Available online at www.sciencedirect.com

sclENcE@DIREGT' JOURNAL OF
APPLIED LOGIC

Journal of Applied Logic 3 (2005) 329-367

www.elsevier.com/locate/jal

Deductive databases for computing certain
and consistent answers from mediated data
integration systems

Loreto Bravo, Leopoldo Bertossi

Carleton University, School of Computer Science, Ottawa, Canada
Available online 18 August 2004

Abstract

We address the problem of retrieving certain and consistent answers to queries posed to a medi-
ated data integration system under the local-as-view paradigm with open sources and conjunctive
and disjunctive view definitions. For obtaining certain answers a query program is run under the
cautious stable model semantics on top of a normal deductive databasehwiite operator that
specifies the class of minimal legal instances of the integration system. This methodology works
for all monotone Datalog queries. To compute answers to queries that are consistent with respect
to given global integrity constraints, the specification of minimal legal instances is combined with
another disjunctive deductive database that specifies the repairs of those legal instances. This allows
to retrieve the answers to any Dataloguery that are consistent with respect to global universal and
referential integrity constraints.

0 2004 Elsevier B.V. All rights reserved.

Keywords:Databases; Virtual data integration; Integrity constraints; Answer Set Programming

1. Introduction

Usually independent and autonomous data sources are virtually integrated by means
of a mediator, which is a program that provides a global schema as an interface, and is

* Corresponding author.
E-mail addressedbravo@scs.carleton.¢a. Bravo), bertossi@scs.carleton.@a Bertossi).

1570-8683/$ — see front mattét 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2004.07.023

http://www.elsevier.com/locate/jal
mailto:lbravo@scs.carleton.ca
mailto:bertossi@scs.carleton.ca

330 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

responsible for generating query plans to answer global queries by retrieving data sets
from the sources and combining them into a final answer set to be given back to the user.

The “Local-As-View” (LAV) approach to virtual data integration requires that each data
source is described as a set of views over the global schema. On the other side, the “Global-
As-View” (GAV) approach, defines every global relation as a view of the set of relations
in the sources (sd83] for a survey on these and mixed approaches). Query answering is
harder under LAV2]. On the other side, LAV offers more flexibility to accept or release
sources into/from an existing system.

In these virtual integration setting, inconsistencies with respect to global integrity con-
straints (ICs), i.e., that refer to the relations at the virtual level, are likely to occur. This is
due to the autonomy of the participating sources, the lack of a central maintenance mech-
anism; and also to the flexibility to add or delete sources, without having to consider the
other sources in the system.

Example 1. Consider the LAV based global integration systémwith a global relation
R(X,Y) and two source relations, = {V1(a, b), Vi(c,d)} andvo = {Va(a, ¢), Vo(d, e)}
that are described by the view definitiols(X, Y) < R(X,Y); Va(X,Y) < R(X,Y).
The global functional dependency (FR): X — Y is violated through the pair of tuples
{(a,b), (a,0)}.

Inconsistencies are not exclusive to integration systems. For several reasons also single
databases may become inconsistent with respect to certain ICs. Restoring consistency may
be undesirable, difficult or impossib]&0]. In such a situation, possibly most of the data is
still consistent and can be retrieved when queries are posed to the datalpziseofisistent
data in a stand-alone relational database is characterized as the data that is invariant under
all minimal restorations of consistency, i.e., as data that is present in all repaired versions
of the original instance (thespairg). In particular, an answer to a query is defined as
consistent when it can be obtained as a standard answer to the query from every possible
repair.

In [3-5,17,30] some mechanisms have been developed for consistent query answering
(CQA), i.e., for retrieving consistent answer when queries are posed to such an inconsistent
database. All those mechanisms, in different degrees, work only with the original, incon-
sistent database, without restoring its consistency. That is, inconsistencies are solved at
query time. The above mentioned repairs provide an auxiliary concept that allows defining
the right semantics for consistent query answers. Furthermore, in some of the query evalu-
ation methodologies, repairs are also an auxiliary computational intermediate step that, for
complexity reasons, has to be kept to a minimum.

In virtual data integration systems, there is also an intuitive notion of consistent answer
to a query.

Example 2 (Example Icontinued. If we pose to the global system the quady Ang X,

Y) < R(X,Y), we obtain the answelg\nga, b), Andc, d), Anda, c), Andd, e¢)}. How-
ever, only the tupled\ngc, d), Angd, ¢) should be returned as consistent answers with
respecttothe FIR: X — Y.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 331

Several algorithms for deriving query plans to obtain query answers from virtual data
integration systems have been proposed in the last few yearB@éder a survey). How-
ever they are not designed for obtaining the consistent answers to queries. Even more, some
of those algorithms assume that certain ICs hold at the global [2¥¢19,31] what may
not be a realistic assumption due to the independence of the different data sources and the
lack of a central, global maintenance mechanism. Only a few exceptions, including this
paper, consider the problem of CQA in virtual integration systfhis3,16,32]

In a virtual data integration system, the mediator should solve potential inconsistencies
when the query plan is generated; again without attempting to bring the whole system into
a global consistent material state. Such an enhanced query plan generator should produce
query plans that are guaranteed to retrieve all and only the consistent answers to global
queries.

In this spirit and under the LAV approach, [@] a methodology for generating query
plans to compute answers to limited forms of queries that are consistent with respect to an
also restricted class of universal ICs was presented. This method uses the query rewriting
approach to CQA presented|[iB]; and in consequence inherits its limitations in terms of
the queries and ICs that it can handle, actually queries that are conjunctions of tables and
universal ICs. Once the query is transformed, query plans are generated for the new query.
However,[9] provides the right semantics for CQA in mediated integrated systems (see
Section?).

In this paper, under the LAV approach and assuming that sources are open (or incom-
plete)[2], we solve the problem of retrieving consistent answers to global queries. We
consider arbitrary universal ICs and referential ICs; that is, the ICs that are most used
in database praxig]. View definitions are conjunctive queries, and disjunctions thereof.
Global queries are expressed in Datalog and its extensions with negation.

The methodology can be summarized as follows. In a first stage, we specify, using a de-
ductive database witthoice operatof25] and stable model semanti@st], the class of all
minimal legal global instances of a virtual integration system. This approach is inspired by
the inverse-rules algorithfi21] and uses auxiliary Skolem predicates whose functionality
is enforced with the choice operator.

In order to obtain answers to global queries from the integration system, a query pro-
gram has to be combined with the deductive database that specifies the minimal instances
as its stable models, and then be run under the skeptical stable model semantics. It turns out
thatminimal answersi.e., answers that are true in all minimal instances, can be retrieved
for Datalog® queries. Theertain answersi.e., those true in all legal global instances, can
be obtained for all monotone queries, a result that generalizes those found so far in the
literature.

In a second stage, we address the computation of consistent answers. We first observe
that an integration system is consistent if all of its minimal legal instances satisfy the in-
tegrity constraint49]. Consistent answers from an inconsistent integration systems are
those that can be obtained from all the repairs of all the minimal legal instances with re-
spect to the global ICE3,9]. In consequence, in order to retrieve consistent answers, the
specification of the minimal instances has to be combined with a specification of their re-
pairs with respect to given ICs. The latter is a disjunctive deductive database that specifies
the repairs as its stable models; and uses annotation constants as in the case of repairs of

332 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

single relational databasf as presented ifb,6]. We have experimented with this query
answering mechanism (and the computation of minimal instances and their repairs) with
the DLV system[22,35], which implements the stable model and answer set semantics of
disjunctive extended deductive databases.

The paper is structured as follows. In Sectme review some basic notions we need in
the rest of this paper. In Secti@the minimal legal global instances of a mediated system
are specified by means of logic programs with a stable model, or answer sets, semantics.
In Sectiond, the repairs of the minimal global instances are specified as the stable models
of disjunctive logic programs with annotation constants, like those used to specify repairs
of single relational databases for CQ@y. In Section5, consistent answers to queries are
obtained by running a query program in combination with the previous two specification
programs. In Sectiofi several issues and possible extensions around the specification pre-
sented in the previous sections are discussed in detail. Finally, in S&ctiendraw some
final conclusions, and we point to related and future weétgpendix A.1contains the
proofs of the main results in this paper.

This paper is an extended version[®8] that now includes the most general specifi-
cation of minimal instances, the proofs, an extension to disjunctive view definitions, and
an analysis of: complexity, the underlying assumptions about the domain, a comparison
between the use of the choice operator and the use of Skolem functions.

2. Preliminaries
2.1. Global schemas and view definitions

A global schemaR consists of a finite set of relatiof®1, R, ..., R,,} over a fixed,
possibly infinite domaird/. With these relation symbols and the element#/dfeated as
constants, a first-order languag€R) can be defined. This language can be extended with
defined and built-in predicates, like (in)equality. In particular, we will extend the global
schema with docal schemas, i.e., a finite set of new view predicat&s, V>, ..., V,, that
will be used to describe the relations in the local sources.

A view, denoted by a new predicatg, is defined by means of conjunctive quégty,

i.e., anL(R US)-formulagy of the formV (f) < body(¢y), wheret is a tuple containing
variables and/or constants, alpddy(¢y) is a conjunction ofR-atoms. In general/ € S.

A database instanc® over schem& can be considered as a first-order structure with
domaini{, where the extensions of the relatioRs are finite. The extensions of built-
in predicates may be infinite, but fixed. A glohategrity constraint(IC) is an L(R)-
sentenca). An instanceD satisfies), denotedD & v, if ¥ is true inD.

Given a database instanfeover schem&, and a view definitiorpy, ¢y (D) denotes
the extension oW obtained by applying the definitiopy to D. If the view already has
an extensiorv (corresponding to the contents of a data source), it is possiblevtisat
incomplete and stores only some of the tuplegi{D); i.e.,v C gy (D), and we say the
view extensionv is openwith respect taD [2]. Most mechanisms for deriving query plans
assume that sources are open, ¢24.].

A sourceS is a pair{p, v), whereg is the view definition, and is an extension for
the view defined by. An open global syster@ is a finite set of open sources. The global

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 333

schemaR consists of the relation names that do not have a definition in the global system.
The underlying domaity for R is a proper superset of tlaetive domainwhich consists of

all the constants appearing in the view extensigraf the sources, and in their definitions.
When considering global integrity constraints #utive domairalso includes the constants

in them. A global systeng defines a set of legal global instan¢a83].

Definition 1. Given an open global systeth= {(¢1, v1), ..., (¢n, vs)}, the set of legal
global instances ikinst(G) = {D instance oveRR | v; C ¢; (D), i =1,...,n}.

Example 3 (Example Zontinued. Let us denote by, ¢ the view definitions ofVy, Vo,
resp. inGs. D = {R(a, b), R(c,d), R(a,c), R(d, e)} is a legal global instance, because
v1 = {Vi(a,b), Vi(c,d)} € ¢1(D) = {Vi(a,b), Vi(c,d), Vi(a, c), Vi(d,e)} and vy =
{Va(a, c), Va(d, e)} C p2(D) = {Va(a, b), Va(c, d), Va(a, c), Va(d, e)}. Supersets ob are
also legal instances; but proper subsets are not.

The semantics of query answers in mediated integration systems is given by the notion
of certain answer In this paper we will consider queries expressed in Datalog and its
extensions with negation.

Definition 2 [2]. Given an open global systeg and a global quenQ(X) € L(R), a
ground tupler is acertain answetto Q in G if for every global instance® e Linst(G), it
holdsD E Q[7].1 We denote withCertaing (Q) the set of certain answers @in G.

The inverse-rules algorithif21] for generating query plans under the LAV approach
assumes that sources are open and each source rélatsostefined as a conjunctive view
over the global schem&.:(X) < P1(X1), ..., P,(X,), with X € J; X;. Since the queries
posed to the system are expressed in terms of the global relations, that now appear in the
bodies of the view definitions (contrary to the GAV approach), those definitions cannot be
directly applied. The rules need to be “inverted”. .

Forj=1,...,n, Pj(X’j) < V(X) is an “inverse rule” forP;. The tupleX; is trans-
formed to obtain the tuplé’; as follows: if X € Xj is a constant or is a variable appearing
in X, thenX is unchanged irX ;. Otherwise X is a variablex; that does not appear i,

and it is replaced by the terrnf (X), where f; is a fresh Skolem function. We denote the
set of inverse rules of the collectidhof source descriptions i by V1.

Example 4. Consider the integration syste@ia with global schem& = {P, R}. The set
V of local view definitions consists df1(X, Z) < P(X,Y),R(Y,Z), andVa(X,Y) «
P(X,Y).The set~1 consists of the ruleB (X, f (X, Z)) < Vi(X, Z); R(f (X, Z), Z) <
Vi(X, Z);andP(X,Y) < Va(X,Y).

