
OPTIMIZING AND IMPLEMENTING REPAIR

PROGRAMS FOR CONSISTENT QUERY ANSWERING

IN DATABASES

by

Mónica Caniupán

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

Ottawa-Carleton Institute for Computer Science

School of Computer Science

at

CARLETON UNIVERSITY

Ottawa, Ontario

January, 2007

c© Copyright by Mónica Caniupán, 2006

Abstract

Databases may not always satisfy their integrity constraints (ICs) and a number

of different reasons can be held accountable for this. However, in most cases an

important part of the data is still consistent with the ICs, and can still be retrieved

through queries posed to the database. Consistent query answers are characterized

as ordinary answers obtained from every minimally repaired and consistent version

of the database. Database repairs wrt a wide class of ICs can be specified as stable

models of disjunctive logic programs. Thus, Consistent Query Answering (CQA)

for first-order queries is translated into cautious reasoning under the stable models

semantics.

The use of logic programs does not exceed the intrinsic complexity of CQA. How-

ever, using them in a straightforward manner is usually inefficient. The goal of

this thesis is to develop optimized techniques to evaluate queries over inconsistent

databases by using logic programs. More specifically, we optimize the structure of

programs, model computation, and evaluation of queries from them. We develop a

system which implements optimized logic programs and efficient methods to compute

consistent answers to first-order queries.

Moreover, we propose the use of the well-founded semantics (WFS) as an alter-

native way to obtain consistent answers. We show that for a certain class of queries

and ICs, the well founded interpretation of a program retrieves the same consistent

answers as the stable models semantics. The WFS has lower data complexity than

the stable models semantics.

We also extend the use of logic programs for retrieving consistent answers to

aggregate queries, and we develop a repair semantics for Multidimensional Databases.

ii

To my parents.

iii

Acknowledgements

First, I would like to thank Leopoldo Bertossi, my supervisor. He is one of those

persons that you never forget, he has been a big influence on my life. He has taught

me not just logic, but how to be a better professional. Thanks for the “holistic”

scholarship.

I would like to thank my family, specially my parents Domingo and Any, my sister

Anita, and brother Enrique, for their unconditional love, support, and friendship.

Also I would like to thank Fernando Torres, who was an important support at the

beginning of my studies.

From the Universidad del B́ıo-B́ıo, I would like to thank Luis Contreras, and

Patricio Galvez, for their support and motivation through all my studies. Thanks

also to Oscar Gericke, and Alex Medina for their continuing support. Special thanks

to Claudio Gutiérrez, Pedro Campos, Germán Poó, the secretaries Maŕıa Rivera, and

Marta Hermosilla.

From the Pontificia Universidad Catolica (PUC) of Chile, I would like to thank

Alvaro Campos who was a very generous person, and unfortunately left us unexpect-

edly; to my friends of the logic group: Alvaro Cortés, Pablo Barcelo and Loreto Bravo.

I’d like to specially thank Loreto, my dear friend for many years; we have spent too

much time together, working, talking and laughing. Thanks to the administrative

staff: Maŕıa Soledad Carrión, Cecilia Venegas, and Alda Briceño.

From the School of Computer Science at Carleton University I would like to thank

Doug Howe, the chair of the department, who is also a member of my thesis com-

mittee, Sivarama Dandamudi, who was part of my comprehensive, and PhD proposal

committees and unfortunately died last year, Jean-Pierre Corriveau the Graduate

iv

Director, Michiel Smid the chair for all my examination committees, Mengchi Liu,

who was a member of my comprehensive, and PhD proposal committees. The ad-

ministrative staff: Claire Ryan, Linda Pfeiffer, and Sharmila Namasivayampillai.

Thanks also to people from other universities with whom I had useful and en-

lightening conversations: Carlos Hurtado, Alejandro Vaisman, Alberto Mendelzon,

Wolfgang Faber, Nicola Leone, and Amy Felty, who was in my comprehensive and

PhD proposal committees. To the members of my final dissertation committee: Iluju

Kiringa, Jarek Gryz, and Alex Ramirez.

Finally, I’d like to thank my dear friends who shared with me during all the years

I spent in Ottawa: Martin Jones, Jennifer Gisseleire, Paloma Bertossi, Carla Corral,

Leo Ferres, Gerardo Reynaga, Miguel Vargas, Natalia Villanueva, Mauricio Vines,

Carolina Ulloa, Emilie Paquin-Holmested, José Miguel Cruz, Joaqúın Aristimuño.

v

Table of Contents

Abstract ii

Acknowledgements iv

List of Tables ix

List of Figures x

Chapter 1 Introduction 1

Chapter 2 Background 8

2.1 Disjunctive Datalog Programs and Stable Model Semantics 8

2.2 Databases and Integrity Constraints 11

2.3 Database Repairs and Repair Programs 19

2.4 Consistent Query Answering . 28

Chapter 3 Thesis Contributions 30

3.1 Statement of the Problem and Objectives 30

3.2 Overview of Results . 34

Chapter 4 Structural Optimizations of Repair Programs 36

4.1 Introduction . 36

4.2 Auxiliary Annotations, Predicates, and Redundant Rules 37

4.3 Relevant Program Constraints . 38

4.4 Optimized Repair Programs . 41

4.5 Summary . 52

vi

Chapter 5 Optimizing Query Evaluation from Repair Programs 54

5.1 Introduction . 54

5.2 Magic Sets for Repair Programs . 56

5.3 Applying Magic Sets with the DLV System 75

5.4 Selecting and Importing Relevant Predicates 85

5.5 Related Work . 90

5.6 Summary . 92

Chapter 6 Logic-based Specification of Aggregate Queries 94

6.1 Introduction . 94

6.2 Aggregate Queries with Scalar Functions 96

6.3 Aggregate Queries with Group-By Statements 103

6.4 Summary . 112

Chapter 7 Well-Founded Semantics for CQA 115

7.1 Introduction . 115

7.2 Core Answers . 117

7.3 Well-Founded Semantics of Repair Programs 123

7.4 The Well-Founded Semantics as a Core Computation to CQA 131

7.5 Well-Founded Answers with respect to Functional Dependencies . . . 139

7.6 Well-Founded Semantics as an Approximation to CQA 152

7.7 Computing Well-Founded Answers to Queries 155

7.8 Summary . 158

Chapter 8 A Repair Semantics for Multidimensional Databases 160

8.1 Introduction . 160

vii

8.2 The Multidimensional Model . 162

8.3 The Need for MDWs Repairs and Consistent Answers 168

8.4 Repairs and Consistent Answers in MDWs 175

8.4.1 Repairs of Dimension Instances 175

8.4.2 Consistent Answers . 179

8.5 Summary . 180

Chapter 9 The Consistency Extractor System 182

9.1 Introduction . 182

9.2 ConsEx Architecture . 183

9.3 Graphical User Interface . 194

9.4 Experimental Evaluation . 199

9.4.1 Experimental Setup . 199

9.4.2 Experimental Results . 207

9.5 Summary . 212

Chapter 10 Conclusions 213

Bibliography 220

viii

List of Tables

Table 2.1 Database Repairs . 21

Table 2.2 Annotation Constants . 21

Table 10.1 Summary of Optimizations and Contributions 217

ix

List of Figures

Figure 2.1 Dependency Graph G(IC) . 14

Figure 2.2 Contracted Dependence Graph GC(IC) 15

Figure 2.3 Non-RIC-acyclic Set of ICs . 15

Figure 4.1 Dependency Graph G(IC) for a Set of UICs 40

Figure 5.1 Dependency Graph G(IC) and Relevant Predicates 87

Figure 8.1 National Parks’ Hierarchy Schema 163

Figure 8.2 National Parks’ Dimension Instance 165

Figure 8.3 Inconsistent Dimension Instance 169

Figure 8.4 Star Schema for National Parks’ Dimension 173

Figure 8.5 Dimension Instance Repairs D ′ and D ′′ 178

Figure 8.6 Non-Minimal Dimension Instance 178

Figure 9.1 ConsEx Architecture . 185

Figure 9.2 Dependency Graph G(IC) for Example 9.1 186

Figure 9.3 Dependency Graph G(IC) Restricted to the Relevant Predicates 187

Figure 9.4 Contracted Dependency Graph GC(IC) for Example 9.1 188

Figure 9.5 Database Connection in ConsEx 195

Figure 9.6 Main Menu in ConsEx . 195

Figure 9.7 Database Edition in ConsEx 196

Figure 9.8 Integrity Constraints in Example 9.1 196

Figure 9.9 Query in Example 9.1 . 197

Figure 9.10 Warning Message for the Query in Example 9.1 197

x

Figure 9.11 Consistent Answer for the Query in Example 9.1 198

Figure 9.12 Stable Models for the Repair Program in Program 9.1 198

Figure 9.13 Dependency Graph G(IC) for the ICs in the Experimental Database201

Figure 9.14 Running Time for the Conjunctive Query with Projections . . 208

Figure 9.15 Running Time for the Partially-Ground Conjunctive Query . . 209

Figure 9.16 Running Times of MS . 210

Figure 9.17 Running Time for the Boolean Query 211

xi

Chapter 1

Introduction

Integrity constraints (ICs) play an important role in databases. They capture the

intended meaning (semantics) of the data in the database. Nevertheless, databases

may become inconsistent wrt ICs due to several reasons:

(a) In virtual data integration [54] of multiple data sources, that are possibly in-

dividually consistent regarding local ICs, the system may become inconsistent

wrt the global ICs.

(b) A stand alone relational database management system may not have mecha-

nisms to express/maintain certain ICs.

(c) In legacy systems, data may not satisfy new semantic constraints.

(d) In the presence of user or informational constraints, which are used, but not

necessarily enforced by the system, etc.

Even though, ICs may be violated by databases, in most cases only a small portion

of the data is inconsistent wrt those ICs. Moreover, an inconsistent database can still

give us useful information. In addition, it could be impossible or simply undesirable

to restore consistency of the database, because (a) There is no permission to modify

the data. (b) It is an expensive process. (c) There are no mechanisms to enforce the

ICs. (d) It can be better for performance purposes not to enforce them, etc.

Thus, if the inconsistent database is going to be queried we need to distinguish

between the data (database tuples) that is affected by ICs violations and the data

1

2

that is not. Therefore, it becomes necessary and reasonable to develop methods for

retrieving consistent answers to queries from inconsistent databases.

