to disjunctive view definitions
an analysis of: complexity, the underlying assumptions about the domain, a comp
between the use of the choice operator and the use of Skolem functions.

2. Preliminaries

2.1. Global schemas and view definitions

A global schemaR consists of a finite set of relations{R1,R2, . . . ,Rm} over a fixed,
possibly infinite domainU . With these relation symbols and the elements ofU treated as
constants, a first-order languageL(R) can be defined. This language can be extended
defined and built-in predicates, like (in)equality. In particular, we will extend the gl
schema with alocal schemaS , i.e., a finite set of new view predicatesV1,V2, . . . , Vn, that
will be used to describe the relations in the local sources.

A view, denoted by a new predicateV , is defined by means of conjunctive query[1],
i.e., anL(R∪S)-formulaϕV of the formV (t̄) ← body(ϕV), wheret̄ is a tuple containing
variables and/or constants, andbody(ϕV) is a conjunction ofR-atoms. In general,V ∈ S .

A database instanceD over schemaR can be considered as a first-order structure w
domainU , where the extensions of the relationsRi are finite. The extensions of buil
in predicates may be infinite, but fixed. A globalintegrity constraint(IC) is anL(R)-
sentenceψ . An instanceD satisfiesψ , denotedD |= ψ , if ψ is true inD.

Given a database instanceD over schemaR, and a view definitionϕV , ϕV (D) denotes
the extension ofV obtained by applying the definitionϕV to D. If the view already has
an extensionv (corresponding to the contents of a data source), it is possible thav is
incomplete and stores only some of the tuples inϕV (D); i.e.,v ⊆ ϕV (D), and we say the
view extensionv is openwith respect toD [2]. Most mechanisms for deriving query pla
assume that sources are open, e.g.,[21].

A sourceS is a pair〈ϕ,v〉, whereϕ is the view definition, andv is an extension fo
the view defined byϕ. An open global systemG is a finite set of open sources. The glob

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 333

stem.
f
s.
ts

l

se

notion
d its

ch
w
s
r in the
ot be

ng

he

les in
schemaR consists of the relation names that do not have a definition in the global sy
The underlying domainU for R is a proper superset of theactive domain, which consists o
all the constants appearing in the view extensionsvi of the sources, and in their definition
When considering global integrity constraints theactive domainalso includes the constan
in them. A global systemG defines a set of legal global instances[33].

Definition 1. Given an open global systemG = {〈ϕ1, v1〉, . . . , 〈ϕn, vn〉}, the set of lega
global instances isLinst(G) = {D instance overR | vi ⊆ ϕi(D), i = 1, . . . , n}.

Example 3 (Example 2continued). Let us denote byϕ1, ϕ2 the view definitions ofV1,V2,
resp. inG1. D = {R(a, b),R(c, d),R(a, c),R(d, e)} is a legal global instance, becau
v1 = {V1(a, b),V1(c, d)} ⊆ ϕ1(D) = {V1(a, b),V1(c, d),V1(a, c),V1(d, e)} and v2 =
{V2(a, c),V2(d, e)} ⊆ ϕ2(D) = {V2(a, b),V2(c, d),V2(a, c),V2(d, e)}. Supersets ofD are
also legal instances; but proper subsets are not.

The semantics of query answers in mediated integration systems is given by the
of certain answer. In this paper we will consider queries expressed in Datalog an
extensions with negation.

Definition 2 [2]. Given an open global systemG and a global queryQ(X̄) ∈ L(R), a
ground tuplet̄ is acertain answerto Q in G if for every global instanceD ∈ Linst(G), it
holdsD |= Q[t̄].1 We denote withCertainG(Q) the set of certain answers toQ in G.

The inverse-rules algorithm[21] for generating query plans under the LAV approa
assumes that sources are open and each source relationV is defined as a conjunctive vie
over the global schema:V (X̄) ← P1(X̄1), . . . ,Pn(X̄n), with X̄ ⊆ ⋃

i X̄i . Since the querie
posed to the system are expressed in terms of the global relations, that now appea
bodies of the view definitions (contrary to the GAV approach), those definitions cann
directly applied. The rules need to be “inverted”.

For j = 1, . . . , n, Pj (X̄
′
j) ← V (X̄) is an “inverse rule” forPj . The tupleX̄j is trans-

formed to obtain the tuplēX′
j as follows: ifX ∈ X̄j is a constant or is a variable appeari

in X̄, thenX is unchanged in̄X′
j . Otherwise,X is a variableXi that does not appear in̄X,

and it is replaced by the termfi(X̄), wherefi is a fresh Skolem function. We denote t
set of inverse rules of the collectionV of source descriptions inG by V−1.

Example 4. Consider the integration systemG2 with global schemaR = {P,R}. The set
V of local view definitions consists ofV1(X,Z) ← P(X,Y),R(Y,Z), andV2(X,Y) ←
P(X,Y). The setV−1 consists of the rulesP(X,f (X,Z)) ← V1(X,Z);R(f (X,Z),Z) ←
V1(X,Z); andP(X,Y) ← V2(X,Y).

For a view definition, we need as many Skolem functions as existential variab
it. For example, if instead ofV1(X,Z) ← P(X,Y),R(Y,Z) we had, sayV1(X,Z) ←

1 D |= Q[t̄] means that queryQ(X̄) becomes true in instanceD, when tuple of variables̄X is assigned the
values in the tuplēt of database elements.

334 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

rse

s of the
urces.

n the

t
nd
e

of

-

at con-
s, the

ally
P(X,Y),R(Y,Z,W), we would need two Skolem functions for that view, and the inve
rules arising from that view would beP(X,f (X,Z)) ← V1(X,Z) and R(f (X,Z),Z,

g(X,Z)) ← V1(X,Z).

The inverse rules are then used to answer Datalog queries expressed in term
global relations, that now, through the inverse rules, have definitions in terms of the so
The query plan obtained with the inverse rule algorithm is maximally contained i
query[21], and the answers it produces coincide with the certain answers[2].

2.2. Global systems and consistency

We assume that we have a set of global integrity constraintsIC ⊆ L(R) that is consisten
as a set of logical sentences, andgeneric, in the sense that it does not entail any grou
database literal by itself, i.e., independently of concrete instance[10]. ICs used in databas
praxis are always generic. The ICs can be universal, i.e., a sentence of the form∀ϕ, where
∀ is a prefix of universal quantifiers andϕ a quantifier-free formula; or referential, i.e.,
the form

(1)∀X̄
(
P(X̄) → ∃YQ(X̄′, Y)

)
, X̄′ ⊆ X̄.2

Definition 3 [9]. (a) Given a global systemG, an instanceD is minimal if D ∈ Linst(G)

and is minimal with respect to set inclusion, i.e., there is no other instance inLinst(G) that
is a proper subset ofD (as a set of atoms). We denote byMininst(G) the set of minimal
legal global instances ofG with respect to set inclusion.

(b) A global systemG is consistentwith respect toIC, if for all D ∈ Mininst(G),
D |= IC.

Example 5 (Example 4continued). Assume thatG2 has the source contentsv1 =
{V1(a, b)}, v2 = {V2(a, c)}, and thatU = {a, b, c,u, . . .}. Then, the elements ofMininst(G2)

are of the formDz = {P(a, z),R(z, b),P (a, c)} for some z ∈ U . The global FD
P(X,Y) :X → Y is violated exactly in those minimal legal instancesDz for which z �= c.
Thus,G2 is inconsistent.

Definition 4 [9]. The ground tuplēa is aminimal answerto a queryQ posed toG if for
everyD ∈ Mininst(G), ā ∈ Q(D), whereQ(D) is the answer set forQ in D. The set of
minimal answers is denoted byMinimalG(Q).

Clearly CertainG(Q) ⊆ MinimalG(Q). For monotone queries[1], the two notions co
incide [9]. Nevertheless, inExample 5the queryAns(X,Y) ← ¬P(X,Y) has(b, a) as a
minimal answer, but not as a certain answer, because there are legal instances th
tain P(b, a). Since consistency was defined with respect to minimal global instance
notion of minimal answer is particularly relevant.

2 To keep the presentation simple,Y is a single variable, however it could be a tuple of variables, actu
interleaved with those in̄X′.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 335

do not
ICs),
f the
either.
Its

ttribute,
t it, we
lowing

y

l

ce of

ain

nce of
ce of
Definition 5 [3]. (a) Given a database instanceD, we denote byΣ(D) the set of ground
atomic formulas{P(ā) | P ∈ R andD |= P(ā)}.

(b) Let D,D′ be database instances over the same schema and domain. Thedistance,
∆(D,D′), betweenD andD′ is the symmetric difference∆(D,D′) = (Σ(D) \ Σ(D′)) ∪
(Σ(D′) \ Σ(D)).

We may assume that the original data sources and the global legal instances
contain null values, however when dealing with referential integrity constraints (R
we will consider the possibility of having them, in order to restore the consistency o
database. If no RICs are present, we will assume that null values are not available
However, if necessary, the null valuenull will be treated as a new, special constant.
presence in a tuple means that there is an unknown value for the correspondent a
i.e., we have incomplete information. Since we do not have precise information abou
will consider that no inconsistencies arise due to its presence. This leads to the fol
definition of consistency in the presence of null values:

Definition 6 [6]. For a database instanceD, whose domainU may contain the constantnull
and a set of integrity constraintsIC = ICU ∪ ICR , whereICU is a set of universal integrit
constraints andICR is a set of referential integrity constraints, we say thatD satisfiesIC,
writtenD |= IC, iff:

(1) For each∀ϕ ∈ ICU ,D |= ϕ[ā] for every ground tuplēa of elements in(U − {null}),
and

(2) For each sentence inICR of the form (1), if D |= P [ā], with ā a ground tuple of
elements in(U − {null}), thenD |= ∃YQ(ā, Y).

Example 6. Consider the universal IC∀xy(P (x, y) → R(x, y)) and the referentia
IC ∀x(T (x) → ∃yP (x, y)). The database instanceD = {P(a, d),R(a, d), T (a), T (b),

P (b,null)} is consistent. The universal constraint is satisfied even in the presen
P(b,null) since the incomplete information cannot generate inconsistencies.

Definition 7 [6]. LetD,D′,D′′ be database instances over the same schema and domU .
It holdsD′ �D D′′ iff:

(1) For every atomP(ā) ∈ ∆(D,D′), with ā ∈ (U − {null}),3 it holdsP(ā) ∈ ∆(D,D′′),
and

(2) For every atomQ(ā,null) ∈ ∆(D,D′), it holdsQ(ā,null) ∈ ∆(D,D′′) or Q(ā, b) ∈
∆(D,D′′) with b̄ ∈ (U − {null}).

Definition 7 defines which databases are closer to the original one in the prese
null values. This partial order is used in the next definition for repairs in the presen
universal and referential ICs.

3 That ā ∈ (U − {null}) means that each of the elements in tupleā belongs to(U − {null}).

336 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

d by
with

ce

i-

he

,

isfies
e

being
g view
nce—

ot
sistent

s

t

Definition 8 (Based on[3]). Let G be a global system andIC a set of global ICs. Arepair
of G with respect toIC is a global database instanceD′, such thatD′ |= IC andD′ is
�D-minimal for someD ∈ Mininst(G).

According to this definition the repairs of violations of referential ICs are obtaine
either deleting the atom that is generating the inconsistency or by adding an atom
a null value. In particular, if the instanceD is {P(ā)} and IC contains only∀x̄(P (x̄) →
∃yQ(x̄, y)), then{P(ā),Q(ā,null)} will be a repair, but not{P(ā),Q(ā, b)}, with b ∈ U
andb �= null. In the absence ofnull values, i.e., without null values in the original instan
nor in the repair process,Definitions 7 and 8coincide with the ones given in[3]. In [4,5,15]
repairs with nonnull values have been considered.

Example 7. Consider the universal integrity constraint∀xy(P (x, y) → R(x, y)) together
with the referential integrity constraint∀x(T (x) → ∃yP (x, y)) and an inconsistent min
mal instance of an integration systemD = {P(a, b), T (c)}. The repairs for the latter are:

i Di ∆(D,Di)

1 {P(a, b),R(a, b), T (c),P (c,null)} {R(a, b),P (c,null)}
2 {P(a, b),R(a, b)} {T (c),R(a, b)}
3 {T (c),P (c,null)} {P(a, b),P (c,null)}
4 ∅ {P(a, b), T (c)}

In the first repair it can be seen that the atomP(c,null) does not propagate through t
universal constraint toR(c,null). We also have that the instanceD5 = {P(a, b),R(a, b),

T (c),P (c, a)}, where we have introducedP(c, a) in order to satisfy the referential IC
does satisfyIC, but is not a repair because∆(D,D1) �D ∆(D,D7) = {R(a, b),P (c, a)}.

We can see that a repair of a global system is a global database instance that satIC
and minimally differs, in the sense ofDefinition 7, from a minimal legal global databas
instance. IfG is already consistent, then the repairs are the elements ofMininst(G). In
Definition 8we are not requiring that a repair respects the property of the sources of
open, i.e., that the extension of each view in the repair contains the correspondin
extension in the source. Thus, it may be the case that a repair—still a global insta
does not belong toLinst(G). If we do not allow this flexibility, a global system might n
be repairable. Repairs are used as an auxiliary concept to define the notion of con
answer.