For a view definition, we need as many Skolem functions as existential variables in
it. For example, if instead o¥1(X, Z) < P(X,Y), R(Y, Z) we had, sayv1(X, Z) «

1p k= Q[f] means that quer@(X) becomes true in instande, when tuple of variableg is assigned the
values in the tuple of database elements.

334 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

P(X,Y), R(Y,Z, W), we would need two Skolem functions for that view, and the inverse
rules arising from that view would b& (X, f (X, Z)) <« V1(X, Z) andR(f (X, Z), Z,
g(X,2)) <« Vi(X, Z).

The inverse rules are then used to answer Datalog queries expressed in terms of the
global relations, that now, through the inverse rules, have definitions in terms of the sources.
The query plan obtained with the inverse rule algorithm is maximally contained in the
query[21], and the answers it produces coincide with the certain ang@jers

2.2. Global systems and consistency

We assume that we have a set of global integrity constriintgs £(R) that is consistent
as a set of logical sentences, aggherig in the sense that it does not entail any ground
database literal by itself, i.e., independently of concrete instfijelCs used in database
praxis are always generic. The ICs can be universal, i.e., a sentence of thé/fowhere
v is a prefix of universal quantifiers agda quantifier-free formula; or referential, i.e., of
the form

VX(P(X)—3YQ(X'.Y)), X' cX? (1)

Definition 3 [9]. (a) Given a global syster§i, an instanceD is minimalif D € Linst(G)
and is minimal with respect to set inclusion, i.e., there is no other instaridastiG) that
is a proper subset db (as a set of atoms). We denote lninst(G) the set of minimal
legal global instances @f with respect to set inclusion.

(b) A global systemG is consistentwith respect tolC, if for all D € Mininst(G),
D EIC.

Example 5 (Example 4continued. Assume thatGo has the source contentg =

{Vi(a, b)}, vo ={Va(a,c)},andthalf ={a, b, c, u,...}. Then, the elements dininst(G,)

are of the formD, = {P(a,z), R(z,b), P(a,c)} for some z € UU. The global FD
P(X.,Y):X — Y is violated exactly in those minimal legal instand@sfor which z # c.

Thus,G> is inconsistent.

Definition 4 [9]. The ground tuple: is aminimal answerto a queryQ posed tog if for
every D € Mininst(G), a € Q(D), whereQ (D) is the answer set fo@ in D. The set of
minimal answers is denoted Bjinimalg (Q).

Clearly Certaing (Q) < Minimalg(Q). For monotone querigd], the two notions co-
incide[9]. Nevertheless, ifExample 5the queryAng X, Y) < —P(X,Y) has(b,a) as a
minimal answer, but not as a certain answer, because there are legal instances that con-
tain P (b, a). Since consistency was defined with respect to minimal global instances, the
notion of minimal answer is particularly relevant.

2 To keep the presentation simplg,is a single variable, however it could be a tuple of variables, actually
interleaved with those i&X’.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 335

Definition 5 [3]. (a) Given a database instanbe we denote by¥' (D) the set of ground
atomic formulag P(a) | P € R andD = P(a)}.

(b) Let D, D’ be database instances over the same schema and domaitisEnee
A(D, D', betweenD and D’ is the symmetric differenca (D, D') = (X (D) \ X (D)) U
(Z(D)\ Z(D)).

We may assume that the original data sources and the global legal instances do not
contain null values, however when dealing with referential integrity constraints (RICs),
we will consider the possibility of having them, in order to restore the consistency of the
database. If no RICs are present, we will assume that null values are not available either.
However, if necessary, the null valuaill will be treated as a new, special constant. Its
presence in a tuple means that there is an unknown value for the correspondent attribute,
i.e., we have incomplete information. Since we do not have precise information about it, we
will consider that no inconsistencies arise due to its presence. This leads to the following
definition of consistency in the presence of null values:

Definition 6 [6]. For a database instan£e whose domaid may contain the constanull
and a set of integrity constraint€ = ICy U ICg, wherelCy; is a set of universal integrity
constraints andiCy is a set of referential integrity constraints, we say thatatisfiedC,
written D = IC, iff:

(1) For eachvy € ICy, D = ¢[a] for every ground tuplé: of elements inZ/ — {null}),
and

(2) For each sentence i€y of the form (1), if D &= P[a], with a a ground tuple of
elements ini/ — {null}), thenD =3Y Q(a, Y).

Example 6. Consider the universal IG&/xy(P(x,y) — R(x,y)) and the referential

IC Vx(T(x) — JyP(x,y)). The database instand® = {P(a,d), R(a,d), T(a), T (b),
P(b,null)} is consistent. The universal constraint is satisfied even in the presence of
P (b, null) since the incomplete information cannot generate inconsistencies.

Definition 7[6]. Let D, D’, D" be database instances over the same schema and dimain
It holds D’ <p D" iff:

(1) For every atonP(a) € A(D, D'), witha € U — {null}) 2 it holds P(a) € A(D, D"),
and

(2) For every atonQ(a, null) € A(D, D'), it holds Q(a, null) € A(D, D”) or Q(a, b) €
A(D, D"y with b € (U — {null}).

Definition 7 defines which databases are closer to the original one in the presence of

null values. This partial order is used in the next definition for repairs in the presence of
universal and referential ICs.

3 Thata € U — {null}) means that each of the elements in tupleelongs to/ — {null}).

336 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

Definition 8 (Based orj3]). Let G be a global system arl@ a set of global ICs. Aepair
of G with respect tolC is a global database instané¥, such thatD’ = IC and D’ is
< p-minimal for someD € Mininst(G).

According to this definition the repairs of violations of referential ICs are obtained by
either deleting the atom that is generating the inconsistency or by adding an atom with
a null value. In particular, if the instanch is {P(a)} andIC contains onlWwx (P (x) —

Ay Q(x,y)), then{P(a), Q(a, null)} will be a repair, but nofP (a), Q(a, b)}, with b e U
andb = null. In the absence ofull values, i.e., without null values in the original instance
nor in the repair procesBefinitions 7 and &oincide with the ones given [8]. In [4,5,15]
repairs with nomull values have been considered.

Example 7. Consider the universal integrity constraifty (P (x, y) — R(x, y)) together
with the referential integrity constraimt (7 (x) — 3y P(x, y)) and an inconsistent mini-
mal instance of an integration systdin= { P (a, b), T (¢)}. The repairs for the latter are:

i D; | AMD.D)
1|/{P(a,b), R(a,b), T(c), P(c,nul)}|{R(a,b), P(c,null)}
2 {P(a,b),R(a,b)} {T(c), R(a,b)}

3 {T (c), P(c,null)} {P(a,b), P(c,null)}
4 @ {P(a,b), T(c)}

In the first repair it can be seen that the at®tr, null) does not propagate through the
universal constraint t®(c, null). We also have that the instanfg = {P(a, b), R(a, b),
T(c), P(c,a)}, where we have introduceH(c, a) in order to satisfy the referential IC,
does satisfyC, but is not a repair becauge(D, D1) <p A(D, D7) ={R(a,b), P(c,a)}.

We can see that a repair of a global system is a global database instance that K2tisfies
and minimally differs, in the sense &fefinition 7, from a minimal legal global database
instance. IfG is already consistent, then the repairs are the element4irohst(G). In
Definition 8we are not requiring that a repair respects the property of the sources of being
open, i.e., that the extension of each view in the repair contains the corresponding view
extension in the source. Thus, it may be the case that a repair—still a global instance—
does not belong tainst(G). If we do not allow this flexibility, a global system might not
be repairable. Repairs are used as an auxiliary concept to define the notion of consistent
answer.

Example 8 (Example 1continued. The only element irMininst(G1) is Do = {R(a, b),
R(c,d), R(a,c), R(d, e)}, that does not satisfiC. Then, G, is inconsistent. The repairs
are the global instances that minimally differ fraby and satisfy the FD, namel;bcl, =
{R(a,b), R(c,d), R(d,e)} and DS ={R(a,c), R(c,d), R(d, e)}. Notice that they do not
belong toLinst(G1).

Definition 9 [9]. (a) Given a global systeid, a set of global integrity constraink€, and
a global first-order quer@ (X), we say that a (ground) tupfds aconsistent answeo Q
with respect tdC iff for every repairD of G, D = Q[1].

(b) We denote byConsig; (Q) the set of consistent answers@in G.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 337

Example 9 (Example &ontinued. For the queryQ1(X): 3YR(X, Y), the consistent an-
swers arer, c,d. Q2(X,Y): R(X,Y) has(c,d), (d, e) as consistent answers.

If G is consistent with respect t€, thenConsig; (Q) = Minimalg (Q). Furthermore, if
the ICs are generic, then for agyit holds Consig;(Q) < Minimalg(Q) [9]. Notice also
that the notion of consistent answer can be applied to queries expressed in Datalog or its
extensions with built-ins and negation.

3. Specification of minimal instances

The specification of the claddininst(G) for systemg is given using normal deduc-
tive databases, whose rules are inspired by the inverse-rules algorithm. They use auxiliary
predicates instead of function symbols, but their functionality is enforced using the choice
predicatg26]. We consider global system all of whose sources are open.

3.1. The simple program

In this section we will present a first approach to the specification of legal instances. In
Section3.2we present the definitive program, that refines the one given in this section. We
proceed in this way, because the program we give now, although it may not be suitable for
all situations (as discussed later in this section), is simpler to understand than its refined
version, and already contains the key ideas.

Definition 10. Given an open global syste¢h the logic progranTl(G), contains the fol-
lowing clauses:

(1) Factdom(a) for every constant € U; and the factV; (a) whenevera € v; for some
source extensiopn; in G.

(2) For every view (source) predicaté in the system with descriptiorV;(X) <«
P1(X1),..., P,(X,), the rules

Pj(X;) < Vi(X), N F&x.zy, j=1...n
Z1e(X;\X)
(3) For every predicaté’ (X, Z;) introduced in (2), the rule
F{(X, Z1) < Vi(X), dom(Z,), choicg((X), (Z)).

In this specification, the predicaF;‘()—(, Z;) replaces the Skolem function based atom
fi’()?) = Z; introduced in Sectio@.1, and, via the choice predicate, it assigns values in the
domain to the variables in the head of the rule in (3) that are n¥t ifhere is a new Skolem
predicate for each pair formed by a description rule as in item (2) above and a different
existentially quantified variable in it. The predicateicg(X), (Z;)) ensures that for every
(tuple of) value(s) foX, only one (tuple of) value(s) faZ; is non deterministically chosen
between the constants of the active domain.

338 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

Example 10 (Examples 4 and Bontinued. Program/T (G») contains the following rules:

(1) doma). domb). dom(c). dom(u). Vi(a, b). Va(a, c).
(2) P(X,Z2) <« Vi(X,Y), F1(X, Y, Z).

R(Z,Y) < Vi(X,Y), F1(X,Y, Z).

P(X,Y) < Va(X, Y).
(B) Fi(X,Y,Z) « Vi(X,Y),dom Z), choic&(X, Y), (Z2)).

In this section we will restrict ourselves to a finite domainwhat is necessary to run the
program in real implementations. In this example we Have {a, b, ¢, u} (the extension

of predicatedom). In Section6.2we study how to handle infinite domains by adding to the
active domain a finite number of extra constants, like constdmare?

For every progranil with the choice operator, there is g&able version SUT), whose
stable models correspond to the so-caltedice model®f IT [26]. The progranSV(IT)
is obtained as follows:

(a) Each choice rule: H < B, choicg(X), (Y)) in IT is replaced by the rulé& < B,
chosen(X, Y).

(b) For each rule as in (a), the following rules are added

chosep(X, Y) < B, notdiffChoice(X,),
diffChoice (X, Y) < chosep(X,Y’),Y #Y'.

The rules defined in (b) ensure that, for every_tuiilwhereB is satisfied, the predicate
chosen(X, Y) satisfies the functional dependenty— Y.

Example 11 (Example 1Gontinued. ProgramS\V(I1(G2)) contains the following rules:

(1) doma). domb). dom(c). dom(u). Vi(a, b). Va(a, c).

(2) P(X,Z) < Vi(X,Y), Fi(X.Y, Z).
R(Z,Y) < Vi(X,Y), Fi(X, Y, Z).
P(X,Y) < Va(X,Y).

(3) Fi(X, Y, Z) < Vi(X,Y),domZ), chosen(X, Y, Z).

(4) chosen(X,Y, Z) < Vi(X, Y),domZ), notdiffChoicg (X, Y, Z).
diffChoice (X, Y, Z) < chosen(X, Y, Z),domZ), Z' +# Z.

Its stable models are:

My = {dorr(a), domb), dom(c), domu), Vi(a,b), Va(a,c),
P(a, c), diffChoice (a, b, a), chosen(a, b, b), diffChoicg (a, b, c),
diffChoice (a, b, u), Fi(a,b,b), R(b.b), P(a,b)}.

