
UNIVERSIDAD ADOLFO IBAÑEZ

MASTER’S THESIS

Compiling Neural Network Classifiers into Boolean
Circuits for Efficient Shap-Score Computation

Author:
Jorge E. León

Thesis Supervisor:
Leopoldo Bertossi

SKEMA Business School, Canada

Senior UAI Fellow

Thesis Defense Committee:
Miguel Romero R. (UAI)
Marcelo Arenas S. (PUC)

Thesis carried out in accordance with the requirements for the degree of
Master of Science in Data Science

of the

Faculty of Engineering and Sciences

June 2023

https://www.uai.cl/
https://ingenieria.uai.cl/

i

UNIVERSIDAD ADOLFO IBAÑEZ

Abstract

Faculty of Engineering and Sciences

Master of Science in Data Science

Compiling Neural Network Classifiers into Boolean Circuits for Efficient Shap-Score
Computation

by Jorge E. León

Along with the increasing mass use of machine learning models, there has been an increase
in the need to be able to generate explanations for the predictions that they make. In this
scenario, an efficient method to calculate the Shap-scores (which serve to define the par-
ticipation that a variable had in the final result) was noted in a certain type of deterministic
and decomposable Boolean circuits. Likewise, a method was found to go from binary neural
networks to circuits of this kind. What has been said gave rise to combining these methods
and evaluating the convenience of calculating the Shap-scores in this way (as an open-box),
compared to the traditional way (as a black-box). We found that it is indeed reliable and
more efficient for various scenarios, but future work still needs to be done to reveal the full
potential of this technique. Additionally, the conversion method was formalized and the code
used was made available for everyone who is interested in this area.

Keywords: Explainable AI, Knowledge compilation, Shap-score, Binary neural network,
Boolean circuits.

HTTPS://WWW.UAI.CL/
https://ingenieria.uai.cl/

ii

Contents

Abstract i

1 Converting BNNs to dDBCSFi(2)s 1
1.1 BNN to CNF Formula: Auxiliary Variables 1
1.2 BNN to CNF Formula: Only Original Variables 5
1.3 CNF Formula to dDBCSFi(2) . 7
1.4 A Complete Example of the Conversion . 10
1.5 On the Efficiency of the Method . 15
References . 17

A Extra Material from the Experiments 19

B About the GitHub Repository 22

iii

List of Abbreviations

BNN Binary Neural Network
BP Binary Perceptron
CNF Conjunctive Normal Form
dDBC Decomposable and Deterministic Boolean Circuit
dDBCSFi(2) Decomposable and Deterministic Boolean Circuit Smoothed and with Fan-in 2
dDNNF Decomposable and Deterministic Negation Normal Form
DNF Disjunctive Normal Form
ML Machine Learning
NNF Negation Normal Form
OBDD Ordered Binary Decision Diagram
SDD Sentential Decision Diagram
vtree Variable Tree

1

Chapter 1

Converting BNNs to dDBCSFi(2)s

To calculate Shap with the efficient method for a BNN, the latter must be converted into
a dDBCSFi(2), for which Shap can be computed in polynomial time (Arenas, Barceló,
Bertossi, & Monet, 2021). This transformation follows the next path:

BNN 7−→
(a)

CNF formula 7−→
(b)

SDD 7−→
(c)

dDBCSFi(2) (1.1)

This is not the only way to get a dDBCSFi(2). For example, (Shi, Shih, Darwiche, & Choi,
2020) converts BNNs to OBDDs, which can also be converted to dDBCSFi(2)s. Some of the
steps in (1.1) may not be polynomial-time transformations, which we will discuss in more
technical terms at the end of this chapter. However, we can claim at this stage that: (a) Any
exponential cost of a transformation is kept under control by a usually small parameter. (b)
The resulting dDBCSFi(2) is meant to be used multiple times, to explain different and mul-
tiple outcomes; and then, it may be worth taking a one-time, relatively high transformation
cost. The main reason to adopt the transformation of this thesis is the availability of im-
plementations that can be used for some of the steps, which are mentioned later along this
chapter.

To explain the conversion, we will first describe the original encoding of the BNN into a
CNF formula (Section 1.1). Then the modified version will be presented, which does not use
auxiliary variables (Section 1.2). This will be followed by the remaining steps to get from a
CNF formula to a dDBCSFi(2) (Section 1.3). An example illustrating the entire process will
also be shown to ensure its understanding (Section 1.4). Finally, the section will end with a
small analysis on the efficiency of the conversion method (Section 1.5).

1.1 BNN to CNF Formula: Auxiliary Variables

This method can be seen in (Shih, Darwiche, & Choi, 2019; Narodytska, Kasiviswanathan,
Ryzhyk, Sagiv, & Walsh, 2018).

Imagine that we have a dense binary neural network (i.e. the neurons of each layer are
connected to all possible inputs from the previous one) that receives ℓ0 input variables in the
form of x̄ = ⟨x1, . . . , xℓ0⟩. This BNN has m hidden layers, each layer z (from 1 to m) has
ℓz neurons and a neuron from layer z receives the input vector ī = ⟨i1, . . . , iℓz−1⟩. For the
output layer, it has a single neuron. All weights are −1 or 1, biases are real numbers, and the
activation functions also return a value of −1 or 1 (ϕhidden layer). The only exception to

Chapter 1. Converting BNNs to dDBCSFi(2)s 2

the latter is the output layer, where a step function is used that returns 0 or 1 (ϕoutput layer).
Formally, the activation functions are:

ϕhidden layer(x) :=
{

1 , x ≥ 0
−1 , x < 0

ϕoutput layer(x) :=
{

1 , x ≥ 0
0 , x < 0

(1.2)

More commonly, ϕhidden layer and ϕoutput layer are given the names sign function and unit
step function, resp.

As shown in (Narodytska et al., 2018), such BNN can be converted into a CNF formula as
follows.

We are going to work with all the layers, one by one, from the first hidden layer to the
output layer. For each neuron in each layer, we want to encode the case in which said neuron
becomes 1 (true). In other words, we want to represent each ϕ(w̄ • ī + b) as a CNF formula,
where the dot (•) denotes the dot product of two vectors. The idea for each neuron is to add
clauses incrementally to reflect the cases where our neuron reaches 1. This is done with the
help of auxiliary variables r(k,p). The encoding of each neuron is independent of the others
in the same layer, but from the second hidden layer, the last auxiliary variable of each neuron
is taken as input. In order to avoid complicating the notation, it will be understood that 1 is
equivalent to a true value, and 0/−1 are equivalent to false. It is also relevant to say that r(k,p)

symbolizes if ∑k
j=1

wj·ij+1
2 ≥ p.

