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ABSTRACT
Summarizability in a multidimensional (MD) database refers
to the correct reusability of pre-computed aggregate queries
(or views) when computing higher-level aggregations or roll-
ups. A dimension instance has this property if and only if
it is strict and homogeneous. A dimension instance may fail
to satisfy either of these two semantics conditions, and has
to be repaired, restoring strictness and homogeneity. In this
work, we take a relational approach to the problem of repair-
ing dimension instances. A dimension repair is obtained by
translating the dimension instance into a relational instance,
repairing the latter using established techniques in the re-
lational framework, and properly inverting the process. We
show that the common relational star and snowflake schemas
for MD databases are not the best choice for this process.
Actually, for this purpose, we propose and formalize the path
relational schema, which becomes the basis for obtaining di-
mensional repairs. The path schema turns out to have useful
properties in general, as a basis for a relational representa-
tion and implementation of MD databases and data ware-
houses. It is also particularly suitable for restoring MD sum-
marizability through relational repairs. We compare the di-
mension repairs so obtained with existing repair approaches
for MD databases.
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1. INTRODUCTION
Multidimensional (MD) databases (MDDBs) [29] repre-

sent data at a higher level of abstraction than relational
databases, using multiple dimensions to give and make sense
to/of usually quantitative data, the so-called facts in data
warehouses (DWHs) [35, 33].

Example 1. [9] The following represents data for a phone
company about the cell phones usage as depending on time
and location. The Location dimension represents the hier-
archy of the wireless network spots. Each cell phone num-
ber has a specific area code (41 or 45), and belongs to a
city, TCH (Talcahuano), TEM (Temuco), or CCP (Concepcion).
Area codes and cities themselves belong to a region, VIII
or IX. The Location dimension schema is in Figure 1a, and
an instance of this schema is shown in Figure 1b. Figure 1c
shows data about the network usage by phone numbers.

In Figure 1a, Number, Area Code, etc., are categories. For
example, Region is a parent category for categories Area
Code and City; and an ancestor of category Number. Simi-
larly, element N2 of category Number has IX as an ancestor
element in category Region. 2

Due to large volumes of data in MDDBs, computation from
scratch of aggregate queries should be avoided whenever pos-
sible. Ideally, aggregate query results at lower levels should
be used to calculate results at higher levels of the hierarchy.
A dimension instance that allows this is called summariz-
able.

The notion of summarizability was introduced in [43], in
the context of statistical databases. A multidimensional
database is summarizable, when all of its dimensions al-
low for summarization. A non-summarizable MDDB will ei-
ther return incorrect query results when using pre-computed
views, or lose efficiency by having to compute the answers
from scratch [43, 37, 36, 41, 29].

For a dimension to be summarizable, two conditions must
be satisfied. First, it must be strict, meaning that each el-
ement in a category has at most one parent in each upper
category [29, 41, 43]. Secondly, it has to be homogeneous,
meaning that each element in a category has at least one
parent element in each parent category [29, 35, 43]. For
this reason, we usually and informally refer to the combi-
nation of the homogeneity and strictness conditions as the
summarizability conditions.

In Example 1, strictness is violated, because N3 has two
grandparents in the Region category, namely IX and VIII.
Moreover, the Location dimension in this example is non-
homogeneous (or heterogenous), because element 41 has no
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Figure 1: Cell phone traffic database

parent in category Region.
There are design reasons that commonly make a dimen-

sion instance non-summarizable [29]. Furthermore, a dimen-
sion instance may become non-summa-rizable after dimen-
sion updates [32]. In particular, non-strictness and hetero-
geneity are common in MDDBs. An MDDB that has any of
these two properties is said to be inconsistent. Confronted
with inconsistency, one can try to restore the properties of
strictness and homogeneity, through what is usually called
a database repair process.
Repairs of relational databases that violate integrity con-

straints (ICs) have been investigated in the literature [2].
Intuitively, a repair of a relational instance D that does not
satisfy a given set IC of ICs is an instance D′ for the same
schema, that does satisfy IC and minimally departs from
D. Much work has been done in the area of relational re-
pairs and consistent query answering (see [7, 20] for recent
surveys).
Several approaches for repairing MDDBs have been pro-

posed recently. Non-summarizability is resolved by chang-
ing either the dimension instance or the dimension schema.
Instance-based repairs have been introduced and studied in
[9, 13, 17, 19], cf. also [42]. Schema-based repairs have been
proposed in [27, 30, 28]. MD schema-based repairs have
been formally defined and investigated in [5].
The MD repairs proposed so far do not assume any rela-

tional representation of MDDBs, and work directly with/on
the multidimensional model. Nor they appeal to any kind
specific implementation of MDDBs. However, MDDBs can
be implemented either as relational systems (ROLAP), pro-
prietary multidimensional systems (MOLAP), or a hybrid
of both (HOLAP) [34, 35, 45]. Based on [35], MDDBs are
usually implemented as/on relational databases, which fa-
cilitates optimized query answering and data storage [45].
In this work we address non-summarizability, as caused

by heterogeneity or non-strictness, through a relational rep-
resentation of MDDBs. In particular, we investigate the ap-
plicability of notions and mechanisms related to relational
repairs when dealing with inconsistent MDDBs. Our goal is
to restore summarizability by repairing the underlying rela-
tional database. In this way, we can take advantage of an
already existing rich body of research.
To achieve our goal, we have to start by representing

our original MDDB as a relational database, through an
MD2R mapping. This mapping translates the multidimen-

sional data model (MDM) into an adequate relational model.
The latter includes a schema that allows for the representa-
tion of the MDDB conditions of strictness and homogeneity
as relational integrity constraints (ICs). The translation is
such that the original MDDB is inconsistent, iff the resulting
database is inconsistent wrt the created ICs.

Next, the resulting inconsistent relational instance is re-
paired as a relational database, using existing techniques. As
a result, we obtain a set of minimal relational repairs. The
final step consists of translating these repairs into MDDB re-
pairs. As expected, the feasibility of this approach depends
on the invertibility of MD2R mappings [22, 4].

For all this program to work, we need to properly confront
our first challenge, the proposal of an expressive relational
representation for an MDDB. The ideal relational represen-
tation should enable the efficient check of the summarizabil-
ity conditions through the associated set of integrity con-
straints. Moreover, there should be no information loss un-
der this mapping and its inversion, otherwise we might have
an incomplete or incorrect retrieval of repaired dimension
instances from the repaired relational instances.

In this direction, we first investigate the two well-known
relational representations of MDDBs, the Star and Snowflake,
showing that they are not appropriate for our purpose. Next,
we define a new alternative relational representation of MD-
DBs. It uses a path-based approach, and the associated re-
lational schema is called the path schema.

Example 2. (example 1 continued) Figure 2 shows how
the Location dimension is represented according to the path
schema. Each relational table represents a path from the
bottommost category to the topmost category in the dimen-
sion schema. The hierarchy in Figure 1a contains two ex-
amples of the aforementioned paths. Hence, we have two
tables representing them. Each path goes through several
data elements in the dimension instance. The sequence of
elements on each path creates a tuple for the corresponding
table. For an MD category c, Ac denotes the corresponding
relational attribute. 2

Our results show the adequacy of our approach to MD in-
consistency handling via repairs of the associated path re-
lational instances. By using the relational path schema, we
can efficiently check the strictness and homogeneity condi-
tions through relational ICs. Furthermore, the MD2R map-
ping turns out to be uniquely invertible.



(a) Table RPLoc
1 for left path

PLoc
1 in Location schema

(b) Table RPLoc
2 for right path

PLoc
2 in Location schema

Figure 2: Location dimension instance represented according to path schema

Notice that our MD repairs are instance-based, as opposed
to schema-oriented: The original MD schema is not changed
into a new MD schema, but only the MD instance is changed
via its transformation into a relational instance and subse-
quent repairs. However, we obtain a class of MD repairs that
differs from the class of (also instance-oriented) MD repairs
proposed in [13, 19] ([9, 17] deal only with non-strictness,
assuming homogeneity). This discrepancy is due to the min-
imality of repairs that we impose on the relational side.
The relational repairs that we obtain can also be consid-

ered as simpler than those obtained by applying the same
kind of process (relational transformation followed by rela-
tional repair) to more classic relational representations, like
the star or snowflake (cf. Section 3). The former require
changes of attribute values, whereas the latter two cases,
may require full tuple insertions or deletions. In Section 8 a
discussion about the so-obtained MD repairs can be found.
The rest of this paper is structured as follows. Section 2

briefly describes the multidimensional data model we use in
our work. Section 3 explains why the well-known star and
snowflake relational schemas are not appropriate for deal-
ing with consistency issues in MDDBs and DWHs. Section
4 proposes and formalizes the path relational schema as a
new relational representation for MDDBs. Section 5 dis-
cusses the representation of summarizability conditions as
integrity constraints over path schema. Section 6 provides
the relational repair semantics for restoring consistency in
path databases. 7 investigates the invertibility of the pro-
posed MD to relational mapping. 8 presents a purely MD
characterization of the repairs obtained through our the re-
lational route. Section 9 shows experiments in relation to
the use of the path relational schema as a basis for MDDB
and DWH implementation. Finally, Section 10 draws some
conclusions on what we have achieved and about relevant
ongoing and future work.

2. PRELIMINARIES
Graph-theoretic representations of MDDBs have been pro-

posed in the literature [15, 31]. In this work we adopt the
Hurtado-Mendelzon formalization [29, 26].
A dimension schema S is a directed acyclic graph (DAG),

represented by a pair of the form ⟨C,↗⟩. C is a set of cate-
gories, and ↗ is a binary relation between categories, indi-
cating the parent-child relationship in the dimension schema.
The transitive and reflexive closure of this binary relation is
denoted with ↗∗. We make the usual assumption that there
are no “shortcuts” in an MD schema, i.e. if ci ↗ cj , then
there is no (properly) intermediate category ck with ci ↗∗ ck
and ck ↗ cj .
Every dimension schema has a distinguished top category,

All, which is reachable from every other category: For ev-
ery category c ∈ C, c ↗∗ All holds. In addition, in every
dimension schema, there is a unique category that has no
child. It is called the base category.

Complying to the dimension schema, a dimension instance,
D, is modeled as a pair ⟨M, <⟩, where M is the finite set
of data elements, and < (sometimes denoted <D) is binary
relation on M, the parent-child relationship, that parallels
relation ↗. More precisely, there is a mapping δ from M
to C that assigns each data element to a unique category.
If δ(m) = c, then we also say that m ∈ c. In consequence,
m1 < m2 iff δ(m1) ↗ δ(m2). The transitive and reflexive
closure of < is denoted with <∗. Element all ∈ M is the
only element of category All. In general, all is expected to
be reached from any other category element, but there may
be instances where this is not the case.

A roll-up relation, Rcj
ci (D), can be built to any pair of

categories ci, cj in the schema. It contains the pairs of the
form (mi, mj), with ci ↗∗ cj , mi ∈ ci,mj ∈ cj , mi <

∗ mj .
The roll-up relation is not necessarily a function. We do not
assume this relation to be total, i.e. there may be mi ∈ ci
that does not rolls up to an element in cj .

