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Computation

by Jorge E. León

Along with the increasing mass use of machine learning models, there has been an increase
in the need to be able to generate explanations for the predictions that they make. In this
scenario, an efficient method to calculate the Shap-scores (which serve to define the par-
ticipation that a variable had in the final result) was noted in a certain type of deterministic
and decomposable Boolean circuits. Likewise, a method was found to go from binary neural
networks to circuits of this kind. What has been said gave rise to combining these methods
and evaluating the convenience of calculating the Shap-scores in this way (as an open-box),
compared to the traditional way (as a black-box). We found that it is indeed reliable and
more efficient for various scenarios, but future work still needs to be done to reveal the full
potential of this technique. Additionally, the conversion method was formalized and the code
used was made available for everyone who is interested in this area.
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Chapter 1

Introduction

In recent years, as more sophisticated machine learning (ML) models have emerged and
become more widely used, there has been an increasing demand for methods to explain and
interpret the results or predictions that they generate. Many examples can be found, among
them: explanations of why a loan application is rejected, why a medicine is recommended,
why a candidate for a job position is selected, etc. The focus of this thesis is on classification
models, which assign a label/category to an entity. Being more specific, this research focuses
on binary classification models, i.e. those that return one of two possible labels (like 0 or 1).

Explanations come in different forms and can be obtained through different methods. A type
of explanation of the results of ML-based models consists of providing attribution scores,
which quantify the relevance of a feature or a feature value to the result. Here we will
concentrate on local scores, i.e. associated with a particular entry at a time, as opposed to a
global score that indicates the general relevance of a feature.

One of the popular local scores is Shap (S. M. Lundberg & Lee, 2017), which is based on
the Shapley value, used in coalition game theory as well as in practice, and was introduced
in (Shapley, 1953; Roth, 1988). Another attribution score that has been recently investigated
is Resp (Bertossi, Li, Schleich, Suciu, & Vagena, 2020; Bertossi, 2022), which is based on
actual causality (Halpern & Pearl, 2005) and its associated score of actual causality (Chockler
& Halpern, 2004). This paper only considers the Shap-score, but the topics investigated here
would also be interesting for Resp and other scores.

A score such as Shap, and like Resp, can be computed with either a black-box model or
an open-box model (Rudin, 2019); the first being one in which its internal components are
not known (or simply not used), but only its input/output relationship. For the open-box,
the internal components can be accessed and understood individually. It is common to say
that models based on neural networks are black-box models, while, for example, a decision
tree model tends to be classified as an open-box model. On this occasion, it seems valid to
say that this classification is equivalent to talking about using the internal components of the
model (i.e. open-box) when calculating the scores vs. not using them and merely employing
the input/output relationship (i.e. black-box). It is common to consider neural-network-
based models as black-box models, because their internal gates and structure may be difficult
to understand or process when it comes to explaining classification outputs. However, a
decision-tree model, due to its much simpler structure and use, is considered to be open-box
for the same purpose.

Even for binary classification models, the complexity of calculating Shap-scores is provably
difficult; in fact, it is #P-hard for various kinds of binary classification ML-based models
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(Bertossi et al., 2020; Arenas, Barceló, Bertossi, & Monet, 2021, 2023). This is valid regard-
less of whether model internals components are used when calculating Shap or not. How-
ever, there are some families of classifiers for which, using the model components and struc-
ture, the computational complexity of Shap can be reduced to polynomial time (S. Lundberg
et al., 2020; Arenas et al., 2021; Van den Broeck, Lykov, Schleich, & Suciu, 2021). As stated
in (Arenas et al., 2021), for deterministic and decomposable Boolean circuits (dDBCs),
Shap can be computed in polynomial time and an efficient general algorithm was given for
dDBCs that are smoothed and have a fan-in 2 (dDBCSFi(2)). From this result, it becomes
clear that it is feasible to compute Shap for a variety of Boolean circuit classifiers and other
classifiers that can be represented as (or compiled to) dDBCs. In particular, this is true for or-
dered binary decision diagrams (OBDDs) (Bryant, 1986) and sentential decision diagrams
(SDDs) (Darwiche, 2011b). From these, it is possible to obtain the same benefit for de-
cision trees, binary neural networks, and other established classification models that can be
compiled (in polynomial time) to OBDDs or SDDs (Shi, Shih, Darwiche, & Choi, 2020; Dar-
wiche & Hirth, 2020; Narodytska, Kasiviswanathan, Ryzhyk, Sagiv, & Walsh, 2018). And
it is worth pointing out that in (Van den Broeck et al., 2021), through a different approach,
the tractability of Shap computation was obtained for a collection of classifiers that overlaps
with that of (Arenas et al., 2021).

In this work, it is shown how to use logic-based knowledge compilation techniques to attack,
and -to the best of our knowledge- for the first time, the important and timely problem of
efficiently computing explanations scores in ML, which, without these techniques, would
stay intractable.

This work focuses on developing this method explicitly for the efficient computation of
Shap for binary neural networks (BNNs). In support of this, and inspired by (Shi et
al., 2020), a BNN is transformed into a dDBCSFi(2) through techniques from knowledge
compilation; an area that investigates the transformation of (usually) propositional theories
into an equivalent one with canonical syntactic form that has some favorable computational
property, e.g. tractable model counting. The transformation may incur in a high cost that
will be worth it if the particular property is checked frequently (Darwiche & Marquis, 2002;
Darwiche, 2011a), as is the case with explanations for the same BNN.

More specifically, this thesis describes in detail how a BNN is first compiled into a propo-
sitional formula in Conjunctive Normal Form (CNF), which, in its turn, is compiled into
an SDD, which is finally compiled into a dDBCSFi(2). Our method applies at some steps
established transformations that are not commonly illustrated or discussed in the context of
real applications, which we do here. The whole compilation path so as the application to
Shap computation are new. We show how Shap is computed on the resulting circuit via the
efficient algorithm in (Arenas et al., 2021). This compilation is performed once, and is inde-
pendent from any input to the classifier. The final circuit can be used to compute Shap scores
for different input entities.

It is worth mentioning that the compilation of binary classifiers into OBDDs was used in
(Darwiche & Hirth, 2020) to provide different kinds of explanations for its outputs, but not
for the computation of Shap (nor for any other kind of attribution scores). There are several
other explanation mechanisms, for ML-based classification and decision systems in general
(see (Guidotti et al., 2018)), and some are more specific to neural networks (see (Ras, Xie,
van Gerven, & Doran, 2022)).

In this thesis, the real estate as an application domain is considered, where housing prices
depend on certain features. The dataset used is California Housing Prices (Nugent, 2018) and
the problem is to classify blocks of properties, represented as records of thirteen features, as
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high price or low price block (above or below average, resp.). This is a binary classification
problem for which a BNN is used.

As far as we know, this work is the first one to report experiments on the application of
polynomial time algorithms for the Shap computation on this class of classifiers. This work
confirms a considerable reduction in computation time when a dDBCSFi(2) is used as an
open-box model and shows that, for this case, the scores obtained with both methods are
perfectly aligned, in the sense that the values are equivalent. However, a couple of relevant
points were also found and future lines of research are proposed to address them.
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Chapter 2

Problem Definition

Depending on the model, calculating the Shap-scores of an ML-based model may be in-
tractable. However, it has been shown that it is possible to compute them in polynomial time
for a certain class of Boolean circuits used as classifiers, more specifically, for circuits in the
dDBC class. Furthermore, an algorithm was proposed for this task (Arenas et al., 2021).

Binary Neural Networks (BNNs) used as classification models are common in practice. For
them, and until now, the only way to compute Shap-scores as explanations for their out-
comes was by naively applying the definition of Shap, which is bound to have high com-
plexity since all the subsets of the features have to be brought into the computation. The
efficient techniques mentioned above cannot be directly applied to BNNs, and we addressed
the problem of finding a way to apply them.

There are methods for transforming BNNs into Ordered Binary Decision Diagrams (OB-
DDs) (Shi et al., 2020; Shih, Darwiche, & Choi, 2019; Narodytska et al., 2018). They have
been used mainly for high-level model explanation purposes and model verification. We
have proposed, investigated and applied a new method to convert BNNs into Sentential Deci-
sion Diagrams (SDDs), which in their turn can be easily compiled into dDBCs. In this way,
we opened the door to the possibility of efficiently computing Shap-based explanations for
BNNs. We applied the above mentioned algorithm, experimenting with real data, and com-
pared the results, in terms of computation cost and score alignment, with Shap-computation
directly on the BNN, treated as a black-box classifier.

As we show, the transformation of a BNN into a dDBC may have a high time complexity step
along the conversion path. However, on one side, this is a fixed-parameter tractable problem;
and this computation is performed once. After that, the same resulting circuit can be used
multiple times (and efficiently) to compute Shap-based explanations, for different inputs to
the model.
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Chapter 3

Preliminaries and State of the Art

The Shapley value is a measure established in coalition game theory. It emerges as the only
measure that enjoys certain desirable properties (Roth, 1988). Given a set of players X and a
game function G: P(X) → R, i.e. a function that maps subsets of players to real numbers,
the general form of the Shapley value of a player x ∈ X is:

Shapley(X,G, x) := ∑
S⊆X\{x}

|S|!(|X| − |S| − 1)!
|X|! (G(S ∪ {p})− G(S)) (3.1)

It quantifies the contribution of player x to the wealth function G. Here, all possible permu-
tations of subsets from X and their complements are considered. Given what has been said,
this value is the average of the differences between including x and not including it. It should
be noted that in order to apply the Shapley value, an appropriate game function G must be
defined.

In (S. M. Lundberg & Lee, 2017; S. Lundberg et al., 2020), the Shapley value is applied to a
fixed entity e under classification, defined as e = ⟨F1(e), . . . , FN(e)⟩, with values Fi(e) for
features in an array F = {F1, . . . , FN}. F becomes the set of players/features, giving rise
to the Shap-score, with the game function Ge(S) := E(L(e′) | e′S = eS) in (3.1). This is
a game function associated to the specific entity e under classification. Here, E denotes an
expected value, and eS is the projection (or restriction) of e on (to) the subset of features S,
L is the label function associated with the classifier, and e′ is an entity that matches e in the
features of S. Consequently, for feature F ∈ F , the Shap-score for the entity e becomes:

Shap(F ,Ge, F) := (3.2)

∑
S⊆F\{F}

|S|!(|F | − |S| − 1)!
|F |! [E(L(e′)|e′S∪{F} = eS∪{F})−E(L(e′)|e′S = eS)]

In addition to the Shap-score, there is another attribution score called Resp that has gained
attention in recent research (Bertossi et al., 2020; Bertossi, 2022). Resp is based on actual
causality (Halpern & Pearl, 2005) and is associated with the actual causality score (Chockler
& Halpern, 2004). Although this paper only focuses on the Shap-score, the findings pre-
sented here could also be relevant for other attribution scores, including Resp. Further re-
search could explore the similarities and differences between these scores and their respective
applications in different domains.