Starting with the first hidden layer, we take the first neuron, with weights w̄ = ⟨w1, . . . , wℓ0⟩
and bias b. As expected, we will take ī = ⟨x1, . . . , xℓ0⟩ as input. We must start by calculating
d, our minimum number of inputs that must be conveniently instantiated for the output to be
1. We can deduce d as follows:

Chapter 1. Converting BNNs to dDBCSFi(2)s 3

∑k
j=1(wj · ij) + b ≥ 0 ,

∑k
j=1(wj · ij) ≥ −b ,

∑k
j=1(wj · (

ij+1
2 · 2− 1)) ≥ −b ,

2 ·∑k
j=1(wj ·

ij+1
2)−∑k

j=1(wj) ≥ −b ,

2 ·∑k
j=1(wj ·

ij+1
2) ≥ −b + ∑k

j=1(wj) ,

∑k
j=1(wj ·

ij+1
2) ≥

⌈
−b+∑k

j=1 wj

2

⌉
,

∑k
j=1(

wj+1
2 · ij+1

2)−∑k
j=1(

−wj+1
2 · ij+1

2) ≥
⌈
−b+∑k

j=1 wj

2

⌉
,

∑k
j=1(

wj+1
2 · ij+1

2)−∑k
j=1(

−wj+1
2 − −wj+1

2 · −ij+1
2) ≥

⌈
−b+∑k

j=1 wj

2

⌉
,

∑k
j=1(

wj+1
2 · ij+1

2) + ∑k
j=1(

−wj+1
2 · −ij+1

2) ≥
⌈
−b+∑k

j=1 wj

2

⌉
+ ∑k

j=1
−wj+1

2 ,

∑k
j=1

wj·ij+1
2 ≥

⌈
−b+∑k

j=1 wj

2

⌉
+ ∑k

j=1
−wj+1

2

Thus, we can see that d is defined as:

d :=

−b + ∑ℓz−1

j=1 wj

2

+
ℓz−1

∑
j=1

−wj + 1
2

(1.3)

Now that we have d, we can use sequential counters (details of which can be found in (Sinz,
2005)) as follows to encode the neuron:

SQ(w̄, ī, d) :=

r(ℓz−1,d) , d < 1

(w1 · i1 ⇔ r(1,1)) ∧∧d
j=2 (−r(1,j)) ∧∧ℓz−1
l=2 ((r(l,1) ⇔ (wl · il ∨ r(l−1,1))) ∧∧d

j=2 (r(l,j) ⇔ ((wl · il ∧ r(l−1,j−1)) ∨ r(l−1,j))))

,
|ī| ≥ d
d ≥ 1

−r(ℓz−1,d) ,
|ī| < d
d ≥ 1

(1.4)

It is worth noting that we can convert, for example, x1 ⇔ x2 to (−x1 ∨ x2) ∧ (x1 ∨ −x2),
and we can apply propositional logic to express the encoding of every neuron as a CNF
formula.

This same process is repeated for each neuron in the layer. Since the encodings of neurons in
the same layer do not interfere with each other, they could well be done in parallel. Consider
r(z,k) to refer to the auxiliary variable r(ℓz−1,d(z,k))

of the k-th neuron from the z-th layer. Now,

Chapter 1. Converting BNNs to dDBCSFi(2)s 4

as anticipated previously, we must give ī = ⟨r(1,1), . . . , r(1,ℓ1)⟩ as input for the next layer. As
before, we encode each neuron by calculating d and SQ(w̄, ī, d). We repeat this process until
we reach the output layer. At that point, we only need to do the encoding for that final neuron
and, for our experiments, we would identify its last auxiliary variable (r(m+1,1)), because this
is the one that reflects the output of our BNN.

Now, for the sake of a complete explanation, let us take the case where the output layer has
n neurons, so the BNN is for a multi-class problem. One output would be 1 and the rest 0,
thanks to a step softmax (or an equivalent) activation function. For this output layer, we are
taking ī = ⟨r(m,1), . . . , r(m,ℓm)⟩ as input. Let us focus on the first output neuron. We need to
compute a comparison threshold d̂kl between this neuron and each of the output neurons. For
each of these, we must use the following formula:

d̂kl :=
⌈⌈

bl−bk+∑ℓm
j=1(wkj

−wlj
)

2

⌉
/2

⌉
+

∣∣{w ∈ w̄k−w̄l
2 | w = −1

}∣∣ (1.5)

Where k is the index of our current neuron to encode and l is the index of the neuron to
compare (so for our first output neuron, k = 1 and we have to iterate with l ∈ {1, . . . , n}).
For our selected l, we also need to obtain the subsets ω̄kl ⊆ w̄k and ῑkl ⊆ ī, taking the
elements at the positions where w̄k differs from w̄l . Formally speaking, they are defined as:

ω̄kl :=
{

w ∈ w̄k−w̄l
2 | w ̸= 0

}
ῑkl :=

{
i ∈ ī⊙(w̄k−w̄l)

2 | i ̸= 0
}

(1.6)

Where ⊙ denotes the component-wise product of two vectors.

Then, we end up encoding SQ(ω̄kl , ῑkl , d̂kl) for each l ∈ {1, . . . , n}. Now, let us take the
final auxiliary variable of all these encodings and put them in a new array r̄k, like this: r̄k =
⟨r(|ω̄k1|,d̂k1)

, . . . , r(|ω̄kn|,d̂kn)
. We finish encoding this neuron with SQ(1̄, r̄k, n), where 1̄ =

⟨1, . . . , 1⟩. And this is repeated for all the output neurons, so we end up with all of our
BNN encoded.

Once the encoding is complete, the final auxiliary variable of any neuron can be selected and
perform calculations based on it.

It is important to note that more often than not, the encoding leaves us with an unnecessar-
ily large formula. Because of this, a simplifier can be used to reduce its size, eliminating
unimportant auxiliary variables and keeping the variables of interest. For example, for this
investigation the SAT solver Riss (Manthey, 2017) was used, but it is not able to eliminate all
the auxiliary variables when the formula is relatively complex.

The problem with using this encoding is that the efficient method for computing Shap in
dDBCSFi(2)s is not intended to work with auxiliary variables. This is why they must be
removed. While it is possible to use what is known as “forgetting variables” (Oztok & Dar-
wiche, 2017), this technique is prone to damaging the determinism of the circuit. Although
different methods were explored to eliminate these auxiliary variables, in the end it was de-
cided that it would be more convenient to do without them at this time. The adapted method
is easy to understand, but it involves working with fewer variables so it does not take too long
(if a few more than twenty variables could be used with auxiliary variables, now it seems that
the limit is around thirteen, but this may just be a problem of an inefficient implementation).

Chapter 1. Converting BNNs to dDBCSFi(2)s 5

1.2 BNN to CNF Formula: Only Original Variables

We will consider the same BNN defined above. The basic idea here is the same as for the
method using auxiliary variables. We want to encode each neuron, layerwise, in an incremen-
tal manner that reflects the case in which for a given number of variables, its instantiation is
capable of reaching or surpassing a given threshold.

As before, we start with the first neuron in the first layer and compute its d with (1.3). We can
see this process as filling an matrix M|ī|×d of Boolean encodings, with ck,t components. M
is not a matrix to do operations with, but rather a convenient structure for defining the order
in which the encodings are generated. M is filled rowwise and, for each row, columnwise.
Row k represents the number of the first variables considered, and column t the threshold to
reach or surpass. Note that for any component where k < t, the threshold cannot be reached,
so any component above the lower triangular matrix will be false.