The notion of consistent answer to a first-order (FO) query was initially defined

in [2], along with a mechanism for computing them. Intuitively, a ground tuple t̄ is

a consistent answer to a query Q(x̄) in a database instance D if it is an (ordinary)

answer to Q(x̄) in every minimal, under set inclusion, repair of D. A repair is a

database instance D′ over the same schema that is obtained from D by deleting or

inserting whole database tuples, satisfies the ICs, and departs minimally from D

under set inclusion.

Example 1.1 Consider the database schema Student(Name,Depart). The func-

tional dependency (FD) Name → Depart establishes that each student name is

associated with a unique department value. The first two tuples of the following

database instance violate the functional dependency:

Student Name Depart

smith cs

smith math

jones math

Consistency can be minimally restored by deleting either tuple Student(smith, cs) or

tuple Student(smith,math). If we delete both tuples, the resulting database is not a

repair since it does not satisfy minimality. Therefore, there are two database repairs:

Student Name Depart

smith cs

jones math

Student Name Depart

smith math

jones math

We can see that certain information persists in the repairs, e.g. tuple Student(jones ,

math) is in both repairs, since it does not violate the FD. On the other hand, the

3

inconsistent tuples Student(smith, cs) and Student(smith,math) do not persist in all

the repairs. If we want to know the name of the students in the math department,

we can pose the query Student(x ,math). The answer to this query is (jones) in both

repairs, therefore the consistent answer is (jones).

Moreover, for the boolean disjunctive query Student(smith, cs) ∨ Student (smith,

math) the consistent answer is yes, since both database repairs satisfy either one of

the tuples in the query. Notice that if we had deleted all the inconsistent data, we

would have lost this information. �

Even though the notion of consistent answer is given in terms of database repairs, it

does not mean that we need to compute all the database repairs to obtain consistent

answers. Actually, the computation of all the database repairs could be exponential,

as it is illustrated in the example below.

Example 1.2 [11] Consider the database schema R(A,B) with FD A→ B, and the

following database instance that is inconsistent wrt the FD:

R A B

1 0

1 1

2 0

2 1

. .

n 0

n 1

There are 2n database repairs, hence it is not viable to evaluate queries by computing

all the database repairs. �

4

Since the computation of repairs seems to be non practical in some cases, differ-

ent methods to compute consistent answers that avoid the explicit computation of

database repairs have been proposed in the literature. The methods can be classified

into two groups [11]: methods based on query transformation, and methods that use

a compact representation of repairs.

1) Query Transformation: Given a FO query Q and a set of ICs, generate a new FO

query Q’ such that when posed to a database, its usual answers correspond to the

consistent answers to Q wrt the ICs.

The first method for computing consistent answers to first-order queries based on

query transformation was proposed in [2], and implemented in [22]. This method

works for quantifier free conjunctive queries, and for a restricted set of ICs, such as

functional dependencies, and full set inclusion dependencies. However, it does not

consider more general queries or ICs with existential quantifiers, like referential ICs.

This method is polynomial in data complexity. Other polynomial time methods based

on query rewriting are presented in [27, 39], which also work for restricted set of ICs

and classes of conjunctive queries with limited forms of projection.

2) Compact Representation of Repairs: Given a database instance and a set of ICs,

the goal is to construct an efficient representation of all the repairs for the database

instance, and use it to answer queries.

Compact representations of repairs were presented first in [4, 5], where repairs

wrt functional dependencies are represented as maximal independent sets in conflict

graphs. This approach was also adopted in [26, 27] to represent database repairs

regarding denial constraints, and compute consistent answers to quantifier free first-

order queries.

Another form of compact representation of repairs, which moreover permits to

handle Consistent Query Answering (CQA) for more complex classes of queries and

5

ICs, is the representation of database repairs as stable models [44, 68] of disjunctive

logic programs [33]. The latter act as an executable and compact logical specifica-

tions of repairs. Disjunctive logic programs [33] have been introduced as a tool for

knowledge representation and non-monotonic reasoning. The stable models semantics

[44, 68] is the most accepted semantics for this kind of programs.

Disjunctive repair programs with stable models semantics [44, 68] were first in-

troduced in [3, 46] to specify database repairs. Simpler and more general repair

programs were later introduced in [6, 7] for CQA. The logic programming approach

is more general than the methods presented before. It works for all universal ICs

and queries that are first-order or even expressed in Datalog with negation. In [13]

the methodology was extended to handle sets of acyclic referential ICs. Later, in [16]

the methodology was extended to handle databases that may contain null values. In

[7, 16] it was shown that there is a one to one correspondence between the stable

models of the repair program and the database repairs wrt RIC-acyclic sets of ICs

[16] (cf. Definition 2.2).

Moreover, logic-based approaches to CQA in the context of data integration sys-

tems were presented in [12, 15, 34, 55]. In a data integration system, a set of indepen-

dent databases, possibly individually consistent wrt local ICs, are integrated into a

new, global, virtual database. This new global database may become inconsistent wrt

different global ICs. In [14] a logic programming framework for CQA in peer-to-peer

data exchange systems is described.

In the general case, the data complexity of CQA is ΠP
2 -complete [28]. Conse-

quently, in the worst case, it is necessary to use an expressive language such as

disjunctive logic programs under stable models semantics, for which query evaluation

has the same data complexity [30]. Nevertheless, it is possible to identify classes of

ICs and queries, for which CQA has lower data complexity. Some polynomial time

6

cases of CQA have been identified in [2, 7, 27, 39].

In this thesis, we are interested in optimizing and implementing the general logic

programming approach to CQA from stand alone databases. Essentially, we are

concerned with improving the structure of repair programs (cf. Chapter 4), model

computation, and query evaluation from them (cf. Chapter 5). For instance, we

develop optimization techniques that reduce the amount of data involved in the com-

putation of queries, in such a way that only relevant base data and program rules are

involved in query evaluation.

The optimized techniques presented in Chapter 5 are implemented in the “Con-

sistency Extractor System”, which is described in Chapter 9. Also, in Chapter 9 we

report experimental results that show the gain, in terms of execution time of queries,

of our optimized methods for computing query answers.

We also explore the use of the well-founded semantics of programs [75] to CQA.

This semantics has lower data complexity than the stable models semantics, and

therefore, it becomes a good alternative for cases in which CQA has lower data

complexity. The analysis of the WFS of programs is done in Chapter 7.

Moreover, we extend logic programs to compute consistent answers to aggregate

queries with scalar functions, and aggregate queries with group-by statements. This

is presented in Chapter 6.

Scalar queries apply one of the aggregate functions min, max, count, sum, avg

over an attribute of a database relation, and return a unique value for the whole

relation. The group-by queries perform grouping on the values of an attribute or a

set of attributes, and apply one of the aggregate functions over each group. In this

way, a single value for each group is computed, instead of a unique value for the

whole relation. The semantics of consistent answers to scalar aggregate queries was

given in [4]. The semantics of consistent answers to aggregate queries with group-by

7

statements adopted in this thesis follows the spirit of the semantics presented in [4].

Moreover, we develop a repair semantics for Multidimensional Databases (MDBs)

[48]. This kind of databases differs from the relational databases considered so far in

terms of data schema and ICs. We show that multidimensional ICs can easily be vio-

lated and affect the processing of queries. As a consequence, a new framework to deal

with inconsistencies and retrieve consistent answers is needed for Multidimensional

Databases.

This thesis is organized as follows: In Chapter 2 we recall some concepts and

terminology. Chapter 3 presents the statement of the problem and the thesis contri-

butions. Chapter 4 contains the optimizations performed on the structure of repair

programs. Chapter 5 presents optimized methods to evaluate programs. In Chapter 6

we describe the specification of repair programs to compute consistent answers to ag-

gregate queries. Chapter 7 studies the well-founded semantics of programs for CQA.

Chapter 8 presents the repair semantics for Multidimensional Databases. Chapter 9

describes the “Consistency Extractor System”, which is an optimized implementation

of CQA based on logic programs. Also, this chapter presents experimental results.

Final conclusions, future work, open problems, and contributions are discussed in

Chapter 10.

Chapter 2

Background

In this chapter we recall the main concepts and terminology related to disjunctive

Datalog programs and the stable models semantics. We also introduce basic concepts

of databases, integrity constraints, database repairs, and consistent query answering.

2.1 Disjunctive Datalog Programs and Stable Model Semantics

A disjunctive Datalog rule r is an expression of the form:

a1(x̄1) ∨ · · · ∨ an(x̄n)← b1(ȳ1), . . . , bk(ȳk), not bk+1(ȳk+1), . . . , not bm(ȳm), (2.1)

where ai(x̄i), bi(ȳi) are atoms in a relational first-order language, ai, bi are relation

names (predicates), and x̄i, ȳi are lists of variables and constants that match the

arity, i.e. number of attributes, of ai, bi respectively. Here, not represents weak

negation, also known as default negation, and the symbol “,” is conjunction. A

literal is an atom, e.g. p(c̄) or its negation not p(c̄). For a set of literals L, not .L
is the set of literals that are complementary to those in L. For a literal L, not .L

denotes the literal that is complementary to L.

The disjunction a1(x̄1) ∨ · · · ∨ an(x̄n) is the head of r, and it is denoted by H(r),

while the conjunction b1(ȳ1), . . . , bk(ȳk), not bk+1(ȳk+1), . . . , not bm(ȳm) is the body of

r, denoted by B(r). We identify with B+(r) the set of positive literals occurring in the

8

9

body of the rule i.e. B+(r) = {b1(ȳ1), . . . , bk(ȳk)}, and B−(r) denotes the set of com-

plements of negative literals in the body of r i.e. B−(r) = {bk+1(ȳk+1), . . . , bm(ȳm)}.

A disjunctive program is a finite set of rules. If the rules do not involve disjunction,

i.e. n = 1 for every rule in the program, then the program is called a disjunction free

or normal program. If k = m = 0, then r is a fact, and we omit the symbol ←. A

program is called positive if m = 0 for every rule. For a disjunctive Datalog program

Π and set of facts D , we denote by Π[D] the program Π ∪ D .