Example 8 (Example 1continued). The only element inMininst(G1) is D0 = {R(a, b),

R(c, d),R(a, c),R(d, e)}, that does not satisfyIC. Then,G1 is inconsistent. The repair
are the global instances that minimally differ fromD0 and satisfy the FD, namelyD1

0 =
{R(a, b),R(c, d),R(d, e)} andD2

0 = {R(a, c),R(c, d),R(d, e)}. Notice that they do no
belong toLinst(G1).

Definition 9 [9]. (a) Given a global systemG, a set of global integrity constraintsIC, and
a global first-order queryQ(X̄), we say that a (ground) tuplēt is aconsistent answerto Q

with respect toIC iff for every repairD of G, D |= Q[t̄].
(b) We denote byConsisG(Q) the set of consistent answers toQ in G.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 337

-

g or its

-
uxiliary
hoice

es. In
n. We
ble for
refined

om
the

ferent
y
n

Example 9 (Example 8continued). For the queryQ1(X): ∃YR(X,Y), the consistent an
swers area, c, d . Q2(X,Y): R(X,Y) has(c, d), (d, e) as consistent answers.

If G is consistent with respect toIC, thenConsisG(Q) = MinimalG(Q). Furthermore, if
the ICs are generic, then for anyG it holdsConsisG(Q) ⊆ MinimalG(Q) [9]. Notice also
that the notion of consistent answer can be applied to queries expressed in Datalo
extensions with built-ins and negation.

3. Specification of minimal instances

The specification of the classMininst(G) for systemG is given using normal deduc
tive databases, whose rules are inspired by the inverse-rules algorithm. They use a
predicates instead of function symbols, but their functionality is enforced using the c
predicate[26]. We consider global system all of whose sources are open.

3.1. The simple program

In this section we will present a first approach to the specification of legal instanc
Section3.2we present the definitive program, that refines the one given in this sectio
proceed in this way, because the program we give now, although it may not be suita
all situations (as discussed later in this section), is simpler to understand than its
version, and already contains the key ideas.

Definition 10. Given an open global systemG, the logic programΠ(G), contains the fol-
lowing clauses:

(1) Factdom(a) for every constanta ∈ U ; and the factVi(ā) wheneverā ∈ vi for some
source extensionvi in G.

(2) For every view (source) predicateVi in the system with descriptionVi(X̄) ←
P1(X̄1), . . . ,Pn(X̄n), the rules

Pj (X̄j) ← Vi(X̄),
∧

Zl∈(X̄j \X̄)

F l
i (X̄,Zl), j = 1, . . . , n.

(3) For every predicateF l
i (X̄,Zl) introduced in (2), the rule

F l
i (X̄,Zl) ← Vi(X̄), dom(Zl), choice

(
(X̄), (Zl)

)
.

In this specification, the predicateF l
i (X̄,Zl) replaces the Skolem function based at

f l
i (X̄) = Zl introduced in Section2.1, and, via the choice predicate, it assigns values in

domain to the variables in the head of the rule in (3) that are not inX̄. There is a new Skolem
predicate for each pair formed by a description rule as in item (2) above and a dif
existentially quantified variable in it. The predicatechoice((X̄), (Zl)) ensures that for ever
(tuple of) value(s) forX̄, only one (tuple of) value(s) forZl is non deterministically chose
between the constants of the active domain.

338 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

:

e

the

e

e
,

Example 10 (Examples 4 and 5continued). ProgramΠ(G2) contains the following rules

(1) dom(a). dom(b). dom(c). dom(u). V1(a, b). V2(a, c).
(2) P(X,Z) ← V1(X,Y),F1(X,Y,Z).

R(Z,Y) ← V1(X,Y),F1(X,Y,Z).
P(X,Y) ← V2(X,Y).

(3) F1(X,Y,Z) ← V1(X,Y),dom(Z), choice((X,Y), (Z)).

In this section we will restrict ourselves to a finite domainU , what is necessary to run th
program in real implementations. In this example we haveU = {a, b, c,u} (the extension
of predicatedom). In Section6.2we study how to handle infinite domains by adding to
active domain a finite number of extra constants, like constantu here.4

For every programΠ with the choice operator, there is itsstable version SV(Π), whose
stable models correspond to the so-calledchoice modelsof Π [26]. The programSV(Π)

is obtained as follows:
(a) Each choice ruler :H ← B,choice((X̄), (Y)) in Π is replaced by the ruleH ← B,

chosenr (X̄, Y).
(b) For each rule as in (a), the following rules are added

chosenr (X̄, Y) ← B,not diffChoicer (X̄, Y),

diffChoicer (X̄, Y) ← chosenr (X̄, Y ′), Y �= Y ′.

The rules defined in (b) ensure that, for every tupleX̄ whereB is satisfied, the predicat
chosenr (X̄, Y) satisfies the functional dependencyX̄ → Y .

Example 11 (Example 10continued). ProgramSV(Π(G2)) contains the following rules:

(1) dom(a). dom(b). dom(c). dom(u). V1(a, b). V2(a, c).
(2) P(X,Z) ← V1(X,Y),F1(X,Y,Z).

R(Z,Y) ← V1(X,Y),F1(X,Y,Z).
P(X,Y) ← V2(X,Y).

(3) F1(X,Y,Z) ← V1(X,Y),dom(Z),chosen1(X,Y,Z).
(4) chosen1(X,Y,Z) ← V1(X,Y),dom(Z),not diffChoice1(X,Y,Z).

diffChoice1(X,Y,Z) ← chosen1(X,Y,Z′),dom(Z),Z′ �= Z.

Its stable models are:

M1 = {
dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c),

P (a, c), diffChoice1(a, b, a), chosen1(a, b, b), diffChoice1(a, b, c),

diffChoice1(a, b,u), F1(a, b, b), R(b, b), P (a, b)
}
.

4 In principle,null could be in the domain, and then we should includedom(null) among the atoms, and, sinc
we do not want legal instances to contain the null value, the literalZ �= null in the body of the rule in (3). Instead
to keep things simpler, we will not includedom(null) in Π(G), even ifnull belongs to the underlying domainU .

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 339

rested,

s

-
ctions

ut in

nimal

er
values
M2 = {
dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c),

P (a, c), chosen1(a, b, a), diffChoice1(a, b, b), diffChoice1(a, b, c),

diffChoice1(a, b,u), F1(a, b, a), R(a, b), P (a, a)
}
.

M3 = {
dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c),

P (a, c), diffChoice1(a, b, a), diffChoice1(a, b, b), chosen1(a, b, c),

diffChoice1(a, b,u), F1(a, b, c), R(c, b)
}
.

M4 = {
dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c), P (a, c),

diffChoice1(a, b, a), diffChoice1(a, b, b), diffChoice1(a, b, c),

chosen1(a, b,u), F1(a, b,u),R(u, b), P (a,u)
}
.

The underlined atoms of the models correspond to the elements in which we are inte
namely the global relations of the integration system.

Definition 11. The global instance associated to a choice modelM of Π(G) is DM =
{P(ā) | P ∈R andP(ā) ∈ M}.

Example 12 (Example 11continued). DM1, DM2, DM3, DM4 are the element
of Mininst(G3), namely{P(a, b),R(b, b),P (a, c)}, {P(a, a),R(a, b),P (a, c)}, {P(a, c),

R(c, b)}, {P(a,u),R(u, b),P (a, c)}, respectively.

Theorem 1. It holds that

Mininst(G) ⊆ {
DM |M is a choice model ofΠ(G)

} ⊆ Linst(G).

From the inclusions in the theorem it is clear that for monotone queriesQ, answers ob
tained usingΠ(G) under the skeptical or cautious stable model semantics—that san
as true what is true of all the stable models of the program—coincide withCertainG(Q)

andMinimalG(Q). This may not be the case for queries with negation, as pointed o
the remark afterDefinition 4.

In Example 12the stable models are in a one to one correspondence with the mi
legal instances, but this may not be always the case.

Example 13. Consider an integration systemG3 with global schemaR = {P }. The set
V of local view definitions consists ofV1(X) ← P(X,Y), and V2(X,Y) ← P(X,Y)

with source contentsv1 = {V1(a)}, v2 = {V2(a, c)}, resp. We have thatMininst(G3) =
{{P(a, c)}}. However, the global instances corresponding to models ofΠ(G3) are of the
form {{P(a, c),P (a, z)} | z ∈ U}. As V2 is open, it forcesP(a, c) to be in all legal in-
stances, and with this, the same condition onV1 is automatically satisfied, and no oth
values forY are needed. But the choice operator still has freedom to chose other
(thez ∈ U). This is why we get more legal instances than the minimal ones.

340 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

ram to
o far.
in
t

:
ns

dicates

ness
-

s
.

re
Now we investigate sufficient conditions under which the simple program ofDefini-
tion 10captures the minimal instances. This is important because the general prog
be presented in Section3.2is much more complex than the simple version presented s

We define asection of a viewVi as a setSl
i consisting either of all the predicates

the body of its definition that share a same existential variableZl or all the atoms withou
existential variables, in which casel = 0 and the view section is denoted withS0

i . For
example, the view defined byV (X,Y) ← P(X,Z1),R(Z1, Y), T (X,Y) has two sections
S1

1 = {P(X,Z1),R(Z1, Y)} andS0
1 = {T (X,Y)}. Secdenotes the set of all view sectio

for systemG.
Given a view sectionSl

i , we denote byConst(Sl
i), UVar(Sl

i) andEVar(Sl
i) the sets of

constants, universal variables and existential variables, respectively, that occur in pre
in Sl

i .
Let µ,ε be two new constants. For a view sectionSl

i , an admissible mappingis any
mappingh : Const(Sl

i) ∪ UVar(Sl
i) ∪ EVar(Sl

i) → Const(Sl
i) ∪ {µ,ε}, such that:

(a) h(c) = c for everyc ∈ Const(Sl
i);

(b) h(X) = D with D ∈ Const(Sl
i) ∪ {µ} for everyX ∈ UVar(Sl

i);
(c) h(Z) = F with F ∈ Const(Sl

i) ∪ {µ,ε} for everyZ ∈ EVar(Sl
i).

A particular admissible mappingL is given by

(a) L(c) = c for everyc ∈ Const(Sl
i);

(b) L(X) = µ for everyX ∈ UVar(Sl
i);

(c) L(Z) = ε for everyZ ∈ EVar(Sl
i).

For an admissible mappingh, h(Sl
i) denotes the set of atoms obtained fromSl

i by applying
h to the arguments inSl

i .

Theorem 2. Given an integration systemG, if for every view sectionSl
i with existential

variables, there is no admissible mappingh for Sl
i , such thath(Sl

i) ⊆ ⋃
S∈(Sec\{Sl

i }) L(S),

then the instances associated to the stable models of the simple version ofΠ(G) are exactly
the minimal legal instances ofG.

Basically, the theorem says that if there is an admissible mapping, such thath(Sl
i) ⊆⋃

S∈(Sec\{Sl
i }) L(S), then it is possible to have some view contents for which the open

will be satisfied by the other sections inSec, and then it will not be necessary to com
pute values for the existential variables in sectionSl

i . Since the simple version will alway
compute values for them, it may specify more legal instances than the minimal ones

Example 14 (Example 13continued). The first view is defined byV1(X) ← P(X,Y), and
has only one sectionSY

1 = {P(X,Y)}. For the admissible mappingh defined byh(X) =
h(Y) = µ, we have thath(SY) = {P(µ,µ)} ⊆ L(S0). The conditions of the theorem a
1 2

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 341

ot

tly the

ry
es. They

mon
Table 1

Annotation Atom The tupleP(ā) is...

td P(ā, td) an atom of the minimal legal instances
to P(ā, to) is an obligatory atom in all the minimal legal instances
vi P(ā,vi) an optional atom introduced to satisfy the openness of viewvi

nvi P(ā,nvi) an optional atom introduced to satisfy the openness of view that is nvi

not satisfied, and there is no guarantee that the simple version will calculate exac
minimal instances ofG3. Actually, we already know that this is not the case.

Example 15 (Examples 4 and 5continued). There are two view sections:SZ
1 =

{P(X,Z),Q(Z,Y)} andS0
2 = {P(X,Y)}, whereX andY are universal variables andZ is

an existential variable. It is easy to see that there is no mappingh for whichh(SZ
1) ⊆ L(S0

2)

norh(S0
2) ⊆ L(SZ

1). In consequence, for any source contents, the simple version ofΠ(G2)

will calculate exactly the minimal instances ofG2.

3.2. The refined program

In the general case, if we want to compute only the elements ofMininst(G), we need to
refine the programΠ(G) given in the previous section. For this we will introduce auxilia
annotation constants that will be used as extra arguments in the database predicat
and their intended semantics are given inTable 1.