We start with just the first variable. The threshold 1 is reached or surpassed when w1 · i1 and
the other thresholds are impossible to reach or surpass, so our matrix so far would look like
this: [

w1 · i1 false . . . false false
.

]
For the first two variables, we now have two cases of thresholds that do not always return
false. The first is for the threshold 1. Here, w1 · i1 or w2 · i2 would suffice. However, for the
threshold 2 we would need w1 · i1 and w2 · i2. This can be written as: w1 · i1 false false . . . false

w2 · i2 ∨ c1,1 w2 · i2 ∧ c1,1 false . . . false
.

Let us see with one more variable. We now have three valid thresholds. For the threshold
1, w3 · i3 or w1 · i1 ∨ w2 · i2 would suffice. For the threshold 2, w3 · i3 and w1 · i1 ∨ w2 · i2
would do, as would w1 · i1 ∧ w2 · i2. And for 3, we would need w3 · i3 and w1 · i1 ∧ w2 · i2.
So now the matrix would be:

w1 · i1 false false false . . . false
w2 · i2 ∨ c1,1 w2 · i2 ∧ c1,1 false false . . . false
w3 · i3 ∨ c2,1 (w3 · i3 ∧ c2,1) ∨ c2,2 w3 · i3 ∧ c2,2 false . . . false

.

Now we can imagine how we end up filling the rest of the matrix until we have:

Chapter 1. Converting BNNs to dDBCSFi(2)s 6

M :=

w1 · i1 false false . . . false

w2 · i2
∨c1,1

w2 · i2
∧c1,1

false . . . false

w3 · i3
∨c2,1

(w3 · i3
∧c2,1)
∨c2,2

w3 · i3
∧c2,2

. . . false

.

w|ī| · i|ī|∨
c|ī|−1,1

(w|ī| · i|ī|
∧c|ī|−1,1)

∨c|ī|−1,2

(w|ī| · i|ī|
∧c|ī|−1,2)

∨c|ī|−1,3

. . .
(w|ī| · i|ī|∧
c|ī|−1,d−1)

∨c|ī|−1,d

(1.7)

With this, we can better describe the method to fill M. For our first row, the encoding of the
first component is w1 · i1 and false for the rest. For each component ck,1 in the first column,
this is wk · ik ∨ ck−1,1. And for any other component ck,t (with a threshold t), we just use
(wk · ik ∧ ck−1,t−1)∨ ck−1,t. So c|ī|,d (the bottom right highlighted component) ends up being
the encoding of our neuron.

As in Section 1.1, this is repeated for each neuron (i.e. calculate its respective d and generate
its M), until we have the encoding of all the neurons in the layer. Since the encoding of each
neuron does not influence nor is influenced by the others of the same layer, all the encodings
of the neurons of a layer could well be generated in parallel.

For the next layer, we take as inputs the components cℓ0,d of each neuron from the previous
one, and all that remains is to repeat this conversion. That is, with the cℓ0,ds as inputs, the
d and M of each neuron in the new layer are computed, which is followed by extracting the
cℓ1,d of each neuron and pass it as input to the next layer. Then it is just a matter of iterating to
the last layer. From the last layer, we extract the encoding cℓm,d of the single output neuron,
since this represents the encoding of the entire BNN.

Practically, we follow the method in (Narodytska et al., 2018) to generate the ds and repli-
cate the order of the encoding, but we differ with the use of M, which helps to obtain a
propositional formula without auxiliary variables. The downside of our approach is that it is
computationally more expensive, but again, it is a one-time cost. To reinforce and illustrate
the idea of this method, Figure 1.1 has been included.

The result, from the output neuron, is a Boolean formula that can be converted to a CNF
formula, as well as simplified.

Giving more detail about our implementation, we transform each generated propositional
formula to CNF. After it is generated (i.e. each component in each M matrix), some basic
simplifications are applied to avoid an excessive growth (see Section 1.5 for the detailed
explanation on why this is needed). In theory, for each neuron g, both the method with and
without auxiliary variables have a time complexity around O(dg · |īg|), but in practice the
time of our method without auxiliary variables grows exponentially. This means that the
main issue seems to be in these simplifications, where several inefficient cycles through all
clauses are done at each neuron conversion (for reference, in our experiments we end up
having thousands of clauses).

It is important to mention that the efficiency of this method and its implementation are not
at all ideal. In fact, it there seems to be much room for improvement with both for more
complex BNNs. Nevertheless, it is good enough for the experiments in this investigation.

Chapter 1. Converting BNNs to dDBCSFi(2)s 7

FIGURE 1.1: Conversion from a BNN to a CNF formula. The inputs for the
first layer are the respective variables (blue nodes). Each neuron (red nodes)
g has a dg and a Mg, of which the component c|ī|,dg

is the final encoding
of g. These final encodings are given as inputs to the Mgs of the next layer
and the process is repeated until the last layer. cℓm ,do of Mo represents the

encoding of all the BNN.

1.3 CNF Formula to dDBCSFi(2)

As noted in (Darwiche, 2011; Oztok & Darwiche, 2014), a CNF formula can be converted
into a Sentential Decision Diagram (SDD) (Darwiche, 2011; Van den Broeck & Darwiche,
2015), while keeping logical equivalence.1 An SDD, as a particular kind of decision di-
agram (Bollig & Buttkus, 2019), is a directed acyclic graph. So as the popular OBDDs
(Bryant, 1986), that SDDs generalize, they can be used to represent general Boolean formu-
las; in particular, propositional formulas (but without necessarily being per se propositional
formulas).

Every SDD is made up of decision nodes and elements. Decision nodes are numbered circles
(k⃝) that practically function as disjunctions pointing to two or more inputs, which are always
elements. The elements are pairs of rectangles ([j|k]) that operate as conjunctions, where j
is named prime and k sub. Each rectangle can have a literal, a truth value, or a pointer
(•) with an edge to a decision node. If a rectangle of an element does not have a •, it is
called a terminal. At the end, these SDDs can be used as Boolean functions that take a given
instantiation for its variables (according to an entity) and return its corresponding label by
following the path downwards.

Before generating the respective SDD, one must choose a so-called vtree (for “variable tree”),
which is a tree-based structure that represents a way of recursively partitioning the variables
in a Boolean function into subsets, and with which the orders of occurrence of variables in
the diagram must be compliant with.2 More precisely, a vtree for a set of variables V is a
binary tree that is full (i.e. every node has 0 or 2 children), ordered (i.e. the children of a
node are totally ordered), and there is a bijection between the set of leaves and V (i.e. every
variable is depicted by a single leaf) (Pipatsrisawat & Darwiche, 2008; Bova, 2016; Bollig &
Buttkus, 2019; Nakamura, Denzumi, & Nishino, 2020). Additionally, the total order on all

1The algorithm for compilation has not been published per se, but is that of the official library for SDDs in
Python (Meert & Choi, 2018; Choi & Darwiche, 2018). We also know that it works in a bottom-up fashion, using
the apply operations described in (Darwiche, 2011) and commented in (Choi & Darwiche, 2013).