41n principle,null could be in the domain, and then we should inclddelnull) among the atoms, and, since
we do not want legal instances to contain the null value, the lit¢ealnull in the body of the rule in (3). Instead,
to keep things simpler, we will not includiom(null) in I7(G), even ifnull belongs to the underlying domain

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 339

Mo = {dorr(a), domb), dom(c), domu), Vi(a,b), Va(a,c),
P(a,c), chosen(a, b, a), diffChoicg(a, b, b), diffChoicg(a, b, ¢),
diffChoice (a, b, u), Fi(a,b,a), R(a,b), P(a,a)}.

M3z = {dorr(a), domb), dom(c), domu), Vi(a,b), Va(a,c),
P(a, c), diffChoice (a, b, a), diffChoice(a, b, b), chosen(a, b, ¢),
diffChoice (a, b, u), Fi(a,b,c), R(c,b)}.

Mg = {dorr(a), domb), dom(c), domu), Vi(a,b), Va(a,c), P(a,c),
diffChoice (a, b, a), diffChoice (a, b, b), diffChoice (a, b, ¢),
chosen(a, b, u), Fi(a,b,u), R(u,b), P(a,u)}.

The underlined atoms of the models correspond to the elements in which we are interested,
namely the global relations of the integration system.

Definition 11. The global instance associated to a choice madebf I7(G) is Dy =
{P@@)| P €RandP(a) e M].

Example 12 (Example 1lcontinued. Daq,, Dat,s Daggs Dag, are the elements
of Mininst(G3), namely{P(a, b), R(b, b), P(a,c)},{P(a,a), R(a,b), P(a,c)},{P(a,c),
R(c,b)}, {P(a,u), R(u,b), P(a, c)}, respectively.

Theorem 1. It holds that

Mininst(G) € {D 4 | M is a choice model of7(G)} < Linst(G).

From the inclusions in the theorem it is clear that for monotone quérjesiswers ob-
tained using7(G) under the skeptical or cautious stable model semantics—that sanctions
as true what is true of all the stable models of the program—coincide@éttaing (Q)
andMinimalg (Q). This may not be the case for queries with negation, as pointed out in
the remark afteDefinition 4.

In Example 12he stable models are in a one to one correspondence with the minimal
legal instances, but this may not be always the case.

Example 13. Consider an integration syste@z with global schemaR = {P}. The set

V of local view definitions consists oV1(X) < P(X,Y), and Vo(X,Y) < P(X,Y)

with source contents1 = {Vi(a)}, v2 = {Va(a, ¢)}, resp. We have thatlininst(Gs) =

{{P(a, c)}}. However, the global instances corresponding to model§ @s) are of the

form {{P(a,c), P(a,z)} | z € U}. As V, is open, it forcesP(a, ¢) to be in all legal in-
stances, and with this, the same conditionignis automatically satisfied, and no other
values forY are needed. But the choice operator still has freedom to chose other values
(thez e). This is why we get more legal instances than the minimal ones.

340 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

Now we investigate sufficient conditions under which the simple programedini-
tion 10 captures the minimal instances. This is important because the general program to
be presented in Secti@?2is much more complex than the simple version presented so far.

We define asection of a view; as a setSf consisting either of all the predicates in
the body of its definition that share a same existential varidpler all the atoms without
existential variables, in which cage= 0 and the view section is denoted wisi. For
example, the view defined by(X, Y) < P(X, Z1), R(Z1,Y), T (X, Y) has two sections:

S% ={P(X,Z1), R(Z1,Y)} andS% = {T (X, Y)}. Secdenotes the set of all view sections
for systemg.

Given a view sectiors!, we denote byConsts!), UVar(s!) andEVar(s!) the sets of
constants, universal variables and existential variables, respectively, that occur in predicates
in S!.

Let u, ¢ be two new constants. For a view secti@fn anadmissible mappings any
mapping/ : Consts!) U UVar(s!) U EVar(S!) — Consts!) U {u, ¢}, such that:

(@) h(c) = c for everyc € Consts?);
(b) h(X) = D with D e ConstsS!) U {u} for everyX e UVar(s!);
(c) h(Z) = F with F € ConstS!) U {u, ¢} for everyZ e EVar(s).

A particular admissible mapping is given by

(@) L(c) = c for everyc € ConstS!);
(b) L(X) = u for everyX e UVar(s));
(c) L(Z) = ¢ for everyZ e EVar(s?).

For an admissible mappirig h(Sf) denotes the set of atoms obtained frsfrby applying
h to the arguments ifs!.

Theorem 2. Given an integration systeid, if for every view sectiorSf with existential
variables, there is no admissible mappihdor !, such thatr(s!) < USE(SeQ{SI{}) L(S),
then the instances associated to the stable models of the simple verslgg)adire exactly
the minimal legal instances ¢f.

Basically, the theorem says that if there is an admissible mapping, such(ﬂ’jaug
USe(Sec\{S}}) L(S), then it is possible to have some view contents for which the openness
will be satisfied by the other sections 8e¢ and then it will not be necessary to com-
pute values for the existential variables in sectiénSince the simple version will always
compute values for them, it may specify more legal instances than the minimal ones.

Example 14 (Example 13ontinued. The first view is defined by, (X) < P(X,Y), and
has only one sectiofiy = {P(X,Y)}. For the admissible mappingdefined byi(X) =
h(Y) = u, we have thah(Sf) ={P(u,)} C L(Sg). The conditions of the theorem are

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 341

Table 1

Annotation Atom The tuple? (a) is...

tg P(a,tq) an atom of the minimal legal instances

to P(a,to) is an obligatory atom in all the minimal legal instances

Vi P(a,vj) an optional atom introduced to satisfy the openness of view

nv; P(a,nvj) an optional atom introduced to satisfy the openness of view that ig; not

not satisfied, and there is no guarantee that the simple version will calculate exactly the
minimal instances of3. Actually, we already know that this is not the case.

Example 15 (Examples 4 and Scontinued. There are two view sectionsS? =
{(P(X,2),0(Z,Y)} anng ={P(X,Y)}, whereX andY are universal variables aritlis
an existential variable. It is easy to see that there is ho mammgwhichh(slz) - L(Sg)
norh(Sg) - L(Slz). In consequence, for any source contents, the simple versioi®f)
will calculate exactly the minimal instances @f.

3.2. The refined program

In the general case, if we want to compute only the elementéirmhst(G), we need to
refine the prograni/ (G) given in the previous section. For this we will introduce auxiliary
annotation constants that will be used as extra arguments in the database predicates. They
and their intended semantics are giveable 1

Definition 12. Given an open global systef the refined progranil (G), contains the
following clauses:

1. Factdom(a) for every constant € U.

2. FactV;(a) whenevem € v; for some source extensionin G.

3. For every view (source) predicafé in the system with descriptiorV;(X) <«
P1(X1), ..., Pu(Xy):
(a) For everyP; with no existential variables, the rules

Pi(Xk, to) < Vi(X).

(b) Forevery ses;; of predicates of the description’s body that are related by common

existential variables%1, ..., Z,,}, the rules,
Pi(Xi.vij) <add, (X)), /\ F&X'.z), forP.es.
Zje(X\X")

add,,; (X') < Vi(X), notaux,;(X'), whereX'=Xn U Xk}.
PreS;;j

m
aux,, (X') < \var,z(Xz).
1=1

342 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

var,z (Xz) <\ P(Xi,nvip),
PkGSij&ZIEXk

whereXz, = U Xy, fori=1,..., m.
PyeS;j&Z1€X
4. For every predicate“l.l()_(’, Z;) introduced in 3(b), the rules,
Fl(X',Z)) < add,, z,(X), dom(Z;), choic&(X'), (Z)).
add,,; 7, (X') < add,; (X"), notaux,;z (X", fori=1,....m.
aux,, z, (X') < vary; z,(Xz,), N FRX. zo,

ZkaéZ]&Zke)_(Z[
fori=1,...,m.

5. For every global relatio® (X) the rules
P(X.nvij) < P(X,vnk), for{(ij, hk) | P(X) € S;j N Sp. ij # hk}.
P(X,nvjj) < P(X,to), for {(ij)| P(X) € S;;}.
P(X,tq) < P(X, Vi), for {(ij) | P(X) € Si;}.
P(X,tg) < P(X, o).

Example 16 (Example 1Zontinued. The refined progranil (G3) is:

doma). domlc). (2)

vi(a). va(a,c). 3)

P(X, Z,v1) < add,, (X), F;(X, Z). (4)
add,, (X) < v1(X), notaux, (X). (5)

auxy, (X) < var, (X, Z). (6)

var,,; (X, Z) < P(X, Z,nvy). 7)
F.(X, Z) < add,, (X),domZ), chosen,; (X, Z). (8)
chosen,; (X, Z) < add,, (X), domZ), notdiffChoice,.(X, Z). (9)
diffChoice, . (X, Z) < chosen, (X, Z'),dom(2), Z' # Z. (10)
P(X,Y, to) < v2(X, 7). (12)
P(X,Y,nvy) < P(X,Y,to). (12)
P(X,Y, tg) < P(X,Y,Vv1). (13)
P(X,Y tg) < P(X,Y,1y). (14)

Rules(4), to (7) ensure that if there is an atom in sourég e.g.,Vi(a), and if an atom
of the form P(a, Z) was not added by view>, then it is added by rul¢4) with a Z
value given by the function predicafe (a, Z). This function predicate is calculated by
rules (8) to (10). Rule (11) enforces the satisfaction of the opennessVpfby adding

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 343

obligatory atoms to predicat® and rule(12) stores this atoms with the annotatiow,
implying that they were added by a view different frafp. The last two rules gather with
annotationty the elements that were generated by both views and that are in the mini-
mal legal instances. The stable model of this prografddsna), dom(c), vi(a), va(a, ¢),
P(a,c,tg), P(a, c,to), P(a,c,nv1), aux, (a)}, which corresponds to the only minimal le-

gal instancd€ P (a, c)}.

Theorem 3. If M is a stable model of SN1(G)), thenD :={P(a) | P € Rand P(a,
tq) € M} € Mininst(G). Furthermore, the minimal legal instances obtained in this way are
all the minimal legal instances @f.

The program/7(G) (or its stable version) can be used to compdteimalg (Q), where
Q is aquery expressed as a, say Datalpgpgram/7(Q). This can be done by running the
combined program under the skeptical stable model semantics. The following corollary for
monotone queries, e.g., a Datalog queries, can be immediately obtained tfiemrem 3
and the fact that for those queri€ertaing (Q) = Minimalg (Q).

Corollary 1. The certain answers to monotone queries posed to an open integration sys-
temgG can be computed by running, under the skeptical stable model semantics, the query
program in combination with the prograifii (G) that specifies the minimal legal instances
of G.

We know that under the hypothesistdfeorem 2the simple and refined programs com-
pute the same legal database instances, namely the minimal ones. Beyond this, it is worth
mentioning that, under the same hypothesis, there is a simple mechanical, syntactic trans-
formation of the refined program into a simple program (in the sense of S&fipthat
has the same stable models, and then, in particular, produces the same database instances
(seeAppendix A.9.

4. Specification of repairs of a global system

In [6], repairs of single relational databases are specified as stable models of disjunctive
logic programs. We briefly explain those programs, because they will be used to specify
repairs of instances of integration systems.

First, the database predicates are expanded with an extra argument to be filled with
one of a set of new annotation constants. An atom inside (outside) the original database
is annotated withg (f4).> Annotationst, andf, are considereddvisoryvalues, to solve
conflicts between the database and the ICs. If an atom gets the derived annigtation
means an advise to make it false, i.e., to delete it from the database. Similarly, an atom that
gets the annotatiot, this is seen as an advice to insert it into the database.

5 The annotationy is the same we had in the previous section, actually the program there will provide the
contents of the minimal instances in termg@fnext, in the repair process, the new annotations introduced here
will be generated.

344 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

Example 17 (Example 7continued. Consider the ICsvx(P(x,y) — R(x,y)) and

Vx (T (x) — Iy P(x,y)), together with the inconsistent database instabce {P (a, b),

T(c)} and adomaid/ = {a, b, c, u}. The logic program should have the effect of repairing

the database. Single, local repair steps are obtained by deriving the annctatioris.

This is done when each IC is considered in isolation, but there may be interacting ICs, and
the repair process may take several steps and should stabilize at some point. In order to
achieve this, we use annotatiditsf*. The latter, for example, groups together the annota-
tionsfy andfy for the same atom (rules (2) and (5) below). These derived annotations are
used to give a feedback to the bodies of the rules that produce the local, single repair steps,
so that a propagation of changes is triggered (rule (3) below).