Definition 12. Given an open global systemG, the refined programΠ(G), contains the
following clauses:

1. Factdom(a) for every constanta ∈ U .
2. FactVi(ā) whenever̄a ∈ vi for some source extensionvi in G.
3. For every view (source) predicateVi in the system with descriptionVi(X̄) ←

P1(X̄1), . . . ,Pn(X̄n):
(a) For everyPk with no existential variables, the rules

Pk(X̄k, to) ← Vi(X̄).

(b) For every setSij of predicates of the description’s body that are related by com
existential variables {Z1, . . . ,Zm}, the rules,

Pk(X̄k,vij) ← addvij
(X̄′),

∧
Zl∈(X̄k\X̄′)

F l
i (X̄

′,Zl), for Pk ∈ Sij .

addvij
(X̄′) ← Vi(X̄), not auxvij

(X̄′), whereX̄′ = X̄ ∩
{ ⋃

Pk∈Sij

Xk

}
.

auxvij
(X̄′) ←

m∧
varvij Zl

(X̄Zl
).
l=1

342 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

y

varvij Zl
(X̄Zl

) ←
∧

Pk∈Sij &Zl∈X̄k

Pk(X̄k,nvij),

whereX̄Zl
=

{ ⋃
Pk∈Sij &Zl∈X̄k

Xk

}
, for l = 1, . . . ,m.

4. For every predicateF l
i (X̄

′,Zl) introduced in 3(b), the rules,

F l
i (X̄

′,Zl) ← addvij Zl
(X̄′), dom(Zl), choice((X̄′), (Zl)).

addvij Zl
(X̄′) ← addvij

(X̄′), not auxvij Zl
(X̄′), for l = 1, . . . ,m.

auxvij Zl
(X̄′) ← varvij Zl

(X̄Zl
),

∧
Zk �=Zl&Zk∈X̄Zl

F k
i (X̄′,Zk),

for l = 1, . . . ,m.

5. For every global relationP(X̄) the rules

P(X̄,nvij) ← P(X̄,vhk), for
{
(ij, hk) | P(X̄) ∈ Sij ∩ Shk, ij �= hk

}
.

P (X̄,nvij) ← P(X̄, to), for
{
(ij) | P(X̄) ∈ Sij

}
.

P (X̄, td) ← P(X̄,vij), for
{
(ij) | P(X̄) ∈ Sij

}
.

P (X̄, td) ← P(X̄, to).

Example 16 (Example 13continued). The refined programΠ(G3) is:

(2)dom(a). dom(c).

(3)v1(a). v2(a, c).

(4)P(X,Z,v1) ← addv1(X),Fz(X,Z).

(5)addv1(X) ← v1(X), not auxv1(X).

(6)auxv1(X) ← varv1z(X,Z).

(7)varv1z(X,Z) ← P(X,Z,nv1).

(8)Fz(X,Z) ← addv1(X),dom(Z),chosenv1z(X,Z).

(9)chosenv1z(X,Z) ← addv1(X),dom(Z), not diffChoicev1z
(X,Z).

(10)diffChoicev1z
(X,Z) ← chosenv1z(X,Z′),dom(Z),Z′ �= Z.

(11)P(X,Y, to) ← v2(X,Y).

(12)P(X,Y,nv1) ← P(X,Y, to).

(13)P(X,Y, td) ← P(X,Y,v1).

(14)P(X,Y, td) ← P(X,Y, to).

Rules(4), to (7) ensure that if there is an atom in sourceV1, e.g.,V1(ā), and if an atom
of the form P(ā,Z) was not added by viewV2, then it is added by rule(4) with a Z

value given by the function predicateFz(ā,Z). This function predicate is calculated b
rules (8) to (10). Rule (11) enforces the satisfaction of the openness ofV2 by adding

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 343

h
mini-

e-

are

e
ry for

n sys-
query

es

m-
s worth
c trans-

instances

unctive
pecify

d with
tabase

n
m that

e the
here
obligatory atoms to predicateP and rule(12) stores this atoms with the annotationnv1,
implying that they were added by a view different fromV1. The last two rules gather wit
annotationtd the elements that were generated by both views and that are in the
mal legal instances. The stable model of this program is{dom(a),dom(c), v1(a), v2(a, c),

P (a, c, td),P (a, c, to),P (a, c,nv1),auxv1(a)}, which corresponds to the only minimal l
gal instance{P(a, c)}.

Theorem 3. If M is a stable model of SV(Π(G)), thenDM := {P(ā) | P ∈ R andP(ā,

td) ∈ M} ∈ Mininst(G). Furthermore, the minimal legal instances obtained in this way
all the minimal legal instances ofG.

The programΠ(G) (or its stable version) can be used to computeMinimalG(Q), where
Q is a query expressed as a, say Datalog¬ programΠ(Q). This can be done by running th
combined program under the skeptical stable model semantics. The following corolla
monotone queries, e.g., a Datalog queries, can be immediately obtained fromTheorem 3
and the fact that for those queriesCertainG(Q) = MinimalG(Q).

Corollary 1. The certain answers to monotone queries posed to an open integratio
temG can be computed by running, under the skeptical stable model semantics, the
program in combination with the programΠ(G) that specifies the minimal legal instanc
of G.

We know that under the hypothesis ofTheorem 2, the simple and refined programs co
pute the same legal database instances, namely the minimal ones. Beyond this, it i
mentioning that, under the same hypothesis, there is a simple mechanical, syntacti
formation of the refined program into a simple program (in the sense of Section3.1) that
has the same stable models, and then, in particular, produces the same database
(seeAppendix A.2).

4. Specification of repairs of a global system

In [6], repairs of single relational databases are specified as stable models of disj
logic programs. We briefly explain those programs, because they will be used to s
repairs of instances of integration systems.

First, the database predicates are expanded with an extra argument to be fille
one of a set of new annotation constants. An atom inside (outside) the original da
is annotated withtd (fd).5 Annotationsta andfa are consideredadvisoryvalues, to solve
conflicts between the database and the ICs. If an atom gets the derived annotatiofa, it
means an advise to make it false, i.e., to delete it from the database. Similarly, an ato
gets the annotationta, this is seen as an advice to insert it into the database.

5 The annotationtd is the same we had in the previous section, actually the program there will provid
contents of the minimal instances in terms oftd; next, in the repair process, the new annotations introduced
will be generated.

344 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

ing

s, and
rder to

ota-
s are
r steps,

esp.
terpret
s of the

al ICs
ncies.

n
in an
are
Example 17 (Example 7continued). Consider the ICs∀x(P (x, y) → R(x, y)) and
∀x(T (x) → ∃yP (x, y)), together with the inconsistent database instanceD = {P(a, b),

T (c)} and a domainU = {a, b, c,u}. The logic program should have the effect of repair
the database. Single, local repair steps are obtained by deriving the annotationsta or fa.
This is done when each IC is considered in isolation, but there may be interacting IC
the repair process may take several steps and should stabilize at some point. In o
achieve this, we use annotationst�, f�. The latter, for example, groups together the ann
tions fd andfa for the same atom (rules (2) and (5) below). These derived annotation
used to give a feedback to the bodies of the rules that produce the local, single repai
so that a propagation of changes is triggered (rule (3) below).

The annotationst�� and f�� are just used to read off the literals that are inside (r
outside) a repair. This is achieved by means of rules (7) below, that are used to in
the models as database repairs. The facts of rule (1) correspond to all the element
domain except for thenull constant, which is left outside ofdom. The following is the
program:

(1) dom(a). dom(b). dom(c). dom(u).

(2) P(x, y, f�) ← P(x, y, fa),dom(x),dom(y).

P (x, y, t�) ← P(x, y, ta),dom(x),dom(y).

P (x, y, t�) ← P(x, y, td),dom(x),dom(y). (similarly for R andT)

(3) P(x, y, fa) ∨ R(x, y, ta) ← P(x, y, t�),R(x, y, f�),dom(x),dom(y).

T (x, fa) ∨ P(x,null, ta) ← T (x, t�), not aux(x), notP(x,null, td),dom(x).

aux(x) ← P(x, y, td), notP(x, y, fa).

aux(x) ← P(x′, y, ta).

(4) P(a, td) ← .

(5) P(x, y, f�) ← dom(x),dom(y), notP(x, y, td). (similarly for R andT)

(6) ← P(x̄, ta),P (x̄, fa). ← R(x̄, ta),R(x̄, fa).

(7) P(x, y, t��) ← P(x, y, ta),dom(x),dom(y).

P (x, y, f��) ← P(x, y, fa),dom(x),dom(y).

P (x, y, t��) ← P(x, y, td), notP(x, y, fa),dom(x),dom(y).

P (x, y, f��) ← dom(x),dom(y), notP(x, y, td), notP(x, y, ta).

(similarly for R andT)

Only rules (3) depend on the ICs. The first rule in (3) corresponds to the univers
and the rest to the referential IC. These rules say how to repair the inconsiste
Rules (4) contain the database atoms. Rules (5) capture theclosed world assumptio
(CWA) [40]. Rules (6) are denial program constraints to discard models that conta
atom annotated with bothta andfa. The program has four stable models. The repairs
obtained from them by selecting the atoms annotated witht��: D1 = {P(a, b),R(a, b)},
D2 = {P(a, b),R(a, b), T (c),P (c,null)} and D3 = {T (c),P (c,null)}, D4 = ∅. As ex-
pected, they coincide with the ones obtained inExample 7.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 345

odels
of the
con-
grams

al re-
can be
d
imal

s the
es.
It can be proved[6] in the context of single relational databases that the stable m
of these disjunctive programs are in a one to one correspondence with the repairs
original database, for any combination of universal and acyclic referential integrity
straints. If there are cycles between the referential ICs, then the specification pro
may produce a class of stable models that properly extends the class of repairs[12]. Those
models that do not correspond to repairs still satisfy the ICs, but may not be minim
pairs. In this case the stable models that do not correspond to (minimal) repairs
pruned by comparison with the other stable models[12]. These properties will be inherite
by our application of this kind of programs to the specification of the repairs of the min
instances of an integration system.

The next definition combines into one program the refined version that specifie
minimal legal instances and the specification of the repairs of those minimal instanc

Definition 13. Therepair program, Π(G, IC), of G with respect toIC contains the follow-
ing clauses:

(1) The same rules as inDefinition 12.
(2) For every predicateP ∈R, the clauses

P(X̄, t�) ← P(X̄, td),dom(X̄).6

P(X̄, t�) ← P(X̄, ta),dom(X̄).

P (X̄, f�) ← P(X̄, fa),dom(X̄).

P (X̄, f�) ← dom(X̄), notP(X̄, td).

(3) For every first-order global universal IC of the form∀(Q1(Ȳ1) ∨ · · · ∨ Qn(Ȳn) ←
P1(X̄1) ∧ · · · ∧ Pm(X̄m) ∧ ϕ), wherePi,Qj ∈ R, andϕ is a conjunction of built-in
atoms, the clause:

n∨
i=1

Pi(X̄i, fa)

m∨
j=1

Qj(Ȳj , ta) ←
n∧

i=1

Pi(X̄i, t�),
m∧

j=1

Qj(Ȳj , f�),dom(X̄), ϕ;

whereX̄ is the tuple of all variables appearing in database atoms in the rule.
(4) For every referential IC of the form∀X̄(P (X̄) → ∃YQ(X̄′, Y)), with X̄′ ⊆ X̄, the

clauses

P(X̄, fa) ∨ Q(X̄′,null, ta) ← P(X̄, t�), not aux(X̄′), notQ(X̄′,null, td),

dom(X̄).

aux(X̄′) ← Q(X̄′, Y, td),notQ(X̄′, Y, fa),dom(X̄′, Y).

aux(X̄′) ← Q(X̄′, Y, ta),dom(X̄′, Y).

(5) For every predicateP ∈R, the interpretation clauses:

P(ā, f��) ← P(ā, fa).

6 If X̄ = (X1, . . . ,Xn), we abbreviatedom(X1) ∧ · · · ∧ dom(Xn) with dom(X̄).

346 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

t are
a
the

m
for

nd
ulated
art of
by the

rity

ances

pared

t
the

-
e

d as
P(ā, f��) ← notP(ā, td), notP(ā, ta).

P (ā, t��) ← P(ā, ta).

P (ā, t��) ← P(ā, td), notP(ā, fa).

Rules (4) repair referential ICs by deletion of tuples or insertion of null values tha
not propagated through other ICs[6]. For this purpose,dom(null) is not considered as
fact and therefore thenull values will not propagate. Optimizations of the repair part of
program, like avoiding the materialization of the CWA, are analyzed in[6].

The choice models of programΠ(G, IC) that do not contain a pair of literals of the for
{P(ā, ta),P (ā, fa)} are calledcoherent models. Only coherent models can be obtained
the program if the denial constraints of the form← P(x̄, t��),P (x̄, f��) are included in the
program.

Definition 14. The global instance associated to a choice modelM of Π(G, IC) is DM =
{P(ā) | P ∈R andP(ā, t��) ∈M}.

The repair program can be split[37] into the specification of the minimal instances a
the specification of their repairs. Therefore, the minimal legal instances can be calc
first, and then the repairs of them. Each minimal model calculated by the first p
Π(G, IC) can be seen as a simple, relational database, which is repaired afterwards
second part ofΠ(G, IC). This gives us the following theorem straightforwardly.