2Extending OBDDs, which have special kinds of vtrees that capture the condition that variables in a path
must always appear in the same order. This generalization makes SDDs much more succinct than OBDDs
(Van den Broeck & Darwiche, 2015; Bova, 2016; Bollig & Buttkus, 2019).

Chapter 1. Converting BNNs to dDBCSFi(2)s 8

of its nodes is obtained by an inorder traversal of the vtree nodes (i.e. left subtree, node, right
subtree) and all nodes are labeled with a number for ID.3

Let η be an NNF formula, circuit or binary decision diagram with input variables V . We
say that η, with fan-in 2 in every ∧-gate or any equivalent, respects a vtree T if for every
∧-gate g in η (with left input gate g1 and right g2), there exists an internal gate τ in T (with
left child τ1 and right child τ2) such that the input gates of the subcircuit g1 mention only
variables in τ1 and the input gates of the subcircuit g2 mention only variables in τ2. The
connection between a vtree and an SDD is tied to this, in the sense that every SDD must
respect the vtree on which it is based on.

A vtree is linear if for every internal node one child is a leaf. The reason why it is said
that SDDs generalize OBDDs is because an SDD based on a linear vtree can represent an
OBDD respecting the same variable ordering (Bollig & Buttkus, 2019). Depending on the
chosen vtree, substructures of an SDD can be better reused when representing a Boolean
function, e.g. a propositional formula, which becomes important to obtain a compact repre-
sentation. An important feature of SDDs is that they can easily be combined via propositional
operations, resulting in a new SDD (Darwiche, 2011).

In other terms, a vtree represents a set of variable partitions to follow in order to generate
the desired SDD. It is important to note that for a given vtree there is a unique SDD trimmed
(i.e. it does not have decompositions of the form {(⊤, α)} and {(α,⊤), (−α,⊥)}) and
compressed (i.e. for each partition, there are no repeated subs) that will be generated from it.
With this in mind, the goal would be to find a vtree which ideally would allow us to compile
the smallest SDD possible. The details are beyond the scope of this document, but this search
can be performed using swap and rotate operations (Choi & Darwiche, 2013).4

SDDs can also be translated into propositional formulas, which always have negation normal
form (NNF), which is characterized by the exclusive use of disjunctions, conjunctions, and
negations, with negations only being applied to atomic propositions. More importantly, these
SDDs formulas feature structured decomposition and strong determinism (Darwiche, 2011),
which means that they are a strict subset of d-DNNF (i.e. NNF formulas that are deterministic
and decomposable). As for the decision of why this type of d-DFNN was chosen, one could
also work with an OBDD, but, for reasons of speed and conciseness (Van den Broeck &
Darwiche, 2015; Bova, 2016; Bollig & Buttkus, 2019), it is more advisable to work with
SDDs.

Although SDDs can also be generated based on formulas in disjunctive normal form (DNF)
and the algorithm used could be adapted to convert BNNs into DNF formulas, for these
there is no well-defined upper bound of complexity like for the CNF (Darwiche, 2011), so it
seemed best to stick with the latter option.

The SDD returned should be converted to a dDBC. The process is quite simple, we just
have to take each node of the graph as its equivalent in a Boolean tree. This means that
a decision node becomes a disjunction node, an element becomes a conjunction node, and
literals and truth values become input nodes. All maintaining the connections between the
nodes. Because of the triviality of this process, its mention is omitted on the path (1.1).

The final step would be to ensure that the resulting circuit is smoothed and has an fan-in 2.
That is, we have to convert the dDBC to a dDBCSFi(2).

3For the program that we use, the numbering of the nodes is given by a left-to-right traversal of the
vtree nodes (Choi & Darwiche, 2018), but this numbering is arbitrary and non-essential, as long as it stays
consistent with the respective SDDs based on it.

4For our experiments, this vtree search is also automatically handled by PySDD.

Chapter 1. Converting BNNs to dDBCSFi(2)s 9

Algorithm 1 Transformation from dDBC to dDBCSFi(2)

Input: A dDBC, with output node output node.
Output: A dDBCSFi(2) equivalent to the given dDBC.

conjunction(circuit1, circuit2): Conjoins circuit1 and circuit2, simplifying the trues.
disjunction(circuit1, circuit2): Disjoins circuit1 and circuit2, simplifying the falses.
negation(circuit): Removes or adds a negation on circuit, depending on whether its output node is a negation or
not, resp. If applied to a truth value, it is inverted (i.e. false becomes true and true becomes false).

1: function FIX NODE(dDBC node)
2: if dDBC node is a disjunction then
3: new circuit = false
4: for each subcircuit in dDBC node do
5: fixed subcircuit = FIX NODE(subcircuit)
6: if fixed subcircuit is a true value or is equivalent to −new circuit then
7: return true
8: else if fixed subcircuit is not a false value then
9: for each variable v in new circuit and not in fixed subcircuit do

10: fixed subcircuit = conjunction(fixed subcircuit, disjunction(v, −v))
11: for each variable v in fixed subcircuit and not in new circuit do
12: new circuit = conjunction(new circuit, disjunction(v, −v))
13: new circuit = disjunction(new circuit, fixed subcircuit)
14: return new circuit
15: else if dDBC node is a conjunction then
16: new circuit = true
17: for each subcircuit in dDBC node do
18: fixed subcircuit = FIX NODE(subcircuit)
19: if fixed subcircuit is a false value or is equivalent to −new circuit then
20: return false
21: else if fixed subcircuit is not a true value then
22: new circuit = conjunction(new circuit, fixed subcircuit)
23: return new circuit
24: else if dDBC node is a negation then
25: return negation(FIX NODE(negation(dDBC node)))
26: else ▷ (dDBC node is a literal or a truth value)
27: return dDBC node
28: dDBCSFi(2) = FIX NODE(output node)

It is possible to transform an arbitrary dDBC into a dDBCSFi(2), as follows. In a bottom-up
fashion, similar to what is suggested in (Arenas, Barceló, Bertossi, & Monet, 2023), for each
conjunction or disjunction gate with fan-in m > 2, it must be rewritten as a chain of m− 1
gates of the same type, with fan-in 2.

On the other hand, to ensure smoothness, for each disjunction gate (now with fan-in 2), fed by
subcircuits C1 and C2, we must find the set of all variables present in C1 and not in C2 (V1−2),
together with all those that are in C2 and not in C1 (V2−1). For each variable v ∈ V2−1, we
redefine C1 as C1 ∧ (v ∨ −v). As you might expect, for each variable v ∈ V1−2, C2 is
redefined as C2 ∧ (v ∨ −v). For example, for (x1 ∧ x2 ∧ x3) ∨ (x2 ∧ −x3), we would get
[(x1 ∧ x2) ∧ x3] ∨ [(x2 ∧ −x3) ∧ (x1 ∨ −x1)]. The formal method can be found in the
Algorithm 1 and, since it requires going through all the nodes of the circuit just once, we can
notice that its complexity is linear, with respect to the number of nodes.