We call extensional predicates to the predicates (EDB) that occur only in the

body of the rules i.e. they are defined by the facts of a database. Otherwise they are

called intensional predicates (IDB), i.e. predicates that are defined by the rules in

the program.

For any program Π, the Herbrand universe [64], denoted by UΠ, is the set of all

constants appearing in Π. In case no constant appears in the program, an arbitrary

constant is added to UΠ. The Herbrand base, BΠ, is the set of all ground atoms

constructible from the predicate symbols appearing in Π and the constants of UΠ.

The Herbrand instantiation of a program Π corresponds to all the instances of rules

of the form (2.1) in Π, where variables are replaced with constants from UΠ. We

denote by ground(Π) the instantiated or ground program Π. A ground program is

also called a propositional program.

An interpretation I for a program Π is a subset I ⊆ BΠ. A ground atom p(c̄)

is true wrt I if p(c̄) ∈ I, and false otherwise. A ground rule r of the form (2.1) is

satisfied by I if either: (a) some of the atoms in H(r) is in I i.e. H(r) ∩ I 	= ∅, or

(b) some of the negative literals in the body of r is in I, i.e. B−(r) ∩ I 	= ∅, or (c)

some of the positive literals in the body of r i.e. some literal in B+(r), is false wrt I.

Otherwise, the rule is not satisfied. The interpretation I is a model of program Π if

it satisfies all the rules in ground(Π). Moreover, a model for ground(Π) is minimal if

10

no proper subset of it is a model of ground(Π), i.e. if no proper subset of it satisfies

all the rules in ground(Π).

We adopt the stable models semantics [44, 68] as the semantics for a disjunctive

Datalog program. According to it, a disjunctive program can have several minimal

stable models. An interpretation I is a stable model of program Π if it is a minimal

model of the Gelfond-Lifschitz (GL) reduction of Π wrt I, such a reduction is an

instantiated program without negation obtained from ground(Π) by: (a) deleting all

the rules having a ground literal of the form not p(c̄) with p(c̄) ∈ I, (b) eliminating

all the ground literals of the form not p(c̄) from the remaining rules. The set of all

the stable models of a program Π is denoted by SM (Π).

Example 2.1 For program Π: M(x) ∨Q(x)← R(x), not S(x), with U = {a}, and

interpretation I = {R(a),M(a)}, the ground program ground(Π) is: M(a)∨Q(a)←
R(a), not S(a). The GL reduction of Π regarding I is: M(a) ∨ Q(a) ← R(a). Here

interpretation I is a minimal model of program Π, and therefore {R(a),M(a)} is a

stable model of Π. Program Π has two stable models: M1 = {R(a),M(a)} and

M2 = {R(a), Q(a)}. �

In our setting, stable models are sets of ground atoms. They are total interpretations,

i.e. atoms are either true or false in the model, but never unknown. More specifically,

any ground atom that is not in the model is considered false, by applying the closed

world assumption [69] to the model. For instance, in Example 2.1 atom Q(a) is not

in stable model M1, and therefore it is considered false regarding M1. Also, atom

M(a) is false wrtM2, and atom S(a) is false regarding both stable models.

In the logic programming framework under stable models semantics, there are two

main notions of reasoning, the cautious and the brave reasoning. In the former, a

literal L is entailed by the program if it is true in every stable model of the program.

11

In the latter, a literal L is entailed by the program if it is true in at least one stable

model of the program. For instance, in Example 2.1, atom R(a) is cautiously true,

since R(a) ∈ M1 and R(a) ∈ M2. On the contrary, atom Q(a) is only bravely true

since it is true only in modelM2.

In addition, two programs Π1 and Π2 are bravely (resp. cautiously) equivalent

wrt a query Q, denoted Π1 ≡Q Π2, if for any set D of facts, brave (resp. cautious)

answers to Q from the program Π1 ∪ D are the same as the brave (resp. cautious)

answers to Q from Π2 ∪ D .

2.2 Databases and Integrity Constraints

We consider a relational database schema Σ = (U ,R,B), where U is the possibly

infinite database domain with null ∈ U , R is a fixed set of database predicates, each

of them with a finite, and ordered set of attributes, and B is a fixed set of built-in

predicates, like comparison predicates, e.g. {<,>,=, 	=}. R[i] denotes the attribute

in position i of predicate R ∈ R. Database instances of a relational schema Σ are

finite collections D of ground atoms of the form R(c1, ..., cn), which are called database

tuples, where R ∈ R, and (c1, ..., cn) is a tuple of constants, i.e. elements of U . The

extensions for built-in predicates are fixed, and possibly infinite in every database

instance. There is also a fixed set IC of integrity constraints, that are sentences in

the first-order language L(Σ) determined by Σ. They are expected to be satisfied by

any database instance of Σ, but they may not.

An integrity constraint is a sentence ψ ∈ L(Σ) of the form:

∀x̄(
m∧
i=1

Pi(x̄i) −→ ∃z̄(
n∨
j=1

Qj(ȳj, z̄j) ∨ ϕ)), (2.2)

where Pi, Qj ∈ R, x̄ =
⋃m
i=1 x̄i, z̄ =

⋃n
j=1 z̄j, ȳj ⊆ x̄, x̄ ∩ z̄ = ∅, z̄i ∩ z̄j = ∅ for

12

i 	= j, and m ≥ 1.1 Here ϕ is a formula containing only disjunctions of built-in atoms

from B whose variables appear in the antecedent of the implication.2 We will assume

that there exists a propositional atom false ∈ B that is always false in the database.

Domain constants different from null may appear in a constraint of the form (2.2).

In this thesis we will consider universal and referential ICs. When writing them, we

usually will not write the prefix of universal quantifiers.

A universal integrity constraint (UIC) is a sentence in L(Σ) that is logically equiv-

alent to a sentence of the form:

∀x̄(
m∧
i=1

Pi(x̄i) →
n∨
j=1

Qj(ȳj) ∨ ϕ), (2.3)

that is, a formula of the form (2.2) with z̄ = ∅, i.e. without existentially quantified

variables.

A referential integrity constraint (RIC) is a sentence of the form:3

∀x̄(P (x̄)→ ∃z̄ Q(ȳ, z̄)), (2.4)

that is, a formula of the form (2.2) with m = n = 1, ϕ = ∅, ȳ ⊆ x̄, and P,Q ∈ R.

The class of ICs of the form (2.2) includes most of the ICs commonly found in

database practice, e.g. a denial constraint can be expressed as ∀̄x̄(∧m
i=1 Pi(x̄i) −→

false). Functional dependencies can be expressed by several implications of the form

(2.2), each of them with a single equality in the consequent. Partial inclusion de-

pendencies are RICs, and full inclusion dependencies are UICs. We can also specify

unary constraints, also called check constraints, that allow to express conditions on

each row of a table, so they can be formulated with one predicate in the antecedent

1Note that if z̄i∩z̄j 	= ∅ the formula can be rewritten as an equivalent formula such that z̄i∩z̄j = ∅.
2The left hand side of a implication is called the antecedent, while that the right hand side is

called the consequent of the implication.
3For simplification purposes, we assume that the existential variables appear in the last attributes

of Q, but they may appear anywhere else in Q.

13

of (2.2) and only a formula ϕ in the consequent. For example, ∀xy(P (x, y)→ y > 0)

is a unary constraint.

Example 2.2 For Σ = {Student(id , name), Grad(id , name),Assistant(id , course)},
the following are UICs:

• The functional dependency (FD) Student : id → name, expressed in L(Σ) by

∀idname1name2 (Student(id , name1) ∧ Student(id , name2)→ name1 = name2)

• The full inclusion dependency (IND) Grad [id , name] ⊆ Student [id , name], ex-

pressed by ∀id name (Grad(id , name) → Student(id , name)).

The non-full inclusion dependency Assistant[id] ⊆ Student[id] can be expressed

as a RIC: ∀id course(Assistant(id, course) → ∃name Student(id, name)). Here x̄ =

(id , course), ȳ = (id), and z̄ = (name). �

We consider a fixed finite set IC of ICs of the form (2.2). Notice that sets of con-

straints of this form are always logically consistent, in the classical sense, since empty

databases always satisfy them.

Definition 2.1 [21] The directed dependency graph G(IC) for a set IC of ICs of the

form (2.2) is defined as follow: each database predicate P in D is a node, and there

is an edge (Pi, Pj) from Pi to Pj iff there exists a constraint ic ∈ IC such that Pi

appears in the antecedent of ic and Pj appears in the consequent of ic. In addition,

there is an edge (Pi, Pi) from Pi to Pi if Pi appears in the antecedent of an ic which

has only built-in predicates in its consequent. A node is called a sink (source) if it

has only incoming (outgoing) edges. �

14

S Q

R

T1 3

2

Figure 2.1: Dependency Graph G(IC)

Example 2.3 Figure 2.1 shows the dependency graph G(IC) for the set IC of UICs

containing ic1 = ∀x(S(x) → Q(x)) and ic2 = ∀x(Q(x) → R(x)), and the RIC

ic3 = ∀x(Q(x)→ ∃yT (x, y)).

Edges 1 and 2 correspond to the universal constraints ic1 and ic2 resp., and edge

3 to the referential IC. Nodes R and T are sink nodes, S is a source node. �

A connected component in a graph is a maximal subgraph such that, for every pair

(A,B) of its vertices, there is a path from A to B or from B to A. For a graph G,
C(G) := {c | c is a connected component in G}; and V(G) is the set of vertices of G.

Definition 2.2 [16] Given a set IC of UICs and RICs, IC U denotes the set of UICs

in IC . The contracted dependency graph of IC , GC(IC), is obtained from G(IC)

by replacing, for every c ∈ C(G(IC U)),4 the vertices in V(c) by a single vertex and

deleting all the edges associated to the elements of IC U . Finally, IC is said to be

RIC-acyclic if GC(IC) has no cycles. �

Example 2.4 (example 2.3 cont.) Figure 2.2 shows the contracted dependency graph

GC(IC), which is obtained by replacing in G(IC) the edges 1 and 2, and their end

vertices by a vertex labelled with {Q,R, S}.
Since there are no loops in GC(IC), the set IC is RIC-acyclic. However, if we

add a new UIC: ∀xy(T (x, y) → R(y)) to IC , all the vertices belong to the same

connected component. Figure 2.3 shows G(IC) and GC(IC), respectively. Since there

is a self-loop in GC(IC), the set of ICs is not RIC-acyclic.