Theorem 4. Let IC be an arbitrary class of universal and acyclic referential integ
constraints. IfM is a coherent choice model ofΠ(G, IC), thenDM is a repair ofG with
respect to IC. Furthermore, the repairs obtained in this way are all the repairs ofG with
respect to IC.

In the case in which a cyclic set of referential ICs is considered, the global inst
associated to the choice models of the program will be a superset of the repairs ofG with
respect toIC, and in order to obtain the repairs, the choice models will have to be com
to choose those minimally differ from the minimal legal instance[12].

5. Consistent answers

Now we can obtain the answers to queries posed to a systemG that are consisten
with respect toIC. First we will consider universal and acyclic referential ICs. We do
following:

(1) We start with a queryQ that is expressed, e.g., as a stratified Datalog program,Π(Q),
whose extensional predicates are elements of the global schemaR. Each positive oc
currence of those predicates, sayP(t̄), is replaced byP(t̄, t��); and each negativ
occurrence, say notP(t̄), by P(t̄, f��). This query program has a query predicateAns
that collects the answers toQ. In particular, first order queries can be expresse
stratified Datalog programs[1].

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 347

e

le

try
-

use
f

(2) ProgramΠ(Q) is appended to the programSV(Π(G, IC)), the stable version of th
repair program.

(3) The consistent answers toQ are the groundAnsatoms in the intersection of all stab
models ofΠ(Q) ∪ SV(Π(G, IC)).

Example 18 (Example 11continued). We have the integration systemG2 with the local
view definitionsV1(X,Z) ← P(X,Y),R(Y,Z), andV2(X,Y) ← P(X,Y), and source
contentsv1 = {V1(a, b)} andv2 = {V2(a, c)}, respectively. Consider the global symme
integrity constraintsim:∀x∀y(R(x, y) → R(y, x)) on G2. We want the consistent an
swers to the queryQ :P(x, y). First, the query is written as the query program cla
Ans(X,Y) ← P(X,Y, t��). This query program,Π(Q), is run with the revised version o
SV(Π(G3,sim)) that has the following rules:

% Subprogram for minimal instances

dom(a). dom(b). dom(c). dom(u).

v1(a, b). v2(a, c).

P (X,Y,nv1) ← P(X,Y, to).

P (X,Y,nv2) ← P(X,Y,v1).

P (X,Y, td) ← P(X,Y,v1).

P (X,Y, td) ← P(X,Y, to).

R(X,Y, td) ← R(X,Y,v1).

% Specification ofV1

P(X,Y,v1) ← addv1(X,Z),FY
1 (X,Z,Y).

R(Y,Z,v1) ← addv1(X,Z),FY
1 (X,Z,Y).

addv1(X,Z) ← v1(X,Z), not auxv1(X,Z).

auxv1(X,Z) ← varv1Y (X,Y,Z).

varv1Y (X,Y,Z) ← P(X,Y,nv1),R(Y,Z,nv1).

F Y
1 (X,Z,Y) ← addv1Y (X,Z),dom(Y),chosenv1Y (X,Z,Y).

chosenv1Y (X,Z,Y) ← addv1Y (X,Z),dom(Y), not diffchoicev1
(X,Z,Y).

diffchoicev1
(X,Z,Y) ← chosenv1Y (X,Z,Y ′),dom(Y),Y ′ �= Y.

addv1Y (X,Z) ← addv1(X,Z), not auxv1Y (X,Z).

auxv1Y (X,Z) ← varv1Y (X,Y,Z).

% Specification ofV2

P(X,Y, to) ← v2(X,Y).

% Repair subprogram

P(X,Y, t�) ← P(X,Y, ta),dom(X),dom(Y).

P (X,Y, t�) ← P(X,Y, td),dom(X),dom(Y).

348 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

nce

y.

e

urces
bined
P(X,Y, f�) ← dom(X),dom(Y), notP(X,Y, td).

P (X,Y, f�) ← P(X,Y, fa),dom(X),dom(Y).

R(X,Y, t�) ← R(X,Y, ta),dom(X),dom(Y).

R(X,Y, t�) ← R(X,Y, td),dom(X),dom(Y).

R(X,Y, f�) ← dom(X),dom(Y), notR(X,Y, td).

R(X,Y, f�) ← R(X,Y, fa),dom(X),dom(Y).

R(X,Y, fa) ∨ R(Y,X, ta) ← R(X,Y, t�),R(Y,X, f�),dom(X),dom(Y).

P (X,Y, t��) ← P(X,Y, ta),dom(X),dom(Y).

P (X,Y, t��) ← P(X,Y, td),dom(X),dom(Y), notP(X,Y, fa).

P (X,Y, f��) ← P(X,Y, fa),dom(X),dom(Y).

P (X,Y, f��) ← dom(X),dom(Y), notP(X,Y, td), notP(X,Y, ta).

R(X,Y, t��) ← R(X,Y, ta),dom(X),dom(Y).

R(X,Y, t��) ← R(X,Y, td),dom(X),dom(Y), notR(X,Y, fa).

R(X,Y, f��) ← R(X,Y, fa),dom(X),dom(Y).

R(X,Y, f��) ← dom(X),dom(Y), notR(X,Y, td), notR(X,Y, ta).

← R(X,Y, ta),R(X,Y, fa).

← P(X,Y, ta),P (X,Y, fa).

This program has five stable models with the following associated repairs: (a)DMr
1

=
{P(a, b),R(b, b),P (a, c)}, corresponding to the already consistent minimal insta
DM1 in Example 12; (b) DMr

2
= {P(a, a),P (a, c)} and DMr

3
= {R(a, b),R(b, a),

P (a, a),P (a, c)}, the repairs of the inconsistent instanceDM2; (c) DMr
4

= {P(a, c)}
and DMr

5
= {R(c, b),R(b, c),P (a, c)}, the repairs of instanceDM3; and (d)DMr

6
=

{P(a,u),P (a, c)} andDMr
7
= {R(u,b),R(b,u),P (a,u),P (a, c)}, the repairs ofDM4.

The corresponding stable models ofΠ(Q) ∪ SV(Π(G3,sim)) are: (a)M r
1 = Mr

1 ∪
{Ans(a, b),Ans(a, c)}; (b) Mr

2 = Mr
2 ∪ {Ans(a, a),Ans(a, c)}; M r

3 = Mr
3 ∪ {Ans(a, a),

Ans(a, c)}; (c) M r
4 = Mr

4 ∪ {Ans(a, c)}; M r
5 = Mr

5 ∪ {Ans(a, c)}; (d) M r
6 = Mr

6 ∪
{Ans(a,u),Ans(a, c)}; M r

7 = Mr
7 ∪ {Ans(a,u),Ans(a, c)}. Ans(a, c) is the only query

atom in all stable models, then the tuple(a, c) is the only consistent answer to the quer

If G is consistent, then the consistent answers toQ computed with this method coincid
with the minimal answers toQ, and then to the certain answers ifQ is monotone.

6. Further analysis, extensions and discussion

6.1. Complexity

The complexity analysis of consistent query answering in integration of open so
under the LAV approach can be split according to the main two layers of the com

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 349

epairs

el

ering

lexity
when
plex-

puting

ram
y

of
to

re both

y;
.

e (non
cies
omes
e by
nsis-
ic
lem of

of
s hold.
omain,
ra
nsists
reason
capture
ore, we
ign the
program, namely, the specification of minimal instances and the specification of the r
of those minimal instances.

Query evaluation from the programΠ(G) with choice under the skeptical stable mod
semantics is in coNP (the case singularized ascertainty semanticsin [41]). Actually, if the
choice operator program is represented in its “classical” stable version (see Section3.1), we
are left with a normal (non-disjunctive), but non-stratified program whose query answ
complexity under the skeptical stable model semantics is coNP-complete[19,35] in data
complexity[1], in our case, in terms of the combined sizes of the sources. This comp
of computing minimal answers is inherited by the computation of certain answers
the two notions coincide, e.g., for monotone queries like Datalog queries. This com
ity result is consistent and matches the theoretical complexity lower bound on com
certain answers to Datalog queries under the LAV approach[2]. With disjunctive views, as
considered in Section6.4, the complexity of the program goes up to beingΠP

2 -complete.
The complexity of query evaluation with respect to the disjunctive normal prog

Π(G, IC) that specifies the repair of minimal instances isΠP
2 -complete in data complexit

[19], which matches the complexity of consistent query answering[10,15,18].
There are some cases studied in[6], e.g., only universal ICs, where the repair part

the program for CQA ishead-cycle free(HCF) and therefore the complexity is reduced
coNP[7,34]. This coNP-completeness result can be extended to some cases whe
universal and RICs are considered. It is possible to show[12] that the programΠ(G, IC) is
HCF for a combination of: (a)Denial constraints, i.e., formulas of the form

∨n
i=1 Pi(t̄i) →

ϕ, where Pi(t̄i) is an atom andϕ is a formula containing built-in predicates onl
(b) Acyclic referential integrity constraints, i.e., without cycles in the dependency graph

This case includes the usual integrity constraints found in database practice, lik
cyclic) foreign key constraints. In[15,18] some cases where functional dependen
and referential integrities coexist are presented, for which the problem of CQA bec
ΠP

2 -complete. Actually, in the case when repairs with respect to cyclic RICs is don
introducing arbitrary, non null elements of the underlying domain, the problem of co
tent query answering becomes undecidable[15]. However, if repairs with respect to cycl
RICs are obtained by introducing null values that do not propagate via ICs, the prob
consistent query answering becomes decidable[12].

6.2. Infinite vs. finite domain

In Section2.1we considered the possibility of having an infinite underlying domainU .
At the purely specification level there is not problem in admitting, in the first item
Definition 10, an infinite number of facts. Our soundness and completeness theorem
However, in the logic programs we have presented in the examples we had a finite d
cf. Example 10(the finite domain is specified by thedom predicate), but also an ext
constantu that does not appear in the active domain of the integration system, that co
of all the constants in the sources plus those that appear in the view definitions. The
is that we need a finite domain to run the programs, but at the same time we need to
the potential infiniteness of the domain and the openness of the sources. Furtherm
should not be forced to use only the active domain, because doing so might ass
wrong semantics to the integration system.

350 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

w
e

l

query

er
ts may

gal in-

stable

sanction
in (see
resent
ere is a
omain.
to the

do-
tial
tained

in the
nstants
ver all
h the

swers

te
nimal
, in this
tential
Example 19. Consider an integration systemG4 with one source defined by the vie
V (X) ← R(X,Y) and the queryQ(Y) ← R(X,Y). If the view extension has only on
tuple, say{(a)}, we have that the active domain is{a} and thatR(a, a) is in all the legal
instances ofG4 if only this domain is used; and we would haveCertainG4(Q) = {a}. Now,
if the view extension becomes{(a), (b)}, the active domain is{a, b}, and there is a globa
instance containing just the tupleR(a, b), and another containing just{R(a, a)}. In conse-
quence, there will be no certain answers. This simple example shows that a positive
may have an undesirable non-monotonic behavior.

In Example 10, introducing one extra constant (u) is good enough to correctly answ
conjunctive queries (see below). In the general case, the number of extra constan
vary depending on the situation.

It is necessary to make all these considerations, because, the set of minimal le
stances may depend on underlying domain, as we saw inExample 5, whereMininst(G2) =
{{P(a, c),P (a, z),R(z, a)} | z ∈ U = {a, b, c, . . .}}.

Since we want only the certain answers, those that can be obtained from all the
models, it is easy to see that the values taken by the “free variables”, likez above, will not
appear in a certain answer. However, the absence of the extra, new constants may
as certain some answers that are not if the domain is restricted to the active doma
Example 19). In consequence, we need a larger domain, with enough variables to rep
the relations and differences between the free variables. Depending on the query, th
finite domain that generates the same certain and minimal answers as the infinite d
It can be shown that if the query is conjunctive, then adding only one new constant
active domain is good enough (seeExample 10).

If the query is disjunctive, then the smallest “equivalent” finite domain is the active
main plusn new constants, wheren is the maximum number of instantiations of existen
variables in a minimal legal instance. This number of instantiations cannot be ob
from the view definitions alone, because it also depends on the number of elements
sources associated to the Skolem predicates. An upper bound on the number of co
to be added to the active domain to correctly answer disjunctive queries is the sum o
sources of the product of the number of existential variables in a view definition wit
number of atoms in the corresponding source.

Example 20. Given an integration systemG5:

V1(X,Y) ← P(X,Z0),R(Z0, Y), {V1(a, b)}.
V2(X,Y) ← P(X,Z1),R(Z2, Y), {V2(a, b),V2(c, d)}.