The annotation$™ andf** are just used to read off the literals that are inside (resp.
outside) a repair. This is achieved by means of rules (7) below, that are used to interpret
the models as database repairs. The facts of rule (1) correspond to all the elements of the
domain except for theull constant, which is left outside afom The following is the
program:

(1) doma). domb). dom(ic). domu).
(2) P(x,y,f*) < P(x,y,fa), domx), dom(y).
P(x,y,t*) < P(x,y,ta), domx), dom(y).
P(x,y,t*) < P(x, y,tq),domx), dom(y). (similarly for R andT)
(3) P(x,y,fa) VR(x,y,tg) < P(x,y,t%), R(x, y, f*), domx), dom(y).
T (x,fa) vV P(x,null, ty) < T (x,t*), notauxx), notP (x, null, tq), dom(x).
aux(x) < P(x, y,tq), notP(x, y,f3).
aux(x) < P(x', y,ta).
(4) P(a,tg) <.
(5) P(x,y,f*) < domx),dom(y), notP(x,y,tq). (similarly for R andT)
(6) <« P(x,ty), P(x,f3). <« R(x,ta), R(x,fa).
(7) P(x,y,t*) < P(x,y,ta), domx), dom(y).
P(x,y,) < P(x, y, fa), dom(x), dom(y).
P(x,y, ") < P(x, y,tq), notP(x, y, fa), domx), dom(y).
P(x,y, ™) < dom(x), dom(y), notP(x, y,tq), NotP(x, y,ta).
(similarly for R andT)

Only rules (3) depend on the ICs. The first rule in (3) corresponds to the universal ICs
and the rest to the referential IC. These rules say how to repair the inconsistencies.
Rules (4) contain the database atoms. Rules (5) captureltised world assumption
(CWA) [40]. Rules (6) are denial program constraints to discard models that contain an
atom annotated with bothy andf,. The program has four stable models. The repairs are
obtained from them by selecting the atoms annotated #ithD1 = {P(a, b), R(a, b)},

D> = {P(a,b), R(a,b), T(c), P(c,nul)} and D3 = {T(¢), P(c, nul)}, Ds = @. As ex-
pected, they coincide with the ones obtaine&ikample 7

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 345

It can be proved6] in the context of single relational databases that the stable models
of these disjunctive programs are in a one to one correspondence with the repairs of the
original database, for any combination of universal and acyclic referential integrity con-
straints. If there are cycles between the referential ICs, then the specification programs
may produce a class of stable models that properly extends the class of fEpRif$i0se
models that do not correspond to repairs still satisfy the ICs, but may not be minimal re-
pairs. In this case the stable models that do not correspond to (minimal) repairs can be
pruned by comparison with the other stable moffel§. These properties will be inherited
by our application of this kind of programs to the specification of the repairs of the minimal
instances of an integration system.

The next definition combines into one program the refined version that specifies the
minimal legal instances and the specification of the repairs of those minimal instances.

Definition 13. Therepair program I1(G, IC), of G with respect tdC contains the follow-
ing clauses:

(1) The same rules as Definition 12
(2) For every predicat® € R, the clauses

P(X,t*) < P(X,tg), domX).
P(X,t*) < P(X,tz), domX).
P(X,f*) « P(X,fa), domX).
P(X,f*) <« dom(X), notP(X,tq).

(3) For every first-order global universal IC of the foMiQ1(Y1) Vv -+ Vv Qu(¥,) «
PL(X1) A A Pu(Xp) A), WwhereP;, Q; € R, andg is a conjunction of built-in
atoms, the clause:

V PXif) \/ Q¥ ta) < N\ Pi(Xi, 1), \ Q;(¥;, 1), dom(X), g;
i=1 j=1 i=1 j=1

whereX is the tuple of all variables appearing in database atoms in the rule.
(4) For every referential IC of the fordX (P(X) — 3Y Q(X',Y)), with X’ C X, the
clauses

P(X,f2) v O(X,null, ty) < P(X,t*), notauxX’), notQ(X’, null, tg),
dom(X).
aux(X') < Q(X',Y,tq),notQ(X’, Y, fa), domX’, Y).
auxX’) < Q(X', Y, ty), domX’, Y).
(5) For every predicat® € R, the interpretation clauses:
P(a,t™*) < P(a,fa).

6if X =(Xq,..., X,,), we abbreviatelom(X1) A - - - A dom(X,;) with dom(X).

346 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

P(a,f*) < notP(a,tq), NOtP(a,ty).
P, t*) < P(@a,ta).
P(@@,t**) < P(a,tq), NotP(a,fa).

Rules (4) repair referential ICs by deletion of tuples or insertion of null values that are
not propagated through other I@®. For this purposedom(null) is not considered as a
fact and therefore theull values will not propagate. Optimizations of the repair part of the
program, like avoiding the materialization of the CWA, are analyzd@]in

The choice models of program (G, IC) that do not contain a pair of literals of the form
{P(a,ta), P(a,fa)} are calleccoherent model®©nly coherent models can be obtained for
the program if the denial constraints of the form P (x, t**), P(x, f**) are included in the
program.

Definition 14. The global instance associated to a choice madedf I7(G, IC) is Dy =
{P(@)| P eRandP(a,t*) e Mj.

The repair program can be sdI&7] into the specification of the minimal instances and
the specification of their repairs. Therefore, the minimal legal instances can be calculated
first, and then the repairs of them. Each minimal model calculated by the first part of
I1(G,I1C) can be seen as a simple, relational database, which is repaired afterwards by the
second part of7(G, IC). This gives us the following theorem straightforwardly.

Theorem 4. Let IC be an arbitrary class of universal and acyclic referential integrity
constraints. IfM is a coherent choice model 6f (G, IC), thenD , is a repair ofG with
respect to IC. Furthermore, the repairs obtained in this way are all the repais with
respectto IC.

In the case in which a cyclic set of referential ICs is considered, the global instances
associated to the choice models of the program will be a superset of the repzivatbf
respect tdC, and in order to obtain the repairs, the choice models will have to be compared
to choose those minimally differ from the minimal legal instafica.

5. Consistent answers

Now we can obtain the answers to queries posed to a sySteéhat are consistent
with respect tolC. First we will consider universal and acyclic referential ICs. We do the
following:

(1) We start with a query) that is expressed, e.g., as a stratified Datalog progfafm,),
whose extensional predicates are elements of the global scResach positive oc-
currence of those predicates, sBYr), is replaced byP (z, t**); and each negative
occurrence, say nat(7), by P(z, f**). This query program has a query predicAfes
that collects the answers 9. In particular, first order queries can be expressed as
stratified Datalog progranig].

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 347

(2) Program/7(Q) is appended to the prograBM(I1(G, IC)), the stable version of the
repair program.

(3) The consistent answers @ are the ground\nsatoms in the intersection of all stable
models ofl1(Q) U SMII(G, IC)).

Example 18 (Example 1lcontinued. We have the integration systeg¢i with the local
view definitionsV1(X, Z) < P(X,Y),R(Y, Z), and Vo(X,Y) < P(X,Y), and source
contentsvy; = {Vi(a, b)} andvo = {Va(a, ¢)}, respectively. Consider the global symmetry
integrity constraintsim:VxVy(R(x,y) — R(y, x)) on Go. We want the consistent an-
swers to the quenQ: P(x, y). First, the query is written as the query program clause
AngX,Y) < P(X,Y,t*). This query program/T(Q), is run with the revised version of
SV(I1(Gs, sim)) that has the following rules:

% Subprogram for minimal instances

doma). dom). dom(c). dom(u).

vi(a, b). wva(a,c).

P(X,Y,nvy) < P(X,Y,1p).

P(X,Y,nvp) < P(X,Y,V1).

P(X,Y, tg) < P(X,Y,Vv1).

P(X,Y, tg) < P(X,Y,to).

R(X,Y,tq) < R(X,Y,Vv1).

% Specification oy

P(X,Y,v1) < add, (X, Z), FlY(X, Z,Y).

R(Y, Z,v1) < add,, (X, Z), Fly(X, Z,Y).

add,, (X, Z) < v1(X, Z), notaux, (X, Z).

aux, (X, Z) < var, y(X,Y, Z).

var,y(X,Y,Z) < P(X,Y,nv1), R(Y, Z,nvq).

Fl(X,Z,Y) < add,y(X, Z),domY), chosen,y (X, Z,Y).
chosen,y (X, Z,Y) < add, y (X, Z), domY), notdiffchoice, (X, Z, Y).
diffchoice, (X, Z,Y) < chosep,y (X, Z,Y"),domY), Y' #7Y.
add,,y (X, Z) < add,, (X, Z), notaux,y (X, Z).

aux,y (X, Z) < var,y(X,Y, Z).

% Specification o

P(X,Y, tg) < v2(X,Y).

% Repair subprogram

P(X,Y,t*) < P(X,Y,t3),domX), domY).

P(X,Y,t*) < P(X, Y, tq),domX), domY).

348 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

P(X,Y,f*) <~ domX),domY), notP(X,Y,tq).
P(X,Y,f*) < P(X,Y,fa), dom(X), dom(Y).
R(X,Y,t*) < R(X,Y,t3), domX), domY).
R(X,Y,t*) < R(X,Y,tg), domX), domY).
R(X,Y,f*) < dom(X), domY), notR(X, Y, tq).
R(X,Y,f*) < R(X,Y,fy),domX), domY).
R(X,Y,fa) VR(Y, X,ta) < R(X,Y,t*), R(Y, X, f*), domX), dom(Y).
P(X,Y,t") < P(X,Y,ta),dom(X), dom(Y).
P(X,Y,t*) < P(X,Y,tq), domX),domY), notP(X,Y,f,).
P(X,Y,f*) « P(X,Y,fa), domX), dom(Y).
P(X,Y,) < domX),domY), notP(X,Y,ty), notP(X,Y,ty).
R(X,Y,t*) < R(X, Y, tg), domX), domY).
R(X,Y,t*) < R(X, Y, tg),domX),domY), notR(X,Y,f,).
R(X,Y,) < R(X, Y, fa), domX), domY).
R(X,Y, ™) < dom(X),domY), notR(X,Y,ty), NOtR(X, Y, ty).
< R(X,Y,t3), R(X,Y,f3).
<« P(X,Y,ta), P(X, Y, fa).

This program has five stable models with the following associated repair® /(,ai)=
{P(a,b), R(b,b), P(a,c)}, corresponding to the already consistent minimal Instance
Dy, in Example 12 (b) D, = {P(a,a), P(a,c)} and Dy, = {R(a,b),R(b,a),
P(a,a), P(a,c)}, the repairs of the inconsistent instanbe,; (c) Dy, = {P(a,c)}
and Dy = {R(c,b), R(b,0), P(a, o)}, the repairs of instanc® ,; and (d) D =
{P(a,u), P(a,c)} andDM; ={R(u,b), R(b,u), P(a,u), P(a,c)}, the repairs oD 4, .
The corresponding stable models @ Q) U SMIT(G3, sim)) are: (a)/_/l{ =MjU
{Anga, b), Anga, ¢)}; (b) M} = M, U {Anda, a), Anda, c)}; M5 = M4 U {Anda, a),
Anga, c)}; () M} = M} U {Anga, o)}; M§ = Mg U {Anda, o)}; (d) Mg = Mg U
{Anga, u), Anda, ¢)}; M4 = M5 U {Anda, u), Anga, c)}. Anda, c) is the only query
atom in all stable models, then the tuide ¢) is the only consistent answer to the query.

If G is consistent, then the consistent answenrg womputed with this method coincide
with the minimal answers t@, and then to the certain answerglfis monotone.
6. Further analysis, extensions and discussion
6.1. Complexity

The complexity analysis of consistent query answering in integration of open sources
under the LAV approach can be split according to the main two layers of the combined

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 349

program, namely, the specification of minimal instances and the specification of the repairs
of those minimal instances.

Query evaluation from the program(G) with choice under the skeptical stable model
semantics is in coNP (the case singularizedextainty semantici [41]). Actually, if the
choice operator program is represented in its “classical” stable version (see Sebtiore
are left with a normal (non-disjunctive), but non-stratified program whose query answering
complexity under the skeptical stable model semantics is coNP-conipf#&5] in data
complexity[1], in our case, in terms of the combined sizes of the sources. This complexity
of computing minimal answers is inherited by the computation of certain answers when
the two notions coincide, e.g., for monotone queries like Datalog queries. This complex-
ity result is consistent and matches the theoretical complexity lower bound on computing
certain answers to Datalog queries under the LAV apprf@ichWith disjunctive views, as
considered in Sectiod.4, the complexity of the program goes up to bem§—complete.

The complexity of query evaluation with respect to the disjunctive normal program
I1(G, IC) that specifies the repair of minimal instanceH@-complete in data complexity
[19], which matches the complexity of consistent query answéfiigl5,18]

There are some cases studied6h e.g., only universal ICs, where the repair part of
the program for CQA isiead-cycle freéHCF) and therefore the complexity is reduced to
coNP[7,34]. This coNP-completeness result can be extended to some cases where both
universal and RICs are considered. It is possible to §i@Mhat the progranii (G, IC) is
HCF for a combination of: (aPenial constraintsi.e., formulas of the forn\//_; P; (;) —
¢, where P;(f;) is an atom andyp is a formula containing built-in predicates only;

(b) Acyclic referential integrity constraints.e., without cycles in the dependency graph.