To compute Shap, all that is needed is the L label function (practically a classifier), without
having to use any internal components of the classifier. However, in (Bertossi et al., 2020)
was proven that, for an L classifier that only has binary features, the computation of Shap is



Chapter 3. Preliminaries and State of the Art 6

#P-hard for a product probability space. This is linked to the fact that the direct computation
of Shap (i.e. treating L as a black-box), while considering the product distribution for the
entities, may be intractable from a relatively low number of features onwards.

Despite the previous, in (Arenas et al., 2021) is shown that Shap can be computed in poly-
nomial time for dDBCs, used as classifiers, when their structures are used in the computation
(i.e. treating them as open-boxes). Particularly, an efficient algorithm was formalized for
dDBCSFi(2)s. We proceed to explain the properties of that kind of circuit.

In Figure 3.1 there is a Boolean circuit that
can be used as a binary classifier, with in-
put variables x1, x2, x3. The binary values for
them, entered at the lower nodes, are propa-
gated up through the Boolean gates, and the
final label is read from the upper one. It is
deterministic in the sense that, for each ∨-
gate, at most one of its inputs is 1 when the
output is 1. It is decomposable in the sense
that, for each ∧-gate, the inputs do not share
variables. The dDBC is also smoothed in the
sense that subcircuits entering the same ∨-
gate share the same variables, and it has fan-
in 2 in the sense that each ∧/∨-gate has at
most two inputs. This type of dDBC is called
dDBCSFi(2).

FIGURE 3.1:
dDBCSFi(2) example.

In (Arenas et al., 2021), to calculate Shap efficiently in dDBCSFi(2)s, it is assumed that the
underlying probability distribution in the entity population is uniform, Pu, or is the product
distribution, P×. These are the following, considering that the features take binary values:

Pu(e) :=
1

2N P×(e) := ΠN
i=1 pi(Fi(e)) (3.3)

Here, pi(v) is the probability assigned to the value v ∈ {−1, 1} for the feature Fi. These
distributions require that the features are mutually independent. Unless otherwise stated, in
the remainder of this document we will assume that this is true.

The efficient method to compute Shap in dDBCSFi(2)s is already well explained in (Arenas
et al., 2021), together with a proof of its correctness. However, for the sake of completeness,
it has been included here below as Algorithm 1. It should be noted that the algorithm is
designed to work with the product distribution of (3.3), therefore it assumes statistical inde-
pendence between the features. Additionally, 0 and 1 are used for the features, instead of −1
and 1, resp. This is due to the fact that the algorithm was designed with values 0 and 1 in
mind, and working with them does not change the final Shap-scores, with regard of using
−1 and 1 on the direct method.

On the other hand, there is the procedure mentioned in (Shih et al., 2019) to convert BNNs
into formulas in conjunctive normal form (CNF), which later can be compiled as SDDs
(that can be converted into dDBCSFi(2)s, as we will formalize in Section 5.3). It is worth
saying that a CNF formula is a conjunction of disjunctions of literals, i.e. atomic formulas or
their negations. The details can be found in (Narodytska et al., 2018) and will be explained
later in this document, but the essence is that it considers each layer of neurons in the network
as a block to be encoded with sequential counters (Sinz, 2005).
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Algorithm 1 Efficient Shap-score for dDBCSFi(2)s

Input: A dDBCSFi(2) B over features F , with output gate gout, fixed entity e in the domain of joint features,
fixed feature F ∈ F , rational probability p(Y = 1) for each Y ∈ F , and the subsets Vg of all features feeding g,
for each gate g in B.
Output: The Shap(F ,Ge, F) score for the feature F in e, under the product distribution.

1: for every gate g in B, by bottom-up induction on B do
2: if g is a constant gate with label a ∈ {0, 1} then
3: γ0

g = a, δ0
g = a

4: else if g is a feature gate with Vg = {F} then
5: γ0

g = 1, δ0
g = 0

6: else if g is a feature gate with Vg = {Y} and Y ̸= F then
7: γ0

g, δ0
g = p(Y = 1), γ1

g, δ1
g = Y(e)

8: else if g is a negation gate with input gate g′ then
9: for ℓ ∈ {0, . . . , |Vg \ {F}|} do

10: γℓ
g = (

|Vg\{F}|
ℓ

)− γℓ
g′ , δℓg = (

|Vg\{F}|
ℓ

)− δℓg′

11: else if g is a disjunction gate with input gates g1, g2 then
12: for ℓ ∈ {0, . . . , |Vg \ {F}|} do
13: γℓ

g = γℓ
g1
+ γℓ

g2
, δℓg = δℓg1

+ δℓg2

14: else if g is a conjunction gate with input gates g1, g2 then
15: for ℓ ∈ {0, . . . , |Vg \ {F}|} do
16: γℓ

g = ∑ℓ1∈{0,...,|Vg1\{F}|}
ℓ2∈{0,...,|Vg2\{F}|}

ℓ1+ℓ2=ℓ

γℓ1
g1 · γ

ℓ2
g2 , δℓg = ∑ℓ1∈{0,...,|Vg1\{F}|}

ℓ2∈{0,...,|Vg2\{F}|}
ℓ1+ℓ2=ℓ

δℓ1
g1 · δ

ℓ2
g2

17: Shap(F ,Ge, F) = ∑
|F |−1
k=0

k! (|F |−k−1)!
|F |! · [(F(e)− p(F = 1)) · (γk

gout
− δk

gout
)]

Sequential counters are practically a set of instructions that allows rewriting as a Boolean
formula the case in which the sum of a set of binary variables is able to surpass a given
threshold (like it is implicitly evaluated at every neuron of a BNN), with a relatively low
number of clauses, at the cost of adding auxiliary variables (we will talk more about this
matter in Section 5.1).

In simple terms, the original method encodes each block, using sequential counters on each
neuron (independent from the other neurons in the same block) and taking the encoding of
the previous block into account, until the entire network has been encoded. This returns a
CNF formula which, after being compiled into an SDD, could be converted to a dDBCSFi(2),
except for the addition of auxiliary variables (the removal of which is quite complex). This is
why it was necessary to adapt this method to work with just the original variables (we delve
into this matter on Section 5.2).

The method that we use is not the only way to get a dDBCSFi(2). For example, (Shi et al.,
2020) converts BNNs to OBDDs, and, as OBDDs are practically a special type of SDDs
(with a linear order for its variables), these can be converted into dDBCSFi(2)s too. The
main reason to adopt the transformation of this thesis is the availability of implementations
that can be used for some of the steps, which are mentioned in Chapter 5.

An additional detail is that, following our method, we could also compile a BNN into a mere
OBDD, instead of an SDD. Despite this, for speed and conciseness sake (the proof can be
found in (Bova, 2016)), it is better to work with an SDD instead.

The final thing that is worth pointing out in this Chapter is that in (Van den Broeck et al.,
2021), through a different approach, the tractability of Shap computation was obtained for
a collection of classifiers that overlaps with that of (Arenas et al., 2021). However, there is a
fundamental difference in the approach taken to show tractability: the reduction of (Van den
Broeck et al., 2021) uses multiple oracle calls to the problem of computing expectations,



Chapter 3. Preliminaries and State of the Art 8

whereas (Arenas et al., 2021) provides a more direct algorithm to compute the Shap-score
on dDBCSFi(2)s. In any case, further research and improvements on both methods will help
to define which one is more convenient in a given situation.
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Chapter 4

Research Context

4.1 Hypothesis and Objectives

The central hypothesis of this research is that with the new method it is possible to calculate
Shap over a dDBCSFi(2) in a more efficient way than with the traditional/direct method
(either for the same dDBCSFi(2) or for the BNN from which the dDBCSFi(2) was generated),
without sacrificing too much the correctness of the results.

The objectives are the following:

1. Show how to transform BNNs, through SDDs, into dDBCSFi(2)s.

2. Evidence that the resulting dDBCSFi(2)s satisfy the assumptions identified in (Arenas
et al., 2021), in which the Shap computation becomes tractable.

3. Compute Shap, using the real estate data, for the classifying BNNs, treated as black-
boxes, and for their compilations into dDBCSFi(2)s, treated as both black-boxes, as
well as open-boxes.

4. Compare and analyze the experimental results.

5. Leave the entire implementation public, so that anyone interested can access it in the
future.

4.2 Methodology

The experiments consisted on training a BNN (with one hidden layer and the same number
of neurons as features) and a binary perceptron (BP), using the California Housing Prices
dataset (Nugent, 2018).

For both trained models, we compiled equivalent dDBCSFi(2)s based on each, and proceeded
to calculate the Shap-scores for 100 different entities that were present on the training data
subset. As black-boxes, we tried both the original models and the resulting dDBCSFi(2)s,
and we also did the calculation using the dDBCSFi(2)s as open-boxes.

In order to compare them, we registered the Shap-scores and the times involved for the
Shap computation, as well as for the dDBCSFi(2) conversion.

There are two aspects to explain, which will be addressed in two separate chapters. These
are about: conversion from BNNs to dDBCSFi(2)s (Chapter 5), and additional informa-
tion/details about the experiments (Chapter 6).

We share our results in Chapter 7, and our conclusions on Chapter 8.
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Chapter 5

Converting BNNs to dDBCSFi(2)s

To calculate Shap with the efficient method for a BNN, the latter must be converted into
a dDBCSFi(2), for which Shap can be computed in polynomial time (Arenas et al., 2021).
This transformation follows the next path:

BNN 7−→
(a)

CNF formula 7−→
(b)

SDD 7−→
(c)

dDBCSFi(2) (5.1)

This is not the only way to get a dDBCSFi(2). For example, (Shi et al., 2020) converts BNNs
to OBDDs, which can also be converted to dDBCSFi(2)s. Some of the steps in (5.1) may
not be polynomial-time transformations, which we will discuss in more technical terms at
the end of this chapter. However, we can claim at this stage that: (a) Any exponential cost
of a transformation is kept under control by a usually small parameter. (b) The resulting
dDBCSFi(2) is meant to be used multiple times, to explain different and multiple outcomes;
and then, it may be worth taking a one-time, relatively high transformation cost. The main
reason to adopt the transformation of this thesis is the availability of implementations that
can be used for some of the steps, which are mentioned later along this chapter.