This completes the compilation of the path (1.1), giving us a dDBCSFi(2) with the properties
we need. Using the resulting dDBCSFi(2)s is fairly straightforward. If the value of a variable
xi is equal to 1, then it is interpreted as a true value and all xi gates are replaced by true.
Otherwise, if the value of xi is -1, then it is interpreted as a false value and all xi gates are
replaced by false. The rest is classical propositional logic.

Chapter 1. Converting BNNs to dDBCSFi(2)s 10

It is interesting to note that, for a binary perceptron, the compilation of the BNN to a CNF
formula can be adapted to simply return a dDBCSFi(2). This is because the encoding of
a single neuron is already decomposable and can be easily modified to enforce the other
properties. It may seem like a good alternative, but an additional experiment of ours proved
otherwise; since doing this for a 13-variable binary perceptron returned a circuit with 15,439
nodes, in contrast to 4,571 nodes by using the full path. This can be seen at the end of
Appendix A.

1.4 A Complete Example of the Conversion

Some of the steps in (1.1) may not be polynomial-time transformations, which we will discuss
in more technical terms later in this section, as well as in the next one. However, we can
claim at this stage that: (a) Any exponential cost of a transformation is kept under control
by a usually small parameter. (b) The resulting dDBCSFi(2) is meant to be used multiple
times, to explain different and multiple outcomes; and then, it may be worth taking a one-
time, relatively high transformation cost. A good reason for our transformation path is the
availability of implementations we can take advantage of.

We will describe, explain and illustrate the conversion path (1.1) by means of a running
example with a simple BNN.

Example 1 The BNN in Figure 1.2 has hidden neuron gates h1, h2, h3, an output gate o, and
three input gates, x1, x2, x3, that receive binary values.

The latter represent, together, an input entity
x̄ = ⟨x1, x2, x3⟩ that is being classified by
means of a label returned by o. Each gate g
is activated by means of a step function (1.2).
For technical, non-essential reasons, for the
gates, we use 1 and −1. However, the out-
put gate employs an activation function that
returns instead 1 or 0, for true or false, resp.
For example, h1 is true, i.e. outputs 1, for
an input x̄ = (x1, x2, x3) iff w̄h1• x̄ + bh1 =
(−1)× x1 + (−1)× x2 + 1× x3 + 0.16 ≥
0. Otherwise, h1 is false, i.e. it returns −1. FIGURE 1.2: A BNN.

Similarly, output gate o is true, i.e. returns label 1 for a binary input h̄ = (h1, h3, h3) iff
w̄o • h̄ = 1× h1 + 1× h2 + (−1)× h3 − 0.01 ≥ 0, and 0 otherwise. 2

The first step, (a) in (1.1), consists in representing the BNN as a CNF formula. For this, we
adapt the approach in (Narodytska et al., 2018), in their case, to verify properties of BNNs.
Contrary to them, we avoid the use of auxiliary variables since their posterior elimination
conflicts with our need for determinism.

Each gate of the BNN is represented by a propositional formula, initially not necessarily in
CNF, which, in its turn, is used as one of the inputs to gates next to the right. In this way,
we eventually obtain a defining formula for the output gate. The formula is converted into
CNF. The participating propositional variables are logically treated as true or false, even if
they take numerical values 1 or −1, resp.

Example 2 (example 1 cont.) Consider gate h1, with parameters w̄ = ⟨−1,−1, 1⟩ and
b = 0.16, and input ī = ⟨x1, x2, x3⟩. An input xj is said to be conveniently instantiated if it

Chapter 1. Converting BNNs to dDBCSFi(2)s 11

has the same sign as wj, and then, contributing to the activation function to return 1. E.g., this
is the case of x1 = −1. In order to represent as a propositional formula its output variable,
also denoted with h1, we first compute the number, d, of conveniently instantiated inputs that
are necessary and sufficient to make w̄ • ī + b greater than or equal to 0. This is the (only)
case when h1 becomes true; otherwise, it is false. This number can be computed in general by
(1.3). In the case of h1, with 2 negative weights: d = ⌈(−0.16 + (−1− 1 + 1))/2⌉+ 2 =
2. With this, we can impose conditions on two input variables with the right sign at a time,
considering all possible convenient pairs. For h1 we obtain its condition to be true:

h1 ←→ (−x1 ∧−x2) ∨ (−x1 ∧ x3) ∨ (−x2 ∧ x3). (1.8)

This is a DNF formula, directly obtained from considering all possible convenient pairs
(which is already better that trying all cases of three variables at a time). However, there
is a more expedite, iterative method that still uses the number of convenient inputs (cf. Sec-
tion 1.2). Using this algorithm, we obtain an equivalent formula defining h1:

h1 ←→ (x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1). (1.9)

Similarly, we obtain defining formulas for gates h2 and h3, and o: (for all of them, d = 2)

h2 ←→ (−x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1),
h3 ←→ (x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1),
o ←→ (−h3 ∧ (h2 ∨ h1)) ∨ (h2 ∧ h1). (1.10)

Replacing the definitions of h1, h2, h3 into (1.10), we finally obtain:

o ←→ (−[(x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1)] ∧
([(−x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1)] ∨
[(x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1)])) ∨
([(−x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1)] ∧
[(x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1)]). (1.11)

The final part of step (a) in path (1.1), requires transforming this formula into CNF. In this
example, it can be taken straightforwardly into CNF.5 The resulting CNF formula is, in its
turn, simplified into a shorter and simpler new CNF formula by means of the SAT solver Riss
(Manthey, 2017). For this example, the simplified CNF formula is as follows:

o ←→ (−x1 ∨−x2) ∧ (−x1 ∨−x3) ∧ (−x2 ∨−x3). (1.12)

Having a CNF formula will be convenient for the next conversion steps along path (1.1). 2

Following with step (b) along path (1.1), the resulting CNF formula is transformed into an
SDD.

Example 3 (example 2 cont.) Figure 1.3(a) shows an SDD, S , to be used for illustration.
(See (Bova, 2016; Nakamura et al., 2020) for more definitions than the one from Section 1.3.)
As previously said in Section 1.3, an SDD has different kinds of nodes. Those represented
with encircled numbers are decision nodes (Van den Broeck & Darwiche, 2015), e.g. 1⃝ and
3⃝, that consider alternatives for the inputs (in essence, disjunctions). There are also nodes

called elements. They are labeled with constructs of the form [ℓ1|ℓ2], where ℓ1, ℓ2, called the

5For our experiments, we programmed a simple algorithm that does this job, while making sure the generated
CNF does not grow too much (see Section 1.2).

Chapter 1. Converting BNNs to dDBCSFi(2)s 12

FIGURE 1.3: An SDD (a) and a vtree (b).

prime and the sub, resp., are Boolean literals, e.g. x1 and ¬x2, including ⊤ and ⊥, for 1 or
0, resp. E.g. [¬x2|⊤] is one of them. Either the prime or the sub can also be a pointer, •,
with an edge to a decision node. [ℓ1|ℓ2] represents two conditions that have to be satisfied
simultaneously (in essence, a conjunction). A rectangle of an element without • is a terminal.