This case includes the usual integrity constraints found in database practice, like (non
cyclic) foreign key constraints. I1il5,18] some cases where functional dependencies
and referential integrities coexist are presented, for which the problem of CQA becomes
H{—complete. Actually, in the case when repairs with respect to cyclic RICs is done by
introducing arbitrary, non null elements of the underlying domain, the problem of consis-
tent query answering becomes undecid§btd. However, if repairs with respect to cyclic
RICs are obtained by introducing null values that do not propagate via ICs, the problem of
consistent query answering becomes decidglilg

6.2. Infinite vs. finite domain

In Section2.1we considered the possibility of having an infinite underlying dorb&in
At the purely specification level there is not problem in admitting, in the first item of
Definition 1Q an infinite number of facts. Our soundness and completeness theorems hold.
However, in the logic programs we have presented in the examples we had a finite domain,
cf. Example 10(the finite domain is specified by thdom predicate), but also an extra
constani: that does not appear in the active domain of the integration system, that consists
of all the constants in the sources plus those that appear in the view definitions. The reason
is that we need a finite domain to run the programs, but at the same time we need to capture
the potential infiniteness of the domain and the openness of the sources. Furthermore, we
should not be forced to use only the active domain, because doing so might assign the
wrong semantics to the integration system.

350 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

Example 19. Consider an integration syste@y with one source defined by the view
V(X) < R(X,Y) and the quenyQ(Y) < R(X,Y). If the view extension has only one
tuple, say{(a)}, we have that the active domain{is} and thatR(a, a) is in all the legal
instances ofj4 if only this domain is used; and we would ha@ertairg, (Q) = {a}. Now,

if the view extension becomdsa), (b)}, the active domain iga, b}, and there is a global
instance containing just the tupia, b), and another containing jusR(a, a)}. In conse-
guence, there will be no certain answers. This simple example shows that a positive query
may have an undesirable non-monotonic behavior.

In Example 10introducing one extra constant)(is good enough to correctly answer
conjunctive queries (see below). In the general case, the number of extra constants may
vary depending on the situation.

It is necessary to make all these considerations, because, the set of minimal legal in-
stances may depend on underlying domain, as we s&xample 5whereMininst(G2) =
{{P(a,c), P(a,z),R(z,a)} |zeU={a,b,c,...}}.

Since we want only the certain answers, those that can be obtained from all the stable
models, it is easy to see that the values taken by the “free variables?, dikeve, will not
appear in a certain answer. However, the absence of the extra, new constants may sanction
as certain some answers that are not if the domain is restricted to the active domain (see
Example 19. In consequence, we need a larger domain, with enough variables to represent
the relations and differences between the free variables. Depending on the query, there is a
finite domain that generates the same certain and minimal answers as the infinite domain.
It can be shown that if the query is conjunctive, then adding only one new constant to the
active domain is good enough (serample 10.

If the query is disjunctive, then the smallest “equivalent” finite domain is the active do-
main plusz hew constants, whereis the maximum number of instantiations of existential
variables in a minimal legal instance. This number of instantiations cannot be obtained
from the view definitions alone, because it also depends on the number of elements in the
sources associated to the Skolem predicates. An upper bound on the number of constants
to be added to the active domain to correctly answer disjunctive queries is the sum over all
sources of the product of the number of existential variables in a view definition with the
number of atoms in the corresponding source.

Example 20. Given an integration systegs:
Vi(X,Y) < P(X, Zo), R(Zo, Y), {Vi(a, D)}.
Va(X,Y) < P(X, Z1), R(Z2, Y), {Va(a,b), Va(c,d)}.

The set of minimal legal instancesfisP (a, z1), R(z1, b), P(c, z2), R(z3,d)} | 21, 22,23 €

U}. By looking at this representation, we see that in order to obtain correct certain answers
to disjunctive queries, it is good enough to add to the active dofaain c, d} three extra
constants, obtaining, sdy = {a, b, ¢, d, e, f, g}, a finite domain that is able to simulate

an infinite domain with respect to disjunctive queries. Instead of inspecting the minimal
instances to determine the number of new constants, we can use an upper bound, in this
case, five, which can be computed as: 1 existential variable times 1 atom plus 2 existential
variables times 2 atoms. So, we could use a doiaivith five extra constants.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 351

6.3. Choice models vs. Skolem functions

In this paper we have used tlehoice operator to replace the Skolem functions used
in the inverse rules algorithm. In this way we were able to specify the minimal global in-
stances, which was one of our original goals, is interesting in itself, and allows us to specify
the repairs of the integration system with respect to the ICs. However, if we are interested
in query answering only, it becomes relevant to analyze if it is possible to retrieve the
minimal, certain and consistent answers by keeping the Skolem functions in the program,
evaluating it, and then filtering out the final answers that contain those functions (as done
in [21]).

We first analyze the case of the simple program (see Se8tipnin which we want to
consider using the Skolem functions instead of the functional predicate together with the
choice operator. For example, we would ha®€X, (X)) < V(X) instead of the couple
ofrulesP(X,Y) < V(X), F(X,Y)andF(X,Y) < V(X),domY), choicg(X), (Y)).

In this case, the program will have the same rifes as in the inverse rules algorithm.

The resulting definite program is positive and, therefore, its stable model corresponds to
the minimal model. That model will have atoms with instantiated Skolem functions, and
can be seen as a compact representation of the collection of stable models of the choice
program, in the sense that the latter can be recovered by considering the different ways in
which the Skolem functions can be defined in the underlying domain.

If a query is posed to the program with Skolem functions, the answer set may contain or
not answers with Skolem functions. Those answers with Skolem functions correspond to
answers that would be different in different stable models of the choice program, because
in a sufficiently rich domain (see Secti@n?) the functions may be defined in different
ways. This is why if we delete those answers with functions, we get the same answers as
from the choice programv (G) under the cautious stable model semantics. In consequence,
for computing the certain answers to a monotone query, we can indistinctly use the pro-
gram with Skolem functions (pruning the answers with Skolem functions at the end) or the
choice program.

Let us now consider the refined program (see Se@&igan In this case, if Skolem func-
tions are used instead of the choice operator, the resulting program is a normal program
that may have several stable models.

Example 21. Consider an integration systegnwith
Vi(X) < P(X1, Y1, Z1), S(Y1), Vi(a),
Va(X,Y) < P(X2,Y2, Z2), Va(a,e).

The following is the program with Skolem functions:

%V,

P(X, f1(X), f2(X), V1) < add,, (X), add,,y (X), addy, z (X).
S(f1(X), V1) < add,, (X).

add,, (X) < v1(X), notaux, (X).

aux, (X) < var,y(X,Y, Z),var, z(X,Y, Z).

352 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

var,,y (X, Y, Z) < P(X,Y, Z,nvy), S(Y, nvy).
var,z(X,Y, Z) < P(X,Y, Z,nvy).

add,,y (X) < add,; (X), notaux,y(X).

aux,y (X) <var,y(X,Y, Z2), Z = fo(X).
add,, z(X) < add,, (X), notaux,z(X).

aux,, z(X) < var,z(X, Y, Z), Z = f1(X).

%V>

P(X,Y, f3(X,Y),V2) < add,,(X,Y), add,,z(X, Y).
add,,(X,Y) < v2(X, Y), notaux, (X, Y).
aux,, (X, Y) < var,z(X,Y, Z).
var,z(X,Y,Z) < P(X,Y, Z,nvy).
add,,z(X,Y) < add,,(X,Y), notaux,z(X,Y).
aux,z(X,Y) < var,z(X,Y, Z).
P(X,Y,Z,nvy) < P(X,Y, Z,Vp).

P(X,Y, Z,nvp) < P(X,Y, Z,Vv1).

P(X,Y, Z,tqg) < P(X,Y,Z,v1).

P(X,Y, Z,tqg) <« P(X,Y,Z,v2).

S(Y,tq) < S(Y,v1).

The stable models of the refined program with Skolem functions are calculated under the
unique names assumptip40]. As a consequence of this, the program may not be able to
distinguish those cases where the openness condition for a source can be satisfied because
the condition already holds for another source (see the discussion at the end of $4jtion
For example, if two atoms, sak (a, f1(a), f2(a)) and P(a, e, f3(a, e)), are added to
the stable models in order to satisfy the openness conditions for two different views, the
program will treat those two atoms as different, what may not be the case when the Skolem
functions are interpreted. As a consequence, stable models that are larger than needed
might be produced. If each of these stable models is seen as a compact representation of a
set of intended global instances, which can be recovered through all possible instantiations
of the Skolem functions in the model, we may end up generating global instances that are
not minimal. In other words, the class of stable models of the refined program with Skolem
functions represents a class that possibly properly extends the one of minimal instances,
by including global instances that are legal but not minimal.

Example 22 (Example 21continued. The minimal instances of this integration sys-
tem can be represented BYP (a, e, f3(a, e)), P(a, fi(a), f2(a)), S(f1(a))} | f3(a,e) €

U, faa) €U, fi(a) eU\le}} U{{P(a, e, f3(a,e)), S(e)} | fala,e) € U}. By interpreting

the Skolem functions in the underlying domain, we obtain all and only the minimal in-
stances. Notice that in this case, it is necessary to give all the possible values in the domain

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 353

to the existential variables (or function symbols), the only exception being when the exis-
tential variableY; is made equal te. In that case it is good enough to give valuegtoor
Z> in order to satisfy the openness conditions¥grand V».

In the context of the refined program with function symbols, due to the unique names
assumption,f1(a) will always be considered different from, and therefore the pro-
gram will not realize that there is a minimal model that does not contain the tuple
P(X, f1(X), f2(X),v1). In consequence, the program will generate the stable model
{P(a,e, fa(a,e)), P(a, f1(a), f2(a)), S(f1(a))}, that represents a proper superclass of the
minimal legal instances. For example, it represents the instaR¢e e, u), P(a, e, v),

S(e)} that is not minimal.

The possibly strict superset of the minimal instances that is represented by the models
of the program with functions can be used to correctly compute the minimal and certain
answers to monotone queries (in this case it is better to use the simple program though),
but not for queries with negation.

We now consider the repair program. In those cases where the stable models of the
simple or revised programs with Skolem functions do not represent the minimal legal in-
stances, it is clear that it is not possible to compute their repairs. When the stable models
do represent the minimal legal instances, it is not possible for the repair program to detect
all the inconsistencies in them because of the underlying unique names assumption.

Example 23 (Examples 4 and Sontinued. The minimal legal instances are represented
via Skolem functions by\ = {P(a, f(a, b)), R(f(a, b), D), P(a, c¢)}, which can be ob-
tained as a model of by the simple program with Skolem functions. This model is incon-
sistent with respect tiC : VxVy(R(X,Y) — R(Y, X)).

The repair progranil (G, IC) has the rule

R(Xv Y9 fa) \% R(Y7 X,ta) <~ R(X7 Ya t*)’ R(Y’ X’f*)-

that will produce the set of repair®, = {P(a, f(a,b)), P(a,c)} and Duy, =

{P(a, f(a,b)), R(f(a,b),b), R(b, f(a,b)), P(a,c)}, which represent a superset of the

real repairs of the minimal legal instances. Because of the unique names assumption, the
program will not detect that fof (a, b) = b the instance is consistent with respect@o

Additional remarks on this issue can be found8h
6.4. Disjunctive sources

In Section3 we considered sources defined as conjunctive views only. If sources are
now described as disjunctive views, i.e., with more than one conjunctiv@ijethen the
program/I(G) has to be extended in order to capture the minimal instances. In this case, a
sources; is a pair{®;, v;), where®; is a set of conjunctive rules defining the same view,
sayyi1, ..., ¢im, andv; is the given extension of the source.

Definition 15. Given an open global systeéh= {(®1, v1), ..., (®P,, v,)}, the set of legal
global instances ikinst(G) = { D instance oveR | v; C | J; ix(D), fori=1,...,n}.

354 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

Example 24. Consider the global integration systeyn with global relations{R(X, Y),
S(X), T(X,Y)}and two source relationg andv; with the following view definitions and
extensions:

Source Extension View definitions
V1 {V1i(a,b), V1(c,d)} V11:V1(X,Y) < R(X,Y),S(Y)
V12:V1(X,d) < T(X,d)
v {(Va(b), Vo(a)} Vo1: Vo(X) < S(X)

Examples of legal instances af&(b), S(a), R(a,b), T(c,d)}, {S(b), S(a), R(a,b),
R(c,d), S(d)} and{S(b), S(a), R(a,b),T(c,d), T (a, b)}.

If we have disjunctive view definitions, in order to satisfy the openness of a source, it
is necessary that one or more views generate each of its tuples. To capture[@0} e
concepts otruly disjunctiveview andwitnessare introduced, together with @axclusion
condition Informally, a set of views igruly disjunctiveif there is a tupler that can be
generated by any of the views. This tuple is callegimess The exclusion conditioris a
constraint on thavitnessthat determines for which tuples thmily disjunctiveviews are
the most general.

