THE OUTER CAPACITY OF AN INTERNAL SET FUNCTION

by LEOPOLDO E. BERTOSSI in Santiago (Chile)

1. Introduction

In [5], LOEB showed how to obtain a classical probability space via a standard part mapping starting from an internal probability space in a nonstandard universe. In this work we follow LOEB's approach in order to obtain a classical capacity by taking the standard part of a very simple set function defined on an internal paving. We give here the necessary background on capacities, but only a few facts on nonstandard extensions of superstructures. Good expositions of the later subject can be found in [1], [4], [6].

Let \mathcal{F} be a family of subsets of a set F. If \mathcal{F} is closed with respect to finite unions and intersections, and, furthermore, contains the empty set \emptyset , then we say that \mathcal{F} is a *paving over* F. A function $C: \mathcal{P}(F) \rightarrow \mathbb{R}$, where $\mathcal{P}(F)$ is the power set of F, is an \mathcal{F} -capacity if

(i) C is increasing, i.e. $A \subseteq B$ implies $C(A) \leq C(B)$,

(ii) for every increasing sequence $(A_n)_N$ of subsets of F,

$$C(\bigcup_{\mathbb{N}} A_n) = \sup_{\mathbb{N}} C(A_n),$$

(iii) for every decreasing sequence $(A_n)_N$ of elements of \mathcal{F} ,

$$C(\bigcap_{\mathbb{N}} A_n) = \inf_{\mathbb{N}} C(A_n)$$

Under certain conditions it is possible to extend a function C defined originally only on a paving \mathcal{F} to an \mathcal{F} -capacity defined on $\mathcal{P}(F)$: Let $C: \mathcal{F} \to \overline{\mathbb{R}}_+$ be increasing and strongly subadditive (i.e. for every $A, B \in \mathcal{F}, C(A \cup B) + C(A \cap B) \leq C(A) + C(B)$). Let us suppose in addition that C is upper-continuous, that is, for every increasing sequence $(A_n)_N$ of elements of \mathcal{F} whose union $\bigcup_N A_n$ also belongs to \mathcal{F} , one has $C(\bigcup_N A_n) = \sup_N C(A_n)$. For every $A \in \mathcal{F}_{\sigma}$ (the closure of \mathcal{F} with respect to enumerable unions), we define

$$C^{\star}(A) := \sup_{B \in \mathcal{F}, B \subseteq A} C(B),$$

and, for every $D \in \mathcal{P}(F)$, we define

$$C^{\star}(D) := \inf_{D \subseteq A \in \mathcal{F}_q} C^{\star}(A),$$

where $\inf \emptyset := +\infty$.

The theorem of construction of capacities [2] says that C^* is an \mathcal{F} -capacity (the outer capacity associated with C) if and only if, for every decreasing sequence $(A_n)_N$ of elements of \mathcal{F} ,

(1)
$$C^{\star}(\bigcap_{\mathbb{N}} A_n) = \inf_{\mathbb{N}} C(A_n).$$

In what follows, we will work in an \aleph_1 -saturated, nonstandard extension V(*S) of the superstructure V(S) of a set S which contains the real numbers. V(S) consists of all relations

over S, of any finite arity and any finite level, e.g. $\mathcal{P}(S)$ and $\mathcal{P}(\mathcal{P}(S))$ belong to V(S). Let us recall that an extension V(*S) contains $*\mathbb{R}$ (the set of hyperreal numbers) and $*\mathbb{N}$ (the set of hyperintegers) as elements. $*\mathbb{R}$ is a proper extension of R and N is a proper initial segment of $*\mathbb{N}$. $*\mathbb{N}$ and $*\mathbb{N} - \mathbb{N}$ are external elements of V(*S). The mapping $\circ: *\mathbb{R} \to \mathbb{R}$, which associates to every finite hyperreal d the unique real c that is infinitely close to it $(c = \circ d)$, is called the *standard part*. Finally, we recall that V(*S) is \approx_1 -saturated iff, for every sequence $(a_n)_{n \in \mathbb{N}}$ of internal objects of V(*S), there is an internal sequence $(b_n)_{n \in \mathbb{N}}$ which extends it $(b_n = a_n, \text{ for every } n \in \mathbb{N})$. The existence of nonstandard extensions with these properties is proved in [3].

2. Non-standard capacities with non-standard pavings

Let F be an internal set and \mathcal{F} , an internal paving over F. Using the \aleph_1 -saturation of the extension V(*S), LOEB [5] proved the following proposition for the case where \mathcal{F} is an internal algebra of sets. However, the same proof works when \mathcal{F} is an internal paving.

2.1. Proposition. For every $n \ge 0$, $n \in \mathbb{N}$, let $A_n \in \mathcal{F}$. If $A_0 \subseteq \bigcup_{1 \le n \in \mathbb{N}} A_n$, then, for some $m \in \mathbb{N}$,

 $A_0 \subseteq \bigcup_{n=1}^m A_n \square$

2.2. Lemma. If $(A_n)_{1 \leq n \in \mathbb{N}}$ is a strictly increasing sequence of elements of \mathcal{F} , then

 $\bigcup_{1 \leq n \in \mathbb{N}} A_n \notin \mathcal{F}.$

Proof. If $A_0 := \bigcup_{1 \le n \in \mathbb{N}} A_n \in \mathcal{F}$, then, by proposition 2.1, $A_0 \subseteq \bigcup_{n=1}^m A_n$ for some $n \in \mathbb{N}$. This contradicts the hypothesis that the original sequence is strictly increasing. \Box

Now, let $J: \mathcal{F} \to *\mathbb{R}_+$ be internal, increasing and strongly subadditive. Then, we have in our nonstandard extension an internal triple (F, \mathcal{F}, J) that satisfies very simple hypothesis. We point out that it is easy to verify, using \aleph_1 -saturation, that the paving \mathcal{F} is semi-compact. We will not use this property of \mathcal{F} . In a second step, starting from this triple, we can obtain a classical capacity based on paving \mathcal{F} in a very natural way. In order to do this, let us define I(A) := °(J(A)), for every $A \in \mathcal{F}$.