The set of minimal legal instances is{{P(a, z1),R(z1, b),P (c, z2),R(z3, d)} | z1, z2, z3 ∈
U}. By looking at this representation, we see that in order to obtain correct certain an
to disjunctive queries, it is good enough to add to the active domain{a, b, c, d} three extra
constants, obtaining, sayU = {a, b, c, d, e, f, g}, a finite domain that is able to simula
an infinite domain with respect to disjunctive queries. Instead of inspecting the mi
instances to determine the number of new constants, we can use an upper bound
case, five, which can be computed as: 1 existential variable times 1 atom plus 2 exis
variables times 2 atoms. So, we could use a domainU with five extra constants.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 351

ed
al in-
pecify
rested
e the
gram,
done

ith the

.
nds to
, and
choice
ays in

tain or
ond to
cause
nt
ers as

ence,
e pro-
or the

-
rogram
6.3. Choice models vs. Skolem functions

In this paper we have used thechoiceoperator to replace the Skolem functions us
in the inverse rules algorithm. In this way we were able to specify the minimal glob
stances, which was one of our original goals, is interesting in itself, and allows us to s
the repairs of the integration system with respect to the ICs. However, if we are inte
in query answering only, it becomes relevant to analyze if it is possible to retriev
minimal, certain and consistent answers by keeping the Skolem functions in the pro
evaluating it, and then filtering out the final answers that contain those functions (as
in [21]).

We first analyze the case of the simple program (see Section3.1), in which we want to
consider using the Skolem functions instead of the functional predicate together w
choice operator. For example, we would haveP(X,f (X)) ← V (X) instead of the couple
of rulesP(X,Y) ← V (X),F (X,Y) andF(X,Y) ← V (X),dom(Y),choice((X), (Y)).

In this case, the program will have the same rulesV−1 as in the inverse rules algorithm
The resulting definite program is positive and, therefore, its stable model correspo
the minimal model. That model will have atoms with instantiated Skolem functions
can be seen as a compact representation of the collection of stable models of the
program, in the sense that the latter can be recovered by considering the different w
which the Skolem functions can be defined in the underlying domain.

If a query is posed to the program with Skolem functions, the answer set may con
not answers with Skolem functions. Those answers with Skolem functions corresp
answers that would be different in different stable models of the choice program, be
in a sufficiently rich domain (see Section6.2) the functions may be defined in differe
ways. This is why if we delete those answers with functions, we get the same answ
from the choice programΠ(G) under the cautious stable model semantics. In consequ
for computing the certain answers to a monotone query, we can indistinctly use th
gram with Skolem functions (pruning the answers with Skolem functions at the end)
choice program.

Let us now consider the refined program (see Section3.2). In this case, if Skolem func
tions are used instead of the choice operator, the resulting program is a normal p
that may have several stable models.

Example 21. Consider an integration systemG with

V1(X) ← P(X1, Y1,Z1), S(Y1), V1(a),

V2(X,Y) ← P(X2, Y2,Z2), V2(a, e).

The following is the program with Skolem functions:

%V1

P(X,f1(X),f2(X),v1) ← addv1(X),addv1Y (X),addv1Z(X).

S(f1(X),v1) ← addv1(X).

addv1(X) ← v1(X), not auxv1(X).

auxv1(X) ← varv1Y (X,Y,Z),varv1Z(X,Y,Z).

352 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

er the
le to
because
on

s, the
kolem
needed
tion of a
tiations
at are

kolem
tances,

s-

l in-
domain
varv1Y (X,Y,Z) ← P(X,Y,Z,nv1), S(Y,nv1).

varv1Z(X,Y,Z) ← P(X,Y,Z,nv1).

addv1Y (X) ← addv1(X), not auxv1Y (X).

auxv1Y (X) ← varv1Y (X,Y,Z),Z = f2(X).

addv1Z(X) ← addv1(X), not auxv1Z(X).

auxv1Z(X) ← varv1Z(X,Y,Z),Z = f1(X).

%V2

P(X,Y,f3(X,Y),v2) ← addv2(X,Y),addv2Z(X,Y).

addv2(X,Y) ← v2(X,Y), not auxv2(X,Y).

auxv2(X,Y) ← varv2Z(X,Y,Z).

varv2Z(X,Y,Z) ← P(X,Y,Z,nv2).

addv2Z(X,Y) ← addv2(X,Y), not auxv2Z(X,Y).

auxv2Z(X,Y) ← varv2Z(X,Y,Z).

P (X,Y,Z,nv1) ← P(X,Y,Z,v2).

P (X,Y,Z,nv2) ← P(X,Y,Z,v1).

P (X,Y,Z, td) ← P(X,Y,Z,v1).

P (X,Y,Z, td) ← P(X,Y,Z,v2).

S(Y, td) ← S(Y,v1).

The stable models of the refined program with Skolem functions are calculated und
unique names assumption[40]. As a consequence of this, the program may not be ab
distinguish those cases where the openness condition for a source can be satisfied
the condition already holds for another source (see the discussion at the end of Secti3.1).
For example, if two atoms, sayP(a,f 1(a), f 2(a)) andP(a, e, f 3(a, e)), are added to
the stable models in order to satisfy the openness conditions for two different view
program will treat those two atoms as different, what may not be the case when the S
functions are interpreted. As a consequence, stable models that are larger than
might be produced. If each of these stable models is seen as a compact representa
set of intended global instances, which can be recovered through all possible instan
of the Skolem functions in the model, we may end up generating global instances th
not minimal. In other words, the class of stable models of the refined program with S
functions represents a class that possibly properly extends the one of minimal ins
by including global instances that are legal but not minimal.

Example 22 (Example 21continued). The minimal instances of this integration sy
tem can be represented by{{P(a, e, f3(a, e)),P (a,f1(a), f2(a)), S(f1(a))} | f3(a, e) ∈
U, f2(a) ∈ U, f1(a) ∈ U\{e}} ∪ {{P(a, e, f3(a, e)), S(e)} | f3(a, e) ∈ U}. By interpreting
the Skolem functions in the underlying domain, we obtain all and only the minima
stances. Notice that in this case, it is necessary to give all the possible values in the

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 353

exis-

ames
-
tuple
odel
the

odels
ertain
ough),

of the
al in-
odels

detect
.

ted
-
con-

he
ion, the

s are

ase, a
ew,

l

to the existential variables (or function symbols), the only exception being when the
tential variableY1 is made equal toe. In that case it is good enough to give values toZ1 or
Z2 in order to satisfy the openness conditions forV1 andV2.

In the context of the refined program with function symbols, due to the unique n
assumption,f1(a) will always be considered different frome, and therefore the pro
gram will not realize that there is a minimal model that does not contain the
P(X,f1(X),f2(X), v1). In consequence, the program will generate the stable m
{P(a, e, f3(a, e)),P (a,f1(a), f2(a)), S(f1(a))}, that represents a proper superclass of
minimal legal instances. For example, it represents the instance{P(a, e,u),P (a, e, v),

S(e)} that is not minimal.

The possibly strict superset of the minimal instances that is represented by the m
of the program with functions can be used to correctly compute the minimal and c
answers to monotone queries (in this case it is better to use the simple program th
but not for queries with negation.

We now consider the repair program. In those cases where the stable models
simple or revised programs with Skolem functions do not represent the minimal leg
stances, it is clear that it is not possible to compute their repairs. When the stable m
do represent the minimal legal instances, it is not possible for the repair program to
all the inconsistencies in them because of the underlying unique names assumption

Example 23 (Examples 4 and 5continued). The minimal legal instances are represen
via Skolem functions byM = {P(a,f (a, b)),R(f (a, b), b),P (a, c)}, which can be ob
tained as a model of by the simple program with Skolem functions. This model is in
sistent with respect toIC :∀x∀y(R(X,Y) → R(Y,X)).

The repair programΠ(G, IC) has the rule

R(X,Y, fa) ∨ R(Y,X, ta) ← R(X,Y, t�),R(Y,X, f�).

that will produce the set of repairsDM1 = {P(a,f (a, b)),P (a, c)} and DM2 =
{P(a,f (a, b)),R(f (a, b), b),R(b,f (a, b)),P (a, c)}, which represent a superset of t
real repairs of the minimal legal instances. Because of the unique names assumpt
program will not detect that forf (a, b) = b the instance is consistent with respect toIC.

Additional remarks on this issue can be found in[8].

6.4. Disjunctive sources

In Section3 we considered sources defined as conjunctive views only. If source
now described as disjunctive views, i.e., with more than one conjunctive rule[20], then the
programΠ(G) has to be extended in order to capture the minimal instances. In this c
sourceSi is a pair〈Φi, vi〉, whereΦi is a set of conjunctive rules defining the same vi
sayϕi1, . . . , ϕim, andvi is the given extension of the source.

Definition 15. Given an open global systemG = {〈Φ1, v1〉, . . . , 〈Φn,vn〉}, the set of lega
global instances isLinst(G) = {D instance overR | vi ⊆ ⋃

k ϕik(D), for i = 1, . . . , n}.

354 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

ce, it

d
ly
le:

i-
their
set in

tion of
Example 24. Consider the global integration systemG7 with global relations{R(X,Y),
S(X),T (X,Y)} and two source relationsv1 andv2 with the following view definitions and
extensions:

Source Extension View definitions

v1 {V1(a, b),V1(c, d)} V11:V1(X,Y) ← R(X,Y),S(Y)

V12:V1(X,d) ← T (X,d)

v2 {V2(b),V2(a)} V21:V2(X) ← S(X)

Examples of legal instances are{S(b), S(a),R(a, b), T (c, d)}, {S(b), S(a),R(a, b),

R(c, d), S(d)} and{S(b), S(a),R(a, b), T (c, d), T (a, b)}.

If we have disjunctive view definitions, in order to satisfy the openness of a sour
is necessary that one or more views generate each of its tuples. To capture this, in[20] the
concepts oftruly disjunctiveview andwitnessare introduced, together with anexclusion
condition. Informally, a set of views istruly disjunctiveif there is a tuplet̄ that can be
generated by any of the views. This tuple is called awitness. Theexclusion conditionis a
constraint on thewitnessthat determines for which tuples thetruly disjunctiveviews are
the most general.

Example 25 (Example 24continued). The atoms ofv1 that have the constantd as the
second attribute can be generated either byV11 or V12. On the other hand, if the secon
attribute is notd , the atom can only be generated byV1. This is expressed in terms of tru
disjunctive views, most general witness and exclusion condition by the following tab

Truly disjunctive views Most general witness Exclusion condition

V1 (X1,X2) second attribute�= d

V1,V2 (X1, d) true

In order to extend the simple version ofΠ(G), incorporating disjunctive view defin
tions, we need to take into account the different sets of truly disjunctive views with
witnesses and exclusion conditions. For example, for the second truly disjunctive
Example 25, the following rule needs to be imposed

(15)
(
R(X,d) ∧ S(d)

) ∨ T (X,d) ← V (X,d),

which is equivalent to the pair of disjunctive Datalog rules

(16)R(X,d) ∨ T (X,d) ← V (X,d),

(17)S(d) ∨ T (X,d) ← V (X,d).

For each set of truly disjunctive views, rules like(16) and(17) will have to be satisfied by
the legal instances. These remarks motivate the following program as an specifica
the minimal legal instances.

Definition 16. Given an open global systemG, the program,Π∨(G), contains the following
clauses:

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 355

ss

tive

le to
(1) Factdom(a) for every constanta ∈ U ; and the factVi(ā) wheneverā ∈ vi for some
source extensionvi in G.

(2) For every set of truly disjunctive views for a sourceVi of the form

Vi1 :Vi(X̄1) ← P11(X̄11), . . . ,P1n(X̄1n1),

· · ·
Vik :Vi(X̄k) ← Pk1(X̄k1), . . . ,Pkn(X̄knk

),

where the variables in each view are different (fresh), for its more general witneW̄

and its most general exclusion conditionϕ, the rules

P1δ1(X̄
′
1δ1

) ∨ · · · ∨ Pkδk
(X̄′

kδk
) ← Vi(W̄) ∧ ϕ ∧

∧
Zl∈(X̄′\W̄)

F l
i (W̄ ,Zl),

whereX̄′ = ⋃k
j=1 X̄′

jδj
andδl ∈ {1, . . . , nk} for l = 1, . . . , k.

The vectorsX̄′
1δ1

, . . . , X̄′
kδk

are those obtained by the substitution ofX̄i by W̄ in all the
view definitions. These rules represent all the possible combinations ofk predicates
where each of them is chosen from a different view definition.

(3) For every predicateF l
i (X̄,Zl) introduced in (2), the rule

F l
i (X̄,Zl) ← Vi(X̄),dom(Zl),choice((X̄), (Zl)).

Example 26 (Example 25continued). The programΠ∨(G7) is:

(18)dom(a). dom(b). dom(c). dom(d).

(19)R(X,Y) ← V1(X,Y),Y �= d.

(20)S(Y) ← V1(X,Y),Y �= d.

(21)T (X,d) ∨ R(X,Y) ← V1(X,Y).

(22)T (X,d) ∨ S(Y) ← V1(X,Y).

(23)S(X) ← V2(X).

Rules(19)–(20)and(21)–(22)represent, respectively, the first and second truly disjunc
set for sourcev1. Rule(23) is for the non-disjunctive sourcev2.

If all the sources are defined by conjunctive views, then is easy to see thatΠ∨(G)

becomes the simple programΠ(G) introduced in Section3.1. As before, it holds that

Mininst(G) ⊆ {
DM |M is a stable model ofΠ∨(G)

} ⊆ Linst(G).