Example 25 (Example 24continued. The atoms ofv; that have the constaat as the

second attribute can be generated eitheVbyor Vi,. On the other hand, if the second
attribute is notZ, the atom can only be generatedWy This is expressed in terms of truly
disjunctive views, most general witness and exclusion condition by the following table:

Truly disjunctive views Most general witness Exclusion condition

V1 (X1, X2) second attributet d
V1, V2 (X1,d) true

In order to extend the simple version Of(G), incorporating disjunctive view defini-
tions, we need to take into account the different sets of truly disjunctive views with their
witnesses and exclusion conditions. For example, for the second truly disjunctive set in
Example 25the following rule needs to be imposed

(RX,) AS@)VT(X,d) < V(X,d), (15)
which is equivalent to the pair of disjunctive Datalog rules

R(X,d)VT(X,d) < V(X,d), (16)
SWd)VvT(X,d) < V(X,d). (17)
For each set of truly disjunctive views, rules like6) and(17) will have to be satisfied by

the legal instances. These remarks motivate the following program as an specification of
the minimal legal instances.

Definition 16. Given an open global systegh the program/TY(G), contains the following
clauses:

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 355

(1) Factdom(a) for every constant € U/; and the factV;(a) whenever € v; for some
source extension; in G.
(2) For every set of truly disjunctive views for a soufigeof the form

Vi1 Vi(X1) < Pii(X11), ..., Pru(X1ny),

Vik:Vi(Xp) < Pa(Xi), -, Pin(Xiny),
where the variables in each view are different (fresh), for its more general wilfiess
and its most general exclusion conditipnthe rules

Pusy, (X5) VooV P (Xps) < Vi) Ao A\ FL(W, Zp),
Zie(X'\W)

whereX’ = U’;:l)_(;.aj ands; e {1,...,ni)fori=1,... k.

The vectorsf(/lgl, e,)_(,/{(Sk are those obtained by the substitutionXofby W in all the
view definitions. These rules represent all the possible combinatiohgpdicates
where each of them is chosen from a different view definition.

(3) Forevery predicatfl.l()_(, Z;) introduced in (2), the rule

FI(X, Z)) < Vi(X),dom(Z)), choic&(X), (Z)).

Example 26 (Example 2xontinued. The programi7” (G7) is:

doma). dom). dom(c). dom(d). (18)
R(X,Y) < Vi(X,Y),Y #d. (19)
S(Y) < Vi(X,Y),Y #d. (20)
T(X,d)V R(X,Y) < Vi(X,Y). (21)
T(X,d)Vv SY) < Vi(X,Y). (22)
S(X) < Va(X). (23)

Rules(19)—(20)and(21)—(22)represent, respectively, the first and second truly disjunctive
set for sourcev;. Rule(23)is for the non-disjunctive sourae.

If all the sources are defined by conjunctive views, then is easy to sedTth@l)
becomes the simple progran(G) introduced in Sectio.1 As before, it holds that

Mininst(G) € {D ¢ | M is a stable model ofT ¥ (G)} € Linst(G).

For monotone querie@, the answers obtained usidg’ (G) coincide withCertairg(Q)
andMinimalg (Q). This might not be the case of queries with negation. It is possible to
give a refined version, corresponding to the non-disjunctive program in Se:gpfor
which Mininst(G) = {D ¢ | M is a stable model of7¥ (G)} also holds.

356 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

7. Conclusions

We have presented a general approach to specifying, by means of disjunctive deductive
databases with stable model semantics, the database repairs of a mediated integration sys-
tem with open sources under the LAV approach. Then, consistent answers to queries posed
to such a system are computed by running a query program together with the specification
of database repairs under the skeptical or cautious stable model semantics.

The specification of the repairs is achieved by first specifying the class of minimal
global legal instances of the integration system (without considering any global ICs at this
level yet). To the best of our knowledge, this is also the first specification, under the LAV
paradigm, of such global instances in a logic programming formalism. The specification
is inspired by the inverse rules algorithms, where auxiliary functions are replaced by aux-
iliary predicates that are forced to be functional by means of the non deterministic choice
operator.

The specification of the minimal legal instances of the integration system allows obtain-
ing theminimal answerso arbitrary queries; and theertain answerso monotone queries,
what extends previous results in the literature related to query plan generation under the
LAV approach.

The methodology for specifying minimal legal instances, computing certain answers
and CQA works for conjunctive view definitions and disjunctions of them. With respect to
the ICs and queries this approach can handle, the solution is sound and complete for com-
binations of universal ICs and acyclic referential ICs, and queries expressed as Datalog
programs. In consequence, the current approach to consistent query answering (CQA) sub-
sumes and extends the methodologies presen{® far integration systems, and the one
in [6] for stand alone relational databases. Also the complexity of query evaluation using
the logic programs presented here matches the theoretical lower bounds for computing
certain and consistent answers.

For reasons of space, we just mention a few optimizations of the specification pro-
grams and their execution (more on optimization of repair programs can be fo{#id. in
The materialization of the CWA present (G, IC) can be avoided by program trans-
formation. We have identified classes of common ICs for wi88/7(G, IC)) becomes
head-cycle-free, and in consequence, can be transformed into a non-disjunctive program
[7,34]. Transformations are shown [i].

The program for CQA can be spli87] into: (1) the program that specifies minimal
legal instances; (2) the program that specifies their repairs; and (3) the query program. If
the simple version can be used in (1), that layer is a stratified program. Otherwise, if the
refined version is used, that layer is not stratified, but its models can be computed bottom-
up as fixpoints of an iterative opera{@7]. The second layer, i.e., the repair paripsally
stratified[39]. Finally, if the query program is stratified, e.qg., if the original query is first-
order, then the consistent answers can be eventually computed by a bottom-up evaluation
mechanism.

We have already indicated that in the case the set of ICs contain referential ICs with
cycles between them the stable models of the specification programs we gave may corre-
spond to a superclass of the repairs of the global sy§t@in Non minimal repairs may
appear as models of the program. It should be possible to modify the given program by

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 357

adding a new layer of rules that does the job of pruning all the stable models of the orig-
inal program that do not correspond to (minimal) repairs. In this direction the answer set
programming based specification of some “local test” for minimality as givé®dh(and

used in[11] in the context of database repairs) could be attempted.

For CQA from integration systems we have successfully experimentedDiNh[22,

35]. The current implementations of the disjunctive stable models semantics would be
much more effective in database applications if it were possible to evaluate open queries
in a form that is guided by the query rather than based on, first, massive grounding of
the whole program and, second, considering what can be found in every (completely con-
structed) stable model of the program. First optimizations of this kind have been reported
in [23].

With respect to related papers, query answering in mediated integration systders
the assumptiothat certain global ICs hold has been treateflfi21,29,31] However, in
CQA, we do not assume that global ICs hold. Logic programming specifications of repairs
of single relational databases have been presentéd5r30]

In [9], CQA in possibly inconsistent integration systems under the LAV approach is
considered. There, the notion of repair of a minimal legal instance is introduced. The al-
gorithm for CQA is based on a query transformation mechafig3rapplied to first-order
queries. The resulting query may contain negation, and is run on top of an extension of the
inverse algorithm to the case of stratified Datalagieries. This approach is limited by the
restrictions of the query transformation methodology. In particular, it can be applied only
to queries that are conjunctions of literals and universal ICs.

Integration systems under the GAV approach that do not satisfy global key dependen-
cies are considered [B2]. There, legal instances are allowed to be more flexible, allowing
their computed views to accommodate the satisfaction of the ICs. In this sense, the notion
of repair is implicit; and the legal instances are the repairs we have considered here. View
definitions are expressed as Datalog queries; and the queries to the global system are con-
junctive. The “repairs” of the global system are specified by normal programs under stable
model semantics. If16] and still under the GAV approach, this work is extended by intro-
ducing rewriting techniques to retrieve the consistent query answers without constructing
the “repairs”. More related work is discussed in the sufy

With respect to current and future work, apart from considering all kinds of implemen-
tation and optimization issues around the programs and their interaction with a database,
we have extendel@] our treatment of CQA in integration systems to the mixed case where
open, closed and sources that are both open and closed (clopen) &kiand to par-
ticular, but common and natural combinations of them. We are working on identifying
conditions on the view definitions that make it possible to compute, from the program
I1(G), the certain answers to possibly non-monotonic queries.

In this paper we have considered null values based repairs under RICs. The null values
have a special treatment with respect to satisfaction of ICs, and as a consequence, they do
not propagate in the repair processf4rb,15] repairs of RICs using normal domain values
are considered. This, under cyclic sets of RICs, may lead to undecidability of consistent
qguery answering. It would be interesting to study some sort of mixed approach, and also
the possibility of limited propagation of null values.

358 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

Research related to the design of virtual data integration systems and its impact on
global query answering has been mostly neglected. Most of the research in the area starts
from a given set of view definitions, but the conditions on them hardly go beyond classi-
fying them as conjunctive, disjunctive, Datalog, etc. However, other conditions, imposed
when the systems is being designed, could have an impact on, e.g., query plan derivation.
Much research is needed in this direction.

Acknowledgements

Research funded by DIPUC, CONICYT, Carleton University Start-Up Grant 9364-01,
NSERC Grant 250279-02, and a grant from the CITO/IBM-CAS Student Internship Pro-
gram. L. Bertossi is Faculty Fellow of the IBM Center for Advanced Studies, Toronto Lab.
We also appreciate a CoLogNet Scholarship for Loreto Bravo to attend the Workshop on
Logic-Based Method for Information Integration (Vienna, August 2003). We are grateful
to Alberto Mendelzon, Pablo Barcel6, Jan Chomicki, Enrico Franconi, Andrei Lopatenko
for useful conversations, and to the anonymous refereeplL8)r a first version of this
paper, for useful remarks.

Appendix A

A.1. Proof of results

Proof of Theorem 1. Consider/7(G) as inDefinition 1Q First we prove:

{Da | Mis a choice model of7(G)} < Linst(G). (A.1)
Assume that there is a stable model of I7(G) such that its associated databdsgy is
not a legal instance. Then there is a vigwfor which v; Z ¢; (D), that is, for somei:

— a € v;, and then by rules (1) aff (G), V;(a) is true in any model of the program, in
particular, inM.

—a¢ ¢i(Dp), i.e., in M, it holds—3z(P1(a1,z1) A - -+ A Py(ay, Zn)), for a; C a, and
Zi € z. This is equivalent to

VZ(—=P1(a1,z1) V -+ V = Pu(@n, 2))- (A.2)
A consequence dfA.2) and rules (2) of 7(G) is the following:
vz <ﬂvl~(a) v\/-Fa, Zz)>. (A-3)
I
SinceV;(a) € M and rules (3) off1(G) are satisfied byM we have that for somg’s in

the domain the atomEl.l (a,b) € M. But we had that EqA.3) holds. We have reached a
contradiction becaud@.3) is false inM; and(A.1) is proven.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 359

Now we want to proveMininst(G) C {D 4 | M is a choice model of7(G)}.

The program/7(G) can be splif37] into the bottom progranilz, that contains the
facts and rules in (1) and (3) df (G), and the top progrant];, that contains the rules
in (2). If Mp is a stable model aff 3 and/\/l‘-}3 is a stable model oﬂ?"’* (the top program
partially evaluated by the atoms.intg), thenMpg U M? is a stable model of7(G), and
all the models of latter can be obtained in this way. The bottom program contains the choice
operator and therefore its stable models will correspond to all the possible combinations of
values for the Skolem predicates subject to the condition of functiodallﬂySinceH?/’B
is a non-disjunctive-positive program (without the choice operator), there will be a unique
stable model for eacM 3 that will correspond to its minimal model.

We will now prove that every minimal legal instance is of the faby,, whereM is of
the formMpg U M? with M p a stable model ofTp andM? a minimal model ofH?AB.

Let D be a minimal legal instance df. Let us define a structur&1 for the program
I1(G) containing the following ground atoms:

(1) The atoms inD;

(2) V;(a) wheneveu € v;, wherev; is a source extension i;

(3) dom(a) for every constand € U;

(4) For each viewV; (x), consider the rulefi’(i, z1) < body(gy,), for each variable;
from the body that does not belong %o Evaluate the bodies according to the atoms
in (1). When the body is true, add fot the corresponding atom in the head.

(5) IfforaviewV;, a € v; andF! (a, b) € M, addchoicea, b) to M.

Note thatD », = D. Now we have to prove that the structute is a stable model off (G).
This can be shown by proving, first, thatlz := (M\D) is a stable model ofTg, and,
next, that/\/l/TVlB = D is a minimal model oﬂé\/‘f”.