An SDD represents (or defines) a total Boolean function FS : ⟨x1, x2, x3⟩ ∈ {0, 1}3 7→
{0, 1}. For example, FS (0, 1, 1) is evaluated by following the graph downwards. Since
x1 = 0, we descent to the right; next via node 3⃝ underneath, with x2 = 1, we reach the
instantiated leaf node labeled with [1|0], a “conjunction”, with the second component due to
x3 = 1. We obtain FS (0, 1, 1) = 0.

Figure 1.3(b) shows a vtree, T , for V = {x1, x2, x3}. (See (Bova, 2016; Bollig & Buttkus,
2019; Nakamura et al., 2020) for more definitions than the one from Section 1.3.) Its leaves,
0, 2, 4, show their associated variables in V . We can see that nodes 1 and 3 convey the
partitions {x1}|{x2, x3} and {x2}|{x3}, resp. We can also note that the S respects T .
Intuitively, the variables at the terminals of S , when they go upwards through decision nodes
n⃝, also go upwards through the corresponding nodes n in T .

S can be obtained from the RHS of (1.12), ψ, by generating and combining SDDs from it,
following the partitions in T , from the simplest partition to the most complex one. This
means first generating the SSDs that respect the partition {x2}|{x3}, for all operation be-
tween x2 and x3 in ψ, and then the ones that respect {x1}|{x2, x3}, combining with the
previously generated SDDs.

The SDD S can be straightforwardly represented as a propositional formula by interpreting
decision nodes as disjunctions, and elements as conjunctions, obtaining:

[x1 ∧ ((−x2 ∧−x3) ∨ (x2 ∧⊥))] ∨ [−x1 ∧ ((x2 ∧−x3) ∨ (−x2 ∧⊤))] (1.13)

Which is logically equivalent to the formula ψ that represents the BNN. Accordingly, the
BNN is represented by the SDD in Figure 1.3(a). 2

In our experiments and in the running example, we used the PySDD system (Meert & Choi,
2018), which, given a CNF formula ψ, produces a vtree and a compliant SDD, both optimized
in size, that represents ψ (Choi & Darwiche, 2013, 2018).

This compilation takes space and time that are exponential only in the tree-width, TW(ψ),
of ψ, which is the tree-width of the graph G associated to ψ (Darwiche, 2011; Oztok &
Darwiche, 2014). G contains the variables as nodes, and undirected edges between any of

Chapter 1. Converting BNNs to dDBCSFi(2)s 13

them when they appear in a same clause. The tree-width measures how close the graph is
to being a tree. The exponential upper-bound on the tree-width is a positive fixed-parameter
tractability result (Flum & Grohe, 2006) in that TW(ψ) is in general much smaller |ψ|.

For example, the graph G for the formula ψ on the RHS of (1.12) has x1, x2, x3 as nodes, and
edges between any pair of variables, which makes G a complete graph. Since every complete
graph has a tree-width equal to the number of nodes minus one, we have TW(ψ) = 2.

Our final transformation step consists in obtaining a dDBC from the resulting SDD and a
dDBCSFi(2) from said dDBC. An SDD turns out to correspond to a d-DNNF Boolean circuit,
for which decomposability and determinism hold, and has only variables as inputs to negation
gates (Darwiche, 2011). The class d-DNNF is contained in dDBC, so the first part is pretty
straight forward.

We must remember that the reason why we want a dDBCSFi(2) is that the algorithm for
Shap computing (Algorithm ??) requires the dDBC to be a dDBCSFi(2). Every dDBC can
be transformed in linear time into a dDBCSFi(2) (Arenas et al., 2023). More details can be
found in Section 1.3.

Example 4 (example 3 cont.) By interpreting decision nodes and elements as disjunctions
and conjunctions, resp., the SDD in Figure 1.3(a) can be easily converted into d-DNNF cir-
cuit. Notice that only variables are affected by negations. However, due to the children of
node 3⃝, that do not have the same variables, the directly resulting dDBC is not smooth (it
has fan-in 2 though). This can be solved by taking our equivalent formula (1.13) and apply-
ing Algorithm 1 on it. We now proceed to show the steps of the final transformation for the
formula (1.13), highlighting in bold the added elements and changes of each iteration.

1: () | ()

2: (x1 & ()) | ()

3: (x1 & (() | ())) | ()

4: (x1 & ((−x2 & ()) | ())) | ()

5: (x1 & ((−x2 & −x3) | ())) | ()

6: (x1 & ((−x2 ∧−x3) | ())) | ()

7: (x1 & ((−x2 ∧−x3) | (x2 & ()))) | ()

8: (x1 & ((−x2 ∧−x3) | (x2 & ⊥))) | ()

9: (x1 & ((−x2 ∧−x3) |⊥)) | ()

10: (x1 & (−x2 ∧−x3)) | ()

11: (x1 ∧ (−x2 ∧−x3)) | ()

12: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ())

13: (x1 ∧ (−x2 ∧−x3)) | (−x1 & (() | ()))

14: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 & ()) | ()))

15: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 & −x3) | ()))

16: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3) | ()))

17: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3) | (−x2 & ())))

18: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3) | (−x2 & ⊤)))

19: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3) |−x2))

20: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3) | (−x2 ∧ (x3 ∨−x3))))

21: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3)∨ (−x2 ∧ (x3 ∨−x3))))

22: (x1 ∧ (−x2 ∧−x3)) | (−x1 ∧ ((x2 ∧−x3) ∨ (−x2 ∧ (x3 ∨−x3))))

23: (x1 ∧ (−x2 ∧−x3))∨ (−x1 ∧ ((x2 ∧−x3) ∨ (−x2 ∧ (x3 ∨−x3))))

Chapter 1. Converting BNNs to dDBCSFi(2)s 14

And, as can be seen, the algorithm gave us:

[x1 ∧ (−x2 ∧−x3)] ∨ [−x1 ∧ ((x2 ∧−x3) ∨ [−x2 ∧ (x3 ∨−x3)])] (1.14)

This formula (1.14) is equivalent to the dDBCSFi(2) shown in Figure ??. 2

Figure 1.4 summarizes this example with the central diagrams.

FIGURE 1.4: Real example of the conversion of a BNN (a) to an SDD (b)
and to a dDBCSFi(2) (c).

An additional example, for a binary perceptron, is presented in Figure 1.5. As stated at the
end of Section 1.3, the algorithm for converting a BNN into a CNF formula can be adapted
to directly transform a perceptron to a dDBCSFi(2), as shown in the illustration. Although,
in this case, the number of nodes in the resulting dDBCSFi(2)s are equivalent, it must be
remembered that this is not always the case. Anticipating to the analysis in this regard, since
it is not a central matter on this research, it can be commented that perhaps further refinement
in this alternative path could considerably narrow this gap in the number of nodes that is seen
when scaling the number of variables.

FIGURE 1.5: Real example of the conversion of a binary perceptron (a) to
an SDD (b) and to a dDBCSFi(2) (c). (d) shows the dDBCSFi(2) obtained

directly from the perceptron, by adjusting the algorithm.