Example 3. The Location dimension schema in Figure
1a can be modeled through the following schema S:

C = {Number, AreaCode, City, Region, All}.
↗ = {(Number, AreaCode), (Number, City),

(AreaCode, Region), (City, Region),

(Region, All)}.

For the corresponding dimension instance D, we have:

M = {N1, N2, N3, 41, 45, TCH, TEM, CCP, VIII, IX, all}.
< = {(N1, 41), (N1, TCH), (N2, 45), (N2, TEM), (N3, 45),

(N3, CCP), (45, IX), (TEM, IX), (TCH, VIII),

(CCP, VIII), (VIII, all), (IX, all)}.

The ancestors in the Region category of all base elements
can be obtained via the roll-up relation

RRegion
Number(D) = {(N1, VIII), (N2, IX), (N3, VIII), (N3, IX)}. 2

As mentioned above, the MD semantic conditions of strict-
ness and homogeneity have received much attention. They,
together, guarantee the summarizability property for a di-
mension instance. These are global conditions that can also
be made local (or enforced locally).

Definition 1. [13, 19] (a) For a dimension schema S =
⟨C,↗⟩, a strictness constraint is an expression of the form
ci → cj , where ci, cj ∈ C, ci ̸= cj , and ci ↗∗ cj . This



constraint is satisfied by a dimension instance D, denoted
D |= ci → cj , iff the roll up relation Rcj

ci (D) is a (possibly
partial) function.
(b) The dimension instance D is strict if it satisfies the full-
strictness condition, namely the set, FSS = {ci → cj | ci, cj ∈
C, ci ̸= cj , and ci ↗∗ cj}, of all strictness constraints. 2

Notice that an instance D is strict when every roll-up rela-
tion is a function.

Example 4. The Location dimension instance in Figure
1 is non-strict, because RRegion

Number(D) is not a function: The
roll-up relation in Example 3 shows that N3 has two grand
parents in category Region. Thus, D ̸|= Number → Region.
2

Definition 2. [13, 19] (a) For a dimension schema S =
⟨C,↗⟩, a homogeneity constraint (a.k.a. covering constraint)
is an expression of the form ci ⇒ cj , where ci, cj ∈ C, ci ̸= cj ,
and ci ↗ cj . This constraint is satisfied by a dimension
instance D, denoted D |= ci ⇒ cj , iff the roll-up relation
Rcj

ci (D) is total.
(b) A dimension instance D is homogenous iff it satisfies the
full-homogeneity condition, namely the set, FH S = {ci ⇒
cj | ci, cj ∈ C, ci ̸= cj , and ci ↗ cj}, of all homogeneity
constraints. 2

Notice that an instance D is homogeneous when every roll-
up relation is total.

Example 5. For the Location dimension instance in Fig-
ure 1, the roll up relation RRegion

AreaCode is {(45, IX)}. Since el-
ement 41 does not appear in this roll up relation as a first
argument, the relation is not total. This makes the dimen-
sion instance heterogenous: D ̸|= AreaCode ⇒ Region. 2

Remark 1. In this work we will make some common as-
sumptions [26]. They do not trivialize our problems, but
make the presentation easier to follow. Our results can be
easily modified in order to take into account situations where
those assumptions are not met. They are: (a) The existence
of a single base category. (b) Dimension instances are com-
plete, i.e. elements that do not have children are all base
elements. (c) Although we will use the null value, NULL, in
the relational representation of the original MD instance,
the latter does not contain NULL. Actually, NULL /∈ M. The
semantics of NULL will be as in SQL relational databases,
with a semantics à la SQL, as logically captured in [12]. 2

3. ROLAP AND MDDB SEMANTICS

3.1 Star schema revisited
The relational model based on the star schema is the

most common (relational) representation of a dimensional
database. In this case, a fact table consisting of numerical
measurements is directly joined to a set of dimension tables
that contain descriptive attributes [35].
An example of this structure could be obtained from Fig-

ures 1b and 1c, if we create a referential IC from the latter
to a single relation representing the former [35, 40, 27, 38].
In it, the categories are captured as attributes, and each
base element with its parents and grand parents generates
a tuple for the relational table.
Figure 3 shows the representation of the Location dimen-

sion as a relational database instance for a star schema. No-
tice that in case of multiple parents in an upper category

for a given base element, more than one tuple are needed to
represent the base element with its ancestors. That is why
N3 appears in two tuples in Figure 3.

Figure 3: Star representation of dimension in Figure 1

The star schema does not meet the criteria mentioned in Sec-
tion 1 for an adequate relational representation of MDDB
when summarizability conditions are being considered. One
of its weaknesses is that checking homogeneity through re-
lational ICs is problematic. One could think of checking
homogeneity through the absence of null values. However,
as our running example shows, this may not be possible.
For instance, although the Location dimension in Figure 1
is heterogenous (check the parents for element 41), its star
representation in Figure 3 does not contain any NULL.

On the other side, checking a strictness constraint be-
tween two categories in the dimension schema can be done
by checking a functional dependency (FD) between the cor-
responding attributes in the star representation.

An important problem with the star relational represen-
tation has to do with the invertibility: Moving back from a
star representation to a MD representation is uncertain. Due
to the flat structure of the star schema, we lose information
about the original MD2R mapping. As a result, inverting
this mapping might not generate a unique MD instance. (Cf.
Section 7 for a detailed discussion of invertibility.)

3.2 Snowflake schema revisited
While the star schema captures a dimension in a flat rela-

tional structure, the snowflake schema provides a hierarchi-
cal relational representation. Being a normalized version of a
star schema, its hierarchical structure makes query answer-
ing more complex [38]. Under this schema, each category
c in a dimension schema is represented by a separate table,
with Ac as first attribute. The other attributes in that table
correspond to the c’s parent categories. Each of them points
to or references the same attribute in its own table [35, 27,
38]. Figure 4 shows the snowflake relational representation
of the Location dimension instance.

Due to the hierarchical structure of the snowflake schema,
capturing strictness through relational ICs is complicated:
Since each category is mapped to a single table, in order to
check strictness, several joins must be executed . For exam-
ple, if we want to check strictness between categories Number
and Region through the schema in Figure 4, we can see from
the MD schema that there are two ways to reach category
Region from category Number. At the relational level, we
have to check each path by joining the corresponding ta-
bles. Through these paths and joins we can discover that N3
is related to different elements in Region. In more general
terms, and from the relational point of view, checking local
strictness conditions, i.e. of the form ci → cj , amounts to
checking relational equality generating dependencies (EGD)



Figure 4: Snowflake representation of dimension in Figure 1

[1] in the snowflake database. They can be expressed in the
relational calculus by universally quantified sentences of the
form

∀x̄(φ(x̄) → x1j = x2j ), (1)

where φ is a formula that captures the required (and possible
multiple) join, and x1j , x

2
j ∈ x̄.

Unlike strictness, checking homogeneity in a snowflake in-
stance is simple: The presence of NULL reflects the missing
parents, like the Null value for Region in Figure 4. Thus,
we can check homogeneity through NOT NULL relational con-
straints (assuming that the original MD instance does not
contain null values). Local homogeneity, i.e. MD constraints
of the form ci ⇒ cj , can be checked by simple relational ICs
of the form

∀x̄(ψ(x̄) → NotNull(xj)), (2)

where xj ∈ x̄, and NotNull is a built-in predicate that is
true only when its argument is (symbolically) different from
NULL.
The hierarchical structure of the snowflake schema makes

the MD2R mapping invertible. For example, it is easy to
check that the snowflake instance in Figure 4 is uniquely
invertible to the Location MD dimension.
Due to the complexities involved in the representation

(and also checking) of the strictness condition by relational
ICs, we can not use snowflake relational representation in
our approach.

4. MDDBS AS PATH INSTANCES
In this section we propose a relational representation for

MDDBs that is well-behaved wrt our needs, namely: Sim-
ple relational representation and verification of MD summa-
rizability conditions via relational ICs, invertibility of the
MD2R mapping; and, as mentioned above, obtaining a sim-
pler class of relational repairs, which will also make the final
MD inversion process easier.
In Section 2, we formulated the strictness and homogene-

ity conditions on the basis of the roll up relations. The
occurrence of a pair of data elements in a roll up relation
indicates the existence of a path between those two elements
in the hierarchy.
In order to better express the summarizability conditions

in relational terms, the relational representation must store
these paths in simple terms, allowing for their efficient ver-
ification. Inspired by existing XML-to-Relational mappings
[44, 47], we propose a path-based mapping from MDDBs to
relational databases.

Definition 3. Given a dimension schema S = ⟨C,↗⟩, a
base-to-all path (B2A), P , is an ordered list of categories
⟨c1, . . . , cn⟩, where c1 is a base category and cn is the All
category, and ci ↗ ci+1 for 1 ≤ i ≤ n− 1. 2

The path schema we will introduce next represents each
base-to-all path by means of a single database predicate.
The categories along each path will be mapped to attributes
of the corresponding relational table. Hence, it is possible
to have a category mapped to more than one attribute in
separate tables.

Definition 4. Given a dimension schema S = ⟨C,↗⟩
and a dimension instance D = ⟨M, <⟩, a p-instance for a
B2A path P = ⟨c1, . . . , cn⟩ is an ordered list of elements
p = ⟨e1, . . . , en⟩, with:1
(a) δ(ei) = ci or ei = NULL.
(b) Whenever ei and ei+1 are both different from NULL,
ei < ei+1.
(c) There is no p-instance p′ that can be obtained from p by
replacing NULLs in positions i by non-NULL eis, that satisfies
the first two conditions above.

The set of all p-instances for path P is denoted by InstD(P ).
2

Condition (c) above enforces the use of non-null data ele-
ments whenever possible; or, equivalently, the use of NULL
only when strictly needed. Notice that NULL is incomparable
via < with elements in M. We are also assuming that NULL
does not belong to M. Also notice that if the base category
is non-empty (something natural to assume), then there will
be no p-instance starting with NULL.

Now we describe in precise terms the relational trans-
formation T of both the dimensional schema and dimen-
sional instance:

(A) (Schema transformation) For each c ∈ C, create a rela-
tional attribute Ac.

For each B2A path P of the form ⟨c1, . . . , cn⟩, create a
relational predicate RP [Ac1 , . . . , Acn ].

(B) (Instance transformation) For each p-instance p ∈ InstD(
P ) of the form ⟨ e1,. . .,en ⟩, create the relational tuple
RP(e1, · · · , en).

Example 6. (example 2 continued) Figure 2 shows the
result of these path mapping rules applied to the Location
dimension. The Location schema in Figure 1 has two B2A
paths: PLoc1 : ⟨Number, AreaCode, Region, All⟩ (Figure 2a),
and PLoc2 : ⟨Number, City, Region, All⟩ (Figure 2b). Each
of these paths has 3 associated p-instances, and is mapped
to a separate relational table using rule (A). Each of the re-
sulting relations contains 3 tuples based on rule (B). As an
example of instance mapping, the tuple (N2, 45, IX, all) in
Figure 2a represents the p-instance ⟨N2,45, IX, all⟩, which
belongs to InstD(P Loc

1 ). 2

1We use the term “p-instance”, because later on we will talk
about “path instances”, which will be instances of the rela-
tional path schema.