To explain the conversion, we will first describe the original encoding of the BNN into a
CNF formula (Section 5.1). Then the modified version will be presented, which does not use
auxiliary variables (Section 5.2). This will be followed by the remaining steps to get from a
CNF formula to a dDBCSFi(2) (Section 5.3). An example illustrating the entire process will
also be shown to ensure its understanding (Section 5.4). Finally, the section will end with a
small analysis on the efficiency of the conversion method (Section 5.5).

5.1 BNN to CNF Formula: Auxiliary Variables

This method can be seen in (Shih et al., 2019; Narodytska et al., 2018).

Imagine that we have a dense binary neural network (i.e. the neurons of each layer are
connected to all possible inputs from the previous one) that receives ℓ0 input variables in the
form of x̄ = ⟨x1, . . . , xℓ0⟩. This BNN has m hidden layers, each layer z (from 1 to m) has
ℓz neurons and a neuron from layer z receives the input vector ī = ⟨i1, . . . , iℓz−1⟩. For the
output layer, it has a single neuron. All weights are −1 or 1, biases are real numbers, and the
activation functions also return a value of −1 or 1 (ϕhidden layer). The only exception to
the latter is the output layer, where a step function is used that returns 0 or 1 (ϕoutput layer).
Formally, the activation functions are:

ϕhidden layer(x) :=
{

1 , x ≥ 0
−1 , x < 0

ϕoutput layer(x) :=
{

1 , x ≥ 0
0 , x < 0

(5.2)
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More commonly, ϕhidden layer and ϕoutput layer are given the names sign function and unit
step function, resp.

As shown in (Narodytska et al., 2018), such BNN can be converted into a CNF formula as
follows.

We are going to work with all the layers, one by one, from the first hidden layer to the
output layer. For each neuron in each layer, we want to encode the case in which said neuron
becomes 1 (true). In other words, we want to represent each ϕ(w̄ • ī + b) as a CNF formula,
where the dot (•) denotes the dot product of two vectors. The idea for each neuron is to add
clauses incrementally to reflect the cases where our neuron reaches 1. This is done with the
help of auxiliary variables r(k,p). The encoding of each neuron is independent of the others
in the same layer, but from the second hidden layer, the last auxiliary variable of each neuron
is taken as input. In order to avoid complicating the notation, it will be understood that 1 is
equivalent to a true value, and 0/−1 are equivalent to false. It is also relevant to say that r(k,p)

symbolizes if ∑k
j=1

wj·ij+1
2 ≥ p.

Starting with the first hidden layer, we take the first neuron, with weights w̄ = ⟨w1, . . . , wℓ0⟩
and bias b. As expected, we will take ī = ⟨x1, . . . , xℓ0⟩ as input. We must start by calculating
d, our minimum number of inputs that must be conveniently instantiated for the output to be
1. We can deduce d as follows:

∑k
j=1(wj · ij) + b ≥ 0 ,

∑k
j=1(wj · ij) ≥ −b ,

∑k
j=1(wj · (

ij+1
2 · 2− 1)) ≥ −b ,

2 ·∑k
j=1(wj ·

ij+1
2 )−∑k

j=1(wj) ≥ −b ,

2 ·∑k
j=1(wj ·

ij+1
2 ) ≥ −b + ∑k

j=1(wj) ,

∑k
j=1(wj ·

ij+1
2 ) ≥

⌈
−b+∑k

j=1 wj

2

⌉
,

∑k
j=1(

wj+1
2 · ij+1

2 )−∑k
j=1(

−wj+1
2 · ij+1

2 ) ≥
⌈
−b+∑k

j=1 wj

2

⌉
,

∑k
j=1(

wj+1
2 · ij+1

2 )−∑k
j=1(

−wj+1
2 − −wj+1

2 · −ij+1
2 ) ≥

⌈
−b+∑k

j=1 wj

2

⌉
,

∑k
j=1(

wj+1
2 · ij+1

2 ) + ∑k
j=1(

−wj+1
2 · −ij+1

2 ) ≥
⌈
−b+∑k

j=1 wj

2

⌉
+ ∑k

j=1
−wj+1

2 ,

∑k
j=1

wj·ij+1
2 ≥

⌈
−b+∑k

j=1 wj

2

⌉
+ ∑k

j=1
−wj+1

2

Thus, we can see that d is defined as:

d :=


−b + ∑ℓz−1

j=1 wj

2

+
ℓz−1

∑
j=1

−wj + 1
2

(5.3)
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Now that we have d, we can use sequential counters (details of which can be found in (Sinz,
2005)) as follows to encode the neuron:

SQ(w̄, ī, d) :=



r(ℓz−1,d) , d < 1

(w1 · i1 ⇔ r(1,1)) ∧∧d
j=2 (−r(1,j)) ∧∧ℓz−1
l=2 ((r(l,1) ⇔ (wl · il ∨ r(l−1,1))) ∧∧d

j=2 (r(l,j) ⇔ ((wl · il ∧ r(l−1,j−1)) ∨ r(l−1,j))))

,
|ī| ≥ d
d ≥ 1

−r(ℓz−1,d) ,
|ī| < d
d ≥ 1

(5.4)

It is worth noting that we can convert, for example, x1 ⇔ x2 to (−x1 ∨ x2) ∧ (x1 ∨ −x2),
and we can apply propositional logic to express the encoding of every neuron as a CNF
formula.

This same process is repeated for each neuron in the layer. Since the encodings of neurons in
the same layer do not interfere with each other, they could well be done in parallel. Consider
r(z,k) to refer to the auxiliary variable r(ℓz−1,d(z,k))

of the k-th neuron from the z-th layer. Now,

as anticipated previously, we must give ī = ⟨r(1,1), . . . , r(1,ℓ1)⟩ as input for the next layer. As
before, we encode each neuron by calculating d and SQ(w̄, ī, d). We repeat this process until
we reach the output layer. At that point, we only need to do the encoding for that final neuron
and, for our experiments, we would identify its last auxiliary variable (r(m+1,1)), because this
is the one that reflects the output of our BNN.

Now, for the sake of a complete explanation, let us take the case where the output layer has
n neurons, so the BNN is for a multi-class problem. One output would be 1 and the rest 0,
thanks to a step softmax (or an equivalent) activation function. For this output layer, we are
taking ī = ⟨r(m,1), . . . , r(m,ℓm)⟩ as input. Let us focus on the first output neuron. We need to
compute a comparison threshold d̂kl between this neuron and each of the output neurons. For
each of these, we must use the following formula:

d̂kl :=
⌈⌈

bl−bk+∑ℓm
j=1(wkj

−wlj
)

2

⌉
/2

⌉
+

∣∣{w ∈ w̄k−w̄l
2 | w = −1

}∣∣ (5.5)

Where k is the index of our current neuron to encode and l is the index of the neuron to
compare (so for our first output neuron, k = 1 and we have to iterate with l ∈ {1, . . . , n}).
For our selected l, we also need to obtain the subsets ω̄kl ⊆ w̄k and ῑkl ⊆ ī, taking the
elements at the positions where w̄k differs from w̄l . Formally speaking, they are defined as:

ω̄kl :=
{

w ∈ w̄k−w̄l
2 | w ̸= 0

}
ῑkl :=

{
i ∈ ī⊙(w̄k−w̄l)

2 | i ̸= 0
}

(5.6)

Where ⊙ denotes the component-wise product of two vectors.

Then, we end up encoding SQ(ω̄kl , ῑkl , d̂kl) for each l ∈ {1, . . . , n}. Now, let us take the
final auxiliary variable of all these encodings and put them in a new array r̄k, like this: r̄k =
⟨r(|ω̄k1|,d̂k1)

, . . . , r(|ω̄kn|,d̂kn)
. We finish encoding this neuron with SQ(1̄, r̄k, n), where 1̄ =

⟨1, . . . , 1⟩. And this is repeated for all the output neurons, so we end up with all of our
BNN encoded.

Once the encoding is complete, the final auxiliary variable of any neuron can be selected and
perform calculations based on it.
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It is important to note that more often than not, the encoding leaves us with an unnecessar-
ily large formula. Because of this, a simplifier can be used to reduce its size, eliminating
unimportant auxiliary variables and keeping the variables of interest. For example, for this
investigation the SAT solver Riss (Manthey, 2017) was used, but it is not able to eliminate all
the auxiliary variables when the formula is relatively complex.

The problem with using this encoding is that the efficient method for computing Shap in
dDBCSFi(2)s is not intended to work with auxiliary variables. This is why they must be
removed. While it is possible to use what is known as “forgetting variables” (Oztok & Dar-
wiche, 2017), this technique is prone to damaging the determinism of the circuit. Although
different methods were explored to eliminate these auxiliary variables, in the end it was de-
cided that it would be more convenient to do without them at this time. The adapted method
is easy to understand, but it involves working with fewer variables so it does not take too long
(if a few more than twenty variables could be used with auxiliary variables, now it seems that
the limit is around thirteen, but this may just be a problem of an inefficient implementation).

5.2 BNN to CNF Formula: Only Original Variables

We will consider the same BNN defined above. The basic idea here is the same as for the
method using auxiliary variables. We want to encode each neuron, layerwise, in an incremen-
tal manner that reflects the case in which for a given number of variables, its instantiation is
capable of reaching or surpassing a given threshold.

As before, we start with the first neuron in the first layer and compute its d with (5.3). We can
see this process as filling an matrix M|ī|×d of Boolean encodings, with ck,t components. M
is not a matrix to do operations with, but rather a convenient structure for defining the order
in which the encodings are generated. M is filled rowwise and, for each row, columnwise.
Row k represents the number of the first variables considered, and column t the threshold to
reach or surpass. Note that for any component where k < t, the threshold cannot be reached,
so any component above the lower triangular matrix will be false.