Chapter 1. Converting BNNs to dDBCSFi(2)s 15

1.5 On the Efficiency of the Method

The following assumptions will be made: (a) The weights have the same probability of being
1 or −1. (b) The biases will all be 0. Like before, we are also considering a BNN that
receives ℓ0 input variables in the form of x̄ = ⟨x1, . . . , xℓ0⟩. As in Section 1.1, this BNN has
m hidden layers, each layer z (from 1 to m) has ℓz of neurons and the neurons from layer
z receive the input vector ī = ⟨i1, . . . , iℓz−1⟩. For the output layer, it has a single neuron.
Similarly, all weights are −1 or 1 and the activation functions also return a value of −1 or 1.
The only exception to the latter is the output layer, where a step function is used that returns
0 or 1.

With these assumptions, the threshold d (1.3) for a given neuron with |ī| inputs can be es-

timated as d =

(⌈
b+∑|ī|j=1 wj

2

⌉
+ ∑|ī|j=1

−wj+1
2

)
≈

(⌈ 0+0
2

⌉
+ 0+|ī|

2

)
=

(
0 + |ī|

2

)
≤

⌈
|ī|
2

⌉
.

Now, to dimension the number of clauses for this neuron, we can observe how this number
grows for some variables and thresholds, just by applying distribution on each disjunction
of CNF formulas to generate a single CNF formula (based on our algorithm for the encod-
ing and assuming that the neuron receives only variables as input, not Boolean formulas).
This can be seen in the following matrix C, with components ck,t, where the indices of the
rows represent the number k of variables and those of the columns the threshold t to reach or
surpass (with k ∈N and t ∈N):

C =

1 1 1 1 1 1 1
1 2 1 1 1 1 1
1 4 3 1 1 1 1
1 8 15 4 1 1 1 . . .
1 16 135 64 5 1 1
1 32 2,295 8,704 325 6 1
1 64 75,735 19,984,384 2,829,125 1,956 7

. . .

(1.15)

The growth in the number of clauses follows this rule for the lower triangular matrix: ck,t =

(ck−1,t−1 + 1) · ck−1,t , k > t > 1. Since we define our d to be
⌈
|ī|
2

⌉
, it seems that we are

in an interval where the number of clauses grows at an exponential rate if is left untreated.6

And all this does not even consider neurons that do not receive mere variables, but Boolean
formulas. This is why our code does some basic simplifications during the encoding and a
big one at the end with a specialized SAT solver Riss. However, the question of how much it
really helps and how much can be reduced remains unanswered.

For reference, one can consider that a truth table of a model, for all combinations of |x̄|
variables, can be converted to a CNF formula by taking all combinations that return 0, negat-
ing/inverting their values and concatenating all the combinations with conjunctions, taking
each one as a disjunction of variables. So, in the worst case, you could be having up to 2|x̄|

clauses; number that is much lower than what would be obtained for the mentioned neuron,
considering that it has 7 inputs, for example.

Given the above, it is noteworthy that simplifications are really important in the algorithm, but
that does not mean that the number of clauses will not grow exponentially with the number
of variables.

6Thinking on literals as inputs, it is possible that the smallest number of clauses to represent a neuron is
equal to (|ī|d), but we have not studied this with enough detail to be sure.

Chapter 1. Converting BNNs to dDBCSFi(2)s 16

The previous is just considering the size growth, but, as said in Section 1.2, these simpli-
fications imply a great time cost. This is because, to perform said simplifications in our
implementation, at every neuron several cycles are done through all clauses, which raises the
time complexity from polynomial to exponential. Nevertheless, this probably could be fixed
with a better optimization of the code.

Added to this, as shown in (Darwiche, 2011), SDDs have a well-defined upper bound of
complexity, but worrying when compiled from a CNF formula. This is determined by its
number of variables |x̄| and the width of the tree ω of the CNF formula.7 Focusing again on
the worst case, we can expect ω = |x̄| − 1. Thus, the upper bound for an SDD generated
from a CNF formula could have a complexity of O(|x̄|2|x̄|−1). Again, we would be up
against an exponential size. This means that no matter how much we simplify a CNF formula,
if enough variables influence the result, we still risk not being able to compile its SDD. In
any case, the exponential upper bound with the width of the tree is a positive result of fixed
parameters (Flum & Grohe, 2006), considering that ω is generally smaller than |x̄| − 1.

Both aspects limit the number of variables and the complexity of the BNN that could be used.
However, it is still feasible to work with at least 13 variables, as it will be demonstrated in
the experiments.

7This tree is around the graph that is generated by ℓ0 nodes that represent each of the variables in the formula,
where every possible edge exists if the two connected variables appear at the same time in any of the clauses of
the formula.

References 17

References

Arenas, M., Barceló, P., Bertossi, L., & Monet, M. (2021). The Tractability of SHAP-Score-
Based Explanations for Classification over Deterministic and Decomposable Boolean
Circuits. In Proceedings of the 35th aaai conference on artificial intelligence (p. 6670-
6678). pages 1

Arenas, M., Barceló, P., Bertossi, L., & Monet, M. (2023). On the Complexity of
SHAP-Score-Based Explanations: Tractability via Knowledge Compilation and Non-
Approximability Results. Journal of Machine Learning Research, 24(63), 1-58. pages
9, 13

Bollig, B., & Buttkus, M. (2019). On the Relative Succinctness of Sentential Decision
Diagrams. Theory of Computing Systems, 63(6), 1250–1277. pages 7, 8, 12

Bova, S. (2016). SDDs Are Exponentially More Succinct than OBDDs. In Proceedings of
the 30th aaai conference on artificial intelligence (p. 929-935). pages 7, 8, 11, 12

Bryant, R. E. (1986). Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8), 677-691. pages 7

Choi, A., & Darwiche, A. (2013). Dynamic Minimization of Sentential Decision Diagrams.
In Proceedings of the 27th aaai conference on artificial intelligence (p. 187-194). pages
7, 8, 12

Choi, A., & Darwiche, A. (2018). SDD Advanced-User Manual Version 2.0 [Computer
software manual]. pages 7, 8, 12

Darwiche, A. (2011). SDD: A New Canonical Representation of Propositional Knowledge
Bases. In Proceedings of the 22th international joint conference on artificial intelli-
gence (ijcai-11) (p. 819-826). pages 7, 8, 12, 13, 16

Flum, J., & Grohe, M. (2006). Parameterized Complexity Theory. Springer. pages 13, 16
Manthey, N. (2017). Riss tool collection. https://github.com/nmanthey/riss

-solver. pages 4, 11
Meert, W., & Choi, A. (2018). Python Wrapper Package to Interactively use Sententical

Decision Diagrams (SDD). https://github.com/wannesm/PySDD. pages 7,
12

Nakamura, K., Denzumi, S., & Nishino, M. (2020). Variable Shift SDD: A More Succinct
Sentential Decision Diagram. In Proceedings of the 18th international symposium on
experimental algorithms (sea 2020), leibniz international proceedings in informatics
160 (p. 22:1-22:13). pages 7, 11, 12

Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., & Walsh, T. (2018). Verify-
ing Properties of Binarized Deep Neural Networks. In Proceedings of the 32nd aaai
conference on artificial intelligence (p. 6615–6624). pages 1, 2, 6, 10