Notice that the active domain, Act(D), of the generated
relational instance D is contained in M ∪ {NULL}; and the
domain, Dom(Ac), of the generated attribute Ac is δ−1(c)∪
{NULL}. Then, Dom(Ac) ⊆ Act(D) ∪ {NULL}. We assume
that all ∈ Dom(AAll), because we assumed that all ∈ M.
Also notice that even having all ∈ M, for AAll we may have
the value NULL if all is not reached by lower-level elements
in the given MD instance.
Finally, notice that the relational schema generated de-

pends only on the MD schema. In particular, the number of
relational tables depends on the number of paths in the MD
schema, and not on the MD instance.

5. MD CONSTRAINTS AS PATH ICS
A given MD instance D will come endowed with a set K

of (local) strictness and homogeneity constraints as those in
Definitions 1 and 2. D may not satisfy K, which should
be reflected in the violation by the associated relational in-
stance D of a corresponding set Σ of relational ICs. Now we
describe how to generate such a set Σ from K.
Checking a strictness condition, ci → cj , between cate-

gories ci and cj under the path schema transformation de-
pends on the set of B2A paths where both of these categories
appear. Actually, this strictness condition must be checked
within each single path, and also among pairs of paths con-
taining ci and cj .
To this end, we need functional dependencies (FDs) to

check strictness on each path (cf. Rule (C) below). We also
need an integrity constraint for each pair of paths. This be-
comes a very simple case of equality generating dependencies
[1] (cf. Rule (D) below). They are much simpler than those
needed in Section 3.2 (cf. (1)). (FDs form a particular class
of EGDs.)

(C) (FD generation)

ci → cj 7→ {RP : Aci → Acj | P is a B2A path with
ci, cj ∈ P}.

(D) (EGD generation)

ci → cj 7→ {RP1.A
ci = RP2.A

ci → RP1.A
cj =

RP2.A
cj | P1, P2 is a pair of B2A paths with

ci, cj ∈ P1 ∩ P2}.2

Notice that Rule (C) can be obtained as a special case of
Rule (D).

Example 7. (example 2 continued) In order to check global
strictness for the Location dimension through the corre-
sponding path instance, the following (reduced) set of FDs
can be generated and verified:

RPLoc
1 : {ANumber → AAreaCode, AAreaCode → ARegion}. (3)

RPLoc
2 : {ANumber → ACity, ACity → ARegion}. (4)

In the Location dimension, Number and Region are the only
categories that require Rule (D), because they reside on two
different paths. We generate the following EGD:

RPLoc
1 .ANumber = RPLoc

2 .ANumber → RPLoc
1 .ARegion =

RPLoc
2 .ARegion. (5)

2

2Slightly abusing notation, here we are treating paths as sets
of categories.

Since we have introduced NULL in the relational represen-
tation, we may have to check the above relational dependen-
cies against instances containing NULL. This is not an uncon-
troversial issue since several semantics offer themselves for
relational database with null values. In this work, we are
using a single null value, NULL. And we expect it to behave
as in SQL databases. In consequence, we have to character-
ize in precise terms IC evaluation in the presence of such a
null value. This was done in [12], where a characterization
in classical predicate logic was provided. We cannot go into
the details here. The essence of this logical reconstruction is
the separation of attributes into relevant and non-relevant,
depending on their occurrence or not in dependencies, and
on their possibility of taking value NULL. For example, a join
attribute is relevant, because it makes an important differ-
ence if it takes the null value or not.

In more precise terms, given a dependency ψ, it is trans-
formed into a new first-order sentence ψN , such that, for a
relational instance D,

D |=N ψ :⇐⇒ Drel |= ψN . (6)

Here, |=N denotes the (new) notion of IC satisfaction in
databases with NULL. On the right-hand side we have usual
first-order satisfaction where NULL is treated as any other
constant.3 The classical notion is applied to a new rela-
tional instance Drel obtained by restricting D to its relevant
attributes, and ψN is a syntactic rewriting of ψ that takes
into account the possible occurrence of NULL. This is illus-
trated in the next example.

Example 8. (example 7 continued) Consider dependency
(5). Written as a usual first-order sentence it becomes:

ψ : ∀n∀a∀r∀x∀c∀r′∀y (RPLoc
1 (n, a, r, x) ∧ RPLoc

2 (n, c, r′, y)

→ r = r′).

However, this expression does not take into account the pres-
ence of NULL with its intended semantics. The set of relevant
attributes for its evaluation is [12]:

Rel = {RPLoc
1 .ANumber, RPLoc

1 .ARegion,RPLoc
2 .ANumber,

RPLoc
2 .ARegion}.

The rewriting of ψ into ψN takes these relevant attributes
into account and the possible presence of NULL in them. It
becomes:

ψN : ∀n∀r∀r′(RPLoc,Rel
1 (n, r) ∧ RPLoc,Rel

2 (n, r′))∧
NotNull(n) ∧NotNull(r) ∧NotNull(r′) → r = r′). (7)

This sentence is checked against the instance Drel that re-
sults from restricting instanceD in Figure 2 to the attributes
in Rel . This instance has predicates RPLoc,rel

1 and RPLoc,rel
2 .

It is easy to check that for n = N3, r = IX and r′ =
VIII, constraint (7) is not true in Drel , where evaluation is
done classically and taking NULL as any other constant in
the domain. Hence, on the basis of (6), we have D 2N ψ,
which is in line with the local non-strictness of the original
MD instance. 2

Now, the homogeneity condition can be checked under the
path schema using NOT NULL constraints (Rule (E) below).

3In particular, the unique names assumption applies to it,
making it different from other constants, and also equal to
itself.



A NULL as attribute value in a tuple shows that the preced-
ing elements in the corresponding p-instance do not have
ancestors all the way up. In Figure 2, we have two NULLs in
table RPLoc

1 , which shows that the path is disconnected after
element 41.

(E) (NOT NULL generation)

ci ⇒ cj 7→ {NOT NULL RP .Acj | P is a B2A path with
ci, cj ∈ P}.

Notice that all the ICs introduced in (C)-(E) can be easily
written as first-order sentences of the forms (1) or (2) (as in
Example 8).

Example 9. (example 2 continued) We can check the Lo-
cation dimension homogeneity through the following set of
NOT NULL constraints:

NOT NULL RPLoc
1 .{AAreaCode, ARegion, AAll}, (8)

NOT NULL RPLoc
2 .{ACity, ARegion, AAll}. (9)

We recall from Definition 4, that the first element in a p-
instance never takes value NULL. In the path database of
Figure 2, constraints NOT NULL RPLoc

1 .ARegion and NOT NULL
RPLoc

1 .AAll are violated. 2

6. REPAIRING PATH INSTANCES
The mappings introduced in the last two sections are such,

that the MD instance is non-summarizable iff the generated
path instance is inconsistent wrt the relational dependencies.
This is where the idea of relational repairs comes into the
picture.
First, we have to introduce appropriate relational repair

operations for path instances; and, next, a notion of dis-
tance between instances that can be used to characterize
the minimal repairs.
The relational dependencies we introduced in Section 5

are particular cases of denial constraints. For these con-
straints, consistency can be restored through tuple deletions
or changes of attribute values [7]. Deleting a whole tuple
from an inconsistent path instance implicitly removes a p-
instance from the dimension. This would lead to an impor-
tant loss of MD data. In consequence, we adopt here repairs
that are obtained by changes of attribute values. A mini-
mal relational repair will minimize the number of changes
of attribute values (the update operations). This class of
attribute-based repairs, the A-repairs, has been used and
investigated before [24, 46, 11, 10, 39, 23], specifically for
denial constraints in [24, 10], and for FDs in [46, 11].

Definition 5. Consider a relational instance D, possibly
containing NULL.
(a) An atomic update on D is represented by a triplet ⟨ R(t̄),
A, v ⟩, where v is a new value in Dom(A)r {NULL} assigned
to attribute A in the database atom R(t) ∈ D.4

(b) An update on D is a finite set, ρ, of atomic updates
on D (that does not assign more than one new value to an
existing attribute value t̄[A]). The instance that results from
applying ρ, i.e. simultaneously all the updates in ρ, to D is
denoted with ρ(D).
(c) For a set Σ of denial constraints (for the schema of D),

4As usual in relational DBs, we denote the value for at-
tribute A in a tuple R(t̄) with R(t̄)[A], or simply t̄[A] when
predicate R is clear from the context.

an update ρ on D is a (minimal) repair if and only if: 1.
ρ(D) |=N Σ, and 2. there is no ρ′, such that ρ′(D) |=N Σ,
and |ρ′| < |ρ|. 2

As we can see, an atomic update changes an existing value in
the database by a new non-null value that is already present
in the database.

For our application of relational repairs to MDDBS, in
Definition 5 we can restrict ourselves to sets Σ of relational
denial constrains of the form (C), (D), or (E) introduced
above, i.e. just EGDs and NOT-NULL constraints. In the
following we will assume that this is the case.

Example 10. (examples 7 and 9 continued) Consider the
path instance D in Figure 2, and the relational ICs obtained
in Examples 7 and 9. The following are candidates to be
repairs of D (for simplicity we use only the tuple numbers
(ids) shown in Figure 2):

ρ1 = {⟨RPLoc
1 (1), ARegion, VIII⟩, ⟨RPLoc

1 (1), AAll, all⟩,
⟨RPLoc

2 (3), ARegion, IX⟩},
ρ2 = {⟨RPLoc

1 (1), ARegion, VIII⟩, ⟨RPLoc
1 (1), AAll, all⟩,

⟨RPLoc
1 (3), AAreaCode, 41⟩, ⟨RPLoc

1 (3), ARegion, VIII⟩}.

Both of these updates restore the consistency of D. In ad-
dition to the ones shown above, there are other ways of re-
pairing D. However, ρ1 is the only minimal repair according
to Definition 5. This repair changes the value for attribute
Region in the third tuple of RPLoc

2 from VIII to IX. On
the corresponding MD side, this change implies modifying
the link from element CCP to category Region. Still on the
MD side, ρ1 also, indirectly via a relational repair, creates
an originally missing link, by assigning element VIII as the
parent of element 41. This is done on the relational side
by updating the first tuple in table RPLoc

1 . The impact of
relational repair operations at the MD level is discussed in
more detail in the next section.

Although ρ2 is not a minimal relational repair, it can re-
store summarizability at MD level. This repair modifies the
link between N3 and category AreaCode, and also creates a
link from 41 to VIII. These MD updates resolve both non-
strictness and heterogeneity.