We start with just the first variable. The threshold 1 is reached or surpassed when w1 · i1 and
the other thresholds are impossible to reach or surpass, so our matrix so far would look like
this: [

w1 · i1 false . . . false false
. . . . . . . . . . . . . . .

]
For the first two variables, we now have two cases of thresholds that do not always return
false. The first is for the threshold 1. Here, w1 · i1 or w2 · i2 would suffice. However, for the
threshold 2 we would need w1 · i1 and w2 · i2. This can be written as: w1 · i1 false false . . . false

w2 · i2 ∨ c1,1 w2 · i2 ∧ c1,1 false . . . false
. . . . . . . . . . . . . . .


Let us see with one more variable. We now have three valid thresholds. For the threshold
1, w3 · i3 or w1 · i1 ∨ w2 · i2 would suffice. For the threshold 2, w3 · i3 and w1 · i1 ∨ w2 · i2
would do, as would w1 · i1 ∧ w2 · i2. And for 3, we would need w3 · i3 and w1 · i1 ∧ w2 · i2.
So now the matrix would be:
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
w1 · i1 false false false . . . false

w2 · i2 ∨ c1,1 w2 · i2 ∧ c1,1 false false . . . false
w3 · i3 ∨ c2,1 (w3 · i3 ∧ c2,1) ∨ c2,2 w3 · i3 ∧ c2,2 false . . . false

. . . . . . . . . . . . . . . . . .


Now we can imagine how we end up filling the rest of the matrix until we have:

M :=



w1 · i1 false false . . . false

w2 · i2
∨c1,1

w2 · i2
∧c1,1

false . . . false

w3 · i3
∨c2,1

(w3 · i3
∧c2,1)
∨c2,2

w3 · i3
∧c2,2

. . . false

. . . . . . . . . . . . . . .

w|ī| · i|ī|∨
c|ī|−1,1

(w|ī| · i|ī|
∧c|ī|−1,1)

∨c|ī|−1,2

(w|ī| · i|ī|
∧c|ī|−1,2)

∨c|ī|−1,3

. . .
(w|ī| · i|ī|∧
c|ī|−1,d−1)

∨c|ī|−1,d



(5.7)

With this, we can better describe the method to fill M. For our first row, the encoding of the
first component is w1 · i1 and false for the rest. For each component ck,1 in the first column,
this is wk · ik ∨ ck−1,1. And for any other component ck,t (with a threshold t), we just use
(wk · ik ∧ ck−1,t−1)∨ ck−1,t. So c|ī|,d (the bottom right highlighted component) ends up being
the encoding of our neuron.

As in Section 5.1, this is repeated for each neuron (i.e. calculate its respective d and generate
its M), until we have the encoding of all the neurons in the layer. Since the encoding of each
neuron does not influence nor is influenced by the others of the same layer, all the encodings
of the neurons of a layer could well be generated in parallel.

For the next layer, we take as inputs the components cℓ0,d of each neuron from the previous
one, and all that remains is to repeat this conversion. That is, with the cℓ0,ds as inputs, the
d and M of each neuron in the new layer are computed, which is followed by extracting the
cℓ1,d of each neuron and pass it as input to the next layer. Then it is just a matter of iterating to
the last layer. From the last layer, we extract the encoding cℓm,d of the single output neuron,
since this represents the encoding of the entire BNN.

Practically, we follow the method in (Narodytska et al., 2018) to generate the ds and repli-
cate the order of the encoding, but we differ with the use of M, which helps to obtain a
propositional formula without auxiliary variables. The downside of our approach is that it is
computationally more expensive, but again, it is a one-time cost. To reinforce and illustrate
the idea of this method, Figure 5.1 has been included.

The result, from the output neuron, is a Boolean formula that can be converted to a CNF
formula, as well as simplified.

Giving more detail about our implementation, we transform each generated propositional
formula to CNF. After it is generated (i.e. each component in each M matrix), some basic
simplifications are applied to avoid an excessive growth (see Section 5.5 for the detailed
explanation on why this is needed). In theory, for each neuron g, both the method with and
without auxiliary variables have a time complexity around O(dg · |īg|), but in practice the
time of our method without auxiliary variables grows exponentially. This means that the
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FIGURE 5.1: Conversion from a BNN to a CNF formula. The inputs for the
first layer are the respective variables (blue nodes). Each neuron (red nodes)
g has a dg and a Mg, of which the component c|ī|,dg

is the final encoding
of g. These final encodings are given as inputs to the Mgs of the next layer
and the process is repeated until the last layer. cℓm ,do of Mo represents the

encoding of all the BNN.

main issue seems to be in these simplifications, where several inefficient cycles through all
clauses are done at each neuron conversion (for reference, in our experiments we end up
having thousands of clauses).

It is important to mention that the efficiency of this method and its implementation are not
at all ideal. In fact, it there seems to be much room for improvement with both for more
complex BNNs. Nevertheless, it is good enough for the experiments in this investigation.

5.3 CNF Formula to dDBCSFi(2)

As noted in (Darwiche, 2011b; Oztok & Darwiche, 2014), a CNF formula can be converted
into a Sentential Decision Diagram (SDD) (Darwiche, 2011b; Van den Broeck & Darwiche,
2015), while keeping logical equivalence.1 An SDD, as a particular kind of decision di-
agram (Bollig & Buttkus, 2019), is a directed acyclic graph. So as the popular OBDDs
(Bryant, 1986), that SDDs generalize, they can be used to represent general Boolean formu-
las; in particular, propositional formulas (but without necessarily being per se propositional
formulas).

Every SDD is made up of decision nodes and elements. Decision nodes are numbered circles
( k⃝) that practically function as disjunctions pointing to two or more inputs, which are always
elements. The elements are pairs of rectangles ([j|k]) that operate as conjunctions, where j
is named prime and k sub. Each rectangle can have a literal, a truth value, or a pointer
(•) with an edge to a decision node. If a rectangle of an element does not have a •, it is
called a terminal. At the end, these SDDs can be used as Boolean functions that take a given
instantiation for its variables (according to an entity) and return its corresponding label by
following the path downwards.

Before generating the respective SDD, one must choose a so-called vtree (for “variable tree”),
which is a tree-based structure that represents a way of recursively partitioning the variables
in a Boolean function into subsets, and with which the orders of occurrence of variables in

1The algorithm for compilation has not been published per se, but is that of the official library for SDDs in
Python (Meert & Choi, 2018; Choi & Darwiche, 2018). We also know that it works in a bottom-up fashion, using
the apply operations described in (Darwiche, 2011b) and commented in (Choi & Darwiche, 2013).
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the diagram must be compliant with.2 More precisely, a vtree for a set of variables V is a
binary tree that is full (i.e. every node has 0 or 2 children), ordered (i.e. the children of a
node are totally ordered), and there is a bijection between the set of leaves and V (i.e. every
variable is depicted by a single leaf) (Pipatsrisawat & Darwiche, 2008; Bova, 2016; Bollig &
Buttkus, 2019; Nakamura, Denzumi, & Nishino, 2020). Additionally, the total order on all
of its nodes is obtained by an inorder traversal of the vtree nodes (i.e. left subtree, node, right
subtree) and all nodes are labeled with a number for ID.3

Let η be an NNF formula, circuit or binary decision diagram with input variables V . We
say that η, with fan-in 2 in every ∧-gate or any equivalent, respects a vtree T if for every
∧-gate g in η (with left input gate g1 and right g2), there exists an internal gate τ in T (with
left child τ1 and right child τ2) such that the input gates of the subcircuit g1 mention only
variables in τ1 and the input gates of the subcircuit g2 mention only variables in τ2. The
connection between a vtree and an SDD is tied to this, in the sense that every SDD must
respect the vtree on which it is based on.

A vtree is linear if for every internal node one child is a leaf. The reason why it is said
that SDDs generalize OBDDs is because an SDD based on a linear vtree can represent an
OBDD respecting the same variable ordering (Bollig & Buttkus, 2019). Depending on the
chosen vtree, substructures of an SDD can be better reused when representing a Boolean
function, e.g. a propositional formula, which becomes important to obtain a compact repre-
sentation. An important feature of SDDs is that they can easily be combined via propositional
operations, resulting in a new SDD (Darwiche, 2011b).

In other terms, a vtree represents a set of variable partitions to follow in order to generate
the desired SDD. It is important to note that for a given vtree there is a unique SDD trimmed
(i.e. it does not have decompositions of the form {(⊤, α)} and {(α,⊤), (−α,⊥)}) and
compressed (i.e. for each partition, there are no repeated subs) that will be generated from it.
With this in mind, the goal would be to find a vtree which ideally would allow us to compile
the smallest SDD possible. The details are beyond the scope of this document, but this search
can be performed using swap and rotate operations (Choi & Darwiche, 2013).4

SDDs can also be translated into propositional formulas, which always have negation normal
form (NNF), which is characterized by the exclusive use of disjunctions, conjunctions, and
negations, with negations only being applied to atomic propositions. More importantly, these
SDDs formulas feature structured decomposition and strong determinism (Darwiche, 2011b),
which means that they are a strict subset of d-DNNF (i.e. NNF formulas that are deterministic
and decomposable). As for the decision of why this type of d-DFNN was chosen, one could
also work with an OBDD, but, for reasons of speed and conciseness (Van den Broeck &
Darwiche, 2015; Bova, 2016; Bollig & Buttkus, 2019), it is more advisable to work with
SDDs.

Although SDDs can also be generated based on formulas in disjunctive normal form (DNF)
and the algorithm used could be adapted to convert BNNs into DNF formulas, for these there
is no well-defined upper bound of complexity like for the CNF (Darwiche, 2011b), so it
seemed best to stick with the latter option.

2Extending OBDDs, which have special kinds of vtrees that capture the condition that variables in a path
must always appear in the same order. This generalization makes SDDs much more succinct than OBDDs
(Van den Broeck & Darwiche, 2015; Bova, 2016; Bollig & Buttkus, 2019).

3For the program that we use, the numbering of the nodes is given by a left-to-right traversal of the
vtree nodes (Choi & Darwiche, 2018), but this numbering is arbitrary and non-essential, as long as it stays
consistent with the respective SDDs based on it.