4Notice that for every c ∈ C(G(ICU)) it holds c ∈ C(G(IC)).

15

Q ,R,S T3

Figure 2.2: Contracted Dependence Graph GC(IC)

S Q

R

T1

2

3

4 Q,R,S
T

3

Figure 2.3: Non-RIC-acyclic Set of ICs

�

A set of UICs is always RIC-acyclic, as expected.

A database instance D is consistent if it satisfies the given set IC of ICs. Other-

wise, it is inconsistent wrt IC . The semantics of constraint satisfaction in presence

of null values we consider is the one defined in [16]. In order to present it, we need

to introduce the concept of relevant attribute.

Definition 2.3 [16] For t a term, i.e. a variable or a domain constant, let posR(ψ, t)

be the set of positions in predicate R ∈ R where term t appears in IC ψ. The set A
of relevant attributes for an IC ψ of the form (2.2) is:

A(ψ) = {R[i] | x is variable present at least twice in ψ, 5 and i ∈ posR(ψ, x)} ∪
{R[i] | c is a constant in ψ and i ∈ posR(ψ, c)},

where R[i] denotes a position (or the correspondent attribute) in relation R. �

The relevant attributes include the attributes needed to check the satisfaction of the

constraints, e.g. the attributes in joins, in built-ins, etc. Note that if the built-ins

have variables that are redundant or not needed, it might have the undesirable effect

5If a variables appears at least twice in a IC, then it is involved in a join, or it is in the head and
in the body of the IC, or it is in a built-in atom. In all these cases, the variable is relevant.

16

of transforming an attribute in relevant when it does not need to. For example the

constraint ∀xy(P (x, y) → y > 3 ∨ x = x) is equivalent to ∀xy(P (x, y) → y > 3), but

the first has relevant attributes x and y and the second one, only y.

Definition 2.4 [16] For a set of attributes A and a predicate P ∈ R, PA denotes the

predicate P restricted to the attributes in A. DA denotes the database D with all its

database atoms projected onto the attributes in A, i.e. DA = {PA(ΠA(t̄)) | P (t̄) ∈
D}, where ΠA(t̄) is the projection on A of tuple t̄. DA has the same underlying

domain U as D. �

Example 2.5 Consider a UIC ψ : ∀xyz(P (x, y, z) → R(x, y)) and the following

database instance D :

P X Y Z

a b null

b null a

R X Y

a b

Here x and y appear twice in ψ, therefore A(ψ) = {P [1], R[1], P [2], R[2]}. The value

in z is not relevant to check the satisfaction of the constraint, because we want to

verify if the values in the first two attributes in P also appear in R, which is equivalent

to checking if ∀xy(PA(ψ)(x, y)→ RA(ψ)(x, y)) is satisfied by DA(ψ), where DA(ψ) is:

PA(ψ) X Y

a b

b null

RA(ψ) X Y

a b

�

Intuitively, a constraint is satisfied if any of the relevant attributes has a null value

or the constraint is satisfied in the traditional way, that is, as first-order satisfaction

and with null values treated as any other constant.

17

In order to verify if an attribute takes the null value, the special predicate IsNull(·)
is added to the language, with IsNull(c) true iff c is null . This predicate is needed

since using the built-in comparison atom c = null will not work in traditional database

management systems, where this equality would be always evaluated as unknown (the

unique names assumption does not apply to null values [69]).

The semantics of constraint satisfaction in presence of null values is defined as

follows.

Definition 2.5 [16] A constraint ψ of the form (2.2) is satisfied in the database

instance D , denoted D |=
N
ψ, iff DA(ψ) |= ψN , where ψN is:

∀x̄(
m∧
i=1

P
A(ψ)
i (x̄i) → (

∨
vj∈A(ψ)∩x̄

IsNull(vj) ∨ ∃z̄(
n∨
j=1

Q
A(ψ)
j (ȳj, z̄j) ∨ ϕ))), (2.5)

with x̄ = ∪mi=1x̄i and z̄ = ∪nj=1z̄j. DA(ψ) |= ψN refers to the classical first-order

satisfaction with null treated as any other constant in U . �

In other words, an IC of the form (2.2) is satisfied (a) whenever there exists a null

value in any of the relevant attributes in its antecedent, (b) if no null values appear

in the antecedent, then the second disjunction in the consequent of formula (2.5)

is satisfied, which correspond to the consequent of the original IC restricted to the

relevant attributes. This check can be done as usual, treating nulls as any other

domain constant.

Example 2.6 (example 2.5 cont.) To check if D |=
N
ψ with ψ : ∀xyz(P (x, y, z)→

R(x, y)), we need to verify if DA(ψ) |= ∀xy(PA(ψ)(x, y) → (IsNull(x) ∨ IsNull(y)∨
RA(ψ)(x, y))). For x = a and y = b, DA(ψ) |= PA(ψ)(a, b), since none of them is a

null value, i.e. IsNull(a) and IsNull(b) are both false, we need to check if DA(ψ) |=
RA(ψ)(a, b), which in this case is true.

18

For x = b and y = null , DA(ψ) |= PA(ψ)(b, null), since there is a null in a relevant

attribute, i.e. IsNull(null) is true, the constraint is trivially satisfied. As a conse-

quence, and since there are no tuples that violate the IC, the database instance D is

consistent regarding IC.

The database instance D ′ below is inconsistent regarding the UIC ψ : ∀xyz
(P (x, y, z) → R(x, y)).

P X Y Z

a b null

b b a

R X Y

a b

This is because, for x = b and y = b, DA(ψ) |= PA(ψ)(b, b), but since none of them is

a null value, we need to check if DA(ψ) |= RA(ψ)(b, b), which in this case is false. �

The predicate IsNull can be used to specify NOT NULL-constraints, which are com-

mon in commercial database management systems. A NOT NULL-constraint pre-

vents certain attributes from taking a null value. As discussed before, this constraint

is different from having x 	= null.

Definition 2.6 [16] A NOT NULL-constraint (NNC) is a denial constraint of the

form

∀̄x̄(P (x̄) ∧ IsNull(xi)→ false), (2.6)

where xi ∈ x̄ is in the position of the attribute that cannot take null values. For a

NNC ψ, D |=
N
ψ iff D |= ψ in the classical sense, treating null as any other constant.

�

Notice that a NNC is not of the form (2.2), because it contains the special predicate

IsNull . Nevertheless, when constructing the dependency graph for a set of ICs, NNCs

19

will be treated as any unary IC, i.e. if there is a NNC on predicate P then there will

exist an edge (P, P) from node P to P in the graph G(IC).

Example 2.7 Consider the database schema Student(ID ,Name), the primary key of

Student can be specified by the UIC: ∀xyz(Student(x, y) ∧ Student(x, z) → y = z)

together with the NNC ∀xy(Student(x, y) ∧ IsNull(x) → false). The UIC specifies

that the first attribute of the relation is the primary key of it, and the NNC prevents

that this attribute takes a null value.

The dependency graph for this set of ICs contains the edge (S tudent, Student).�

2.3 Database Repairs and Repair Programs

When inconsistencies arise in a database instance D , consistency can be restored by

deleting and/or inserting tuples. In particular, RICs (of the form (2.4)) are repaired

by tuple deletions or tuple insertion with null values. In this way, a repair is a

new database instance with the same schema as D that satisfies the ICs and differs

minimally (under set inclusion) from the D [2].

In order to formally define database repairs, we need to introduce the following

concepts:

Definition 2.7 [2] Let D ,D ′ be database instances over the same schema and

domain. The distance, ∆(D , D ′), between D and D ′ is the symmetric difference

∆(D ,D ′) = (D � D ′) ∪ (D ′ � D). �

It is possible to define a partial order between database instances.

Definition 2.8 [16] Let D ,D ′,D ′′ be database instances over the same schema and

domain U . It holds D ′ ≤D D ′′ iff:

1. For every atom P (ā) ∈ ∆(D ,D ′), with ā ∈ (U � {null}),6 it holds that P (ā) ∈
6that ā ∈ (U − {null}) means that each of the elements in tuple ā belongs to (U − {null}).

20

∆(D ,D ′′).

2. For every atom Q(ā, null) ∈ ∆(D ,D ′),7 with ā ∈ (U � {null}), there exists a

b̄ ∈ U such that Q(ā, b̄) ∈ ∆(D ,D ′′) and Q(ā, b̄) 	∈ ∆(D ,D ′). �

This partial order is used to define the repairs of an inconsistent database.

Definition 2.9 [16] Given a database instance D and a set IC of ICs of the form

(2.2), and NNCs of the form (2.6), a repair of D wrt IC is a database instance D′

over the same schema of D, such that:

(b) D′ |=
N

IC ,

(c) D′ is ≤D-minimal in the class of database instances that satisfy IC wrt |=
N
, i.e.

there is no database D′′ in this class with D′′ <D D′, where D′′ <D D′ means

D′′ ≤D D′ but not D′ ≤D D′′.

The set of repairs of D wrt IC is denoted by Rep(D, IC). �

In the absence of null , this definition of repair coincides with the one in [2].

We assume that our set IC of ICs, consisting of ICs of the form (2.2) and NNCs of

the form (2.6) are non-conflicting, in the sense that there is no NNC on an attribute

of a relation that is existentially quantified in an IC of the form (2.2).

Example 2.8 The database instance D = {S(a), S(b), R(b)} is inconsistent wrt IC :

∀x(S(x) → R(x)), since S(a) is in D , but R(a) is not. Consistency can be restored

by inserting R(a) or deleting S(a). Table 2.1 shows the two database repairs of D

and the difference, in terms of whole tuples, wrt the original database instance D .

7null is a tuple of null values, that for simplification purposes, are placed in the last attributes
of Q, but could be anywhere else in Q.

21

i Di ∆(D,Di)
1 {S(a), S(b), R(a), R(b)} {R(a)}
2 {S(b), R(b)} {S(a)}

Table 2.1: Database Repairs

The database instance D3 = {} is consistent wrt IC , but it is not a repair since it

does not satisfy minimality. In fact, ∆(D ,D3) = {S(a), S(b), R(b)}, and D2 <D D3.