From multidimensional perspective, changing the parent
of N3 from CCP to TEM will also restore strictness in the Lo-
cation dimension. Together with the insertion of a link
between 41 and VIII, this MD repair is corresponded to the
following relational updates:

ρ′ = {⟨RPLoc
1 (1), ARegion, VIII⟩, ⟨RPLoc

1 (1), AAll, all⟩,
⟨RPLoc

2 (3), ACity, TEM⟩, ⟨RPLoc
2 (3), ARegion, IX⟩}

Comparing ρ1 with ρ′ reveals that, the latter performs an
unnecessary update on ACity in the third tuple of RPLoc

2 .
Hence, based on Definition 5, ρ′ is not considered as a rela-
tional repair. In other words, although the aforementioned
MD update restores summarizability in Location dimen-
sion, it does not correspond to a relational repair. 2

Notice that NULLs are updated in the derived path instance
only when there is a NOT NULL constraint violation. Since we
might be interested in checking some of, but not necessar-
ily all, the possible homogeneity constraints, we would have
some attributes that are not restricted by a NOT NULL con-
straint. That is, if the set Σ of relational denial constraints
is derived from a non-full set of homogeneity constraints on



the corresponding MD schema (cf. Definition 2(b)), a rela-
tional repair wrt Σ may still have NULLs.

Example 11. (example 9 continued) Instead of imposing
global homogeneity as before, we are now interested in check-
ing only a local homogeneity constraint, between categories
Number and City, i.e. Number ⇒ City. In this case, ac-
cording to mapping rule (E), the only NOT NULL constraint
generated is NOT NULL RPLoc

2 .ACity (instead of all the ICs in
(8) and (9)). This single NOT NULL constraint is satisfied by
the path instance in Figure 2b.
With this single homogeneity constraint, if we assume that

the EGDs and FDs for checking strictness are the same as
those generated in Example 7, the path instance in Figure
2 would be minimally repaired as shown in Figure 5. The
NULL values in the first tuple of table RPLoc

1 are not updated
(5a), since they do no violate any of the imposed NOT NULL
constraints.
Notice that homogeneity constraints of the form ci ⇒ cj ,

as introduced in Definition 2, require that ci ↗ cj holds
in the schema, i.e. a single link connects ci to cj . Thus,
if we wanted to impose the (non-official) local homogene-
ity constraint Number ⇒ Region, we would have to do it
by imposing four additional (local) homogeneity constraints:
Number ⇒ AreaCode, AreaCode ⇒ Region, Number ⇒ City
and City ⇒ Region. This would lead to additional rela-
tional constraints:

NOT NULL RPLoc
1 .AAreaCode, NOT NULL RPLoc

2 .ACity,
NOT NULL RPLoc

1 .ARegion, and NOT NULL RPLoc
2 .ARegion.

2

Restoring consistency wrt strictness constraints through
relational repairs does not modify the NULL values in the
database. The semantics introduced for evaluating FDs and
EGDs in presence of NULL values does not consider NULLs as
a source of IC violation. Strictness is violated when we have
more than one parent for an element in an upper category.
Hence, strictness is not violated if an element rolls up to
a non-null value and NULL in a parent category. The latter
being reached due to a missing parent in the parent category.

Example 12. (example 8 continued) Consider the EGD
(5) obtained from the MD strictness constraint Number →
Region. The first-order sentence (7) can be used for checking
the satisfaction of the relational EGD in the presence of
NULL.
In order to illustrate the effect of NULL on the evaluation of

strictness constraints on the instance in Figure 2, we instan-
tiate the universal sentence (7) on the first tuples of tables
RPLoc

1 and RPLoc
2 , obtaining

RPLoc,Rel
1 (N1, NULL) ∧ RPLoc,Rel

2 (N1, VIII)) ∧NotNull(N1)

∧NotNull(NULL) ∧NotNull(VIII) → NULL = VIII.

Due to the occurrence of NULL in relevant attributes, the an-
tecedent of this implication has the false conjunct NotNull(
NULL), which makes the whole sentence true. Hence, the in-
stance in Figure 2, even having N1 associated to both NULL
and VIII does not violate the EGD. This makes sense, be-
cause NULL was introduced as an auxiliary relational element
to deal with heterogeneity; and it does not appear on the
MD side. In the corresponding MD instance N1 is connected
only to VIII (cf. Figure 1b). 2

It should be clear by now that, in general, repairs of rela-
tional path instances associated to MD instances that violate

homogeneity will be guaranteed to be NULL-free iff the ho-
mogeneity constraint is imposed globally, i.e. to all pairs of
parent-child categories. Since the violation of strictness has
nothing to do with NULL values (as shown in the previous
example), the question of occurrence of NULL in a repaired
path instance depends only on the scope of the homogeneity
conditions.

Theorem 1. For a relational path instance D and a set
Σ of relational ICs associated to an MD instance D with a
set K of MD strictness and homogeneity constraints, there
always exists a minimal repair wrt Σ.

Proof: It suffices to build a path instance D′ obtained by
an update ρ applied to D, such that D′ |=N Σ. If such
an update ρ exists, it immediately follows that there is a
minimal one.

For each attribute Ac, except the first column in each path
table, select an arbitrary value vA

c

∈ Dom(Ac) r {NULL}.
Since we assume that every category c has at least one ele-
ment for a given instance, Dom(Ac)r {NULL} is non-empty.

The relational update ρ contains a set of atomic updates
such that, in each table RP i that Ac appears, the value
of this attribute is updated to vA

c

in all the tuples. We
can show that the instance resulting from applying ρ to D,
D′ = ρ(D), satisfies ICs of the form (C)-(E), i.e. the set Σ.

Since the values of all of the attributes (except the first
one in each table) are updated to non-null values, the NOT

NULL constraints of the form (E) are all satisfied. (Notice
that, according to Definition 4, the first attribute of a path
table cannot be NULL.) Moreover, because of the unique value
selected for each attribute, the FDs and EGDs of the form
(C) and (D) cannot be violated. As a result, it holds D′ |=N

Σ.
Since the set of repairs forD is finite, and there is a partial

order for comparing two repairs (see Definition 5), we can
conclude that, there is always a minimal relational repair for
the inconsistent path instance D. 2

Example 13. (example 10 continued) Figure 6 shows a
possible non-minimal repair, ρ, obtained as described in the

proof of Theorem 1. Here, we are choosing vA
AreaCode

= 41,

vA
Region

= VIII, vA
All

= all, and vA
City

= TEM.
Notice that, for the shared attribute ARegion, we selected

one value to be applied to both tables. Comparing ρ to the
minimal repair ρ1 obtained in Example 10 reveals that ρ
performs 6 more attribute updates than ρ1, which executes
only 3 updates. As a result, according to Definition 5, ρ
cannot be considered a minimal repair. 2

7. BACK TO MD INSTANCES: INVERSION
We have defined MD repairs via the translation of the

MD database into a relational instance that is subject to
relational ICs. The latter are derived from semantic MD
constraints. The generated relational instance is repaired
wrt the ICs. Now, it is natural to ask about the kind of
repairs that are obtained going through the relational route.
We will address this question in more detail in Section 8. In
this section, we will concentrate on the invertibility of the
relational mapping T (introduced in Section 4), i.e. on how
to obtain an MD instance from a given (relational) path
instance. This is clear situation of schema mappings and
their invertibility [22, 4].



(a) Repaired RP1 (b) Repaired RP2

Figure 5: An example of a repaired path instance containing NULL

(a) A repair for RP1 (b) A repair for RP2

Figure 6: A non-minimal repair according to Theorem 1

Notice that mapping T has two components, the schema
and the instance transformations; the former includes a trans-
formation of a set of MD constraints into relational ICs. We
expect this two-part mapping T to have an inverse T −1,
with the usual good properties. More precisely, the follow-
ing should hold:

Expected properties:

(E1) T −1(T (S)) = S, where S is the MD schema.

(E2) T −1(T (D)) = D, where D is the MD instance.

(E3) For an MD instance M, and a set of MD constraints K,
ifD and Σ are their (generated) relational counterparts,
and ρ(D) is a repair of D wrt Σ, then T −1(ρ(D)) |= K
holds.

We will proceed as follows. First, we will define the domain
of T −1, next we will define it by a set of transformation
rules, and finally, we will check that T −1 has the desired
properties specified above. Mapping T −1 is defined on a
triples ⟨R,Σ, D⟩, where R is a path schema, Σ is a set of
ICs over R, and D is an instance for R, such that:

1. For every predicate R[A1, · · · , An] ∈ R, it holds that
An = AAll. In particular, all the relational pred-
icates share this “final” attribute. We also assume
that Dom(AAll) = {all, NULL}. Furthermore, we will
assume that all the predicates R share the “first at-
tribute”A1 whose domain does not contain NULL. The
reason is that, we are assuming there is a single base
category at the MD level. All the other attributes are
allowed to take the value NULL. Notice also that differ-
ent predicates Ri may share attributes other than A1

and their last ones.

2. The elements of Σ are of the form: (a) NOT NULL Ri.Aj ,
or (b) Ri.Ak = Rj .Al → Ri.Am = Rj .An, with Ri, Rj

not necessarily distinct predicates in R.

3. Being D an instance of schema R, it does satisfy the
basic conditions about the attribute values expressed
in item 1. However, we do not require at this stage
that it also satisfies the relational constraints in Σ.

We can also assume, but this is not crucial, that for
every tuple R(e1, . . . , en) ∈ D, if ei = NULL, then ej =
NULL for every i ≤ j ≤ n.

Now, for the definition of T −1(R) we associate attributes
to categories. And the joint and consecutive occurrence of
attributes in a relational predicate generates direct links be-
tween categories (cf. rule (F) below). On the other side, the
definition of T −1(D) can be done by considering each tuple
separately, and creating the corresponding p-instance for a
dimension instance M of MD schema S := T −1(R).5 This
creates elements in categories and links between elements in
directly connected categories (cf. rule (G) below).

(F) (Schema inversion) For each attribute A appearing in
some R ∈ R, create a category (name) cA. The set of
so-created categories is denoted with C.
For each relational predicate R[A1, . . . , An] in R and
1 ≤ i ≤ n− 1, create an edge from cAi to cAi+1 in the
dimension schema.

(G) (Instance inversion) For each relational tuple R(e1,. . .,
en), with R[A1, . . . , An] ∈ R, and 1 ≤ i ≤ n − 1, if
ei ̸= NULL, introduce ei as an element of (the exten-
sion of) cAi (or, more precisely, make δ(ei) := cAi).
Furthermore, if ei+1 ̸= NULL, create an edge from ei to
ei+1. In this way we create an MD instance M.

Example 14. (example 10 continued) Figure 7a shows
the minimal repair of a path instance that we had obtained.
Applying the above inversion rules, this relational repair
generates the dimension instance in Figure 7b. The dashed
lines correspond to inserted edges.

For example, using rule (F) on RPLoc
1 , the top table in

Figure 7a, we obtain a set of categories:6

RPLoc
1 [ANumber, AAreaCode, ARegion, AAll] 7→ {Number, AreaCode,

Region, All} ⊆ C,
5Since the attributes Aj in R may not have names of the
form Ac, for c a category name, we will obtain an MD
schema that will be “isomorphic” to the original S, if any.
We will still denote with S the MD schema resulting from
the inversion.
6Naturally, identifying the generated category cA

c

simply
with c.



(a) Path instance (b) Dimension via inversion

Figure 7: Dimension instance obtained by inverting a relational path instance.

and also a set of ↗-links:

{Number ↗ AreaCode, AreaCode ↗ Region, Region ↗ All}.