4For our experiments, this vtree search is also automatically handled by PySDD.
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Algorithm 2 Transformation from dDBC to dDBCSFi(2)

Input: A dDBC, with output node output node.
Output: A dDBCSFi(2) equivalent to the given dDBC.

conjunction(circuit1, circuit2): Conjoins circuit1 and circuit2, simplifying the trues.
disjunction(circuit1, circuit2): Disjoins circuit1 and circuit2, simplifying the falses.
negation(circuit): Removes or adds a negation on circuit, depending on whether its output node is a negation or
not, resp. If applied to a truth value, it is inverted (i.e. false becomes true and true becomes false).

1: function FIX NODE(dDBC node)
2: if dDBC node is a disjunction then
3: new circuit = false
4: for each subcircuit in dDBC node do
5: fixed subcircuit = FIX NODE(subcircuit)
6: if fixed subcircuit is a true value or is equivalent to −new circuit then
7: return true
8: else if fixed subcircuit is not a false value then
9: for each variable v in new circuit and not in fixed subcircuit do

10: fixed subcircuit = conjunction(fixed subcircuit, disjunction(v, −v))
11: for each variable v in fixed subcircuit and not in new circuit do
12: new circuit = conjunction(new circuit, disjunction(v, −v))
13: new circuit = disjunction(new circuit, fixed subcircuit)
14: return new circuit
15: else if dDBC node is a conjunction then
16: new circuit = true
17: for each subcircuit in dDBC node do
18: fixed subcircuit = FIX NODE(subcircuit)
19: if fixed subcircuit is a false value or is equivalent to −new circuit then
20: return false
21: else if fixed subcircuit is not a true value then
22: new circuit = conjunction(new circuit, fixed subcircuit)
23: return new circuit
24: else if dDBC node is a negation then
25: return negation(FIX NODE(negation(dDBC node)))
26: else ▷ (dDBC node is a literal or a truth value)
27: return dDBC node
28: dDBCSFi(2) = FIX NODE(output node)

The SDD returned should be converted to a dDBC. The process is quite simple, we just
have to take each node of the graph as its equivalent in a Boolean tree. This means that
a decision node becomes a disjunction node, an element becomes a conjunction node, and
literals and truth values become input nodes. All maintaining the connections between the
nodes. Because of the triviality of this process, its mention is omitted on the path (5.1).

The final step would be to ensure that the resulting circuit is smoothed and has an fan-in 2.
That is, we have to convert the dDBC to a dDBCSFi(2).

It is possible to transform an arbitrary dDBC into a dDBCSFi(2), as follows. In a bottom-
up fashion, similar to what is suggested in (Arenas et al., 2023), for each conjunction or
disjunction gate with fan-in m > 2, it must be rewritten as a chain of m− 1 gates of the same
type, with fan-in 2.

On the other hand, to ensure smoothness, for each disjunction gate (now with fan-in 2), fed by
subcircuits C1 and C2, we must find the set of all variables present in C1 and not in C2 (V1−2),
together with all those that are in C2 and not in C1 (V2−1). For each variable v ∈ V2−1, we
redefine C1 as C1 ∧ (v ∨ −v). As you might expect, for each variable v ∈ V1−2, C2 is
redefined as C2 ∧ (v ∨ −v). For example, for (x1 ∧ x2 ∧ x3) ∨ (x2 ∧ −x3), we would get
[(x1 ∧ x2) ∧ x3] ∨ [(x2 ∧ −x3) ∧ (x1 ∨ −x1)]. The formal method can be found in the
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Algorithm 2 and, since it requires going through all the nodes of the circuit just once, we can
notice that its complexity is linear, with respect to the number of nodes.

This completes the compilation of the path (5.1), giving us a dDBCSFi(2) with the properties
we need. Using the resulting dDBCSFi(2)s is fairly straightforward. If the value of a variable
xi is equal to 1, then it is interpreted as a true value and all xi gates are replaced by true.
Otherwise, if the value of xi is -1, then it is interpreted as a false value and all xi gates are
replaced by false. The rest is classical propositional logic.

It is interesting to note that, for a binary perceptron, the compilation of the BNN to a CNF
formula can be adapted to simply return a dDBCSFi(2). This is because the encoding of
a single neuron is already decomposable and can be easily modified to enforce the other
properties. It may seem like a good alternative, but an additional experiment of ours proved
otherwise; since doing this for a 13-variable binary perceptron returned a circuit with 15,439
nodes, in contrast to 4,571 nodes by using the full path. This can be seen at the end of
Appendix A.

5.4 A Complete Example of the Conversion

Some of the steps in (5.1) may not be polynomial-time transformations, which we will discuss
in more technical terms later in this section, as well as in the next one. However, we can
claim at this stage that: (a) Any exponential cost of a transformation is kept under control
by a usually small parameter. (b) The resulting dDBCSFi(2) is meant to be used multiple
times, to explain different and multiple outcomes; and then, it may be worth taking a one-
time, relatively high transformation cost. A good reason for our transformation path is the
availability of implementations we can take advantage of.

We will describe, explain and illustrate the conversion path (5.1) by means of a running
example with a simple BNN.

Example 1 The BNN in Figure 5.2 has hidden neuron gates h1, h2, h3, an output gate o, and
three input gates, x1, x2, x3, that receive binary values.

The latter represent, together, an input entity
x̄ = ⟨x1, x2, x3⟩ that is being classified by
means of a label returned by o. Each gate g
is activated by means of a step function (5.2).
For technical, non-essential reasons, for the
gates, we use 1 and −1. However, the out-
put gate employs an activation function that
returns instead 1 or 0, for true or false, resp.
For example, h1 is true, i.e. outputs 1, for
an input x̄ = (x1, x2, x3) iff w̄h1• x̄ + bh1 =
(−1)× x1 + (−1)× x2 + 1× x3 + 0.16 ≥
0. Otherwise, h1 is false, i.e. it returns −1. FIGURE 5.2: A BNN.

Similarly, output gate o is true, i.e. returns label 1 for a binary input h̄ = (h1, h3, h3) iff
w̄o • h̄ = 1× h1 + 1× h2 + (−1)× h3 − 0.01 ≥ 0, and 0 otherwise. 2

The first step, (a) in (5.1), consists in representing the BNN as a CNF formula. For this, we
adapt the approach in (Narodytska et al., 2018), in their case, to verify properties of BNNs.
Contrary to them, we avoid the use of auxiliary variables since their posterior elimination
conflicts with our need for determinism.
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Each gate of the BNN is represented by a propositional formula, initially not necessarily in
CNF, which, in its turn, is used as one of the inputs to gates next to the right. In this way,
we eventually obtain a defining formula for the output gate. The formula is converted into
CNF. The participating propositional variables are logically treated as true or false, even if
they take numerical values 1 or −1, resp.

Example 2 (example 1 cont.) Consider gate h1, with parameters w̄ = ⟨−1,−1, 1⟩ and
b = 0.16, and input ī = ⟨x1, x2, x3⟩. An input xj is said to be conveniently instantiated if it
has the same sign as wj, and then, contributing to the activation function to return 1. E.g., this
is the case of x1 = −1. In order to represent as a propositional formula its output variable,
also denoted with h1, we first compute the number, d, of conveniently instantiated inputs that
are necessary and sufficient to make w̄ • ī + b greater than or equal to 0. This is the (only)
case when h1 becomes true; otherwise, it is false. This number can be computed in general by
(5.3). In the case of h1, with 2 negative weights: d = ⌈(−0.16 + (−1− 1 + 1))/2⌉+ 2 =
2. With this, we can impose conditions on two input variables with the right sign at a time,
considering all possible convenient pairs. For h1 we obtain its condition to be true:

h1 ←→ (−x1 ∧−x2) ∨ (−x1 ∧ x3) ∨ (−x2 ∧ x3). (5.8)

This is a DNF formula, directly obtained from considering all possible convenient pairs
(which is already better that trying all cases of three variables at a time). However, there
is a more expedite, iterative method that still uses the number of convenient inputs (cf. Sec-
tion 5.2). Using this algorithm, we obtain an equivalent formula defining h1:

h1 ←→ (x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1). (5.9)

Similarly, we obtain defining formulas for gates h2 and h3, and o: (for all of them, d = 2)

h2 ←→ (−x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1),
h3 ←→ (x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1),
o ←→ (−h3 ∧ (h2 ∨ h1)) ∨ (h2 ∧ h1). (5.10)

Replacing the definitions of h1, h2, h3 into (5.10), we finally obtain:

o ←→ (−[(x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1)] ∧
([(−x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1)] ∨
[(x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1)])) ∨
([(−x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1)] ∧
[(x3 ∧ (−x2 ∨−x1)) ∨ (−x2 ∧−x1)]). (5.11)

The final part of step (a) in path (5.1), requires transforming this formula into CNF. In this
example, it can be taken straightforwardly into CNF.5 The resulting CNF formula is, in its
turn, simplified into a shorter and simpler new CNF formula by means of the SAT solver Riss
(Manthey, 2017). For this example, the simplified CNF formula is as follows:

o ←→ (−x1 ∨−x2) ∧ (−x1 ∨−x3) ∧ (−x2 ∨−x3). (5.12)

Having a CNF formula will be convenient for the next conversion steps along path (5.1). 2

5For our experiments, we programmed a simple algorithm that does this job, while making sure the generated
CNF does not grow too much (see Section 5.2).
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FIGURE 5.3: An SDD (a) and a vtree (b).

Following with step (b) along path (5.1), the resulting CNF formula is transformed into an
SDD.

Example 3 (example 2 cont.) Figure 5.3(a) shows an SDD, S , to be used for illustration.
(See (Bova, 2016; Nakamura et al., 2020) for more definitions than the one from Section 5.3.)
As previously said in Section 5.3, an SDD has different kinds of nodes. Those represented
with encircled numbers are decision nodes (Van den Broeck & Darwiche, 2015), e.g. 1⃝ and
3⃝, that consider alternatives for the inputs (in essence, disjunctions). There are also nodes

called elements. They are labeled with constructs of the form [ℓ1|ℓ2], where ℓ1, ℓ2, called the
prime and the sub, resp., are Boolean literals, e.g. x1 and ¬x2, including ⊤ and ⊥, for 1 or
0, resp. E.g. [¬x2|⊤] is one of them. Either the prime or the sub can also be a pointer, •,
with an edge to a decision node. [ℓ1|ℓ2] represents two conditions that have to be satisfied
simultaneously (in essence, a conjunction). A rectangle of an element without • is a terminal.