For database instance D = {P (a, null), P (b, c), R(a, b)} and IC : ∀xy(P (x, y) →
∃zR(x, z)), there are two repairs: D1 = {P (a, null), P (b, c), R(a, b), R(b, null)}, with

∆(D,D1) = {R(b, null)}, and D2 = {P (a, null), R(a, b)}, with ∆(D,D2) = {P (b, c)}.
The database instance D3 = {P (a, null), P (b, c), R(a, b), R(b, d)}, for any d ∈ U
different from null , is not a repair: Since ∆(D,D3) = {R(b, d)}, we have D1 <D D3

and, therefore D3 is not ≤D-minimal. �

Database repairs can be specified as stable models (SM) of disjunctive logic programs

[44, 68]. The idea is that, given an inconsistent database instance D and a set IC

of RIC-acyclic ICs, a disjunctive repair program Π(D , IC) is constructed, such that

there is a one-to-one correspondence between the stable models of Π(D , IC) and the

repairs of D [7, 16].

Annotation Atom The tuple P (ā) is ...
td P (ā, td) P (ā) is true in the database.
ta P (ā, ta) P (ā) is advised to be made true.
fa P (ā, fa) P (ā) is advised to be made false.
t� P (ā, t�) P (ā) is true or is made true.
t�� P (ā, t��) P (ā) is true in the repair.

Table 2.2: Annotation Constants

As mentioned before, repair programs use annotation constants, whose role is to

enable the definition of atoms that can become true in the repairs or false in order

to satisfy the ICs. The idea is to use logic rules to specify how a database violates

22

certain ICs, and how the database can become consistent wrt the ICs. Actually, each

atom of the form P (ā) can receive one of the constants in Table 2.2.

Annotations are performed according to the following sequential steps: first ground

atoms P (c̄) from the database receive an extra argument td, as a consequence, P (ā, td)

becomes a fact in Π(D , IC). Next, for each IC a disjunctive rule is constructed in such

a way that the body of the rule captures the violation condition for the IC; and the

head describes how to restore the consistency by deleting or inserting the correspond-

ing tuples. These endorsements are seized by the ta, fa annotations. For instance,

atom P (ā, ta) establishes the insertion of P (ā); and P (ā, fa), the deletion of P (ā).

As an illustration, for the inclusion dependency ∀x(S(x) → R(x)), the disjunctive

program rule:

S(x, fa) ∨R(x, ta)← S(x, td), not R(x, td), (2.7)

states that if the tuple S(x, td) is a program fact, but R(x, td) is not, then consistency

is restored by deleting S(x), which receives constant fa in the head of the rule, or by

inserting R(x), which receives the ta constant.

The t� constant is introduced in order to keep repairing the database if there is

interaction of ICs. Thus, it becomes highly significant in cases where the insertion

of a tuple may generate a new IC violation, e.g. if due to a different IC, S(c, ta) is

generated and R(c) is not in the database, or R(c) has been made false, the constraint

is violated once again. The aftermath is that the program rule (2.7) has to be changed

to:

S(x, fa) ∨R(x, ta)← S(x, t�), not R(x, td), (2.8)

where the atom S(x, t�) becomes true if either S(x, td) or S(x, ta) are true. Moreover,

rule (2.9) has to be added to the program. This rule captures the case when S(c, ta)

has been generated, but R(c) has been made false, which again causes the violation

23

of the IC.

S(x, fa) ∨R(x, ta)← S(x, t�), R(x, fa), (2.9)

Finally, atoms with constant t�� are the ones that become true in the repairs. They

are use to read off the database atoms in the repairs. The following program was

introduced in [7, 13].

Definition 2.10 [7, 13] The repair program Π(D , IC) for a database instance D and

set IC of UICs, RICs and NNCs is composed by the following rules:

1. dom(a), for each constant a ∈ (U − {null}).

2. P (ā, td), for each atom P (ā) ∈ D .

3. For every UIC ψ of the form (2.3), the set of rules:

∨n
i=1 Pi(x̄i, fa) ∨

∨m
j=1 Qj(ȳj , ta) ←

∧n
i=1 Pi(x̄i, t�),

∧
Qj∈Q′ Qj(ȳj , fa),

∧
Qk∈Q′′ not Qk(ȳk, td),

∧
xl∈(A(ψ)∩x̄) dom(xl), ϕ̄,

for every set Q′ and Q′′ of atoms appearing in formula (2.3) such that Q′∪Q′′ =
⋃m
i=1Qi and Q′ ∩ Q′′ = ∅, where A(ψ) is the set of relevant attributes for ψ,

x̄ =
⋃n
i=1 xi, and ϕ̄ is a conjunction of built-ins that is equivalent to the negation

of ϕ.

4. For every RIC ψ of the form (2.4), the rules:

P (x̄, fa) ∨Q(ȳ,null , ta)← P (x̄, t�), not auxψ(ȳ), dom(ȳ).

And for every zi ∈ z̄:

auxψ(ȳ)← Q(ȳ, z̄, t�), not Q(ȳ, z̄, fa), dom(ȳ), dom(zi).

5. For every NNC of the form (2.6), the rule:

P (x̄, fa)← P (x̄, t�), xi = null .

6. For each predicate P ∈ R, the annotation rules:

P (x̄, t�)← P (x̄, td). P (x̄, t�)← P (x̄, ta).

24

7. For every predicate P ∈ R, the interpretation rules:

P (x̄, t��) ← P (x̄, ta). P (x̄, t��) ← P (x̄, td), not P (x̄, fa).

8. For every predicate P ∈ R, the program denial constraint:

← P (x̄, ta), P (x̄, fa). �

The rules in 1. capture the database constants except for the null , which are stored

in an auxiliary predicate dom. The rules in 2. establish the program facts which are

the elements of the database. The rules in 3., 4., and 5. capture in the right-hand

side the violation of ICs of the form (2.3), (2.4), and (2.6), respectively, and with the

left-hand side the intended way of restoring consistency.

In particular, the set of predicates Q′ and Q′′ in rules in 3. are used to check

that in all the possible combinations, the consequent of an UIC is not being satisfied.

The rules in 4. enforce the satisfaction of a RIC, for instance if P (ā, t�) is true and

aux (ā) is false, i.e. there is no z̄ such that Q(ā, z̄) is true or was made true by

the repair program, then there consistency can be restored by deleting P (ā) or by

adding Q(ā, null) to the database. Notice that the aux predicate permits to check

the existence of such Q(ā, z̄) atom.

Moreover, since the satisfaction of UICs and RICs needs to be checked only if

none of the relevant attributes of the antecedent are null , we use dom(x) in rules in

3., and in the two rules in 4. dom(ȳ) denotes the conjunction of the atoms dom(yj)

for yj ∈ ȳ. Notice that rules in 4. are implicitly based on the fact that the relevant

attributes for a RIC of the form (2.4) are A = {y | y ∈ ȳ}.
The rules in 6. capture the atoms that become true in the program. The rules in

7. capture the atoms that become true in the repairs. The rule in 8. represents the

program denial constraints, i.e. the rules that discard the models where a same tuple

is both deleted and inserted.

25

Program constraints are head-free rules; program denial constraints are program

constraints with only positive and built-in atoms in the body. (Database) denial con-

straints are ICs, i.e. conditions that have to be satisfied by the database relations,

that can be written as program denial constraints. However the role of a program

constraint (denial or not) is to discard the stable models that violate them. In the fol-

lowing we will use “(denial) constraint” for the database case, and “program (denial)

constraint” for programs.

Database repairs are retrieved from the stable models of Π(D , IC): for each stable

modelM of Π(D , IC), a repair is generated by selecting the atoms with t�� constant

inM.

Example 2.9 The repair program Π(D , IC) for D = {P (a, b, null), P (b, b, a), R(a, b),

S(a, b, b), S(null , b, b)}, and IC : ∀xyz(P (x, y, z)→ R(x, y)), ∀xy(R(x, y)→ ∃zS(x, y, z)),

and ∀xyz(S(x, y, z) ∧ IsNull(x) → false) contains the following rules:

1. dom(a). dom(b).

2. P (a, b, null , td). P (b, b, a, td). R(a, b, td). S(a, b, b, td). S(null , b, b, td).

3. P (x, y, z, fa) ∨R(x, y, ta)← P (x, y, z, t�), R(x, y, fa), dom(x), dom(y).

P (x, y, z, fa) ∨R(x, y, ta)← P (x, y, z, t�), not R(x, y, td), dom(x), dom(y).

4. R(x, y, fa) ∨ S(x, y, null, ta)← R(x, y, t�), not aux(x, y), dom(x), dom(y).

aux(x, y)← S(x, y, z, t�), not S(x, y, z, fa), dom(x), dom(y), dom(z).

5. S(x, y, z, fa)← S(x, y, z, t�), x = null .

6. P (x, y, z, t�)← P (x, y, z, td).

P (x, y, z, t�)← P (x, y, z, ta).

R(x, y, t�)← R(x, y, td).

R(x, y, t�)← R(x, y, ta).

S(x, y, z, t�)← S(x, y, z, td).

S(x, y, z, t�)← S(x, y, z, ta).

26

7. P (x, y, z, t��)← P (x, y, z, ta).

P (x, y, z, t��)← P (x, y, z, td), not P (x, y, z, fa).

R(x, y, t��)← R(x, y, ta).

R(x, y, t��)← R(x, y, td), not R(x, y, fa).

S(x, y, z, t��)← S(x, y, z, ta).

S(x, y, z, t��)← S(x, y, z, td), not S(x, y, z, fa).

8. ← P (x, y, z, ta), P (x, y, z, fa).

← R(x, y, ta), R(x, y, fa).

← S(x, y, z, ta), S(x, y, z, fa).

The rules in 3. establish the form of repairing the database according to the UIC, i.e.

by making P (x, y, z) false or R(x, y) true. These rules are constructed by choosing

all the possible sets Q′ and Q′′ such that Q′ ∪ Q′′ = {R(x, y)} and Q′ ∩ Q′′ = ∅.
The first rule in 3 considers Q′ = {R(x, y)} and Q′′ = ∅. The second corresponds to

Q′ = ∅ and Q′′ = {R(x, y)}. Note that dom atoms are only generated for the relevant

attributes to check the UIC. The rules in 4. specify the form of restoring consistency

wrt the RIC, i.e. by deleting R(x, y) or inserting tuple S(x, y, null). dom atoms are

only generated for the variables in the antecedent of the RIC. The rule 5 establishes

the way of restoring consistency wrt the NNC, i.e. by eliminating atom S(x, y, z).