For an example of instance inversion with rule (G), the
updated (first) tuple (N1, 41, VIII, all) in the top table is
mapped as follows:

RPLoc
1 (N1, 41, VIII, all) 7→ {N1, 41, VIII, all} ⊆ M,

δ(41) = AreaCode, δ(VIII) = Region, δ(all) = All,

N1 < 41, 41 < VIII, VIII < all.

Applying the same inversion rule to other tuples in the rela-
tional instance, we obtain an MD instance D. In this exam-
ple, the MD instance in Figure 7b, obtained via the inver-
sion of the relational path repair, turns out to be (globally)
strict and homogeneous. In fact, since D |= Σ for the path
instance in Figure 7a (with Σ as in Example 10), it holds
D |= K. Here, K is the original set of MD constraints that
gave rise to Σ. 2

It should be clear from these rules that a unique dimension
instance is obtained as a result of the application of these
inversion rules, and that the expected properties (E1)-(E3)
hold. Furthermore, it is also easy to verify that both T and
T −1 can be computed in polynomial time.
As the previous example shows, we can obtain a repair

for the original MD instance via the detour through min-
imal repairs of relational path instances. The results and
properties of this strategy are explored in the next section.

8. A PURELY MD REPAIR SEMANTICS
We have defined a repair semantics for MD databases wrt

summarizability constraints. This definition is indirect, in
the sense that we first map the MD schema S and instance D
to a relational schemaR and instanceD, resp. Furthermore,
the set K of local summarizability constraints (LSCs), i.e.
strictness and homogeneity constraints, on the MD side is
translated into a set of relational constraints Σ. So, as D
may not satisfy K, D may not satisfy Σ. In consequence, we
consider relational repairs for D wrt Σ. These are attribute-
based repairs [8] that restore the consistency of D wrt Σ
by changing attribute values and minimizing the number of
these changes. These relational repairs form a class denoted
by Rep(D,Σ). We showed that inverting these relational
repairs takes us to a class of MD instances D′ that satisfy
K.

Definition 6. Let D be an MD instance, K be a set of
LSCs, D be the relational instance T (D), and Σ be the class
of relational ICs obtained from K. An MD instance D′ is a
path repair of D wrt K iff there is D′ ∈ Rep(D,Σ), such that
D′ = T −1(D′). Rep(D,K) denotes the class of path repairs
of D wrt K. 2

Since the relational repairs in Rep(D,Σ) only change data
(as opposed to the relational schema), the MD repairs in
Rep(D,K) also only change data, i.e. instance D, keeping
the MD schema S intact. As such, they are data-based re-
pairs of D. More specifically, an MD repair does not add
new elements to categories. Actually, the MD data repair
operations are only insertions or deletions of edges in the di-
mension instance. More specifically, violations of NOT NULL

relational constraints (associated to the lack of homogene-
ity in the MD counterpart) result in insertions of edges in
D. The operations that tackle non-strictness (EGD viola-
tions on the relational side) may produce both insertions
and deletions of links.

There have been previous approaches to MD data-based
repairs.7 In [9], data-based repairs assume homogeneity,
and only address strictness. In one way or another, MD
data-based repairs have also been considered in [17, 42]. An
approach that is closest to ours can be found in [13] (cf.
also [19]). They define MD repairs directly on the MD
instance, wrt both local strictness and homogeneity con-
straints. Their data operations are also and only insertions
and deletions of edges between existing data elements. Ac-
tually, in [13], a minimal repair is defined as a new dimension
that is consistent with respect to the summarizability con-
straints, and is obtained by applying a minimal number of
updates (edge insertions or deletions) to the original dimen-
sion. In that work, they obtain a class of MD repairs, let us
denote it with Repbch(D,K), that could be compared to our
class Rep(D,K).

Example 15. (examples 10 and 14 continued) Figure 8
shows the minimal repairs generated according to [13], i.e.
the elements of Repbch(D,K), for the Location dimension in
Figure 1.

The MD repair D3 corresponds to the one obtained in
Example 14 via our relational translation approach, which
produces only this single MD repair. Consequently, in this
example, Rep(D,K) = {D3} $ Repbch(D,K).
7Repairs based on changes on the MD schema have also been
considered [27, 30, 28], and more formally in [5].



(a) D1 (b) D2 (c) D3

Figure 8: Minimal repairs in Repbch(D,K) for the Location dimension

For D2 in Figure 8a, it is easy to check that it can be
obtained with the inversion rules after applying the update
ρ2 in Example 10, where we saw that ρ2 is not a minimal
update. This is why D2 is not obtained as an element of
Rep(D,K). Something similar happens with D1. It corre-
sponds to the update ρ′ also discussed in Example 10, where
we found that it does not produce a minimal relational re-
pair. Thus, D1 does not belong to Rep(D,K) either.
Summarizing, D1 and D2 are MD repairs with the notion

of minimality used in [13], but they are not minimal when
seen as repairs of the underlying and associated relational
path instance. D3 is the only repair that is minimal in both
ways. 2

The previous example might suggest that it is always the
case that Rep(D,K) ⊆ Repbch(D,K). However, this is not
true in general since there are examples of MD schemas and
instances where repairs in Rep(D,K) are not elements of
Repbch(D,K).

Example 16. Figure 9 shows an alternative instance D
for the dimension schema in Figure 1a. For simplicity, bold
edges are used to denote multiple edges, connecting each
element at the bottom end to the single and same element
at the top end. Consider the set of relational ICs obtained
in Examples 7 and 9 for global strictness and homogeneity,
resp. Here, D ̸|= Number → Region, because N1, · · · , N5 have
each two parents, VIII and IX, in category Region.

Figure 9: A non-strict instance for the Location dimension

There are two minimal repairs for the path relational in-

stance corresponding to D, via the following updates:

ρ1 = {⟨RPLoc
1 (1, · · · , 5), ARegion, VIII⟩,

⟨RPLoc
1 (1, · · · , 5), AAreaCode, 41⟩},

ρ2 = {⟨RPLoc
2 (1, · · · , 5), ARegion, IX⟩,

⟨RPLoc
2 (1, · · · , 5), ACity, TCH⟩}.

It holds |ρ1| = |ρ2| = 10. The corresponding MD repairs,
D1 and D2, resp., are those in Figure 10.

On the other side, there are two minimal repairs obtained
according to [13], those in Figure 11. Each of them performs
two edge modifications. However, the effect of those MD
changes on the relational side is not minimal: Dbch

1 causes
17 attribute changes, and Dbch

2 23 attribute changes. Thus,
in this example, the classes Rep(D,K) and Repbch(D,K) are
disjoint. 2

Despite this incomparability of repair classes under set in-
clusion, it is still worth comparing in more detail Rep(D,K)
and Repbch(D,K) for our ongoing example, to gain additional
insight that could lead us to a purely MD characterization
for our MD repairs.

Example 17. (example 15 continued) Let us focus on
the edges inserted or deleted by each of the repairs in Figure
8. They all agree on the insertion of a link between 41
and VIII for enforcing homogeneity. However, each of them
has a different approach to the enforcement of strictness.
Actually, the edges deleted or inserted by repairs D1 and
D2 belong to the first level of the dimension hierarchy, while
repair D3 makes changes on its second level.

Repair D1 changes the link between element N3 and cate-
gory City, updating the p-instance ⟨N3,CCP,VIII,all⟩ into
⟨N3,TEM,IX,all⟩. However, with repair D3 the aforemen-
tioned p-instance is changed into ⟨N3,CCP,IX,all⟩. So, D1

causes more changes on this p-instance in comparison to
D3. We find a similar relationship between repairs D2 and
D3. 2

We can see from this example that, modifying different
edges may be reflected in different ways on the underlying
relational database. Hence, the notion of MD minimality
(we already have a notion of minimality on the relational
side, in Definition 5) should not be solely based on the num-
ber of modified edges, but also on which edges are being
modified (and at which level). In the following, we will de-
fine an MD measure that takes this into consideration.



(a) D1 (b) D2

Figure 10: Minimal repairs in Rep(D,K) for the Location dimension

Definition 7. Let D and D′ be dimension instances over
the same MD schema S and active domain M and category
association function δ.
(a) The sets of insertions, deletions and modifications as a
result of updating D into D′ are, respectively:

ins(D,D′) = { (e1, e2) ∈ (<D′ r <D) | there is no e3

with (e1, e3) ∈ (<D r <D′)}.
del(D,D′) = { (e1, e2) ∈ (<D r <D′) | there is no e3

with (e1, e3) ∈ (<D′ r <D)}.
mod(D,D′) = { (e1, e2, e3) | (e1, e2) ∈ (<D′ r <D) and

(e1, e3) ∈ (<D r <D′)}.

(b) The cost of updating D into D′, denoted ucost(D,D′) is
given by:

ucost(D,D′) =
∑

(e1,e2) ∈ (ins(D,D′)∪del(D,D′))

|α(e1, e2)| × |β(e2)|

+
∑

(e1,e2,e3) ∈ mod(D,D′)

|α(e1, e2)| × |γ(e2, e3)|,

with:
α(e1, e2) = {p | p ∈ InstD(P ), {δ(e1), δ(e2)} ⊆ P, e1 ∈ p},
β(e) = { e′ ∈ M | e <⋆

D e′}, and γ(e2, e3) = {e′ ∈ M |
e2 <

⋆
D e′, but not e3 <

⋆
D e′}. 2

Intuitively, the cost of updating D to D′ corresponds to the
number of changes made to the elements of p-instances be-
longing to D. From the corresponding relational point of
view, this value is the number of changes of attribute-values,
as a result of the MD updates. We compute the number of
updated attribute values as a result of each edge change
separately. The sum of these values for all changed edges
(e1, e2) captures the total number of attribute value updates
needed for updating D to D′. This is the quantity computed
by ucost .
More technically, α(e1, e2) in Definition 7 reflects the set of

p-instances that will be updated by changing edge (e1, e2).
On the relational side, the size of this set is equal to the
number of tuples that will be affected as a result of this edge
change. On the other hand, as discussed around Example 17,
the level of the modified edge is an important factor in mea-
suring the number of changes made to the p-instances. In
Definition 7, the functions β and γ are used as an indicator

of the level of edge (e1, e2). More specifically, for each afore-
mentioned p-instance in α(e1, e2), |β| and |γ| represent the
number of changes made to the elements preceding e2, de-
pending on whether the edge is inserted/deleted or modified.
The resulting value associated to such an edge (e1, e2) equals
to the number of attribute value updates made to the tuple
corresponding to p in the underlying path instance. Thus,
ucost(D,D′) shows the total number of changes made to the
set of p-instances, i.e. the total number of attribute value
updates that are needed on an underlying path instance for
updating D into D′.