Oztok, U., & Darwiche, A. (2014). On Compiling CNF into Decision-DNNF. In Pro-
ceedings of the 20th international conference on principles and practice of constraint
programming, lecture notes in computer science 8656 (p. 42-57). pages 7, 12

Oztok, U., & Darwiche, A. (2017). On Compiling DNNFs without Determinism. ArXiv,
1709.07092. pages 4

Pipatsrisawat, T., & Darwiche, A. (2008). New Compilation Languages Based on Structured
Decomposability. In Proceedings of the 23rd aaai conference on artificial intelligence
(p. 517-522). pages 7

Shi, W., Shih, A., Darwiche, A., & Choi, A. (2020). On Tractable Representations of Binary
Neural Networks. In Proceedings of the 17th international conference on principles
of knowledge representation and reasoning (p. 882-892). (ArXiv Paper 2004.02082)
pages 1

Shih, A., Darwiche, A., & Choi, A. (2019). Verifying Binarized Neural Networks by

https://github.com/nmanthey/riss-solver
https://github.com/nmanthey/riss-solver
https://github.com/wannesm/PySDD

References 18

Angluin-Style Learning. In Proceedings of the theory and applications of satisfia-
bility testing - sat 2019, lecture notes in computer science 11628 (p. 354-370). pages
1

Sinz, C. (2005). Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In
P. van Beek (Ed.), Proceedings of the principles and practice of constraint program-
ming - cp 2005 (p. 827-831). pages 3

Van den Broeck, G., & Darwiche, A. (2015). On the Role of Canonicity in Knowledge
Compilation. In Proceedings of the 29th aaai conference on artificial intelligence
(p. 1641-1648). pages 7, 8, 11

19

Appendix A

Extra Material from the Experiments

As anticipated in Chapter ??, in Figures A.1, A.2 and A.3 we can see the graphical represen-
tations of the generated dDBCSFi(2)s, obtained for the experiments. As also said in Section
1.3, Figure A.3 uses an alternative method (that goes directly from BP to dDBCSFi(2)) that
may be promising if further thought is put into it, but right now ends up being much more
inefficient. Ignoring the mere aesthetic aspect of these Boolean trees, we suspect that future
research may benefit in some degree by having them for reference.

FIGURE A.1: dDBCSFi(2), as a Boolean tree, of the BNN (visible at top
left) trained with California Housing Prices, after the preprocessing that

generated 13 variables. It has 18,671 nodes.

Appendix A. Extra Material from the Experiments 20

We take the chance to mention that, as an additional guarantee, the equivalence of each
dDBCSFi(2) with its respective model was corroborated by our program for all of the 8,192
possible combinations of variables (i.e. all possible entities). Needless to say, the matches
were exact.

FIGURE A.2: dDBCSFi(2), as a Boolean tree, of the BP (visible at top
left) trained with California Housing Prices, after the preprocessing that

generated 13 variables. It has 4,571 nodes.

Appendix A. Extra Material from the Experiments 21

FIGURE A.3: Alternative dDBCSFi(2) (obtained directly, omitting the CNF
formula and the SDD), as a Boolean tree, from the BP (visible at top
left) trained with California Housing Prices, after the preprocessing that

generated 13 variables. It has 15,439 nodes.

22

Appendix B

About the GitHub Repository

As stated at the end of Chapter ??, all the code is available at:

https://github.com/Jorvan758/dDBCSFi2

This repository contains:

1. The California Housing Prices dataset, as the housingc.csv file.

2. The weights and biases of the models used in our experiments (both of the BNN and
the BP), as the files BNN weights.h5 and BP weights.h5.

These can be loaded onto a network with the respective architecture of Chapter ??, via
the load weights() function.

3. We also give the CNF formulas obtained, in four files: (a) One with the original for-
mula for the BNN (BNN CNFf.cnf); (b) Another with the simplified version of
said formula (BNN CNFf simplified.cnf); as well as (c) One with the orig-
inal formula of BP (BP CNFf.cnf); and (d) Another with its simplified version
(BP CNFf simplified.cnf). All in the DIMACS CNF format.

4. All code is available in the Jupyter Notebook dDBCSFi(2).ipynb.

With our implementation, the SDD and dDBCSFi(2) are not, by default, saved as a
files, as they are only kept in memory (from which the Shap-scores are calculated).
In any case, their compilations are extremely fast, making use of the CNF files we
provided. Therefore, we omit their inclusion.

The code is written in Python and is designed to run in Google Colab (to run it on
another machine, some adjustments will probably be necessary). It is also meant to be
executed in descending order (if no changes are made, it will give the same results as
we got).

The code is divided into three sections Common preparations, BNN Experiments
and BP Experiments, which we will describe below.

https://github.com/Jorvan758/dDBCSFi2

Appendix B. About the GitHub Repository 23

Common Preparations: It contains eight subsections:

• Random seeds: Defines a function that initializes all relevant random seeds with the
specific values one chooses. The default values are the ones that we used.

• Installations: Installs the PySDD and Larq libraries, and the SAT solver Riss. Tensor-
flow is already installed by default.

• Tensorflow: Loads the library to train the models and defines a function to plot them.

• CNF formula: Contains everything related to converting BNNs into CNF formulas,
with the method described in Section 1.2.

• SDD: Loads the PySDD library to convert CNF formulas into SDDs.

• dDBCSFi(2): Defines the Python class for the circuits that we use, including methods
for compiling them from SDDs, plotting them, checking for equivalence with the orig-
inal model, counting nodes, predicting labels for entities, and, of course, calculating
Shap efficiently.

• SHAP: Defines functions to compute multiple Shaps as a black-box for both BNNs
and dDBCSFi(2)s, and as an open-box for dDBCSFi(2)s.

• Preprocessing of the dataset: Binarizes the California Housing Prices dataset, as de-
scribed in Chapter ??. Additionally, it automatically downloads it from the repository.

BNN Experiments & BP Experiments: The structure of both sections is identical, so
the three subsections that make up each one will only be described once:

• Model training and testing: Trains the respective model, as described in Chapter
??, ensuring that the weights and activation functions are binarized. It also provides
performance information on the test data subset.

• Conversion of the model to a dDBCSFi(2): Follows the path described in Chapter 1,
converting the model to a CNF formula, then to an SDD, and finally to a dDBCSFi(2).
All execution times involved are also recorded. Additionally, it corroborates the equiv-
alence with the original model, and plots both the latter and the dDBCSFi(2).

• SHAP calculation: Computes Shap for 100 different entities, present in the training
data subset, recording the time to compute 20, 40, 60, 80, and 100 of them. This
is done with all three methods, i.e. with the original model as a black-box, with the
dDBCSFi(2) as a black-box, and with the dDBCSFi(2) as an open-box. All execution
times and their averages, mentioned in Chapter ??, are also printed.

	Abstract
	Converting BNNs to dDBCSFi(2)s
	BNN to CNF Formula: Auxiliary Variables
	BNN to CNF Formula: Only Original Variables
	CNF Formula to dDBCSFi(2)
	A Complete Example of the Conversion
	On the Efficiency of the Method
	References

	Extra Material from the Experiments
	About the GitHub Repository