An SDD represents (or defines) a total Boolean function FS : ⟨x1, x2, x3⟩ ∈ {0, 1}3 7→
{0, 1}. For example, FS (0, 1, 1) is evaluated by following the graph downwards. Since
x1 = 0, we descent to the right; next via node 3⃝ underneath, with x2 = 1, we reach the
instantiated leaf node labeled with [1|0], a “conjunction”, with the second component due to
x3 = 1. We obtain FS (0, 1, 1) = 0.

Figure 5.3(b) shows a vtree, T , for V = {x1, x2, x3}. (See (Bova, 2016; Bollig & Buttkus,
2019; Nakamura et al., 2020) for more definitions than the one from Section 5.3.) Its leaves,
0, 2, 4, show their associated variables in V . We can see that nodes 1 and 3 convey the
partitions {x1}|{x2, x3} and {x2}|{x3}, resp. We can also note that the S respects T .
Intuitively, the variables at the terminals of S , when they go upwards through decision nodes
n⃝, also go upwards through the corresponding nodes n in T .

S can be obtained from the RHS of (5.12), ψ, by generating and combining SDDs from it,
following the partitions in T , from the simplest partition to the most complex one. This
means first generating the SSDs that respect the partition {x2}|{x3}, for all operation be-
tween x2 and x3 in ψ, and then the ones that respect {x1}|{x2, x3}, combining with the
previously generated SDDs.

The SDD S can be straightforwardly represented as a propositional formula by interpreting
decision nodes as disjunctions, and elements as conjunctions, obtaining:

[x1 ∧ ((−x2 ∧−x3) ∨ (x2 ∧⊥))] ∨ [−x1 ∧ ((x2 ∧−x3) ∨ (−x2 ∧⊤))] (5.13)
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Which is logically equivalent to the formula ψ that represents the BNN. Accordingly, the
BNN is represented by the SDD in Figure 5.3(a). 2

In our experiments and in the running example, we used the PySDD system (Meert & Choi,
2018), which, given a CNF formula ψ, produces a vtree and a compliant SDD, both optimized
in size, that represents ψ (Choi & Darwiche, 2013, 2018).

This compilation takes space and time that are exponential only in the tree-width, TW(ψ),
of ψ, which is the tree-width of the graph G associated to ψ (Darwiche, 2011b; Oztok &
Darwiche, 2014). G contains the variables as nodes, and undirected edges between any of
them when they appear in a same clause. The tree-width measures how close the graph is
to being a tree. The exponential upper-bound on the tree-width is a positive fixed-parameter
tractability result (Flum & Grohe, 2006) in that TW(ψ) is in general much smaller |ψ|.

For example, the graph G for the formula ψ on the RHS of (5.12) has x1, x2, x3 as nodes, and
edges between any pair of variables, which makes G a complete graph. Since every complete
graph has a tree-width equal to the number of nodes minus one, we have TW(ψ) = 2.

Our final transformation step consists in obtaining a dDBC from the resulting SDD and a
dDBCSFi(2) from said dDBC. An SDD turns out to correspond to a d-DNNF Boolean circuit,
for which decomposability and determinism hold, and has only variables as inputs to negation
gates (Darwiche, 2011b). The class d-DNNF is contained in dDBC, so the first part is pretty
straight forward.

We must remember that the reason why we want a dDBCSFi(2) is that the algorithm for
Shap computing (Algorithm 1) requires the dDBC to be a dDBCSFi(2). Every dDBC can
be transformed in linear time into a dDBCSFi(2) (Arenas et al., 2023). More details can be
found in Section 5.3.

Example 4 (example 3 cont.) By interpreting decision nodes and elements as disjunctions
and conjunctions, resp., the SDD in Figure 5.3(a) can be easily converted into d-DNNF cir-
cuit. Notice that only variables are affected by negations. However, due to the children of
node 3⃝, that do not have the same variables, the directly resulting dDBC is not smooth (it
has fan-in 2 though). This can be solved by taking our equivalent formula (5.13) and apply-
ing Algorithm 2 on it. We now proceed to show the steps of the final transformation for the
formula (5.13), highlighting in bold the added elements and changes of each iteration.

1: ( ) | ( )

2: (x1 & ( )) | ( )

3: (x1 & (( ) | ( ))) | ( )

4: (x1 & ((−x2 & ( )) | ( ))) | ( )

5: (x1 & ((−x2 & −x3) | ( ))) | ( )

6: (x1 & ((−x2 ∧−x3) | ( ))) | ( )

7: (x1 & ((−x2 ∧−x3) | (x2 & ( )))) | ( )

8: (x1 & ((−x2 ∧−x3) | (x2 & ⊥))) | ( )

9: (x1 & ((−x2 ∧−x3) |⊥)) | ( )

10: (x1 & (−x2 ∧−x3)) | ( )

11: (x1 ∧ (−x2 ∧−x3)) | ( )

12: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ( ))

13: (x1 ∧ (−x2 ∧−x3)) | (−x1 & (( ) | ( )))

14: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 & ( )) | ( )))

15: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 & −x3) | ( )))

16: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3) | ( )))
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17: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3) | (−x2 & ( ))))

18: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3) | (−x2 & ⊤)))

19: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3) |−x2))

20: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3) | (−x2 ∧ (x3 ∨−x3))))

21: (x1 ∧ (−x2 ∧−x3)) | (−x1 & ((x2 ∧−x3)∨ (−x2 ∧ (x3 ∨−x3))))

22: (x1 ∧ (−x2 ∧−x3)) | (−x1 ∧ ((x2 ∧−x3) ∨ (−x2 ∧ (x3 ∨−x3))))

23: (x1 ∧ (−x2 ∧−x3))∨ (−x1 ∧ ((x2 ∧−x3) ∨ (−x2 ∧ (x3 ∨−x3))))

And, as can be seen, the algorithm gave us:

[x1 ∧ (−x2 ∧−x3)] ∨ [−x1 ∧ ((x2 ∧−x3) ∨ [−x2 ∧ (x3 ∨−x3)])] (5.14)

This formula (5.14) is equivalent to the dDBCSFi(2) shown in Figure 3.1. 2

Figure 5.4 summarizes this example with the central diagrams.

FIGURE 5.4: Real example of the conversion of a BNN (a) to an SDD (b)
and to a dDBCSFi(2) (c).

An additional example, for a binary perceptron, is presented in Figure 5.5. As stated at the
end of Section 5.3, the algorithm for converting a BNN into a CNF formula can be adapted
to directly transform a perceptron to a dDBCSFi(2), as shown in the illustration. Although,
in this case, the number of nodes in the resulting dDBCSFi(2)s are equivalent, it must be
remembered that this is not always the case. Anticipating to the analysis in this regard, since

FIGURE 5.5: Real example of the conversion of a binary perceptron (a) to
an SDD (b) and to a dDBCSFi(2) (c). (d) shows the dDBCSFi(2) obtained

directly from the perceptron, by adjusting the algorithm.
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it is not a central matter on this research, it can be commented that perhaps further refinement
in this alternative path could considerably narrow this gap in the number of nodes that is seen
when scaling the number of variables.

5.5 On the Efficiency of the Method

The following assumptions will be made: (a) The weights have the same probability of being
1 or −1. (b) The biases will all be 0. Like before, we are also considering a BNN that
receives ℓ0 input variables in the form of x̄ = ⟨x1, . . . , xℓ0⟩. As in Section 5.1, this BNN has
m hidden layers, each layer z (from 1 to m) has ℓz of neurons and the neurons from layer
z receive the input vector ī = ⟨i1, . . . , iℓz−1⟩. For the output layer, it has a single neuron.
Similarly, all weights are −1 or 1 and the activation functions also return a value of −1 or 1.
The only exception to the latter is the output layer, where a step function is used that returns
0 or 1.

With these assumptions, the threshold d (5.3) for a given neuron with |ī| inputs can be es-

timated as d =

(⌈
b+∑|ī|j=1 wj

2

⌉
+ ∑|ī|j=1

−wj+1
2

)
≈

(⌈ 0+0
2

⌉
+ 0+|ī|

2

)
=

(
0 + |ī|

2

)
≤

⌈
|ī|
2

⌉
.

Now, to dimension the number of clauses for this neuron, we can observe how this number
grows for some variables and thresholds, just by applying distribution on each disjunction
of CNF formulas to generate a single CNF formula (based on our algorithm for the encod-
ing and assuming that the neuron receives only variables as input, not Boolean formulas).
This can be seen in the following matrix C, with components ck,t, where the indices of the
rows represent the number k of variables and those of the columns the threshold t to reach or
surpass (with k ∈N and t ∈N):

C =



1 1 1 1 1 1 1
1 2 1 1 1 1 1
1 4 3 1 1 1 1
1 8 15 4 1 1 1 . . .
1 16 135 64 5 1 1
1 32 2,295 8,704 325 6 1
1 64 75,735 19,984,384 2,829,125 1,956 7

. . .


(5.15)

The growth in the number of clauses follows this rule for the lower triangular matrix: ck,t =

(ck−1,t−1 + 1) · ck−1,t , k > t > 1. Since we define our d to be
⌈
|ī|
2

⌉
, it seems that we are

in an interval where the number of clauses grows at an exponential rate if is left untreated.6

And all this does not even consider neurons that do not receive mere variables, but Boolean
formulas. This is why our code does some basic simplifications during the encoding and a
big one at the end with a specialized SAT solver Riss. However, the question of how much it
really helps and how much can be reduced remains unanswered.

For reference, one can consider that a truth table of a model, for all combinations of |x̄|
variables, can be converted to a CNF formula by taking all combinations that return 0, negat-
ing/inverting their values and concatenating all the combinations with conjunctions, taking
each one as a disjunction of variables. So, in the worst case, you could be having up to 2|x̄|

6Thinking on literals as inputs, it is possible that the smallest number of clauses to represent a neuron is
equal to (|ī|d ), but we have not studied this with enough detail to be sure.
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clauses; number that is much lower than what would be obtained for the mentioned neuron,
considering that it has 7 inputs, for example.

Given the above, it is noteworthy that simplifications are really important in the algorithm, but
that does not mean that the number of clauses will not grow exponentially with the number
of variables.

The previous is just considering the size growth, but, as said in Section 5.2, these simpli-
fications imply a great time cost. This is because, to perform said simplifications in our
implementation, at every neuron several cycles are done through all clauses, which raises the
time complexity from polynomial to exponential. Nevertheless, this probably could be fixed
with a better optimization of the code.