Example 18. (example 17 continued) Let us calculate
the cost of updating D into each of the repairs D1,D2,D3.
First, we have:
ins(D,D1) = {(41, VIII)}, del(D,D1) = ∅, mod(D,D1) =
{(N3, TEM, CCP)},
ins(D,D2) = {(41, VIII)}, del(D,D2) = ∅, mod(D,D2) =
{(N3, 41, 45)},
ins(D,D3) = {(41, VIII)}, del(D,D3) = ∅, mod(D,D3) =
{(CCP, IX, VIII)},
The sets α, β and γ are associated to instance D. Here, they
are as follows:
α(41, VIII) = {⟨N1, 41, NULL, NULL ⟩}, α(N3, TEM) = {⟨N3,
CCP, VIII, all ⟩}, α(N3, 41) = {⟨N3, 45, IX, all ⟩}, α(CCP, IX)
= {⟨N3, CCP, VIII, all ⟩};
β(VIII) = {VIII, All};
γ(TEM, CCP) = {TEM, IX}, γ(41, 45) = {41, VIII}, γ(IX, VIII)
= {IX}.
With these elements we can compute the update costs for
each case:

ucost(D,D1) = |α(41, VIII)| × |β(VIII)|+ |α(N3, TEM)|
×|γ(TEM, CCP)| = 1× 2 + 1× 2 = 4,

ucost(D,D2) = |α(41, VIII)| × |β(VIII)|+ |α(N3, 41)|
×|γ(41, 45)| = 1× 2 + 1× 2 = 4,

ucost(D,D3) = |α(41, VIII)| × |β(VIII)|+ |α(CCP, IX)|
×|γ(IX, VIII)| = 1× 2 + 1× 1 = 3.

We can see that D3 provides the least update cost for the
original instance D, i.e. the minimum number of changes to
the relational database. This fact is consistent with the ob-
servations made in Example 14: D3 is the only minimal MD
repair for D that also corresponds to a minimal relational
repair.



(a) Dbch
1 (b) Dbch

2

Figure 11: Minimal repairs in Repbch(D,K) for the Location dimension

Notice that, the update cost for each of the MD repairs
D1, D2 and D3 is the same as the number of changes made to
the p-instances belonging to D, and also the same as number
of attribute-value (column) updates (the |ρ|s) performed on
the corresponding relational repairs. 2

Lemma 1. Let D be an instance for the MD schema S,
and K be a set of LSCs over S. Let D and Σ be the cor-
responding elements on the path relational side, and ρ an
update of D. For the MD instance D′ for S with D′ =
T −1(ρ(D)), it holds: ucost(D,D′) = |ρ|.
Proof: The number of attribute value updates caused by ρ
is equal to the number of changed tuples multiplied by the
number of attribute values updated in each of them. In the
following, we verify that the ucost function computes these
values.
Obviously, attribute values change only as a result of in-

serting/deleting/modyfing an edge in the MD instance (cf.
Definition 7). ucost considers each edge change separately,
computes the aforementioned values for it and then sums
up the computed values for all edge changes occurred in the
MD update.
Now, for every such edge change, the number of p-instances

containing that edge represents the number of tuples that
will be modified in the path database. The set α for a given
edge in Definition 7 contains those p-instances. For each af-
fected tuple, we need to compute the number of attributes
in the path database that will be updated as a result of
such edge change. This computation depends on whether
the edge was inserted, deleted or modified. Multiplying this
value by the number of affected tuples (those in its |α|-set)
equals the total number of changed columns for such edge
change.
In case of inserting or deleting an edge (e1, e2), the number

of attribute value updates for each tuple is equal to the num-
ber of ancestors of element e2, which is represented through
|β|. On the other hand, for the case of an edge modification,
say (e1, e2) to (e1, e3), we need to exclude common ancestors
of e2 and e3 from the computation, which is taken care of
by function |γ|.
Finally, ucost(D,D′) represents the sum of all of the above

values computed for all edge changes, and is therefore equal
to the total number of column updates needed to update
dimension D into D′. 2

From this lemma, we easily obtain a characterization of
our MD repairs, that were defined through our relational
translation, in pure MD terms.

Theorem 2. Let D be an instance for the MD schema
S, and K be a set of LSCs over S. For every instance D′ for
S, it holds: D′ ∈ Rep(D,K) iff D′ |= K and ucost(D,D′) is
minimum (among the consistent S-instances). 2

Proof: In one direction, we have to prove that, for an MD
instance D′ satisfying K with minimum ucost, there exists
D′ ∈ Rep(D,Σ), such that D′ = T −1(D′) (cf. Definition 6).
From Lemma 1 we have that, for any MD update D′, ucost
= |ρ|, where T −1(ρ(D)) = D′. So, a minimum ucost implies
a minimum |ρ|, which itself leads to ρ(D) ∈ Rep(D,Σ). In
other words, minimizing ucost implies minimizing the num-
ber of atomic updates performed at relational level.

In the other direction, we need to show that, for any MD
repair D′ ∈ Rep(D,K), ucost(D,D′) will be minimum. Ac-
cording to Definition 6, for every D′ ∈ Rep(D,K), there
exists a D′ ∈ Rep(D,Σ), such that D′ = T −1(D′). From
Definition 5, it holds that D′ corresponds to a relational re-
pair ρ which performs a minimum number of attribute value
updates on D, i.e. |ρ| is minimum. Hence, based on Lemma
1, the ucost must also be minimum. 2

This characterization of MD repairs implicitly takes into
consideration the effect of MD repair operations (edge inser-
tions and deletions) on the underlying relational layer. As
we showed above, not all of the repairs proposed by [13] have
to be MD repairs in our sense, nor the other way around.
This is due to the fact that, in [13] edges are modified with-
out considering (neither explicitly nor implicitly) the under-
lying relational side effects of the MD operations.

To conclude this section, let us emphasize that the repair
approach in [13] applies minimality without considering any
sort of priority of change on edges. In contrast, our MD
characterization of minimal repairs implicity does, via the
underlying relational side-effects of MD edge modifications.
In particular, in an MD repair process, edges with fewer
connections to the base elements are good candidates for
modification, since they affect fewer tuples in the underly-
ing database. Among these edges, those that reside at the
higher levels of the hierarchy are optimal choices for change
during MD repair, since they update fewer attributes in the



affected tuples. As a result, following our approach, those
MD repairs causing minimal side effects will be preferred.

9. EXPERIMENTS

9.1 Query answering
According to our approach, repairing MD databases is

done via relational transformations that have some clear
conceptual and theoretical advantages (cf. Section 8). How-
ever, if the original MD database is not implemented as
a path relational (PR) database, and we wanted to use
the latter for MD repairing, the translation would intro-
duce a non-negligible additional cost. In consequence, it is
natural to ask about the possibility of using upfront path
relational schemas as the basis for the implementation of
MD databases or DWHs. We claim that the path relational
schema is an interesting alternative to consider for a RO-
LAP approach to MDDBs and DWHs. And this is indepen-
dent from its virtues in relation to MD repairing.
Accordingly, in this section we provide experimental sup-

port for this claim, comparing a PR implementation with
relational implementations based on the star and snowflake
schemas. We consider the performance at aggregate query
answering, and we use SQL Server 2008 for our experiments.
They are based on the running example about cell phone us-
age (cf. Example 1).
We consider two dimensions, Location and Time, and we

measure the numerical facts Incoming and Outgoing (calls)
(cf. Figure 1c). The Time dimension has a simple linear
hierarchy: Date ↗ Month, Month ↗ Year, and Year ↗
All. The hierarchy (lattice) for the Location dimension is
given in Figure 1a.
The relational representations of the Location dimension

in the star, snowflake and path schemas that we imple-
mented can be found in Figures 3, 4 and 2, respectively.
The corresponding relational representations of the Time di-
mension are simple, and are done as described in Sections
3.1, 3.2 and 4, respectively.
We implemented a data generator in Java, to load a size-

able amount of test data into star, snowflake, and path
databases. Starting with initial random data, the program
generates elements for each category in the dimension schema,
but taking into account the hierarchy levels. That is, the
lower the category level the bigger the set of generated el-
ements. For the base category, the number of generated
elements was up to 100,000. For each of the relational im-
plementations, we tested several queries. However, due to
space limitations, we will discuss in detail only one of them.
The final results of the experiment, including all queries, are
shown at the end of this section.
We focus on the aggregate query, Q, asking for the total

Incoming calls made from each region (in Region) in year
2010. This query takes 3 different forms in SQL depending
on the underlying relational schema. We show them in Table
1.

As we can see, for the star schema, we need to join the
fact table (called Traffic-Fact-Table) in Figure 1c, and
the tables for the Location dimension (RLoc) in Figure 3,
and the Time dimension (RTime).
For the path schema, the structure of the SQL query de-

pends on the categories used in the aggregate query (Region
in our example). A category might belong to more than one

(a) Star schema:
SELECT RLoc.ARegion, SUM(F.In) FROM

Traffic-Fact-Table F, RLoc, RTime WHERE
RTime.AYear = 2010 GROUP BY RLoc.ARegion;

(b) Path schema:
SELECT RPLoc.ARegion, SUM(F.In)

FROM Traffic-Fact-Table F, RPTime,
((SELECT ANumber, ARegion FROM RPLoc

1 ) UNION
(SELECT ANumber, ARegion FROM RPLoc

2 )) as RPLoc

WHERE RPTime.AYear = 2010 GROUP BY RPLoc.ARegion;
(c) Snowflake schema:

SELECT RLoc.ARegion, SUM(F.In) FROM
Traffic-Fact-Table F, RDay, RMonth, RYear,
((SELECT ANumber, ARegion FROM RNumber, RAreaCode,
RRegion ) UNION (SELECT ANumber, ARegion FROM
RNumber, RCity, RRegion ) ) as RLoc

WHERE RYear.AYear = 2010 GROUP BY RLoc.ARegion;

Table 1: Query for star, path and snowflake schemas, resp.

B2A path, and hence, we might have to search more than
one path table. The SQL version of our query is shown in
Table 1(b). Since Region belongs to two B2A paths, in order
to compute the roll-up RRegion

Number from Number to Region, we
need the union of sets of tuples that belong to either path
tables, and on the basis of the selected attributes ANumber and
ARegion. The result of this query (the temporary table RPLoc)
is eventually joined to the fact table (Traffic-Fact-Table),
and the Time dimension table (RPTime). Notice that, due to
the linear structure of the Time dimension, its corresponding
path table is similar to the one used for the star schema.

A comparison of queries (a) and (b) reveals that the latter
requires an inner query for retrieving the specified roll-up
relation RRegion

Number, while this complication is avoided in the
former. For this reason, query (a) is expected to execute
faster than query (b).

As discussed in Section 3.2, and also widely known, the
hierarchical structure of the snowflake schema requires sev-
eral joins, which are costly operations, and can be used as
an indicator of query performance. The SQL version of our
query over the snowflake schema is shown in Table 1(c). In
this case, in order to compute the roll-up RRegion

Number, we have
to traverse both of the paths that lead us from Number to
Region in the dimension schema. Each path is traversed via
a series of join operations, and the results of each path are
merged as the temporary table RLoc. Due to the linear struc-
ture of the Time dimension, the computation of the roll-up
RYear

Day is more straightforward.
It is clear that the number of joins in query (c) is consid-

erably higher than the number of joins in queries (a) or (b).
As a consequence, we expect a noticeable difference in the
execution time of query (c) in comparison to queries (a) or
(b).

We executed each of the above SQL queries on their cor-
responding relational schemas. The response times revealed
are 155.2 ms for query (a), 193.8 ms for query (b), and 427.3
ms for query (c). These findings are in correspondence to
our expectations based on the discussions above on the query
structure, including the effect of join operations.