ITg contains rules (1) and (3) df7(G). By constructionM g will satisfies rules (1).
For Mp to satisfy rules (3) it is sufficient to prove that for eatha) € Mp there is
exactly oneFil(a, b) e Mp with b € U for eachz; and that ifV; (a) ¢ M then there is no
Fil (a,z) in Mp. This is enough because it is proven that the choice operator will enforce
that Fl.l (x, z) satisfies a functional dependency betwg&eamdz.

Let us suppose by contradiction that fgra) € M p there are two atoms’l.’ (a,b1) €
Mg and Fil(&, b2) € Mp. This would imply by construction ofM that the following
rules are satisfied by evaluating the bodies with the elemeriis Wf(a, by) < body(py,)
and Fil (@, bp) < body(¢y,). This would imply thatD has two set of atoms satisfying the
mappingV; (a) < body(gy,) and therefore is not minimal. SinceD is minimal we have
reached a contradiction.

Now we have to prove that it;(a) ¢ M then there is noFi‘(Zz,z) in Mp. Let us
suppose by contradiction that there for a given valuel/, Fi’ (a,b) € Mp. This would
imply by construction ofM that it holds, by evaluating the bodies with the element® of
Fl.’ (a, b) < body(gy,). This implies thatD satisfiesbody(py,) without V; (a) belonging to
the source. The® is not minimal. SinceD is minimal we have reached a contradiction.

360 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

This proves thai\ p := (M\ D) is a stable model ofTz. Now we have to prove thd? is
a minimal model ofI'[;MB.

The prograrﬂ'[?/“* contains only facts of the for; (a, b) < whereV;(a) € Mp and
b is constructed from all the function predicatE,é(Ez, b1) € Mp. By construction this

facts are exactly the elements bf Then, D is a minimal model ofH;V‘B. This proves
that M is a stable model of7(G) and sinceD 4 = D we have that every minimal legal
instance has a stable model/@{G) associated. O

Proof of Theorem 2. Let us suppose by contradiction that we have an integration
systemG that has no admissible mappirigfor S! (with i # 0), such thata(S!) <
USE(SeQ{s;}) L(S), and that there is a stable mod&{ of the simple version of7(G)
such that the database associaleg is not a minimal legal instance.

Since D4 is not minimal, there is a minimal legal instané&esuch thatE ¢ D .
From Theorem 1we have that there is a modght’ of I7(G) such thatD ¢ = E. Then
there should be a non empty gktsuch that € M andC ¢ M'.

From the proof ofTheorem Iwe have that the prograifl (G) can be divided into two
partsiip andH?AB, where the second is a result of an evaluation of the médglof [Tz
over the rules of7(G) that do not belong té/z. The interesting thing is that the program
H?AB turns out to be a set of facts of global relations. This shows that the different models
will be determined only by the functional predicates atoms of the fﬁ)‘m‘z, b) chosen
in each model. Each of this atom will generate exactly one global atom for each relation
that has the existential variabtg in the view V;. Then, we have that the only way that
one model might generate a legal instancg ofith less elements than other model is if
two functional predicate atoms generate the same global atom. Thes to be formed
by instantiations of sections with existential variables. For simplicity and without lost of
generality let us suppose th@ahas exactly one instantiation of one section. &tw belong
to M and not toM’, M should have different values of the existential variables that
generate the instantiations 6fthan the ones assigned vt and the rest values should
be the same (sinc® ¢ ¢ D). Furthermore, the values given jit’ should generate
the same set of predicates that another section or sections genergdtesim in M’.
Then, ifC is the instantiation of a sectiaf, we have that the following has to hold for
every valueq, in positionk of the atomP(a) € C, being this atom an instantiation of
P(X1, ..\ Xk ey Xp) € SE:

Q) If xx € Cons(Sf) then there is a different secticf’ such thatP(..., x;,...) € ST
andxy € Cons'(S;") andx; = ay.
(2) If x € UVar(Sf) then there are two options:
(a) There is other sectios’jl?’ suchthatP (..., xg,...) € S;.", X € Cons(Sl’,?’) andx; =
ag .
(b) There is other sectioﬂ;" such thatP(...,xg,...) € Sf,", X; € UVar(Sl’,?’) and
(.. ak,...) €vj.
() If xx € EVar(Sf) then there are three options:

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 361

(@) There is other sectiofy’ suchthatP(..., x,...) € S;.", X € Cons(S;.") andx; =
ay.

(b) There is other sectioG;?1 such thatP(...,xk,...) € S}?’, X; € UVar(S;.”) and
(..,a,...) €vj.

(c) There is other sectioﬂ;." such thatP(...,xt,...) € S;.", X; € EVar(S;.") and

F} (b, a) € M for (b) € v;.

Consider a mapping defined by the different cases just described, for example, if we are in
case (2b) we have thatx;) = © and in case (3a) we have thidt;) = a;. By construction
this mapping is such that(s!) < Use(seayst) L(S). We have reached a contradiction

since we assumed the mappindid not exists. Therefore we have provBEgeorem2 0O

The following intermediate results refer to the refined progrdit$;) introduced in
Section3.2

Lemma 1. If M is a stable model o§ V (I1(G)), thenD 5, is a legal instance of;.

Proof. In the proof we use the same notation asDafinition 12 of I7(G). Assume
that D, is not legal. Then there must be a vieWy, with definition ¢; : V;(x) <
Ni—1 Pu(Xu, Zu), for which v; ¢ ¢;: (D). More specifically, there ig such thata €
(i\gi (D). If a € v; thenV;(a) e M.

For every global relatio, without existential variables in the view definitign, we
can conclude from rules (3a) of (G) that P, (a,, to) € M with @, C a. Then, by rules (5),
Pi(ay,,tq) € M and thereforeP, (a,) € Dq.

Now we will analyze the case of global relation with existential variables treated by
rules defined in (3b). For a certaliy;, in order to satisfy the second rule of (3b), we have
to analyze two cases:

(1) Vi(a) e M andaux,; (@) ¢ M. Then,add,; (a’) € M. From the third rule of (3b) we

have that there exists a hon-empty Sesuch thatvaru,.jzl (az,) ¢ Mforle L. Now

let us take a look at rules in (4).

From the 3rd rule, we have that for evéry L, aux,,; z, (@) ¢ M. Then, from the 2nd

rule and sinceadd,,; (a’) € M we have that for everye £, add,;; 7, (a") € M. Now,

from the first rule, the choice operator will assign one value of the doméih,te.g.,

b; for eachl € L. Then we will haveFl.l(&’, b;) € M for everyl € L. Now let us have

a look at the rules in (3b). FaP, € S;;, there are two cases to analyze with respect to

the first rule:

@) {Zi1Z1 e (Xk\ X))} S {Zi |1 € L}. ThenP,(ax, Vij) € M whered, is a projection
of a and theb; of the functional predicates. Hené® (ax, tq) € M and therefore
Pr(ar) € Dpm- B B

(0) {21121 (X \ XN} € {Z |1 € L}. ForeveryZy € {{Z;| Zi € (X, \ X)}\{Z |
I € £}} we have that sinc& ¢ L, vary,; z,(az,) € M. Since the only way for an
atom to belong to a model is to have a rule with it in the head and the body satisfied,
we have that the body of the fourth rule of (3b) has to be true. This implies that
Py (ax, nvjj) € M. We also have that sincE,.’/(c‘z’, b)) ¢ M for any value ofb;,

362 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

thenadd,; z, (a") ¢ M and therefor@ux,; z, (a") € M. Then because of the third
rule of (3b) we have that the values associated to the existential variables that are
not Zy in Py (ax, nvjj) coincide with the values given by the functional predicates
of the view. SincePy (ax, nvij) € M we have from rules in (5) tha® (ax, Nvhk)
(with hk+ ij) or Py (ax, to) belong toM and therefore thaky (ax, tq) € M. Then
Py (ax) € D sharing the same existential variable that the ones generated by the
previews case considered.

Then we have thaly,; € ¢is,; (D).’

(2) Vi(a) € M and aux; (a) e M. Then,add,,; (a’) ¢ M. From the 3rd rule of (3b)

vary,z (az) € M for all Z;. Then, from the fourth rule of (3bPy(ax, nvijj) € M

for all P, € §;; such thatZ; e Xy. From rules in (5), withhk # ij, Pi(a@x, NVhk) Or

Py (ay, to) belong toM and therefore thaly (ax, tq) € M. ThenPy(ax) € Dpg. Then

we have thaﬁg,.j € ¢is;; (D).

Now, since the different;; do not share existential variables we have ipdiD () =
M, evi@is; (D). Then sinceis,; € ¢;is; (D), a € ¢i(Daq). We have reached a contra-
diction and the lemma is provenO

Lemma 2. If D is a minimal instance of, then there is a stable modét of SMIT(G)),
such thatD ,q = D.

Proof. We need to define a Herbrand structure that will be our candidate to be the stable
model M that generates instande. For doing this, we use the same notation as in the
Definition 120f I7(G). We put the following facts intou:

(1) Pi(a,tq) for every global atomPy(a) € D. No other atom annotated with belongs
to M.

(2) doma) iff a eU.

(3) Vi(a) iff a e Vi for v; €G.

(4) Py(ay,to) iff there is a viewV; (X) < P1(X1), ..., Pc(Xy), ..., P,(X,), in which Py
has no existential variables and such thatv;.

(5) Forevery atonPy(ax) € D, wherePy(a, to) ¢ M, we need to check which views had
the potential of generating it. After some considerations we will specify at the end of
this item what new atoms go int®? and which do not.

We have that for each view sectishwith an existential variable ® such that?, S/,
define the following views:

Pe(Xp. S < N\ Pi(X) AV,
Pj(X;)eS!

7 ‘75,-,- corresponds to the atomrestricted to the variables of the viewy that belong taS; ;, andfﬂis,»j is the

view definitiong; restricted to the predicates H; and its variables.
8 The Sl? are the view sections introduced in Sect®i

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 363

where ! is considered as an annotation constant in the second argument of head of
the view. This view will contain the information of which.
Let P be the result of instantiating these views over the atom® iand the source
extensions.P contains the possible section that might have generated the presence
of each global atom iD. We will define S% = {S! | P (a, S!) € P}, i.e., ST con-
tains al the sections from which, (a;) could have been generated. Note that there is
only oneS,-j9 in G such thatsS;; 2 . Then, for each sectioﬂf € S that does not
have an admissible mappitfgsuch thati(5}) S Use(seq sty L(S) do the following:
Py (ax, Vi) € M, add,,;(@’) € M, Vi(a) € M, aux,;(a@’) ¢ M, var,, () ¢ M,
aux,; z, @) ¢ M, add,;, (@) € M. For all the rest of the sections §f*, e.g..s", we
have that thevar,,, ., (a,) € M. If for all the sections in a viewar,, ., (a;,) € M
thenaux,,; @)emM andadd,, (@) ¢ M.

(6) For everyPy(ay, vij) € M, we add the facPy (ai, N"vkm) to M for everySy,, # S;;.

(7) For everyadd, ., (@), Pc(ax, Vij) € M, add F}(X, z;) into M, wherez; is the value
of that existential variable i (ay, vij).

By constructionM minimally satisfies rules (1), (2), (3a), (5) and the first rule of (3b)

in the programi7 (G)™M. If aux,; (a') e M, I1(G)™ does not include the second type of
rules of (3b). Ifaux,,; (@) ¢ M, 1(G)M has the ruleadd,,; (X") < V;(X) corresponding

to second type of rules of (3b). This rule is satisfied. by because of the facts added

to M in item (5). For the sectioS{ such have no admissible mapping such @h@?) -
USe(Sec\{sg}) L(S), we have that no other views can generate the facts for this section
and therefore that the body of the fourth rules in (3b) will not be satisfied. Since in that
casevary,;;, (a;) ¢ M, the whole rule is satisfied. For the sections that are not in this
case, i.e., there is an admissible mapping, then the body of the fourth rules in (3b) will be
satisfied and sincear,,,, (a;,) € M, the whole rule will be satisfied. If all the sections are

in the situation last describedyx,;; (a") € M and therefore the third rules in (3b) will be
satisfied. Following the same analysis and the fact that the choice operator will choose any
value of the domain, it is easy to see that rules in (4) are also minimally satigfidd.a
minimal model of7(G)™™ and therefore there is a stable modell®€G), M, such that

D 4 corresponds to the minimal legal instane O

Lemma 3. If M is a stable model of SN¥1(G)), thenD 5 is a minimal instance of.

Proof. The legality of D4 was established ihemma 1 Assume, by contradiction that
D, is not a minimal instance df. Then there must be a minimal instanbesuch that
D ¢ Dyq. By Lemma 2we have that there is a modait” such thatD,¢ = D. Then,
Dy € Doy Inparticular, we have that there is an atom of a global relationPséy, tq),
such thatPy (a, tq) € M and P(a, tg) ¢ M'. If Pi(a,tq) € M we have two options:

9 Here thes;; are those appearing Definition 12
10 As defined in SectioB. 1

364 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

(1) Py(a,to) € M. Thenthere is a view; in which P, has no existential variables. In that
caseP;(a,to) belongs to all the models and in particularAd’. We have reached a
contradiction since? (a, tq) ¢ M’.