Added to this, as shown in (Darwiche, 2011b), SDDs have a well-defined upper bound of
complexity, but worrying when compiled from a CNF formula. This is determined by its
number of variables |x̄| and the width of the tree ω of the CNF formula.7 Focusing again on
the worst case, we can expect ω = |x̄| − 1. Thus, the upper bound for an SDD generated
from a CNF formula could have a complexity of O(|x̄|2|x̄|−1). Again, we would be up
against an exponential size. This means that no matter how much we simplify a CNF formula,
if enough variables influence the result, we still risk not being able to compile its SDD. In
any case, the exponential upper bound with the width of the tree is a positive result of fixed
parameters (Flum & Grohe, 2006), considering that ω is generally smaller than |x̄| − 1.

Both aspects limit the number of variables and the complexity of the BNN that could be used.
However, it is still feasible to work with at least 13 variables, as it will be demonstrated in
the experiments.

7This tree is around the graph that is generated by ℓ0 nodes that represent each of the variables in the formula,
where every possible edge exists if the two connected variables appear at the same time in any of the clauses of
the formula.



25

Chapter 6

Description of the Experiments

As stated on Chapter 1 and Section 4.2, the dataset used for the experiments, to train the mod-
els and calculate the Shap-scores, was California Housing Prices (Nugent, 2018) (which was
first introduced in (Pace & Barry, 1997)). Its numeric features were binarized according to
whether their values were greater than the average (1) or less (−1), while one-hot encoding

Feature Description Original values Binarization

#1
ocean proximity

(predictor)

Label of the location of the
house w.r.t. the sea/ocean

Labels 1h ocean (#1a),
inland (#1b), island

(#1c), near bay (#1d)
and near ocean (#1e)

Five new features (one for each
label), for which 1 means it is the
value of ocean proximity, and −1

means it is not

#2
households
(predictor)

Total number of households
(group of people residing
within a housing unit) in a

block

Integer numbers from
1 to 6,082

1 (above average of the feature)
or −1 (below the average)

#3
housing median age

(predictor)

Average age of a house within
a block (lower numbers mean

newer buildings)

Integer numbers from
1 to 52

1 (above average of the feature)
or −1 (below the average)

#4
latitude

(predictor)

Angular measure of how far
north a block is (a higher
value means it is further

north)

Real numbers from
32.54 to 41.95

1 (above average of the feature)
or −1 (below the average)

#5
longitude
(predictor)

Angular measure of how far
west a block is (a higher value

means it is further west)

Real numbers from
−124.35 to −114.31

1 (above average of the feature)
or −1 (below the average)

#6
median income

(predictor)

Median household income
within a block (measured in

tens of thousands of US
dollars)

Real numbers from
0.50 to 15.00

1 (above average of the feature)
or −1 (below the average)

#7
population
(predictor)

Total number of people
residing within a block

Integer numbers from
3 to 35,682

1 (above average of the feature)
or −1 (below the average)

#8
total bedrooms

(predictor)

Total number of bedrooms
within a block

Integer numbers from
1 to 6,445

1 (above average of the feature)
or −1 (below the average)

#9
total rooms
(predictor)

Total number of rooms within
a block

Integer numbers from
2 to 39,320

1 (above average of the feature)
or −1 (below the average)

#10
median house value

(target)

Median house value for
households within a block
(measured in US dollars)

Integer numbers from
14,999 to 500,001

1 (above average of the feature)
or 0 (below the average)

TABLE 6.1: Features of the California Housing Prices dataset.
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was used for the categorical one. 13 predictive features were obtained with an additional one
(the target or output) that represented whether the price of each block was high or low (i.e.
above or below the average). A summary can be found in Table 6.1. This dataset was used
to train a BNN (with one hidden layer, with the same number of neurons as features) and a
binary perceptron (BP). Both are used in the experiments.

Preliminarily, for the BNN three models were trained (using the Tensorflow library):

1. One with real-valued parameters, rectifier activation function for the hidden layer and
sigmoid for the output.

2. Another with real-valued parameters, hyperbolic tangent activation function for the
hidden layer and sigmoid for the output.

3. And a true binary one, which used a specialized library for binary layers (called Larq).

For the BP only the last two types of models (2 and 3) were trained. The weights of these
models were converted to binary values (1 and −1), the activation functions of the hidden
layers were changed to sign functions and the output functions to unit step functions (both
shown in (5.2)). With the objective of defining which is the best type of model for the
central experiments, the variations in accuracies and losses after the change were recorded to
compare them. The loss function chosen was the binary cross-entropy, which is defined as:

Binary cross-entropy(ȳ, ˆ̄y) := − 1
|ȳ|

|ȳ|

∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)] (6.1)

In (6.1), ˆ̄y represents the labels estimated by the model and ȳ are the true labels.

Type of model Phase
Binary

cross-entropy Accuracy Training time
(in seconds)

BNN

Non-binary
model

Before the
binarization

0.4633 0.7879

14.72
After the

binarization
2.9138 0.7773

Pseudo
binary
model

Before the
binarization

0.4705 0.7865

10.59
After the

binarization
1.2153 0.7827

Binary
model

(with Larq)

Before the
binarization

0.9041 0.6580

6.41
After the

binarization
0.9041 0.6580

BP

Pseudo
binary
model

Before the
binarization

0.5525 0.7416

15.56
After the

binarization
0.5884 0.7269

Binary
model

(with Larq)

Before the
binarization

0.7437 0.7093

10.17
After the

binarization
0.7437 0.7093

TABLE 6.2: Performance information for the BNNs and BPs trained on the
California Housing Prices dataset.

https://www.tensorflow.org/
https://github.com/larq/larq
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The results of this preliminary experiment are found on Table 6.2. In it, we can observe that
not only the results of the binary models (with Larq) remain consistent after the binarization,
but they seem to give good enough results (based on the loss). Because of this, we chose to
use the models with Larq for the following steps. Graphical representations, in the form of
Boolean trees, of the generated dDBCSFi(2)s from each model are shown in Appendix A,
which we suspect that may be helpful in some way in future research.

According to the transformation path (5.1), both trained models were first represented as a
CNF formula with 2,391 clauses for the BNN and 1,716 for the BP. Both have a tree-width
of 12. These CNF formulas were transformed, via the SDD conversion, into dDBCSFi(2)s
which ended up having 18,671 nodes for the BNN and 4,571 nodes for the BP (without count-
ing the negations affecting only input gates). The initial transformation into CNF took 1.3 hrs
with the BNN and 5.2389 s with the BP. This is practically the most expensive step, due to
the reasons given in Chapter 5. The conversion of the simplified CNF into the dDBCSFi(2)s
took 0.8276 s for the BNN and 0.3150 s for the BP.

The experiments consisted of calculating the Shap-scores for 100 different entities that were
present on the training data subset. For the direct method, we tried both the original models
and the resulting dDBCSFi(2)s and we also did the calculation using the efficient algorithm
on the dDBCSFi(2)s.

Taking ent(F ) as the set of all entities over F , for all 13 features and assuming a uniform
probability distribution (i.e. all entities have 1

213 chances of occurrence, as Pu of (3.3)),
Shap was calculated directly (like a black-box) with the following formula, which is derived
from (3.2):

Shap(F ,Ge, F) = (6.2)

∑
S⊆F\{F}

|S|!(|F | − |S| − 1)!
|F |!

 ∑
e′ ∈ ent(F )

e′S∪{F} = eS∪{F}

L(e′)
212−|S| − ∑

e′ ∈ ent(F )
e′S = eS

L(e′)
213−|S|


And for the open-box approach, we simply followed the efficient algorithm described in
Chapter 3 (i.e. the Algorithm 1), using a probability of 0.5 for all features.

For the training we used Google Colab (with an NVIDIA Tesla T4 enabled) and employed a
train-test split of 50% on the data, as well as 200 epochs, with an early stopping that allowed
40 epochs of patience. The version of Tensorflow used was 2.9.2. All the code is on a
Jupyter Notebook, which is available at the following link for anyone interested in the details
or on doing similar experiments: https://github.com/Jorvan758/dDBCSFi2 (it is important to
note that it was designed to run on Google Colab). See Appendix B for more details on the
repository, including an overview on the code and available files.

https://github.com/Jorvan758/dDBCSFi2
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Chapter 7

Experimental Results and Analysis

Presenting all Shap-scores would have been excessive, so the average of each feature were
included in Figure 7.1 instead. An exact match was seen in the Shap-scores of both methods
(i.e. black-box and open-box), on each pair of values in the 100 entities considered, for all
the features. For this reason, only four plots of averages are presented: two that contain
the averages of the original Shap-scores based on each model, and another two that were

FIGURE 7.1: Average Shap-score for each feature in 100 different entities
from California Housing Prices, based on the original Shaps (left) and their

absolute values (right), for both the BNN (above) and the BP (below).
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FIGURE 7.2: Hours needed to make the initial transformation to
dDBCSFi(2) (orange bar) and calculate Shap over 100 entities (blue bar),

both for the BNN (first three bars) and for the BP (last three bars).

calculated on the absolute values of the Shaps recorded for each model. In this way, it is not
only possible to know the usual category with which each feature is associated, but also the
average relevance that it has on the final result.

Assuming a uniform distribution across the entities, these results tell us that the three most
impactful features in the BNN are #1b, #1e, and #6. Oddly enough, when considering the
meaning of the feature, it appears that #6 (the most impactful feature and the only one based
on a number among the top three) tends to lower the home values. This may be a sign of a
deficiency in the BNN, supported by the relatively low accuracy seen in Table 6.2. However,
since the averages of the original values in the BP fall short of how binary one might expect
them to be, this is probably due in part to not choosing a sufficiently large and diverse sample
of entities. This is just a demonstration of how someone might use this information to explain
and tune their model(s).

It is important to say that the coincidence in the values of both methods (i.e. black-box and
open-box) is mainly due to the rare assumption that all entities have the same probability of
occurring ( 1

213 ). As we distance from it, we can expect a greater difference in values. This
could be amended by changing the probability of each feature, considering a product distribu-
tion for the entities, as long as the features have statistical independence. This last condition
is hard to find in real world data, so it would be convenient to find another alternative.