As mentioned before, here we have limited our discussion
to a single aggregate query, Q. It involves the computa-
tion of the roll-up relations RYear

Day and RRegion
Number. In order to



have a more general view of query answering performance
under the path schema, we considered other queries similar
to Q, but with other categories from the Location dimen-
sion in the aggregate query. More specifically, we executed
queries that retrieve the sum of Incoming calls made in year
2010 from each cell phone number, area code, city, and fi-
nally, from all of the numbers. (Since the Time dimension
is linear, queries involving its categories are simpler.) The
results of our experiments are shown in Figure 12. The SQL
queries for each of the aforementioned cases can be found in
Appendix A. Our query Q corresponds to the bars shown
for the Region category in it.
Notice that, when the category we are rolling-up to in the

query is City or AreaCode, instead of Region, the structure
of the SQL query under the path schema is similar to the one
for the same query under the star schema. In this case, only
one B2A path has to be considered, and there is no need to
merge the tuples of several path tables. In cases like this,
we have similar query answering times under the star and
path schema, as shown in the graph. Here, the negligible
difference between the query answering time under these
two schemas is due to different dimension table schemas and
number of tuples belonging to each of these table.

Figure 12: Comparison of query answering for path, star
and snowflake schemas

Another interesting phenomenon that can be observed
from the graph is that, as the level of the category used
in the aggregate query increases, the query answering time
for the snowflake schema increases significantly, while the
performance for the star and path schemas is not consid-
erably affected by this factor. This is an expected feature
of the snowflake hierarchical structure, which requires more
number of joins for rolling-up to higher levels of the hierar-
chy. However, for the star and path schemas, the number of
joins in a query is independent from the level of the category
used in the aggregate query.
In general, our results show that, as expected, the star

schema provides the best query answering performance, with
the path schema being the second best, by a small difference.
Our experiments suggest that the path relational schema
exhibits promising properties in terms of query answering
time when compared with the most common relational ap-
proaches to MD modeling and implementation, namely the
star and snowflake schemas.
In this section we have not reported on experiments re-

lated to MD repairs as implemented in the path relational
schema. This is left for an extended version of this paper.

9.2 Inconsistency detection
Relational databases are subject to a repair process when

they fail to satisfy certain integrity constraints (ICs). In one
way or another, the violations of the ICs have to be captured
and represented. On this basis repairs can be computed. As
a consequence, an important property of a relational schema
is its efficiency in capturing those violations.

In Section 3, we discussed that one of the important cri-
teria for a relational representation of a MD database is its
efficiency in checking the MD summarizability conditions as
expressed through relational ICs. We made a case for the
path schema in this regard. In this section, we will report
on the times it takes to check strictness and homogeneity of
the Location dimension in each of the star, snowflake and
path instances.

We used the data generator program to randomly generate
70,000 p-instances for the Location dimension instance, i.e.
an MD instance. Around 600,000 cases of non-strictness
were created with the generated data; and 20,000 cases of
heterogeneity, expressed by the occurrence of NULL in one of
the p-instance elements. Recall from Section 3 that the star
schema is not expressive enough to capture all kinds of the
heterogeneity. In the first phase of our experiment, with the
given data, only half of the heterogeneity cases were detected
under the star schema, by using using NOT NULL constraints.
Since the other two schemas do support the detection of all
kinds of heterogeneity, they were competing in handicapped
terms with the star schema (more on this issue below).

We generated a considerable proportion of cases of non-
strictness, to clearly observe the difference between evalu-
ating FDs and EGDs under the star or path schema, and
observing the impact of the several join operations for this
task under the snowflake schema. In the case of homogene-
ity, the kinds of ICs used for the star, snowflake and path
schemas are all the same, i.e. NOT NULL constraints. Hence,
our main concern in checking homogeneity was to verify the
weakness of star schema in completely capturing the hetero-
geneous instances.

Sections 3.1, 3.2 and 4 described how to represent summa-
rizability conditions with ICs over the star, snowflake and
path databases, respectively. We defined a stored procedure
for each of the three relational instances corresponding to
the original MD instance. Each procedure checks the afore-
mentioned ICs using SQL queries. More specifically, for each
of the ICs, we wrote an SQL query which returns the set of
tuples violating the IC. The stored procedures can be found
in Appendix B.

The running times for non-strictness detection for the star,
snowflake and path databases are 17.007 sec, 1200 sec, and
15.686 sec, respectively. These results are in line with our
discussions, in Sections 3.1, 3.2 and 5, around the efficiency
of checking strictness in these schemas . The considerably
difference in execution time for snowflake in comparison with
the star and path schemas is due to the explicit hierarchi-
cal structure of the snowflake database, which complicates
strictness checking. Unlike simple constraints for the star
and path databases, for the snowflake it is necessary to per-
form a series of join operations between different tables. The
negligible difference between the execution times of star and
path database is due to different dimension table schemas



and the number of tuples belonging to each of those tables.
Notice that the additional EGDs used with the path schema
for detecting non-strictness in more than one path tables
do not considerably effect the performance of inconsistency
detection.
The time measured for detecting heterogeneity was 510 ms

for the star schema, 866 ms for the path schema, and 686 ms
for the snowflake schema. The difference between the first
number and the last two is, as discussed above, due to the
fact that the queries executed over the star schema capture
only half of the heterogeneity cases. On the other hand,
since in the path schema a category may be represented by
more than one table (like Region and All in the Location

dimension), we need more NOT NULL constraints for the path
schema when compared with the snowflake schema. For this
reason, under snowflake the heterogeneity instances are re-
trieved faster than with the path schema.
As also mentioned above, these results are somehow un-

fair, in the sense that they do not reflect the weakness of the
star schema for capturing heterogeneity. For this reason,
we decided to test the performances of the three schemas
when the same number of heterogeneity cases were present
in the corresponding databases. Hence, in the second phase
of our experiments, we narrowed down the heterogeneity in-
stances of our data set to those that are detectable in a star
database. More specifically, we generated 20,000 instances
of heterogeneity, which could all be captured using NOT NULL

constraints on the star schema. In this case, we were inter-
ested in checking only heterogeneity, the controversial point,
as we just mentioned, expecting to obtain more realistic re-
sults. The time measured for detecting heterogeneity was
750 ms for the star schema, 962 ms for the path schema,
and 758 ms for the snowflake schema. As expected, the per-
formance of the star schema deteriorated. Notice that the
difference in execution times between the path schema and
the star or snowflake schemas comes from the fact that for
the former we need more NOT NULL constraints than for the
star or snowflake schemas. However, the impact on this issue
on performance is not particularly high.
Our experiments support our claims that the path schema

is a relational representation of MD databases that we can
use for completely and efficiently checking summarizability
constraints through ICs.

10. CONCLUSIONS
In this paper we have addressed two important problems

in relation to multidimensional (MD) databases. Each of
them has several aspects:

1. We have proposed and analyzed a new relational rep-
resentation for multidimensional databases (MDDBs),
and data warehouses in particular. This so-called path
relational schema (PRS) has also been compared with
the traditional relational schemas for ROLAP, the star
and the snowflake schemas.

The PRS, enriched with natural relational ICs, has
some advantages that make it particularly suitable for
handling inconsistency issues in MDDBs in relation
to MD summarizability constraints. More concretely,
it allows for: (a) a natural relational representation
of those semantic requirements, (b) the possibility of
easily checking their satisfaction, and (c) a simple spec-
ification and application of consistency repair policies.

We also verified that it offers a reasonable performance
in terms of aggregate query answering.

2. We have proposed a new characterization of repairs of
a MD database that fails to satisfy a given set of sum-
marizability constraints. We did this by first translat-
ing the problem into a similar one formulated in purely
relational terms. The proposed relational schema makes
the translation mechanism have nice invertibility prop-
erties.

Proceeding in this way has two main advantages: (a)
Much work has been done around relational repairs
and consistent query answering, and we could take ad-
vantage of it. (b) The repair process could be imple-
mented directly on relational platforms.

As an alternative to the relational characterization of
MD repairs, we have also offered an interesting charac-
terization in purely MD terms. As opposed to previous
approaches, the new notion is sensitive to the levels in
an MD hierarchy where changes are performed to re-
store consistency.

There are many interesting research directions that are opened
by this proposal. Some of them are fully open, and others
are subject of ongoing research. We mention some of them.

1. In this paper we haven’t considered consistent query
answering for aggregate queries. We could naturally
explore the range semantics [3, 25]. The main problem
is about doing CQA under summarizability constraints
without explicitly computing all repairs.

In this direction, we should investigate the existence
of a corresponding notion of canonical instance intro-
duced in [9], that was used to do and approximate
consistent answers (under their repair semantics).

2. Still in the direction of CQA, it would be interesting to
fully exploit our relational translation and the existing
(or new) results and techniques for relational repairs
and CQA [8].

3. We have the impression that the relational route to
MD repairs can be particularly useful for doing MD
database repairing and CQA under updates. Except
for preliminary work in [39] on dynamic (relational)
CQA, very little has been done in this important di-
rection.

4. In the MD scenario, considering, in addition to sum-
marizability constraints, also aggregation constraints is
quite natural. At this place existing results on attribute-
based repairs under aggregation constraints [23] would
be a very nice fit, and also very useful.

5. The relational framework offered by the path schema
together with NOT NULL and EGDs deserves investi-
gation per se. In this vein, there are also interesting
issues to explore in relation to data exchange [6] and
schema mappings [4] (from one relational MD schema
into another, like the path schema), and also schema
evolution [21].

6. In this paper we have reported on some experiments
with the proposed relational schema in the direction
of aggregate query answering. Currently, we are also



running experiments in relation to the repair aspects
of this relational approach.

On the repair computation side, we have two alterna-
tive ways to go, and comparing them would be inter-
esting. One of them consists in using “answer set pro-
grams” (ASPs), similar to those in [13, 19]. They work
directly with the MD representation. In our case, given
the different MD repair semantics (the one in Theorem
2), our program would include “weak constraints with
weights”, that extend the ASP paradigm [14]. They
are used to minimize numbers of violations of program
constraints. For that reason, they can be used to cap-
ture our numerical MD distance. (The distance in [13,
19] is set-theoretical, not numerical).

The other way to go consists in repairing directly the
relational instances obtained via the MD2R mapping
wrt relational ICs. ASP have been also successfully
used to compute relational repairs and do consistent
query answering (cf. [18] and references therein). In
this case, the ASP would also require the use of weak
constraints, since we would be minimizing the number
of changes of attribute values. ASP of this kind have
been used in [24].

7. A deeper investigation of the relationship between our
MD repairs and other approaches to the same or sim-
ilar problem is still necessary. In particular, it would
be interesting to compare our data-based approach to
repairs to MD repairs that are based on changes in
the schema [5]. The combination of both approaches
should also be investigated.

8. An issue with our proposed approach is that it could
require a new relational layer for an already existing
MDDB that has been implemented directly as such or
via a star or snowflake relational database. Instead
of building a materialized relational layer on top, we
should explore defining the proposed path schema as a
virtual view of the existing representation/implementation.
(This idea has been explored with schema-based re-
pairs [5] using MDX views). This view could be seen
as a logical layer [16] on top.
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APPENDIX
A. QUERIES USED IN THE EXPERIMENT



Q1: Return the sum of Incoming calls made from each cell
phone Number in year 2010.