For monotone queriesQ, the answers obtained usingΠ∨(G) coincide withCertainG(Q)

andMinimalG(Q). This might not be the case of queries with negation. It is possib
give a refined version, corresponding to the non-disjunctive program in Section3.2, for
which Mininst(G) = {DM |M is a stable model ofΠ∨(G)} also holds.

356 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

ductive
tion sys-
s posed
fication

imal
at this
LAV
ation

y aux-
hoice

btain-
,

der the

wers
ct to
r com-
talog
A) sub-
ne
using
puting

pro-
n
s-

rogram

al
ram. If
, if the
ottom-

rst-
luation

s with
corre-

am by
7. Conclusions

We have presented a general approach to specifying, by means of disjunctive de
databases with stable model semantics, the database repairs of a mediated integra
tem with open sources under the LAV approach. Then, consistent answers to querie
to such a system are computed by running a query program together with the speci
of database repairs under the skeptical or cautious stable model semantics.

The specification of the repairs is achieved by first specifying the class of min
global legal instances of the integration system (without considering any global ICs
level yet). To the best of our knowledge, this is also the first specification, under the
paradigm, of such global instances in a logic programming formalism. The specific
is inspired by the inverse rules algorithms, where auxiliary functions are replaced b
iliary predicates that are forced to be functional by means of the non deterministic c
operator.

The specification of the minimal legal instances of the integration system allows o
ing theminimal answersto arbitrary queries; and thecertain answersto monotone queries
what extends previous results in the literature related to query plan generation un
LAV approach.

The methodology for specifying minimal legal instances, computing certain ans
and CQA works for conjunctive view definitions and disjunctions of them. With respe
the ICs and queries this approach can handle, the solution is sound and complete fo
binations of universal ICs and acyclic referential ICs, and queries expressed as Da¬
programs. In consequence, the current approach to consistent query answering (CQ
sumes and extends the methodologies presented in[9] for integration systems, and the o
in [6] for stand alone relational databases. Also the complexity of query evaluation
the logic programs presented here matches the theoretical lower bounds for com
certain and consistent answers.

For reasons of space, we just mention a few optimizations of the specification
grams and their execution (more on optimization of repair programs can be found i[6]).
The materialization of the CWA present inΠ(G, IC) can be avoided by program tran
formation. We have identified classes of common ICs for whichSV(Π(G, IC)) becomes
head-cycle-free, and in consequence, can be transformed into a non-disjunctive p
[7,34]. Transformations are shown in[6].

The program for CQA can be split[37] into: (1) the program that specifies minim
legal instances; (2) the program that specifies their repairs; and (3) the query prog
the simple version can be used in (1), that layer is a stratified program. Otherwise
refined version is used, that layer is not stratified, but its models can be computed b
up as fixpoints of an iterative operator[27]. The second layer, i.e., the repair part, islocally
stratified[39]. Finally, if the query program is stratified, e.g., if the original query is fi
order, then the consistent answers can be eventually computed by a bottom-up eva
mechanism.

We have already indicated that in the case the set of ICs contain referential IC
cycles between them the stable models of the specification programs we gave may
spond to a superclass of the repairs of the global system[12]. Non minimal repairs may
appear as models of the program. It should be possible to modify the given progr

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 357

orig-
er set

ld be
ueries
ing of
ly con-
ported

pairs

ch is
he al-

of the
e
only

nden-
ing
notion
. View

are con-
stable
tro-
ucting

en-
abase,
here

fying
gram

values
they do
es
istent
d also
adding a new layer of rules that does the job of pruning all the stable models of the
inal program that do not correspond to (minimal) repairs. In this direction the answ
programming based specification of some “local test” for minimality as given in[38] (and
used in[11] in the context of database repairs) could be attempted.

For CQA from integration systems we have successfully experimented withDLV [22,
35]. The current implementations of the disjunctive stable models semantics wou
much more effective in database applications if it were possible to evaluate open q
in a form that is guided by the query rather than based on, first, massive ground
the whole program and, second, considering what can be found in every (complete
structed) stable model of the program. First optimizations of this kind have been re
in [23].

With respect to related papers, query answering in mediated integration systemsunder
the assumptionthat certain global ICs hold has been treated in[14,21,29,31]. However, in
CQA, we do not assume that global ICs hold. Logic programming specifications of re
of single relational databases have been presented in[4,5,30].

In [9], CQA in possibly inconsistent integration systems under the LAV approa
considered. There, the notion of repair of a minimal legal instance is introduced. T
gorithm for CQA is based on a query transformation mechanism[3] applied to first-order
queries. The resulting query may contain negation, and is run on top of an extension
inverse algorithm to the case of stratified Datalog¬ queries. This approach is limited by th
restrictions of the query transformation methodology. In particular, it can be applied
to queries that are conjunctions of literals and universal ICs.

Integration systems under the GAV approach that do not satisfy global key depe
cies are considered in[32]. There, legal instances are allowed to be more flexible, allow
their computed views to accommodate the satisfaction of the ICs. In this sense, the
of repair is implicit; and the legal instances are the repairs we have considered here
definitions are expressed as Datalog queries; and the queries to the global system
junctive. The “repairs” of the global system are specified by normal programs under
model semantics. In[16] and still under the GAV approach, this work is extended by in
ducing rewriting techniques to retrieve the consistent query answers without constr
the “repairs”. More related work is discussed in the survey[8].

With respect to current and future work, apart from considering all kinds of implem
tation and optimization issues around the programs and their interaction with a dat
we have extended[8] our treatment of CQA in integration systems to the mixed case w
open, closed and sources that are both open and closed (clopen) coexist[28]; and to par-
ticular, but common and natural combinations of them. We are working on identi
conditions on the view definitions that make it possible to compute, from the pro
Π(G), the certain answers to possibly non-monotonic queries.

In this paper we have considered null values based repairs under RICs. The null
have a special treatment with respect to satisfaction of ICs, and as a consequence,
not propagate in the repair process. In[4,5,15], repairs of RICs using normal domain valu
are considered. This, under cyclic sets of RICs, may lead to undecidability of cons
query answering. It would be interesting to study some sort of mixed approach, an
the possibility of limited propagation of null values.

358 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

act on
a starts
lassi-
osed
ivation.

-01,
Pro-
Lab.
op on
teful
enko

in

a

Research related to the design of virtual data integration systems and its imp
global query answering has been mostly neglected. Most of the research in the are
from a given set of view definitions, but the conditions on them hardly go beyond c
fying them as conjunctive, disjunctive, Datalog, etc. However, other conditions, imp
when the systems is being designed, could have an impact on, e.g., query plan der
Much research is needed in this direction.

Acknowledgements

Research funded by DIPUC, CONICYT, Carleton University Start-Up Grant 9364
NSERC Grant 250279-02, and a grant from the CITO/IBM-CAS Student Internship
gram. L. Bertossi is Faculty Fellow of the IBM Center for Advanced Studies, Toronto
We also appreciate a CoLogNet Scholarship for Loreto Bravo to attend the Worksh
Logic-Based Method for Information Integration (Vienna, August 2003). We are gra
to Alberto Mendelzon, Pablo Barceló, Jan Chomicki, Enrico Franconi, Andrei Lopat
for useful conversations, and to the anonymous referees for[13], a first version of this
paper, for useful remarks.

Appendix A

A.1. Proof of results

Proof of Theorem 1. ConsiderΠ(G) as inDefinition 10. First we prove:

(A.1)
{
DM | M is a choice model ofΠ(G)

} ⊆ Linst(G).

Assume that there is a stable modelM of Π(G) such that its associated databaseDM is
not a legal instance. Then there is a viewVi for whichvi � ϕi(DM), that is, for somēa:

– ā ∈ vi , and then by rules (1) ofΠ(G), Vi(ā) is true in any model of the program,
particular, inM.

– ā /∈ ϕi(DM), i.e., inM, it holds¬∃z̄(P1(ā1, z̄1) ∧ · · · ∧ Pn(ān, z̄n)), for āi ⊆ ā, and
z̄i ⊆ z̄. This is equivalent to

(A.2)∀z̄
(¬P1(ā1, z̄1) ∨ · · · ∨ ¬Pn(ān, z̄n)

)
.

A consequence of(A.2) and rules (2) ofΠ(G) is the following:

(A.3)∀z̄

(
¬Vi(ā) ∨

∨
l

¬F l
i (ā, zl)

)
.

SinceVi(ā) ∈ M and rules (3) ofΠ(G) are satisfied byM we have that for someb’s in
the domain the atomsF l

i (ā, b) ∈ M. But we had that Eq.(A.3) holds. We have reached
contradiction because(A.3) is false inM; and(A.1) is proven.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 359

s

choice
ions of

nique

ms

.

force

e

f

n.
Now we want to prove:Mininst(G) ⊆ {DM |M is a choice model ofΠ(G)}.
The programΠ(G) can be split[37] into the bottom programΠB , that contains the

facts and rules in (1) and (3) ofΠ(G), and the top program,ΠT , that contains the rule
in (2). If MB is a stable model ofΠB andMB

T is a stable model ofΠMB

T (the top program
partially evaluated by the atoms inMB), thenMB ∪MB

T is a stable model ofΠ(G), and
all the models of latter can be obtained in this way. The bottom program contains the
operator and therefore its stable models will correspond to all the possible combinat
values for the Skolem predicates subject to the condition of functionality[41]. SinceΠMB

T

is a non-disjunctive-positive program (without the choice operator), there will be a u
stable model for eachMB that will correspond to its minimal model.

We will now prove that every minimal legal instance is of the formDM, whereM is of
the formMB ∪MB

T with MB a stable model ofΠB andMB
T a minimal model ofΠMB

T .
Let D be a minimal legal instance ofG. Let us define a structureM for the program

Π(G) containing the following ground atoms:

(1) The atoms inD;
(2) Vi(ā) whenever̄a ∈ vi , wherevi is a source extension inG;
(3) dom(a) for every constanta ∈ U ;
(4) For each viewVi(x̄), consider the rulesF l

i (x̄, zl) ← body(ϕVi
), for each variablezl

from the body that does not belong tox̄. Evaluate the bodies according to the ato
in (1). When the body is true, add toM the corresponding atom in the head.

(5) If for a viewVi , ā ∈ vi andF l
i (ā, b) ∈ M, addchoice(ā, b) to M.

Note thatDM = D. Now we have to prove that the structureM is a stable model ofΠ(G).
This can be shown by proving, first, thatMB := (M\D) is a stable model ofΠB , and,
next, thatMMB

T = D is a minimal model ofΠMB

T .
ΠB contains rules (1) and (3) ofΠ(G). By constructionMB will satisfies rules (1)

For MB to satisfy rules (3) it is sufficient to prove that for eachVi(ā) ∈ MB there is
exactly oneF l

i (ā, b) ∈ MB with b ∈ U for eachzl and that ifVi(ā) /∈ M then there is no
F l

i (ā, z) in MB . This is enough because it is proven that the choice operator will en
thatF l

i (x̄, z) satisfies a functional dependency betweenx̄ andz.
Let us suppose by contradiction that forVi(ā) ∈ MB there are two atomsF l

i (ā, b1) ∈
MB and F l

i (ā, b2) ∈ MB . This would imply by construction ofM that the following
rules are satisfied by evaluating the bodies with the elements ofD :F l

i (ā, bl) ← body(ϕVi
)

andF l
i (ā, b2) ← body(ϕVi

). This would imply thatD has two set of atoms satisfying th
mappingVi(ā) ← body(ϕVi

) and thereforeD is not minimal. SinceD is minimal we have
reached a contradiction.

Now we have to prove that ifVi(ā) /∈ M then there is noF l
i (ā, z) in MB . Let us

suppose by contradiction that there for a given valueb ∈ U , F l
i (ā, b) ∈ MB . This would

imply by construction ofM that it holds, by evaluating the bodies with the elements oD,
F l

i (ā, b) ← body(ϕVi
). This implies thatD satisfiesbody(ϕVi

) withoutVi(a) belonging to
the source. ThenD is not minimal. SinceD is minimal we have reached a contradictio

360 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

l

tion

m
odels

lation
at
if

st of

that
ld

or
of
This proves thatMB := (M\D) is a stable model ofΠB . Now we have to prove thatD is
a minimal model ofΠMB

T .

The programΠ
MB

T contains only facts of the formVi(ā, b̄) ← whereVi(ā) ∈ MB and
b̄ is constructed from all the function predicatesF l

i (ā, b1) ∈ MB . By construction this

facts are exactly the elements ofD. Then,D is a minimal model ofΠMB

T . This proves
thatM is a stable model ofΠ(G) and sinceDM = D we have that every minimal lega
instance has a stable model ofΠ(G) associated. �
Proof of Theorem 2. Let us suppose by contradiction that we have an integra
systemG that has no admissible mappingh for Sl

i (with i �= 0), such thath(Sl
i) ⊆⋃

S∈(Sec\{Sl
i }) L(S), and that there is a stable modelM of the simple version ofΠ(G)

such that the database associatedDM is not a minimal legal instance.
SinceDM is not minimal, there is a minimal legal instanceE such thatE � DM.