This program has two stable models:

M1 = {dom(a), dom(b), P (a, b, null , td), P (a, b, null , t�), P (b, b, a, td), P (b, b, a, t�),

R(a, b, td), R(a, b, t�), S(a, b, b, td), S(a, b, b, t�), S(null , b, b, td), aux(a, b),

S(null , b, b, fa), S(null , b, b, t�), P (a, b, null , t��), P (b, b, a, t��), R(a, b, t��),

R(b, b, ta), R(b, b, t�), R(b, b, t��), S(b, b, null , ta), S(b, b, null , t�),

S(b, b, null , t��), S(a, b, b, t��)},

27

M2 = {dom(a), dom(b), P (a, b, null , td), P (a, b, null , t�), P (b, b, a, td), P (b, b, a, t�),

R(a, b, td), R(a, b, t�), S(a, b, b, td), S(a, b, b, t�), S(null , b, b, td), aux(a, b),

S(null , b, b, fa), S(null , b, b, t�), P (a, b, null , t��), P (b, b, a, fa), R(a, b, t��),

S(a, b, b, t��)}.

Thus, consistency is recovered by inserting atoms {R(b, b), S(b, b, null)} ({R(b, b, ta),

S(b, b, null , ta)} ∈ M1) and deleting atom S(null , b, b) (S(null , b, b, fa) ∈ M1); or by

deleting atoms {P (b, b, a), S(null , b, b)} ({P (b, b, a, fa), S(null , b, b, fa)} ∈ M2). The

repairs are {P (a, b, null), R(a, b), S(a, b, b), P (b, b, a), R(b, b), S(b, b, null)} and {P (a,

b, null), R(a, b), S(a, b, b)}, as expected. �

It was proved in [7, 16] that the repair program of Definition 2.10 is a correct spec-

ification of database repairs wrt RIC-acyclic sets of UICs of the form (2.3), RICs of

the form (2.4), and NNCs of the form (2.6).

There are different notions of minimality of database repairs in the literature.

For instance, in [3], minimality is based in cardinality of the set of changes. In

[10, 38, 76] minimality is based in cardinality of the set of updates, i.e. changes of

attributes values as opposed to whole tuples. Also, there are different repair policies

in the literature. As an illustration, in [27] the database instance is assumed to be

possibly incorrect but complete, then repairs are obtained by deletion of tuples only,

i.e. the insertion of new tuples is not consider as an option to restore consistency.

In [17] the database instance is assumed to be possibly incorrect and incomplete,

then functional dependencies are repaired by deletion, and referential ICs by adding

arbitrary elements of the domain. These and other alternative policies can be specified

by repair programs.

28

2.4 Consistent Query Answering

First-order queries are formulas over the same first-order language L of the integrity

constraints.

Definition 2.11 Given a database instance D , a tuple of constants t̄ is an answer

to a query Q(x̄) in D iff D |= Q(t̄) , i.e. Q(x̄) becomes true in D when the variables

are replaced by the corresponding constants in t̄. �

A consistent answer to a FO query posed to a possibly inconsistent database D wrt

a set IC of ICs is defined as follows:

Definition 2.12 [2] Given a database instance D , a tuple t̄ is a consistent answer to

a query Q(x̄) in D iff t̄ is an answer to query Q(x̄) in every repair D ′ of D. Moreover,

if a query Q is an L-sentence, i.e. a boolean query, the consistent answer is yes if

Q is true in every repair D ′ of D; and no, otherwise. The set of consistent answers

to a query Q in D wrt IC is denoted by ConsA(Q). �

In order to use repair programs to compute consistent answers, first-order queries

posed over inconsistent databases are translated into logic programs. Given a query

Q, a new query Π(Q) is generated by first expressing it as a Datalog program [64],

and next replacing every positive literal P (s̄) by P (s̄, t��), and every negative literal

not P (s̄) by not P (s̄, t��). Thus, in order to get consistent answers, Π(Q) is “run”

together with the corresponding repair program Π(D , IC). As a consequence, con-

sistent query answering is translated into cautious reasoning under the stable models

semantics [44, 68].

29

Example 2.10 (example 2.9 cont.) For the Datalog query Q : Ans(x, y)← R(x, y),

Π(Q) is Ans(x, y)← R(x, y, t��). There are two stable models of Π(D , IC)∪Π(Q):

M1 = {dom(a), dom(b), P (a, b, null , td), P (a, b, null , t�), P (b, b, a, td), P (b, b, a, t�),

R(a, b, td), R(a, b, t�), S(a, b, b, td), S(a, b, b, t�), S(null , b, b, td), aux(a, b),

S(null , b, b, fa), S(null , b, b, t�), P (a, b, null , t��), P (b, b, a, t��), R(a, b, t��),

R(b, b, ta), R(b, b, t�), R(b, b, t��), S(b, b, null , ta), S(b, b, null , t�),

S(b, b, null , t��), S(a, b, b, t��), Ans(a, b), Ans(b, b)},

M2 = {dom(a), dom(b), P (a, b, null , td), P (a, b, null , t�), P (b, b, a, td), P (b, b, a, t�),

R(a, b, td), R(a, b, t�), S(a, b, b, td), S(a, b, b, t�), S(null , b, b, td), aux(a, b),

S(null , b, b, fa), S(null , b, b, t�), P (a, b, null , t��), P (b, b, a, fa), R(a, b, t��),

S(a, b, b, t��), Ans(a, b)}.

The only Ans-atom in common is Ans(a, b), therefore ConsA(Q)= (a, b). �

In the general case, CQA over inconsistent databases is an expensive computational

task. In fact, its worst case data complexity is similar to the complexity of cautious

reasoning under stable models semantics, i.e. ΠP
2 -complete [30]. Nevertheless, it is

possible to identify classes of ICs and queries for which data complexity is lower than

the worst-case data complexity. Some polynomial cases of CQA have been reported

in [2, 7, 27, 39].

Chapter 3

Thesis Contributions

3.1 Statement of the Problem and Objectives

Since, in the general case, CQA over inconsistent databases is as expensive as the

evaluation of disjunctive logic programs under the stable models semantics (in data

complexity) [28, 30], we need the expressive language of disjunctive logic programs to

handle CQA. Nevertheless, using logic programs in a straightforward way is usually

inefficient. Therefore, it becomes relevant to optimize logic programs and query

evaluation from them.

In this thesis, we are interested in optimizing and implementing the general logic

programming approach to CQA for stand alone databases. Essentially, we are con-

cerned with improving the structure of repair programs, model computation, and

query evaluation from them. Structural optimizations of programs involve changing

the program without affecting the repair semantics. This implies the elimination of

redundant rules, auxiliary predicates, and (some) annotation constants.

With respect to improving the evaluation of logic programs, there are two impor-

tant issues to consider: First, consistent answers are obtained from stable models for

the combination of the repair and query programs. But, in most of the cases only

a subset of the program and the database facts is needed to compute answers to a

specific query. We explore the use of magic sets (MS) methodologies [8] to capture

that subset. MS optimizes the bottom-up processing of queries by simulating a top-

down evaluation of queries [23], which permits to focalize on a part of the program

30

31

and base data, instead of considering the whole sets of rules and facts. Actually, only

the rules and database facts that involve predicates and parameters related to the

predicates and values in the query are taken into account. In particular, with MS

only a relevant subset of the database is used for query evaluation.

Second, we develop a method that reduces the flow of data between the database

system and the reasoning system. This method selects and imports only the relevant

base data to compute queries from the database system, where the data resides, into

the reasoning system where programs are evaluated.

We implement optimized logic programs and methods to compute consistent an-

swers from them. The optimized system, which is based on logic programming, re-

trieves consistent answers to queries from stand alone relational databases. This is

very relevant, because as far as we know, there is no other implementation of CQA for

universal and referential ICs, and general first-order queries. Our system implements

the semantics of constraints satisfaction defined in [16], and presented in Chapter 2,

which works for databases that may contain null values.

Furthermore, it is possible to identify classes of ICs and queries for which CQA has

lower data complexity. For example, CQA regarding sets of universal ICs and projec-

tion free conjunctive queries is polynomial in data complexity [2]. In [7], head-cycle

free disjunctive repair programs are detected and translated into equivalent normal

programs with lower computational complexity (coNP -complete) [30]. Other lower

complexity classes for CQA are identified in [27, 39]. For all those cases, alternative

methods for CQA can be implemented.

In this direction, we show that there are classes of ICs and queries for which

we can compute consistent answers by using a core computation as an alternative

to computing and querying all the stable models of the repair program and query

program. The core of the original database (or of the repair program) wrt a set of

32

ICs is the set of database atoms in the intersection of all its repairs, or equivalently,

of database atoms in the intersection of all stable models of the repair program. The

core can be captured by the well-founded semantics of the program, in which case

the core can be computed in polynomial time [60]. Core computations have been

considered before for CQA for aggregate queries [4].

The well-founded semantics for normal logic programs was introduced in [75], and

later extended to disjunctive logic programs [60, 67]. It has been used as an alternative

to the stable models semantics [43, 44, 68]. In this thesis, we show that under certain

conditions, for UICs and RICs, and conjunctive queries without existential quantifiers,

the intersection of the stable models of the program composed by the repair and query

program, coincides with the set of true atoms in the well-founded interpretation (WFI)

of that program, generalizing some preliminary results obtained in [3] (for a different

kind of repair programs). This property is significant, because in those cases CQA

becomes polynomial in data complexity.

Additionally, we analyze the use of the WFS as a first step towards answering

ground disjunctive queries, leaving the stable models semantics for a second stage,

only if necessary. We also consider the use of the WFS as a general way of computing

consistent answers, and by doing so and by complexity theoretic reasons, just provid-

ing a lower complexity approximation to CQA. As an illustration, with the WFS we

retrieve a subset of the consistent answers to positive Datalog queries wrt RIC-acyclic

sets of ICs (cf. Definition 2.2).