(a) Star schema:
SELECT RLoc.ANumber, SUM(F.In) FROM

Traffic-Fact-Table F, RLoc, RTime

WHERE RTime.AYear = 2010 GROUP BY RLoc.ANumber;
(b) Path schemaa:

SELECT RPLoc
1 .ANumber, SUM(F.In) FROM

Traffic-Fact-Table F, RPTime, RPLoc
1

WHERE RPTime.AYear = 2010
GROUP BY RPLoc

1 .ANumber;
(c) Snowflake schema:

SELECT RNumber.ANumber, SUM(F.In) FROM
Traffic-Fact-Table F, RDay, RMonth, RYear, RNumber

WHERE RYear.AYear = 2010
GROUP BY RNumber.ANumber;

aFor path schema, the values for attribute
RPLoc

1 .ANumber is equal to RPLoc
2 .ANumber. So in

this query, we can either choose RPLoc
1 or RPLoc

2 .

Q2: Return the sum of Incoming calls made from each cell
phone AreaCode in year 2010.

(a) Star schema:
SELECT RLoc.AAreaCode, SUM(F.In) FROM

Traffic-Fact-Table F, RLoc, RTime

WHERE RTime.AYear = 2010 GROUP BY RLoc.AAreaCode;
(b) Path schema:

SELECT RPLoc
1 .AAreaCode, SUM(F.In) FROM

Traffic-Fact-Table F, RPTime, RPLoc
1

WHERE RPTime.AYear = 2010
GROUP BY RPLoc

1 .AAreaCode;
(c) Snowflake schema:

SELECT RAreaCode.AAreaCode, SUM(F.In) FROM
Traffic-Fact-Table F, RDay, RMonth, RYear,
RNumber, RAreaCode

WHERE RYear.AYear = 2010
GROUP BY RAreaCode.AAreaCode;

Q3: Return the sum of Incoming calls made from each cell
phone City in year 2010.

(a) Star schema:
SELECT RLoc.ACity, SUM(F.In) FROM

Traffic-Fact-Table F, RLoc, RTime

WHERE RTime.AYear = 2010 GROUP BY RLoc.ACity;
(b) Path schema:

SELECT RPLoc
2 .ACity, SUM(F.In) FROM

Traffic-Fact-Table F, RPTime, RPLoc
2

WHERE RPTime.AYear = 2010
GROUP BY RPLoc

2 .ACity;
(c) Snowflake schema:

SELECT RCity.ACity, SUM(F.In) FROM
Traffic-Fact-Table F, RDay, RMonth, RYear,
RNumber, RCity

WHERE RYear.AYear = 2010
GROUP BY RCity.ACity;

Q4: Return the sum of Incoming calls made from each cell
phone Region in year 2010.

(a) Star schema:
SELECT RLoc.ARegion, SUM(F.In) FROM
Traffic-Fact-Table F, RLoc, RTime WHERE
RTime.AYear = 2010 GROUP BY RLoc.ARegion;

(b) Path schema:
SELECT RPLoc.ARegion, SUM(F.In)
FROM Traffic-Fact-Table F, RPTime,
((SELECT ANumber, ARegion FROM RPLoc

1 ) UNION
(SELECT ANumber, ARegion FROM RPLoc

2 )) as RPLoc

WHERE RPTime.AYear = 2010 GROUP BY RPLoc.ARegion;
(c) Snowflake schema:

SELECT RLoc.ARegion, SUM(F.In) FROM
Traffic-Fact-Table F, RDay, RMonth, RYear,
((SELECT ANumber, ARegion FROM RNumber, RAreaCode,
RRegion ) UNION (SELECT ANumber, ARegion FROM
RNumber, RCity, RRegion ) ) as RLoc

WHERE RYear.AYear = 2010 GROUP BY RLoc.ARegion;

Q5: Return the sum of Incoming calls made from All cell
phone numbers in year 2010.

(a) Star schema:
SELECT RLoc.AAll, SUM(F.In) FROM

Traffic-Fact-Table F, RLoc, RTime

WHERE RTime.AYear = 2010 GROUP BY RLoc.AAll;
(b) Path schema:

SELECT RPLoc.AAll, SUM(F.In)
FROM Traffic-Fact-Table F, RPTime,
((SELECT ANumber, AAll FROM RPLoc

1 ) UNION
(SELECT ANumber, AAll FROM RPLoc

2 )) as RPLoc

WHERE RPTime.AYear = 2010 GROUP BY RPLoc.AAll;
(c) Snowflake schema:

SELECT RLoc.AAll, SUM(F.In) FROM
Traffic-Fact-Table F, RDay, RMonth, RYear,
((SELECT ANumber, AAll FROM RNumber, RAreaCode,
RRegion, RAll ) UNION (SELECT ANumber, AAll FROM
RNumber, RCity, RRegion, RAll ) ) as RLoc

WHERE RYear.AYear = 2010 GROUP BY RLoc.AAll;



B. STORED PROCEDURES USED IN THE
EXPERIMENT

CREATE PROCEDURE [dbo].[checkStarSchema]
AS
BEGIN
-- num -> areacode
select * from dbo.LocationStar as L1 inner join dbo.LocationStar as L2
on L1.Number = L2.Number where L1.AreaCode <> L2.AreaCode

-- num -> city
select * from dbo.LocationStar as L1 inner join dbo.LocationStar as L2
on L1.Number = L2.Number where L1.City <> L2.City

-- areacode->region
select * from dbo.LocationStar as L1 inner join dbo.LocationStar as L2
on L1.AreaCode = L2.AreaCode where L1.Region <> L2.Region

-- city->region
select * from dbo.LocationStar as L1 inner join dbo.LocationStar as L2
on L1.City = L2.City where L1.Region <> L2.Region

-- num->region
select * from dbo.LocationStar as L1 inner join dbo.LocationStar as L2
on L1.Number = L2.Number where L1.Region <> L2.Region

-- areacode not null
select * from dbo.LocationStar where AreaCode Is NULL

-- city not null
select * from dbo.LocationStar where City Is NULL

-- region not null
select * from dbo.LocationStar where Region Is NULL

-- all not null
select * from dbo.LocationStar where AllCol Is NULL
END



CREATE PROCEDURE [dbo].[checkSnowflakeSchema]
AS
BEGIN
-- num -> city
select * from
(select N.Number,C.City from dbo.NumberSnowflake as N inner join dbo.CitySnowflake as C
on N.City = C.City ) as t1 ,
(select N.Number,C.City from dbo.NumberSnowflake as N inner join dbo.CitySnowflake as C
on N.City = C.City ) as t2
where t1.Number = t2.Number and t1.City <> t2.City

-- num -> areacode
select * from
(select N.Number,A.AreaCode from dbo.NumberSnowflake as N inner join dbo.AreaCodeSnowflake as A
on N.AreaCode = A.AreaCode ) as t1 ,
(select N.Number,A.AreaCode from dbo.NumberSnowflake as N inner join dbo.AreaCodeSnowflake as A
on N.AreaCode = A.AreaCode ) as t2
where t1.Number = t2.Number and t1.AreaCode <> t2.AreaCode

-- num -> region
select * from
((select N.Number,R.Region from dbo.NumberSnowflake as N inner join dbo.AreaCodeSnowflake as A

on N.AreaCode = A.AreaCode inner join dbo.RegionSnowflake as R on A.Region = R.Region) union
(select N.Number,R.Region from dbo.NumberSnowflake as N inner join dbo.CitySnowflake as C

on N.City = C.City inner join dbo.RegionSnowflake as R on C.Region = R.Region)) as t1,
((select N.Number,R.Region from dbo.NumberSnowflake as N inner join dbo.AreaCodeSnowflake as A

on N.AreaCode = A.AreaCode inner join dbo.RegionSnowflake as R on A.Region = R.Region) union
(select N.Number,R.Region from dbo.NumberSnowflake as N inner join dbo.CitySnowflake as C

on N.City = C.City inner join dbo.RegionSnowflake as R on C.Region = R.Region)) as t2
where t1.Number = t2.Number and t1.Region <> t2.Region

-- city -> region
select * from
(select C.City,R.Region from dbo.CitySnowflake as C inner join dbo.RegionSnowflake as R
on C.Region = R.Region) as t1 ,
(select C.City,R.Region from dbo.CitySnowflake as C inner join dbo.RegionSnowflake as R
on C.Region = R.Region) as t2
where t1.City = t2.City and t1.Region <> t2.Region

-- areacode -> region
select * from
(select A.AreaCode,R.Region from dbo.AreaCodeSnowflake as A inner join dbo.RegionSnowflake as R
on A.Region = R.Region) as t1 ,
(select A.AreaCode,R.Region from dbo.AreaCodeSnowflake as A inner join dbo.RegionSnowflake as R
on A.Region = R.Region) as t2
where t1.AreaCode = t2.AreaCode and t1.Region <> t2.Region

-- city not null
select * from dbo.NumberSnowflake where City Is NULL

-- areacode not null
select * from dbo.NumberSnowflake where AreaCode Is NULL

-- region not null
select * from dbo.AreaCodeSnowflake where Region Is NULL
select * from dbo.CitySnowflake where Region Is NULL

-- all not null
select * from dbo.RegionSnowflake where AllCol Is NULL
END



CREATE PROCEDURE [dbo].[checkPathSchema]
AS
BEGIN
-- num->areacode
select * from dbo.LocationPath1 as P1 inner join dbo.LocationPath1 as P2
on P1.Number = P2.Number where P1.AreaCode <> P2.AreaCode

-- areacode->region
select * from dbo.LocationPath1 as P1 inner join dbo.LocationPath1 as P2
on P1.AreaCode = P2.AreaCode where P1.Region <> P2.Region

-- numb->city
select * from dbo.LocationPath2 as P1 inner join dbo.LocationPath2 as P2
on P1.Number = P2.Number where P1.City <> P2.City

-- city->region
select * from dbo.LocationPath2 as P1 inner join dbo.LocationPath2 as P2
on P1.City = P2.City where P1.Region <> P2.Region

-- num->region
select * from dbo.LocationPath1 as P1 inner join dbo.LocationPath1 as P2
on P1.Number = P2.Number where P1.Region <> P2.Region

select * from dbo.LocationPath2 as P1 inner join dbo.LocationPath2 as P2
on P1.Number = P2.Number where P1.Region <> P2.Region

select * from dbo.LocationPath1 as P1 inner join dbo.LocationPath2 as P2
on P1.Number = P2.Number where P1.Region <> P2.Region

-- areacode not null
select * from dbo.LocationPath1 where AreaCode Is NULL

-- city not null
select * from dbo.LocationPath2 where City Is NULL

-- region not null
select * from dbo.LocationPath1 where Region Is NULL
select * from dbo.LocationPath2 where Region Is NULL

-- all not null
select * from dbo.LocationPath1 where AllCol Is NULL
select * from dbo.LocationPath2 where AllCol Is NULL
END