From Theorem 1we have that there is a modelM′ of Π(G) such thatDM′ = E. Then
there should be a non empty setC, such thatC ∈ M andC /∈M′.

From the proof ofTheorem 1we have that the programΠ(G) can be divided into two
partsΠB andΠ

MB

T , where the second is a result of an evaluation of the modelMB of ΠB

over the rules ofΠ(G) that do not belong toΠB . The interesting thing is that the progra
Π

MB

T turns out to be a set of facts of global relations. This shows that the different m
will be determined only by the functional predicates atoms of the formF l

i (ā, b) chosen
in each model. Each of this atom will generate exactly one global atom for each re
that has the existential variablezl in the viewVi . Then, we have that the only way th
one model might generate a legal instance ofG with less elements than other model is
two functional predicate atoms generate the same global atom. Then,C has to be formed
by instantiations of sections with existential variables. For simplicity and without lo
generality let us suppose thatC has exactly one instantiation of one section. ForC to belong
to M and not toM′, M should have different values of the existential variables
generate the instantiations ofC than the ones assigned inM and the rest values shou
be the same (sinceDM′ � DM). Furthermore, the values given inM′ should generate
the same set of predicates that another section or sections generates inM and inM′.
Then, if C is the instantiation of a sectionSl

i , we have that the following has to hold f
every valueak in position k of the atomP(ā) ∈ C, being this atom an instantiation
P(x1, . . . , xk, . . . , xn) ∈ Sl

i :

(1) If xk ∈ Const(Sl
i) then there is a different sectionSm

j such thatP(. . . , xk, . . .) ∈ Sm
j

andxk ∈ Const(Sm
j) andxk = ak .

(2) If xk ∈ UVar(Sl
i) then there are two options:

(a) There is other sectionSm
j such thatP(. . . , xk, . . .) ∈ Sm

j , xk ∈ Const(Sm
j) andxk =

ak .
(b) There is other sectionSm

j such thatP(. . . , xk, . . .) ∈ Sm
j , xk ∈ UVar(Sm

j) and
(. . . , ak, . . .) ∈ vj .

(3) If xk ∈ EVar(Sl
i) then there are three options:

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 361

re in

on

,

d by
ve

t to

isfied,
that
(a) There is other sectionSm
j such thatP(. . . , xk, . . .) ∈ Sm

j , xk ∈ Const(Sm
j) andxk =

ak .
(b) There is other sectionSm

j such thatP(. . . , xk, . . .) ∈ Sm
j , xk ∈ UVar(Sm

j) and
(. . . , ak, . . .) ∈ vj .

(c) There is other sectionSm
j such thatP(. . . , xk, . . .) ∈ Sm

j , xk ∈ EVar(Sm
j) and

Fk
j (b̄, ak) ∈ M′ for (b̄) ∈ vj .

Consider a mappingh defined by the different cases just described, for example, if we a
case (2b) we have thath(xk) = µ and in case (3a) we have thath(xk) = ak . By construction
this mapping is such thath(Sl

i) ⊆ ⋃
S∈(Sec\{Sl

i }) L(S). We have reached a contradicti
since we assumed the mappingh did not exists. Therefore we have provedTheorem 2. �

The following intermediate results refer to the refined programΠ(G) introduced in
Section3.2.

Lemma 1. If M is a stable model ofSV (Π(G)), thenDM is a legal instance ofG.

Proof. In the proof we use the same notation as inDefinition 12 of Π(G). Assume
that DM is not legal. Then there must be a viewVi , with definition ϕi :Vi(x̄) ←∧n

u=1 Pu(x̄u, z̄u), for which vi � ϕi(DM). More specifically, there is̄a such thatā ∈
(vi\ϕi(DM)). If ā ∈ vi thenVi(ā) ∈M.

For every global relationPu without existential variables in the view definitionϕi , we
can conclude from rules (3a) ofΠ(G) thatPu(āu, to) ∈ M with āu ⊆ ā. Then, by rules (5)
Pl(āu, td) ∈M and thereforePu(āu) ∈ DM.

Now we will analyze the case of global relation with existential variables treate
rules defined in (3b). For a certainSij , in order to satisfy the second rule of (3b), we ha
to analyze two cases:

(1) Vi(ā) ∈M andauxvij
(ā′) /∈M. Then,addvij

(ā′) ∈ M. From the third rule of (3b) we
have that there exists a non-empty setL such thatvarvij Zl

(āZl
) /∈ M for l ∈ L. Now

let us take a look at rules in (4).
From the 3rd rule, we have that for everyl ∈ L, auxvij Zl

(ā′) /∈M. Then, from the 2nd
rule and sinceaddvij

(ā′) ∈ M we have that for everyl ∈ L, addvij Zl
(ā′) ∈ M. Now,

from the first rule, the choice operator will assign one value of the domain toZl , e.g.,
bl for eachl ∈ L. Then we will haveF l

i (ā
′, bl) ∈ M for everyl ∈ L. Now let us have

a look at the rules in (3b). ForPk ∈ Sij , there are two cases to analyze with respec
the first rule:
(a) {Zl | Zl ∈ (X̄k \X̄′)} ⊆ {Zl | l ∈ L}. ThenPk(āk,vij) ∈M whereāk is a projection

of ā and thebl of the functional predicates. HencePk(āk, td) ∈ M and therefore
Pk(āk) ∈ DM.

(b) {Zl | Zl ∈ (X̄k \ X̄′)} � {Zl | l ∈ L}. For everyZl′ ∈ {{Zl | Zl ∈ (X̄k \ X̄′)} \ {Zl |
l ∈ L}} we have that sincel′ /∈ L, varvij Zl′ (āZl′) ∈ M. Since the only way for an
atom to belong to a model is to have a rule with it in the head and the body sat
we have that the body of the fourth rule of (3b) has to be true. This implies
Pk(āk,nvij) ∈ M. We also have that sinceF l′(ā′, bl) /∈ M for any value ofbl ,
i

362 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

d
at are
tes

by the

)

a-

stable
the

d
nd of
thenaddvij Zl′ (ā
′) /∈M and thereforeauxvij Zl′ (ā

′) ∈ M. Then because of the thir
rule of (3b) we have that the values associated to the existential variables th
not Zl′ in Pk(āk,nvij) coincide with the values given by the functional predica
of the view. SincePk(āk,nvij) ∈ M we have from rules in (5) thatPk(āk,nvhk)

(with hk �= ij) or Pk(āk, to) belong toM and therefore thatPk(āk, td) ∈ M. Then
Pk(āk) ∈ DM sharing the same existential variable that the ones generated
previews case considered.

Then we have that̄aSij
∈ ϕiSij

(DM).7

(2) Vi(ā) ∈ M and auxvij
(ā′) ∈ M. Then,addvij

(ā′) /∈ M. From the 3rd rule of (3b
varvij Zl

(āZl
) ∈ M for all Zl . Then, from the fourth rule of (3b)Pk(āk,nvij) ∈ M

for all Pk ∈ Sij such thatZl ∈ X̄k . From rules in (5), withhk �= ij , Pk(āk,nvhk) or
Pk(āk, to) belong toM and therefore thatPk(āk, td) ∈M. ThenPk(āk) ∈ DM. Then
we have that̄aSij

∈ ϕiSij
(DM).

Now, since the differentSij do not share existential variables we have thatϕi(DM) =�Sij ∈Vi
ϕiSij

(DM). Then sincēaSij
∈ ϕiSij

(DM), ā ∈ ϕi(DM). We have reached a contr
diction and the lemma is proven.�
Lemma 2. If D is a minimal instance ofG, then there is a stable modelM of SV(Π(G)),
such thatDM = D.

Proof. We need to define a Herbrand structure that will be our candidate to be the
modelM that generates instanceD. For doing this, we use the same notation as in
Definition 12of Π(G). We put the following facts intoM:

(1) Pk(ā, td) for every global atomPk(ā) ∈ D. No other atom annotated withtd belongs
to M.

(2) dom(a) iff a ∈ U .
(3) Vi(ā) iff ā ∈ vi for vi ∈ G.
(4) Pk(āk, to) iff there is a viewVi(X̄) ← P1(X̄1), . . . ,Pk(X̄k), . . . ,Pn(X̄n), in whichPk

has no existential variables and such thatā ∈ vi .
(5) For every atomPk(āk) ∈ D, wherePk(āk, to) /∈ M, we need to check which views ha

the potential of generating it. After some considerations we will specify at the e
this item what new atoms go intoM and which do not.
We have that for each view sectionSl

i with an existential variablezl ,8 such thatPk ∈ Sl
i ,

define the following views:

Pk

(
X̄′

k, S
l
i

) ←
∧

Pj (X̄j)∈Sl
i

Pj (X̄j) ∧ Vi(X̄),

7 āSij
corresponds to the atom̄a restricted to the variables of the viewϕi that belong toSij , andϕiSij

is the
view definitionϕi restricted to the predicates inSij and its variables.

8 TheSl are the view sections introduced in Section3.1.

i

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 363

ead of

sence

e is
t

3b)
of

d

ction
that

this
ill be
re
e
se any

t

whereSl
i is considered as an annotation constant in the second argument of h

the view. This view will contain the information of which.
Let P be the result of instantiating these views over the atoms inD and the source
extensions.P contains the possible section that might have generated the pre
of each global atom inD. We will defineSPk = {Sl

i | Pk(āk, S
l
i) ∈ P }, i.e., SPk con-

tains al the sections from whichPk(āk) could have been generated. Note that ther
only oneSij

9 in G such thatSij ⊇ Sm
i . Then, for each sectionSl

i ∈ SPk that does no
have an admissible mapping10 such thath(Sl

i) ⊆ ⋃
S∈(Sec\{Sl

i }) L(S) do the following:

Pk(āk,vij) ∈ M, addvij
(ā′) ∈ M, Vi(ā) ∈ M, auxvij

(ā′) /∈ M, varvij zl
(āzl

) /∈ M,
auxvij Zl

(ā′) /∈M, addvij zl
(ā′) ∈ M. For all the rest of the sections ofSPk , e.g.,Sm

i , we
have that thevarvinzm(āzm) ∈ M. If for all the sections in a viewvarvinzm(āzm) ∈ M
thenauxvij

(ā′) ∈ M andaddvij
(ā′) /∈ M.

(6) For everyPk(āk,vij) ∈M, we add the factPk(āk,nvkm) to M for everySkm �= Sij .
(7) For everyaddvij zl

(ā′),Pk(āk,vij) ∈ M, addF l
i (X̄, zl) into M, wherezl is the value

of that existential variable inPk(āk,vij).

By constructionM minimally satisfies rules (1), (2), (3a), (5) and the first rule of (
in the programΠ(G)M. If auxvij

(ā′) ∈ M, Π(G)M does not include the second type

rules of (3b). Ifauxvij
(ā′) /∈ M, Π(G)M has the ruleaddvij

(X̄′) ← Vi(X̄) corresponding
to second type of rules of (3b). This rule is satisfied byM because of the facts adde
to M in item (5). For the sectionSl

i such have no admissible mapping such thath(Sl
i) ⊆⋃

S∈(Sec\{Sl
i }) L(S), we have that no other views can generate the facts for this se

and therefore that the body of the fourth rules in (3b) will not be satisfied. Since in
casevarvij zl

(āzl
) /∈ M, the whole rule is satisfied. For the sections that are not in

case, i.e., there is an admissible mapping, then the body of the fourth rules in (3b) w
satisfied and sincevarvij zl

(āzl
) ∈ M, the whole rule will be satisfied. If all the sections a

in the situation last described,auxvij
(ā′) ∈ M and therefore the third rules in (3b) will b

satisfied. Following the same analysis and the fact that the choice operator will choo
value of the domain, it is easy to see that rules in (4) are also minimally satisfied.M is a
minimal model ofΠ(G)M and therefore there is a stable model ofΠ(G), M, such that
DM corresponds to the minimal legal instanceD. �
Lemma 3. If M is a stable model of SV(Π(G)), thenDM is a minimal instance ofG.

Proof. The legality ofDM was established inLemma 1. Assume, by contradiction tha
DM is not a minimal instance ofG. Then there must be a minimal instanceD such that
D � DM. By Lemma 2we have that there is a modelM′ such thatDM′ = D. Then,
DM′ � DM. In particular, we have that there is an atom of a global relation, sayPk(ā, td),
such thatPk(ā, td) ∈ M andPk(ā, td) /∈ M′. If Pk(ā, td) ∈ M we have two options:

9 Here theSij are those appearing inDefinition 12.
10 As defined in Section3.1.

364 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

at
a

e
es

els.

rsion
delete
owing

mon
(1) Pk(ā, to) ∈ M. Then there is a viewvi in whichPk has no existential variables. In th
casePk(ā, to) belongs to all the models and in particular toM′. We have reached
contradiction sincePk(ā, td) /∈M′.

(2) Pk(ā,vij) ∈M. This implies thataddvij
(ā′) ∈ M and for allal ∈ (ā \ ā′), F l

i (ā
′, al) ∈

M. Hence there is an atomVi(Ā) ∈ M such that the first rule of (3b) is satisfied. W
can also conclude thatvarvij Zl

(āZl
) /∈ M. Then there is no other view that satisfi

this sectionSl
i . This implies that ifM′ does not containPk(ā, td) then, in order to

satisfy the openness of viewvi it must add a new predicate annotated withtd. But
D′

M � DM. We have reached a contradiction.