(2) Pr(a,vij) € M. This implies thagdd,,; (a"y e M andfor allg; € (@\ a’), F,.’ @, a)) €
M. Hence there is an atoii} (A) € M such that the first rule of (3b) is satisfied. We
can also conclude thatar,,;z (az,) ¢ M. Then there is no other view that satisfies
this sectionSf. This implies that if M’ does not contairP,(a, tq) then, in order to
satisfy the openness of view it must add a new predicate annotated wiigh But
D'\, € D . We have reached a contradiction.

As we reached a contradiction in both cases, we have provetbats a minimal legal
instance oG. O

Proof of Theorem 3. Directly fromLemmas 2 and.3 O
A.2. Obtaining the simple program from the refined program

Assume the hypothesis dheorem 2hold. We denote the view sections W'mfl asin
Section3.1 The section§f are all associated to the definition of viéj. We show now a
syntactic transformation of the refined version of the progfaqy). We justify each step
of the transformation, so that at the end it will be clear that they have the same models.

Since there is no admissible mapping, eaﬁ‘ﬁhcan only be generated by view;.

In consequence, for every modét of the refined version of1(G), we have that for

all a, vary; z, (a) ¢ M. This implies that for every mode\ anda, aux,; (@) ¢ M and

aux,,, (@) ¢ M. Since those atoms will never appear in a model of the refined version
of I1(G), we can delete the rules with those predicates in their heads. We can also delete
them from the bodies of the rules where they appear negated. We obtain the following
program:

1. Factdom(a) for every constant € .

2. FactV;(a) whenevem € v; for some source extensianin G.

3. For every view (source) predicafé in the system with descriptiorV;(X) <«
P1(X1), ..., Py(Xy):
(a) For everyP; with no existential variables, the rules

Pe(Xg, 1,) < Vi(X).

(b) Forevery ses;; of predicates of the description’s body that are related by common
existential variable$Z1, ..., Z,,}, the rules,

Pe(X, vij) < add,, (X)), N FX.z). forpPes;.
Zie(Xi\X")

add,,; (X) < Vi(X), whereX'=xn{] X;.
Pres;;

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 365

4. For every predicaté“l.l()?’, Z;) introduced in (3b), the rules,

Fl(X', Z) < add,, z,(X"), dom(Z;), choice(X'), (Z))).
add,; 7, (X") < add, (X"), fori=1,....m.

5. For every global relatio® (X) the rules

P(X.nv;j) < P(X,vp), for{(ij, hk)| P(X) € S;; andSu}.
P(X.nv;j) < P(X,t,), for{@ij)| P(X) € Sij}.

P(X,t4) < P(X,vij), for {(ij) | P(X) € Sij}.

P(X, 1) < P(X,1,).

This is a positive program with choice. Because of the second rule in (3b) and the second
rule in (4), we can replace every occurrenceadfi, (X") andadd,,z (X") by Vi(X).

Also from the third and fourth rules in (5), we can replace every occurrendg ®f 7,)
andP(X, v;j) by P(X,1y). Itis also easy to see that the first two rules in (5) will generate
atoms that are useless in the calculation of the global predicates; then these rules can be
deleted. We obtain the following program:

1. Factdom(a) for every constant € U.
2. FactV;(a) whenevem € v; for some source extensianin G.)
3. For every view (source) predicafg in the system with descriptiorV;(X) <
Pi1(X1),..., P,(X,):
(a) For everyP; with no existential variables, the rules
Pi(Xi, ta) < Vi(X).
(b) Forevery ses;; of predicates of the description’s body that are related by common
existential variable$Z1, ..., Z,,}, the rules,
Pe(Xi.tg) < ViX), N\ F(X.z), for P es;.
Zie(Xi\X')
4. For every predicaté! (X', Z;) introduced in (3b), the rules,
FI(X', Z) < Vi(X), dom(Z;), choice(X"),(Z))).

By merging rules (3a) and (3b), the revised versiomaiG) is eventually syntactically
transformed to the simple version of the program.

References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.
[2] A. Abiteboul, O. Duschka, Complexity of answering queries using materialized views, in: Proc. ACM Sym-
posium on Principles of Database Systems (PODS 98), 1998, pp. 254—-263.

366 L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367

[3] M. Arenas, L. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases, in: Proc. ACM
Symposium on Principles of Database Systems (PODS 99), 1999, pp. 68-79.

[4] M. Arenas, L. Bertossi, J. Chomicki, Answer sets for consistent query answers, Theory Practice Logic
Programm. 3 (4-5) (2003) 393-424.

[5] P. Barcelo, L. Bertossi, Logic programs for querying inconsistent databases, in: Proc. 5th International Sym-
posium on Practical Aspects of Declarative Languages (PADL 03), in: Lecture Notes in Computer Science,
vol. 2562, Springer, 2003, pp. 208-222.

[6] P. Barcelo, L. Bertossi, L. Bravo, Characterizing and computing semantically correct answers from databases
with annotated logic and answer sets, in: Semantics of Databases, in: Lecture Notes in Computer Science,
vol. 2582, Springer, 2003, pp. 1-27.

[7] R. Ben-Eliyahu, R. Dechter, Propositional semantics for disjunctive logic programs, Ann. Math. Artificial
Intelligence 12 (1994) 53-87.

[8] L. Bertossi, L. Bravo, Consistent query answers in virtual data integration systems, in: Inconsistency Toler-
ance in Knowledge-bases, Databases and Software Specifications, Springer, submitted for publication.

[9] L. Bertossi, J. Chomicki, A. Cortes, C. Gutierrez, Consistent answers from integrated data sources, in:
Proc. Flexible Query Answering Systems (FQAS 02), in: Lecture Notes in Atrtificial Intelligence, vol. 2522,
Springer, 2002, pp. 71-85.

[10] L. Bertossi, J. Chomicki, Query answering in inconsistent databases, in: J. Chomicki, G. Saake, R. van
der Meyden (Eds.), Logics for Emerging Applications of Databases, Springer, 2003.

[11] L. Bertossi, C. Schwind, Database repairs and analytic tableaux, Ann. Math. Artificial Intelligence 40 (1-2)
(2004) 5-35.

[12] L. Bertossi, L. Bravo, 2004, in preparation.

[13] L. Bravo, L. Bertossi, Logic programs for consistently querying data sources, in: Proc. of 18th International
Joint Conference on Artificial Intelligence (IJCAI 03), Morgan Kaufmann, 2003, pp. 10-15.

[14] A. Cali, D. Calvanese, G. De Giacomo, M. Lenzerini, Data integration under integrity constraints, in: Proc.
Conference on Advanced Information Systems Engineering (CAISE 02), in: Lecture Notes in Computer
Science, vol. 2348, Springer, 2002, pp. 262—-279.

[15] A. Cali, D. Lembo, R. Rosati, On the decidability and complexity of query answering over inconsistent and
incomplete databases, in: Proc. ACM Symposium on Principles of Database Systems (PODS 03), 2003,
pp. 260-271.

[16] A. Cali, D. Lembo, R. Rosati, Query rewriting and answering under constraints in data integration systems,
in: Proc. of 18th International Joint Conference on Atrtificial Intelligence (IJCAI 03), Morgan Kaufmann,
2003, pp. 16-21.

[17] A. Celle, L. Bertossi, Querying inconsistent databases: algorithms and implementation, in: ‘Computational
Logic—CL 2000'. Stream: 6th International Conference on Rules and Objects in Databases (DOOD 00), in:
Lecture Notes in Artificial Intelligence, vol. 1861, Springer, 2000, pp. 942-956.

[18] J. Chomicki, J. Marcinkowski, Minimal-change integrity maintenance using tuple deletions, arXiv.org paper
¢s.DB/0212004. Inform. and Comput., submitted for publication.

[19] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic programming,
ACM Comput. Surv. 33 (3) (2001) 374-425.

[20] O. Duschka, Query planning and optimization in information integration, PhD Thesis, Stanford University,
December 1997.

[21] O. Duschka, M. Genesereth, A. Levy, Recursive query plans for data integration, J. Logic Programm. 43 (1)
(2000) 49-73.

[22] T. Eiter, W. Faber, N. Leone, G. Pfeifer, Declarative problem-solving in DLV, in: J. Minker (Ed.), Logic-
Based Artificial Intelligence, Kluwer, 2000, pp. 79-103.

[23] T. Eiter, M. Fink, G. Greco, D. Lembo, Efficient evaluation of logic programs for querying data integration
systems, in: Proc. 19th International Conference on Logic Programming (ICLP 03), in: Lecture Notes in
Computer Science, vol. 2916, Springer, 2003, pp. 163-177.

[24] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Generation
Comput. 9 (1991) 365-385.

[25] F. Giannotti, S. Greco, D. Sacca, C. Zaniolo, Programming with non-determinism in deductive databases,
Ann. Math. Artificial Intelligence 19 (1-2) (1997) 97-125.

L. Bravo, L. Bertossi / Journal of Applied Logic 3 (2005) 329-367 367

[26] F. Giannotti, D. Pedreschi, D. Sacca, C. Zaniolo, Non-determinism in deductive databases, in: Proc. Interna-
tional Conference on Rules and Objects in Databases (DOOD 91), in: Lecture Notes in Computer Science,
vol. 566, Springer, 1991, pp. 129-146.

[27] F. Giannotti, D. Pedreschi, C. Zaniolo, Semantics and expressive power of nondeterministic constructs in
deductive databases, J. Comput. System Sci. 62 (1) (2001) 15-42.

[28] G. Grahne, A. Mendelzon, Tableau techniques for querying information sources through global schemas,
in: Proc. International Conference on Database Theory (ICDT 99), in: Lecture Notes in Computer Science,
vol. 1540, Springer, 1999, pp. 332-347.

[29] J. Grant, M. Minker, A logic-based approach to data integration, Theory Practice Logic Programm. 2 (3)
(2002) 323-368.

[30] G. Greco, S. Greco, E. Zumpano, A logic programming approach to the integration, repairing and querying
of inconsistent databases, in: Proc. International Conference on Logic Programming (ICLP 01), in: Lecture
Notes in Computer Science, vol. 2237, Springer, 2001, pp. 348-364.

[31] J. Gryz, Query rewriting using views in the presence of functional and inclusion dependencies, Inform.
Syst. 24 (7) (1999) 597-612.

[32] D. Lembo, M. Lenzerini, R. Rosati, Source inconsistency and incompleteness in data integration, in: Proc.
Workshop on Knowledge Representation Meets Databases (KRDB 02), 2002.

[33] M. Lenzerini, Data integration: a theoretical perspective, in: Proc. ACM Symposium on Principles of Data-
base Systems (PODS 02), 2002, pp. 233-246.

[34] N. Leone, P. Rullo, F. Scarcello, Disjunctive stable models: unfounded sets, fixpoint semantics, and compu-
tation, Inform. and Comput. 135 (2) (1997) 69-112.

[35] N. Leone, et al., The DLV system for knowledge representation and reasoning, arXiv.org paper
¢s.L0/0211004, ACM Trans. Comput. Logic, submitted for publication.

[36] A. Levy, Logic-based techniques in data integration, in: J. Minker (Ed.), Logic Based Artificial Intelligence,
Kluwer, 2000, pp. 575-595.

[37] V. Lifschitz, H. Turner, Splitting a logic program, in: Proc. International Conference on Logic Programming
(ICLP 94), MIT Press, 1994, pp. 23-37.

[38] I. Niemela, Implementing circumscription using a tableau method, in: Proc. European Conference on Arti-
ficial Intelligence (ECAI 96), 1996, pp. 80—84.

[39] T. Przymusinski, Stable semantics for disjunctive programs, New Generation Comput. 9 (3/4) (1991) 401—
424.

[40] R. Reiter, Towards a logical reconstruction of relational database theory, in: M.L. Brodie, J. Mylopoulos,
J.W. Schmidt (Eds.), On Conceptual Modeling, Springer-Verlag, 1984, pp. 191-233.

[41] H. Wang, C. Zaniolo, Nonmonotonic reasoning® L+, in: J. Minker (Ed.), Logic-Based Atrtificial
Intelligence, Kluwer, 2000, pp. 523-544.

	Deductive databases for computing certain and consistent answers from mediated data integration systems
	Introduction
	Preliminaries
	Global schemas and view definitions
	Global systems and consistency

	Specification of minimal instances
	The simple program
	The refined program

	Specification of repairs of a global system
	Consistent answers
	Further analysis, extensions and discussion
	Complexity
	Infinite vs. finite domain
	Choice models vs. Skolem functions
	Disjunctive sources

	Conclusions
	Acknowledgements
	References