2.3. Lemma. I: $\mathcal{F} \rightarrow \overline{\mathbb{R}}_+$ is increasing, strongly subadditive, and upper-continuous.

Proof. The upper-continuity follows trivially from lemma 2.2.

2.4. Proposition. The mapping $I^*: \mathcal{P}(F) \to \mathbb{R}_+$ associated with I is an F-capacity.

Proof. By lemma 2.3, it suffices to verify condition (1), that is to say, for every decreasing sequence $(A_n)_N$ of elements of \mathcal{F} ,

 $I^{\star}(\bigcap_{\mathbf{N}} A_n) = \inf_{\mathbf{N}} I(A_n).$

This condition can be reformulated [2] directly in terms of I, the original mapping: if $(A_n)_N$, $(B_n)_N$ are respectively decreasing and increasing sequences of elements of \mathcal{F} , such that $\bigcap_N A_n \subseteq \bigcup_N B_n$, then $\inf_N I(A_n) \leq \sup_N I(B_n)$. We will show that this condition is satisfied by I.

Let $A := \bigcap_{N} A_n$, $B := \bigcup_{N} B_n$. As A_n , $B_n \in \mathcal{F}$ and \mathcal{F} is internal, we know that A_n , B_n are inter-

nal. By the saturation condition on the nonstandard extension, there are internal extensions $(A_n)_{*N}$, $(B_n)_{*N}$ of $(A_n)_N$, $(B_n)_N$, respectively. Let us define

$$K_1 := \{i \in \mathbb{N} \mid \forall j \leq i \colon A_j \in \mathcal{F} \land A_{j-1} \supseteq A_j\},\$$

$$K_2 := \{i \in *\mathbb{N} \mid \forall j \leq i : B_j \in \mathcal{F} \land B_{j-1} \subseteq B_j\},\$$

 K_1 and K_2 are internal sets because they are defined by conditions expressed in terms of internal parameters and bounded quantifiers. Furthermore, $K_1, K_2 \supseteq \mathbb{N}$. Since \mathbb{N} is external, there are $\gamma, \omega \in *\mathbb{N} - \mathbb{N}$, such that $\gamma \in K_1, \omega \in K_2$. Thus,

$$A_1 \supseteq A_2 \supseteq \ldots \supseteq A_{\gamma-1} \supseteq A_{\gamma} \in \mathcal{F}$$
 and $B_1 \subseteq B_2 \subseteq \ldots \subseteq B_{\omega-1} \subseteq B_{\omega} \in \mathcal{F}.$

For $\eta := \min \{\gamma, \omega\} \ (\in *\mathbb{N} - \mathbb{N}),$

$$A_1 \supseteq A_2 \supseteq \ldots \supseteq A_{n-1} \supseteq A_n$$
 and $B_1 \subseteq B_2 \subseteq \ldots \subseteq B_{n-1} \subseteq B_n$.

In addition, $\forall n \in \mathbb{N}, \forall j \leq \eta, j \in \mathbb{N} - \mathbb{N}$: $A_n \supseteq A_j$ and $B_n \subseteq B_j$. Since $\bigcup_{\mathbb{N}} B_n \supseteq \bigcap_{\mathbb{N}} A_n$, we have $\forall j \leq \eta, j \in \mathbb{N} - \mathbb{N}$: $B_i \supseteq A_j$. Thus, $\forall j \leq \eta, j \in \mathbb{N} - \mathbb{N}$: $J(B_j) \geq J(A_j)$. The set

$$K \coloneqq \{j \in *\mathbb{N} \mid j \leq \eta \land J(A_j) \leq J(B_j)\}$$

is internal and satisfies $\{1, ..., \eta\} \supseteq K \supseteq \{1, ..., \eta\} \cap (*\mathbb{N} - \mathbb{N})$. This last set is external, so that there is an $m \in \mathbb{N}$, such that $m \in K$. For this m we have $J(A_m) \leq J(B_m)$. Thus, $I(A_m) \leq I(B_m)$. Therefore, we finally obtain

$$\inf_{\mathbf{N}} I(A_n) \leq I(A_m) \leq I(B_m) \leq \sup_{\mathbf{N}} I(B_n). \square$$

References

- °-

- ALBEVERIO, S., J. E. FENSTAD, R. HØEGH-KROHN and T. LINDSTRØM, Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Academic Press Inc., Orlando, Fla., 1986.
- [2] DELLACHERIE, C., and P. A. MEYER, Probalities and Potential. North-Holland Publ. Comp., Amsterdam 1978.
- [3] KEISLER, H.J., Ultraproducts and saturated models. Indag. Math. 26 (1964), 178-186.
- [4] KEISLER, H.J., Foundations of Infinitesimal Calculus. Prindle, Weber and Schmidt Inc., 1976.
- [5] LOEB, P.A., Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Amer. Math. Soc. 211 (1975), 113-122.
- [6] LOEB, P. A., An introduction to nonstandard analysis and hyperfinite probability theory. In: Probabilistic Analysis and Related Topics, Vol. 2 (BHARUCHA-REID, ed.), Academic Press, New York 1979, pp. 105-142.

(Eingegangen am 31. Mai 1990)

L. E. Bertossi Pontificia Universidad Catolica de Chile Facultad de Matematicas Programa de Computacion Casilla 306 Santiago 22 Chile