As we reached a contradiction in both cases, we have proven thatDM is a minimal legal
instance ofG. �
Proof of Theorem 3. Directly fromLemmas 2 and 3. �
A.2. Obtaining the simple program from the refined program

Assume the hypothesis ofTheorem 2hold. We denote the view sections withSl
i as in

Section3.1. The sectionsSl
i are all associated to the definition of viewVi . We show now a

syntactic transformation of the refined version of the programΠ(G). We justify each step
of the transformation, so that at the end it will be clear that they have the same mod

Since there is no admissible mapping, eachSl
i can only be generated by viewVi .

In consequence, for every modelM of the refined version of
(G), we have that for
all ā, varvij Zl

(¯̄a) /∈ M. This implies that for every modelM and ā, auxvij
(ā) /∈ M and

auxvijZl
(ā) /∈ M. Since those atoms will never appear in a model of the refined ve

of
(G), we can delete the rules with those predicates in their heads. We can also
them from the bodies of the rules where they appear negated. We obtain the foll
program:

1. Factdom(a) for every constanta ∈ U .
2. FactVi(ā) whenever̄a ∈ vi for some source extensionvi in G.
3. For every view (source) predicateVi in the system with descriptionVi(X̄) ←

P1(X̄1), . . . ,Pn(X̄n):
(a) For everyPk with no existential variables, the rules

Pk(X̄k, to) ← Vi(X̄).

(b) For every setSij of predicates of the description’s body that are related by com
existential variables{Z1, . . . ,Zm}, the rules,

Pk(X̄k, vij) ← addvij
(X̄′),

∧
Zl∈(X̄k\X̄′)

F l
i (X̄

′,Zl), for Pk ∈ Sij .

addvij
(X̄′) ← Vi(X̄), whereX̄′ = X̄ ∩

{ ⋃
Pk∈Sij

Xk

}
.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 365

econd

rate
can be

mon

Sym-
4. For every predicateF l
i (X̄

′,Zl) introduced in (3b), the rules,

F l
i (X̄

′,Zl) ← addvij Zl
(X̄′),dom(Zl),choice((X̄′), (Zl)).

addvij Zl
(X̄′) ← addvij

(X̄′), for l = 1, . . . ,m.

5. For every global relationP(X̄) the rules

P(X̄,nvij) ← P(X̄, vhk), for
{
(ij, hk) | P(X̄) ∈ Sij andShk

}
.

P (X̄, nvij) ← P(X̄, to), for
{
(ij) | P(X̄) ∈ Sij

}
.

P (X̄, td) ← P(X̄, vij), for
{
(ij) | P(X̄) ∈ Sij

}
.

P (X̄, td) ← P(X̄, to).

This is a positive program with choice. Because of the second rule in (3b) and the s
rule in (4), we can replace every occurrence ofaddvij

(X̄′) and addvij Zl
(X̄′) by Vi(X̄).

Also from the third and fourth rules in (5), we can replace every occurrence ofP(X̄, to)

andP(X̄, vij) by P(X̄, td). It is also easy to see that the first two rules in (5) will gene
atoms that are useless in the calculation of the global predicates; then these rules
deleted. We obtain the following program:

1. Factdom(a) for every constanta ∈ U .
2. FactVi(ā) whenever̄a ∈ vi for some source extensionvi in G.
3. For every view (source) predicateVi in the system with descriptionVi(X̄) ←

P1(X̄1), . . . ,Pn(X̄n):
(a) For everyPk with no existential variables, the rules

Pk(X̄k, td) ← Vi(X̄).

(b) For every setSij of predicates of the description’s body that are related by com
existential variables{Z1, . . . ,Zm}, the rules,

Pk(X̄k, td) ← Vi(X̄),
∧

Zl∈(X̄k\X̄′)

F l
i (X̄

′,Zl), for Pk ∈ Sij .

4. For every predicateF l
i (X̄

′,Zl) introduced in (3b), the rules,

F l
i (X̄

′,Zl) ← Vi(X̄), dom(Zl), choice
(
(X̄′), (Zl)

)
.

By merging rules (3a) and (3b), the revised version ofΠ(G) is eventually syntactically
transformed to the simple version of the program.

References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
[2] A. Abiteboul, O. Duschka, Complexity of answering queries using materialized views, in: Proc. ACM

posium on Principles of Database Systems (PODS 98), 1998, pp. 254–263.

366 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367

. ACM

Logic

al Sym-
cience,

tabases
Science,

ificial

Toler-
ion.
ces, in:
522,

R. van

(1–2)

ational

: Proc.
puter

nt and
), 2003,

stems,
ann,

ational
00), in:

paper

ing,

ersity,

. 43 (1)

gic-

ation
tes in

eration

abases,
[3] M. Arenas, L. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases, in: Proc
Symposium on Principles of Database Systems (PODS 99), 1999, pp. 68–79.

[4] M. Arenas, L. Bertossi, J. Chomicki, Answer sets for consistent query answers, Theory Practice
Programm. 3 (4–5) (2003) 393–424.

[5] P. Barcelo, L. Bertossi, Logic programs for querying inconsistent databases, in: Proc. 5th Internation
posium on Practical Aspects of Declarative Languages (PADL 03), in: Lecture Notes in Computer S
vol. 2562, Springer, 2003, pp. 208–222.

[6] P. Barcelo, L. Bertossi, L. Bravo, Characterizing and computing semantically correct answers from da
with annotated logic and answer sets, in: Semantics of Databases, in: Lecture Notes in Computer
vol. 2582, Springer, 2003, pp. 1–27.

[7] R. Ben-Eliyahu, R. Dechter, Propositional semantics for disjunctive logic programs, Ann. Math. Art
Intelligence 12 (1994) 53–87.

[8] L. Bertossi, L. Bravo, Consistent query answers in virtual data integration systems, in: Inconsistency
ance in Knowledge-bases, Databases and Software Specifications, Springer, submitted for publicat

[9] L. Bertossi, J. Chomicki, A. Cortes, C. Gutierrez, Consistent answers from integrated data sour
Proc. Flexible Query Answering Systems (FQAS 02), in: Lecture Notes in Artificial Intelligence, vol. 2
Springer, 2002, pp. 71–85.

[10] L. Bertossi, J. Chomicki, Query answering in inconsistent databases, in: J. Chomicki, G. Saake,
der Meyden (Eds.), Logics for Emerging Applications of Databases, Springer, 2003.

[11] L. Bertossi, C. Schwind, Database repairs and analytic tableaux, Ann. Math. Artificial Intelligence 40
(2004) 5–35.

[12] L. Bertossi, L. Bravo, 2004, in preparation.
[13] L. Bravo, L. Bertossi, Logic programs for consistently querying data sources, in: Proc. of 18th Intern

Joint Conference on Artificial Intelligence (IJCAI 03), Morgan Kaufmann, 2003, pp. 10–15.
[14] A. Cali, D. Calvanese, G. De Giacomo, M. Lenzerini, Data integration under integrity constraints, in

Conference on Advanced Information Systems Engineering (CAiSE 02), in: Lecture Notes in Com
Science, vol. 2348, Springer, 2002, pp. 262–279.

[15] A. Cali, D. Lembo, R. Rosati, On the decidability and complexity of query answering over inconsiste
incomplete databases, in: Proc. ACM Symposium on Principles of Database Systems (PODS 03
pp. 260–271.

[16] A. Cali, D. Lembo, R. Rosati, Query rewriting and answering under constraints in data integration sy
in: Proc. of 18th International Joint Conference on Artificial Intelligence (IJCAI 03), Morgan Kaufm
2003, pp. 16–21.

[17] A. Celle, L. Bertossi, Querying inconsistent databases: algorithms and implementation, in: ‘Comput
Logic—CL 2000’. Stream: 6th International Conference on Rules and Objects in Databases (DOOD
Lecture Notes in Artificial Intelligence, vol. 1861, Springer, 2000, pp. 942–956.

[18] J. Chomicki, J. Marcinkowski, Minimal-change integrity maintenance using tuple deletions, arXiv.org
cs.DB/0212004. Inform. and Comput., submitted for publication.

[19] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic programm
ACM Comput. Surv. 33 (3) (2001) 374–425.

[20] O. Duschka, Query planning and optimization in information integration, PhD Thesis, Stanford Univ
December 1997.

[21] O. Duschka, M. Genesereth, A. Levy, Recursive query plans for data integration, J. Logic Programm
(2000) 49–73.

[22] T. Eiter, W. Faber, N. Leone, G. Pfeifer, Declarative problem-solving in DLV, in: J. Minker (Ed.), Lo
Based Artificial Intelligence, Kluwer, 2000, pp. 79–103.

[23] T. Eiter, M. Fink, G. Greco, D. Lembo, Efficient evaluation of logic programs for querying data integr
systems, in: Proc. 19th International Conference on Logic Programming (ICLP 03), in: Lecture No
Computer Science, vol. 2916, Springer, 2003, pp. 163–177.

[24] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Gen
Comput. 9 (1991) 365–385.

[25] F. Giannotti, S. Greco, D. Sacca, C. Zaniolo, Programming with non-determinism in deductive dat
Ann. Math. Artificial Intelligence 19 (1–2) (1997) 97–125.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329–367 367

Interna-
cience,

ructs in

hemas,
cience,

. 2 (3)

uerying
ecture

nform.

: Proc.

Data-

compu-

paper

ence,

ming

n Arti-

) 401–

oulos,

l

[26] F. Giannotti, D. Pedreschi, D. Sacca, C. Zaniolo, Non-determinism in deductive databases, in: Proc.
tional Conference on Rules and Objects in Databases (DOOD 91), in: Lecture Notes in Computer S
vol. 566, Springer, 1991, pp. 129–146.

[27] F. Giannotti, D. Pedreschi, C. Zaniolo, Semantics and expressive power of nondeterministic const
deductive databases, J. Comput. System Sci. 62 (1) (2001) 15–42.

[28] G. Grahne, A. Mendelzon, Tableau techniques for querying information sources through global sc
in: Proc. International Conference on Database Theory (ICDT 99), in: Lecture Notes in Computer S
vol. 1540, Springer, 1999, pp. 332–347.

[29] J. Grant, M. Minker, A logic-based approach to data integration, Theory Practice Logic Programm
(2002) 323–368.

[30] G. Greco, S. Greco, E. Zumpano, A logic programming approach to the integration, repairing and q
of inconsistent databases, in: Proc. International Conference on Logic Programming (ICLP 01), in: L
Notes in Computer Science, vol. 2237, Springer, 2001, pp. 348–364.

[31] J. Gryz, Query rewriting using views in the presence of functional and inclusion dependencies, I
Syst. 24 (7) (1999) 597–612.

[32] D. Lembo, M. Lenzerini, R. Rosati, Source inconsistency and incompleteness in data integration, in
Workshop on Knowledge Representation Meets Databases (KRDB 02), 2002.

[33] M. Lenzerini, Data integration: a theoretical perspective, in: Proc. ACM Symposium on Principles of
base Systems (PODS 02), 2002, pp. 233–246.

[34] N. Leone, P. Rullo, F. Scarcello, Disjunctive stable models: unfounded sets, fixpoint semantics, and
tation, Inform. and Comput. 135 (2) (1997) 69–112.

[35] N. Leone, et al., The DLV system for knowledge representation and reasoning, arXiv.org
cs.LO/0211004, ACM Trans. Comput. Logic, submitted for publication.

[36] A. Levy, Logic-based techniques in data integration, in: J. Minker (Ed.), Logic Based Artificial Intellig
Kluwer, 2000, pp. 575–595.

[37] V. Lifschitz, H. Turner, Splitting a logic program, in: Proc. International Conference on Logic Program
(ICLP 94), MIT Press, 1994, pp. 23–37.

[38] I. Niemela, Implementing circumscription using a tableau method, in: Proc. European Conference o
ficial Intelligence (ECAI 96), 1996, pp. 80–84.

[39] T. Przymusinski, Stable semantics for disjunctive programs, New Generation Comput. 9 (3/4) (1991
424.

[40] R. Reiter, Towards a logical reconstruction of relational database theory, in: M.L. Brodie, J. Mylop
J.W. Schmidt (Eds.), On Conceptual Modeling, Springer-Verlag, 1984, pp. 191–233.

[41] H. Wang, C. Zaniolo, Nonmonotonic reasoning inLDL++, in: J. Minker (Ed.), Logic-Based Artificia
Intelligence, Kluwer, 2000, pp. 523–544.

	Deductive databases for computing certain and consistent answers from mediated data integration systems
	Introduction
	Preliminaries
	Global schemas and view definitions
	Global systems and consistency

	Specification of minimal instances
	The simple program
	The refined program

	Specification of repairs of a global system
	Consistent answers
	Further analysis, extensions and discussion
	Complexity
	Infinite vs. finite domain
	Choice models vs. Skolem functions
	Disjunctive sources

	Conclusions
	Acknowledgements
	References