Moreover, we extend logic programs to compute consistent answers to aggregate

queries with scalar functions, and aggregate queries with group-by statements. Our

motivation is to use both, the logic programs to specify database repairs, and the ca-

pabilities of DLV system to compute aggregates over stable models. As we mentioned

before, the former queries apply one of the aggregate functions min, max, count, sum,

33

avg over an attribute of a database relation, and return a unique value for the whole

relation. On the opposite, queries with group-by statements perform grouping on the

values of an attribute or a set of attributes, and apply one of the aggregate functions

over each group. The semantics for consistent answers to scalar aggregate queries was

given in [4]. The semantics for consistent answers to aggregate queries with group-by

statements is presented in this thesis. By using repair programs, we exploit the aggre-

gation capabilities of current reasoning systems to compute aggregate functions over

stable models, such as the DLV system [61], a state of the art system for disjunctive

logic programming.

Finally, CQA has been mostly analyzed in relational databases and in data inte-

gration systems, but there is no literature on CQA for Multidimensional Databases

(MDB). For this reason, we develop a semantic framework for CQA for Multidimen-

sional Databases [48]. We focus on Multidimensional Data Warehouses (MDWs),

which are data repositories that integrate data from different sources, and keep his-

torical data [24]. Basically, MDWs consist mainly of dimensions and facts. The

former reflect the way in which the data is organized, e.g. time, location, customers,

etc. The latter correspond to quantitative data related to the dimensions, e.g. facts

related with sales may be associated to the dimensions time and location, and should

be understood as the sales at the locations in certain periods of time.

In a multidimensional data model [48], dimensions are represented by hierarchical

schemas together with a set of dimension constraints, while the facts are represented

by tables that refer to the dimensions. Dimensions are considered as the static part

of the data warehouses, whereas the facts are considered as the dynamic part, so

that the update operations affect mainly the fact tables. However, in [50, 51] it

was shown that dimensions can be updated; dimensions constraints can be violated;

and therefore, MDWs may become inconsistent wrt them, affecting the evaluation of

34

queries. For MDBs a new repair semantics is required, since the relational notion of

database repair presented in [2] cannot be applied to MDBs, mainly because of the

different data schemas and ICs. This is presented in Chapter 8.

3.2 Overview of Results

Even though we cannot reduce the intrinsic complexity of CQA over inconsistent

databases, we can optimize the computation of consistent answers from inconsistent

databases. The contributions of this dissertation can be summarized as follows:

1. A simplified version of the repair programs of Definition 2.10. Essentially, the

annotations on database facts and auxiliary predicates are eliminated. More-

over, we make an intelligent generation of program denial constraints, so that

they are generated only when needed. The program denial constraints are the

rules that avoid that atoms becomes simultaneously annotated with both ta

and fa constants.

2. A suitable Magic Sets methodology for disjunctive repair programs. Magic sets

techniques allow to focalize on parts of the repair programs and facts that are

relevant to answer a query. We prove that our magic sets methodology is sound

and complete when it is applied to disjunctive repair programs with program

denial constraints.

3. A methodology to import into a reasoning system the relevant base data to

compute queries from a database instance.

4. The development, implementation, and description of the “Consistency Extrac-

tor System”, an optimized logic programming-based implementation to compute

consistent answers to FO queries from stand alone relational databases.

35

5. An analysis of the use of the well-founded semantics for CQA. We identify

classes of ICs and queries for which the well-founded semantics of programs

[60, 67] provides the same consistent answers to queries as the stable models

semantics [44, 68].

6. A logic programming specification of database repairs to compute consistent an-

swers to aggregate queries with both scalar functions and group-by statements.

We also provide a guide to compute consistent answers to aggregate queries in

the DLV reasoning system [61].

7. A repair semantics for Multidimensional Databases. We define a suitable notion

of repair for multidimensional dimension instances.

Chapter 4

Structural Optimizations of Repair Programs

4.1 Introduction

In this chapter we describe structural optimizations to the logic programs in Definition

2.10.

Basically, structural modifications involve changing the program without affecting

the repair semantics. Thus, we eliminate redundant rules, auxiliary predicates, and

some annotation constants. In addition, we make an intelligent generation of program

constraints, so that they are generated only when needed. Moreover, classes of ICs

are identified, for which repair programs do not contain program constraints at all.

This is important because, apart of eliminating unnecessary model checking, it allows

for the application of magic sets as implemented in the DLV system (cf. Chapter 5),

which currently requires the absence of program constraints. It has been shown that

magic sets considerably improve the evaluation of queries [29].

Through structural optimizations we obtain simpler repair programs, which are

easier to evaluate by a reasoning system.

The remain of the chapter is structured as follows. Section 4.2 presents the changes

on annotations, predicates and rules. Section 4.3 describes a method to generate rele-

vant program constrains for repair programs. Section 4.4 presents the new optimized

repair programs. Section 4.5 finalizes this chapter.

36

37

4.2 Auxiliary Annotations, Predicates, and Redundant Rules

The construction of repair programs and their evaluation can be improved by applying

suitable structural modifications. For instance, in order to generate the program

facts and domain constants, it is necessary to process the whole database, because

facts need to be annotated. This technically means bringing the database into main

memory. Therefore, given a large data set the construction of programs may become

a slow process.

First, instead of manually inserting database facts into repair programs once anno-

tated with the td constant, the facts are imported directly from the database without

any annotation; and that constant is eliminated from the programs. In consequence,

the database predicate P and its version that becomes expanded with an extra ar-

gument for the annotations have to be told apart. Therefore, the expanded version

of a predicate P is replaced by an underscored version of the predicate, e.g. P (ā, ta)

becomes P (ā, ta).

Second, the auxiliary dom predicate is also eliminated. That predicate was intro-

duced to extract database constants, which are useful to check satisfiability of ICs.

Thus, instead of checking that variables are restricted to the database domain, we

check that variables do not take null values. This is achieved by adding in rules

regarding ICs conditions of the form x̄ 	= null, instead of using dom(x̄).

Finally, instead of having two interpretation rules for each database predicate,

only one rule is used (cf. rules 7 in Definition 2.10). As previously introduced, the

interpretation rules are:

P (x̄, t��)← P (x̄, ta). (4.1)

P (x̄, t��)← P (x̄), not P (x̄, fa). (4.2)

These rules define the atoms that become true in the repairs; which are the ones

38

advised to be true (Rule 4.1) or original database facts that are not advised to be

false (Rule 4.2). Now, for each database predicate there is a single interpretation rule,

namely:

P (x̄, t��)← P (x̄, t�), not P (x̄, fa). (4.3)

With these modifications database facts do not have to be preprocessed by adding

annotations to them, and the number of rules in the repair programs decreases. Notice

that since the dom atoms were defined for each database constant in the database

domain, the elimination of the dom rules becomes relevant for large databases.

4.3 Relevant Program Constraints

Program constraints of repair programs permit to discard incoherent models, i.e.

models containing atoms annotated with both ta and fa. We can identify cases of ICs

for which a repair program will never generate such models. In those cases, program

constraints can be eliminated. Apart from eliminating unnecessary model checking,

the elimination of program constraints allows for the application of magic sets as

implemented in the DLV system (cf. Chapter 5).

It can be seen that a repair program will have rules defining P (x̄, ta), and P (x̄, fa),

for an atom P (x̄) only if there exists at least two different ICs having P (x̄) both in

the antecedent of an IC and in the consequent of another IC. In those cases, program

constraint for P should be kept.

Example 4.1 Given the database instance D = {S(a)}, and set IC : ∀x(S(x) →
Q(x)), ∀x(Q(x)→ R(x)), Π(D , IC) has the following rules:

S(a).

39

S (x, t�)← S (x, ta).

S (x, t�)← S(x).

S (x, t��)← S (x, t�), not S (x, fa).

⎫⎪⎪⎬
⎪⎪⎭

(Similarly for Q and R)

S (x, fa) ∨Q (x, ta)← S (x, t�), Q (x, fa), x 	= null.

S (x, fa) ∨Q (x, ta)← S (x, t�), not Q(x), x 	= null.

Q (x, fa) ∨R (x, ta)← Q (x, t�), R (x, fa), x 	= null.

Q (x, fa) ∨R (x, ta)← Q (x, t�), not R(x), x 	= null.

← Q (x, ta), Q (x, fa). ← S (x, ta), S (x, fa). ← R (x, ta), R (x, fa).

In the case of predicate S (and R) there is no way to generate an atom with constant

ta (fa for R). Thus, the program constraints for S and R are always satisfied, and

therefore, they can be eliminated. In contrast, for predicate Q both annotations are

needed in the program, hence its program constraint has to be kept; otherwise we

get incoherent stable models. The stable models of program Π(D , IC) without the

program constraints are:

M1 = {S(a), S (a, t�), S (a, t��), Q (a, ta), Q (a, t�), Q (a, t��), R (a, ta), R (a, t�),

R (a, t��)},

M2 = {S(a), S (a, t�), S (a, t��), Q (a, ta), Q (a, t�), Q (a, fa)},

M3 = {S(a), S (a, t�), S (a, fa)}.

M2 is an incoherent stable model and, therefore it cannot be considered as a model

of program Π(D , IC), since what we obtain from it is not a database repair. Actually,

the database repairs are: {S(a), Q(a), R(a)}, and {}, which can be generated from

stable modelsM1 ({Q (a, ta), R (a, ta)} ∈ M1) andM3 (S (a, fa) ∈M3). �

This idea can be formalized by appealing to the interaction between predicates as

40

involved in ICs, which is captured by the dependency graph of Definition 2.1.

Example 4.2 (example 4.1 cont.) Figure 4.1 shows the dependency graph G(IC) for

the set IC : ∀x(S(x)→ Q(x)), and ∀x(Q(x)→ R(x)).

S Q

R

Figure 4.1: Dependency Graph G(IC) for a Set of UICs

Node S is connected to Q due to the first IC, Q is connected to R due to the second

IC. S is a source node, R is a sink node. �

Definition 4.1 Given a database instance D , and a set IC of ICs, program Π′(D , IC)

can be obtained from Π(D , IC) by deleting program constraints for the predicates that

are sinks or sources in the dependency graph G(IC). �

Example 4.3 (example 4.1 and 4.2 cont.) Program Π′(D , IC) has the same set of

rules as program Π(D , IC), except for the program constraints for predicates S and

R. This happens because, since S is a source node and R is sink in the dependency

graph in Figure 4.1, program constraints related to them can be deleted. �

Proposition 4.1 Given a database instance D , and a set IC of ICs, Π′(D , IC) has

the same stable models as Π(D , IC).