FIGURE 7.3: Seconds needed to compute Shap over 20, 40, 60, 80
and 100 entities; using the original model as a black-box (blue bar), the
dDBCSFi(2) as a black-box (red bar) and the dDBCSFi(2) as an open-box
(orange bar). This is for both models (i.e. the BNN and the BP). Note that

the vertical axis uses a logarithmic scale.
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Finally, the times necessary to carry out the transformations and calculations are presented
in Figure 7.2. It should be remembered that the transformation to generate a dDBCSFi(2) is
performed only once and, after this, the circuit can be reused as many times as desired (and
it is in this reuse where the greatest gain of this method is seen).

Complementarily, included in Figure 7.3 is a plot with the times it takes to calculate 20, 40,
60, 80 and 100 entities, with each method and model. Remember that the black-box refers
to the direct method and the open-box to the efficient one and notice that these times are
represented in logarithmic scale (if it was not the case, we would clearly see a linear growth in
all bars, but most bars of the open-box cases could not be seen). For example, with the BNN,
the original model took 7.7 hrs to compute all the Shap-scores for 100 entities, whereas its
dDBCSFi(2), treated as an open-box, just took 4.2 min. Those times do not show the one-
time computation for the transformation of the models into the dDBCSFi(2)s. If the latter was
added, each red and orange bar of the BNN would have an increase of 1.3 hrs, while the ones
from the BP would have an increase of just 5.2389 s. For reference, even considering this
extra one-time computation, with the open-box approach on the dDBCSFi(2) of the BNN we
can still compute all of the Shap-scores for 100 entities in less time than with the original
model with just 20 entities.

Complementarily, it must be said that the generated dDBCSFi(2) based on the BNN has
18,671 nodes, while that of the BP only has 4,571. Also, the BNN can predict labels of
multiple entities at the same time, while the circuit must go one by one, which explains the
time differences between using the black-box method on the original model vs. the generated
dDBCSFi(2).

It is easy to see that not only does the time spent doing the transformation grows, as the
network becomes more complex (appreciable by the fact that for the BNN it takes 1.3 h,
while for the BP only 6 s, despite having the same number of features), but also the size
of the dDBCSFi(2). The latter evidently changes the time it takes to traverse the circuit and,
consequently, to perform operations with it. This reaffirms the need to find size optimizations
for these circuits.

Although the implementation itself could probably be improved, it is confirmed that the ef-
ficient algorithm reduces the time needed. Even though the conversion process takes longer
as the number of features, neurons, and layers grow, it is clearly a faster alternative for a
BNN that is simple enough.
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Chapter 8

Conclusions

The validity and usefulness of the algorithm described in (Arenas et al., 2021) has been
empirically demonstrated. There are many situations where it might end up being more
advisable than the direct method. Specifically, with a low enough number of variables and a
relatively simple BNN. However, there is still work to be done to really minimize the time it
takes to compute Shap-scores and generate robust guidelines for its application.

It is important to stress once again that the efforts invested in transforming the BNN into
a dDBCSFi(2) are only done once, with the most costly step being the compilation of the
BNN into a CNF formula. By comparison, subsequent transformations to an SDD and
dDBCSFi(2) take much less time. For example, for the BNN of the experiments, gener-
ating the CNF formula took 1.3 h, while the rest of the compilation to dDBCSFi(2) only
took 0.8276 s. Despite the intrinsic complexity involved, there should be plenty of room for
improvement in the algorithmic and implementation aspects of the compilation. The same
applies to the implementation of the efficient algorithm for Shap computation. Furthermore,
the circuit can be used for other purposes, such as verification of general properties of the
classifier (Narodytska et al., 2018; Darwiche & Hirth, 2020).

Regardless of the algorithmic and implementation issues for computing Shap, an important
research problem has to do with bringing domain knowledge or domain semantics to defini-
tions and computations of attribution scores, in order to obtain more meaningful and inter-
pretable results. This additional knowledge could come, for example, in declarative terms,
expressed as logical constraints. They could be used to appropriately modify the algorithm
or the underlying distribution (Bertossi, 2021). In addition, it is likely that domain knowl-
edge can be more easily included in a calculation of score when performed over a logical
classifier, such as a dDBCSFi(2), rather than on a BNN.

Finally, among the future related challenges to be addressed, the following can be identified:

• Explore the consequences of using different probability distributions for the efficient
algorithm. We use only the uniform distribution, but the results should be just as good
for the product distribution (see (Bertossi et al., 2020) for a discussion of its empirical
version and related issues).

• Answer if there is an efficient way to convert any traditional neural network into a
BNN or not. To the best of our knowledge, this question has not been officially resolved
for the large family of neural networks nor considered a priority issue, as seen in (Qin
et al., 2020; Yuan & Agaian, 2021; Simons & Lee, 2019). If so, what compromises
would be involved and what kind of results linked to Shap would the dDBCSFi(2) of
such BNN produce?



Chapter 8. Conclusions 32

• Find out how to further minimize the size of the generated dDBCSFi(2) or the time it
takes to compile it, while keeping its properties.

• Corroborate, in ideal implementations, how the computation time of Shap for a BNN com-
pares between the original model and the respective dDBCSFi(2), including the time
needed for the conversion.

• Determine more accurately how the size of the circuits scales with the complexity of
the BNN and confirm if there really is a point where using the direct method on the
BNN is faster than the efficient one on the dDBCSFi(2).

• Reexamine the efficient algorithm to find out if it is feasible to improve it further.
Possibly, incorporating domain knowledge.

• Empirically compare the speed of generating SDDs based on formulas in CNF vs. in
DNF, in order to check if it makes sense to use the latter in other conversion paths from
BNN to dDBCSFi(2).
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Appendix A

Extra Material from the Experiments

As anticipated in Chapter 6, in Figures A.1, A.2 and A.3 we can see the graphical represen-
tations of the generated dDBCSFi(2)s, obtained for the experiments. As also said in Section
5.3, Figure A.3 uses an alternative method (that goes directly from BP to dDBCSFi(2)) that
may be promising if further thought is put into it, but right now ends up being much more
inefficient. Ignoring the mere aesthetic aspect of these Boolean trees, we suspect that future
research may benefit in some degree by having them for reference.

FIGURE A.1: dDBCSFi(2), as a Boolean tree, of the BNN (visible at top
left) trained with California Housing Prices, after the preprocessing that

generated 13 variables. It has 18,671 nodes.
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We take the chance to mention that, as an additional guarantee, the equivalence of each
dDBCSFi(2) with its respective model was corroborated by our program for all of the 8,192
possible combinations of variables (i.e. all possible entities). Needless to say, the matches
were exact.

FIGURE A.2: dDBCSFi(2), as a Boolean tree, of the BP (visible at top
left) trained with California Housing Prices, after the preprocessing that

generated 13 variables. It has 4,571 nodes.
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FIGURE A.3: Alternative dDBCSFi(2) (obtained directly, omitting the CNF
formula and the SDD), as a Boolean tree, from the BP (visible at top
left) trained with California Housing Prices, after the preprocessing that

generated 13 variables. It has 15,439 nodes.
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Appendix B

About the GitHub Repository

As stated at the end of Chapter 6, all the code is available at:

https://github.com/Jorvan758/dDBCSFi2

This repository contains:

1. The California Housing Prices dataset, as the housingc.csv file.

2. The weights and biases of the models used in our experiments (both of the BNN and
the BP), as the files BNN weights.h5 and BP weights.h5.

These can be loaded onto a network with the respective architecture of Chapter 6, via
the load weights() function.

3. We also give the CNF formulas obtained, in four files: (a) One with the original for-
mula for the BNN (BNN CNFf.cnf); (b) Another with the simplified version of
said formula (BNN CNFf simplified.cnf); as well as (c) One with the orig-
inal formula of BP (BP CNFf.cnf); and (d) Another with its simplified version
(BP CNFf simplified.cnf). All in the DIMACS CNF format.

4. All code is available in the Jupyter Notebook dDBCSFi(2).ipynb.

With our implementation, the SDD and dDBCSFi(2) are not, by default, saved as a
files, as they are only kept in memory (from which the Shap-scores are calculated).
In any case, their compilations are extremely fast, making use of the CNF files we
provided. Therefore, we omit their inclusion.

The code is written in Python and is designed to run in Google Colab (to run it on
another machine, some adjustments will probably be necessary). It is also meant to be
executed in descending order (if no changes are made, it will give the same results as
we got).

The code is divided into three sections Common preparations, BNN Experiments
and BP Experiments, which we will describe below.

https://github.com/Jorvan758/dDBCSFi2
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Common Preparations: It contains eight subsections:

• Random seeds: Defines a function that initializes all relevant random seeds with the
specific values one chooses. The default values are the ones that we used.

• Installations: Installs the PySDD and Larq libraries, and the SAT solver Riss. Tensor-
flow is already installed by default.

• Tensorflow: Loads the library to train the models and defines a function to plot them.

• CNF formula: Contains everything related to converting BNNs into CNF formulas,
with the method described in Section 5.2.

• SDD: Loads the PySDD library to convert CNF formulas into SDDs.

• dDBCSFi(2): Defines the Python class for the circuits that we use, including methods
for compiling them from SDDs, plotting them, checking for equivalence with the orig-
inal model, counting nodes, predicting labels for entities, and, of course, calculating
Shap efficiently.

• SHAP: Defines functions to compute multiple Shaps as a black-box for both BNNs
and dDBCSFi(2)s, and as an open-box for dDBCSFi(2)s.

• Preprocessing of the dataset: Binarizes the California Housing Prices dataset, as
described in Chapter 6. Additionally, it automatically downloads it from the repository.

BNN Experiments & BP Experiments: The structure of both sections is identical, so
the three subsections that make up each one will only be described once:

• Model training and testing: Trains the respective model, as described in Chapter
6, ensuring that the weights and activation functions are binarized. It also provides
performance information on the test data subset.

• Conversion of the model to a dDBCSFi(2): Follows the path described in Chapter 5,
converting the model to a CNF formula, then to an SDD, and finally to a dDBCSFi(2).
All execution times involved are also recorded. Additionally, it corroborates the equiv-
alence with the original model, and plots both the latter and the dDBCSFi(2).

• SHAP calculation: Computes Shap for 100 different entities, present in the training
data subset, recording the time to compute 20, 40, 60, 80, and 100 of them. This
is done with all three methods, i.e. with the original model as a black-box, with the
dDBCSFi(2) as a black-box, and with the dDBCSFi(2) as an open-box. All execution
times and their averages, mentioned in Chapter 7, are also printed.
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