Proof: From Definition 4.1 we know that SM (Π(D , IC)) � SM (Π′(D , IC)), hence

we need to show that SM (Π′(D , IC)) � SM (Π(D , IC)).

By contradiction, let us assume that there exists a stable model M′ for program

Π′(D , IC) that is not a model of Π(D , IC). M′ is an incoherent model, otherwise it

would be a model of Π(D , IC). Therefore, for a given predicate P ,M′ contains both

41

P (ā, ta), and P (ā, fa), and there is no a program constraint of the form: ← P (ā, ta),

P (ā, fa) in program Π′(D , IC). Since there is no a program constraint for predicate

P in program Π′(D , IC), either it is a sink or a source node in the dependency graph.

Nevertheless, if it is a sink (source) node, then there is no a rule in program Π′(D , IC)

having P (ā, fa) in its head (P (ā, ta) if source), therefore P (ā, fa) (P (ā, ta) if source)

cannot be true in modelM′. But P (ā, ta) is inM′. We have reached a contradiction.

�

Moreover, it is possible to identify classes of ICs for which repair programs do not

have any program constraints.

Corollary 4.1 If set IC of ICs contains only formulas of the form ∀̄(∧n
i=1 Pi (x̄i)

→ ϕ), where Pi(x̄i) is an atom and ϕ is a formula containing built-ins only, or

NNCs of the form (2.6), then the dependence graph G(IC) has only sink nodes. In

consequence, the repair program Π′(D , IC) has no program constraints.

Proof: Directly from the dependence graph G(IC). �

This corollary includes important classes of ICs such as key constraints, functional

dependencies, unary constraints, i.e. constraints of the form (2.2), with one database

predicate in the antecedent of the IC and only a built-in formula in the consequent,

and also NNCs. For all these ICs, we can evaluate programs with magic sets options

directly in the DLV system. In Chapter 5 we show that the magic sets technique

improves considerably the bottom-up evaluation of programs.

4.4 Optimized Repair Programs

By using all the transformations introduced so far, we obtain a new definition for the

repair program.

42

Definition 4.2 Given a database instance D , a set IC of UICs, RICs, and NNCs,

the repair program Π�(D , IC) contains:

1. P (ā), for each atom P (ā) ∈ D .

2. For every UIC ψ of the form (2.3), the set of rules:

∨n
i=1 P i(x̄i, fa) ∨

∨m
j=1 Q j(ȳj , ta) ←

∧n
i=1 P i(x̄i, t�),

∧
Q j∈Q′ Q j(ȳj , fa),

∧
Qk∈Q′′ not Qk(ȳk),

∧
xl∈A(ψ)∩x̄ xl 	= null , ϕ̄,

for every set Q′ and Q′′ of atoms appearing in formula (2.3) such that Q′∪Q′′ =
⋃m
j=1Qj(ȳj) and Q′ ∩ Q′′ = ∅, where A(ψ) is the set of relevant attributes for

ψ, x̄ =
⋃n
i=1 xi, and ϕ̄ is a conjunction of built-ins that is equivalent to the

negation of ϕ.

3. For every RIC ψ of the form (2.4), the rules:

P (x̄, fa) ∨Q (ȳ,null , ta)← P (x̄, t�), not auxψ(ȳ), ȳ 	= null.

And for every zi ∈ z̄:

auxψ(ȳ)← Q (ȳ, z̄, t�), not Q (ȳ, z̄, fa), ȳ 	= null, zi 	= null.

4. For every NNC of the form (2.6), the rule:

P (x̄, fa)← P (x̄, t�), xi = null .

5. For each predicate P ∈ R, the annotation rules:

P (x̄, t�)← P (x̄). P (x̄, t�)← P (x̄, ta).

6. For every predicate P ∈ R, the interpretation rule:

P (x̄, t��) ← P (x̄, t�), not P (x̄, fa).

7. For every predicate P ∈ R that is not a sink or a source node in G(IC), the

program constraint: ← P (x̄, ta), P (x̄, fa). �

As we would expect, the new optimized repair programs produce the same database

repairs than the original ones.

43

Theorem 4.1 Given a database instance D , and a set IC of UICs, RICs, and NNCs

of the forms (2.3), (2.4) and (2.6), respectively, the repair program Π(D , IC) as in

Definition 2.10 and the program Π�(D , IC) produce the same database repairs. �

Before proving the theorem, we introduce some concepts and obtain some results that

are needed for the proof of Theorem 4.1.

Definition 4.3 [29] Given a model M of a program Π, a predicate symbol P , and a

set of interpretations I:

(a) M [P] denotes the set of atoms in M whose predicate symbol is P .

(b) Π[P] is the set of rules of Π whose head contains predicate P .

(c) M [Π] is the set of atoms in M whose predicate symbol appears in the head of

some rule in program Π.

(d) I[P] = {M [P] | M ∈ I}, I[Π] = {M [Π] | M ∈ I}. �

Intuitively, we first prove (cf. Proposition 4.2) that the elimination of annotation

constants and rules from repair programs does not affect the semantics of programs.

Second, we show that the interpretation rules of programs Π(D , IC) and Π�(D , IC)

generate the same atoms annotated with t��, which are the atoms that become true

in the repairs.

For the proof of Proposition 4.2, and Theorem 4.1 we simplify the notation as

follows: Π denotes the repair program Π(D , IC), and Π� denotes the repair program

Π�(D , IC). Also, we define two sets: AC contains the following annotation constants

fa, ta, td, t�, {}, where {} is used to indicate “no annotation” of database facts in

program Π�. The second set is IR which only contains constant t��. SM (Π)[AC] is

44

the set of stable models of program Π restricted to the atoms that have annotation

constants in AC (for Π�, SM (Π �)[AC] contains also database facts without annota-

tions). Π[AC] is the repair program restricted to the rules whose head atom contains

one of the annotation arguments in AC . Π[IR] denotes the interpretation rules of the

repair program. Consequently, Π = Π[IR] ∪ Π[AC].

Proposition 4.2 M is a stable model of Π[AC] iff M ′ is a stable model of Π�[AC]

with M = M ′ wrt the atoms with annotation constants fa, ta, t
�.

Proof: We just need to prove that the elimination of annotation td, dom atoms, and

program constraints does not affect the semantics of repair programs and, therefore

programs Π and Π∗ have the same stable models, restricted to atoms with annotation

constants fa, ta, t
�.

(a) The elimination of annotation td of repair programs does not affect the seman-

tics of the program.

In program Π� annotation td is eliminated and database facts are used as they

come from the database, e.g. they are atoms of the form P (ā). It is easy

to see that P (ā, td) and P (ā) refer to the same database facts, since they are

retrieved from the same database instance D . Moreover, due to the elimina-

tion of td annotation, in program Π� the version of P that is expanded with

other annotations is replaced by an underscored version, e.g. P (ā, ta), becomes

P (ā, ta), etc. This is just a syntactic change. Therefore, the elimination of

annotation td does not alter the semantics of the repair program.

(b) The replacement of dom(x̄) in rules, by conditions of the form x̄ 	= null does

not affect the semantics of the program.

dom atoms are used to capture the active domain of the database without null .

By replacing it by x̄ 	= null , we ensure that x does not take the null value. Also,

45

since stable models are minimal models, they only consider the constants in the

active domain. As a consequence, we can eliminate dom of repair programs

without affecting their semantics.

(c) The elimination of program constraints as established in Proposition 4.1 does

not affect the semantics of the program. �

Proof of Theorem 4.1: Having Proposition 4.2, we just need to prove that the

interpretation rules of programs Π� and Π define the same atoms annotated with t��.

It is easy to see that the programs Π and Π� can be split [63] into a bottom

program Π[AC] (resp. Π�[AC]) and a top program Π[IR] (resp. Π�[IR]), using as a

splitting set all the atoms except the ones annotated with t��. This implies that the

programs can be hierarchically evaluated in the following way: The models of program

Π are SM (Π) =
⋃
M SM (M ∪ Π[IR]), for each stable model M in SM (Π)[AC].

Therefore, now we will prove that:

(1) For every stable model M” that belongs to SM (M ∪ Π[IR]) with M in

SM (Π)[AC], there exists a stable model M� that belongs to SM (M ′ ∪Π�[IR]), with

M ′ in SM (Π�)[AC], such that M”[t��] = M�[t��], that is, M” and M� contain the

same atoms annotated with t��.

By contradiction, let us assume that there exists a stable model M” in SM (M ∪
Π[IR]) with M in SM (Π)[AC], and there is not a stable model M� that belongs to

SM (M ′ ∪ Π�[IR]) with M ′ in SM (Π�)[AC], such that M”[t��] = M�[t��].

We have two cases depending if the repair obtained from M” is empty or not.

(a) The repair obtained from M” is empty. So M” does not have atoms with the

t�� constant. In this case M” = M with M in SM (Π) [AC]. Then, according

to Proposition 4.2 we know that there exists a model M ′ in SM (Π�) [AC] such

that M = M ′. Therefore, given the fact that M” = M , we now also have that

46

M” = M ′. Now, if M� has no atoms with t��, M”[t��] would be equal toM�[t��]

(both would be empty) and this would lead to a contradiction. Then, M�[t��]

should not be empty. Hence, there exists an atom P (c̄, t��) in M�. Then, M ′

has P (c̄, t�) and does not have P (c̄, fa). If M ′ has P (c̄, t�) then P (c̄) is true or

P (c̄, ta) is true in M ′. However, if either of both situations happens, and given

the facts that P (c̄, fa) is false in M ′, and M = M ′, then M” satisfies P (c̄, t��)

as well. Because of the interpretation rules in Π[IR]. But, M”[t��] = ∅. We

have reached a contradiction.

(b) The repair obtained from M” is not empty. In this case, there exists an atom

P (c̄, t��) in M” such that there is no model M� that satisfies P (c̄, t��). If atom

P (c̄, t��) is true in M” then we have that P (c̄, td) is in M , (M in SM (Π)[AC])

in which case P (c̄, fa) is not in M , or P (c̄, td) is not in M , in which case

P (c̄, ta) is in M . In both cases we have that atom P (c̄, t�) is true in M . In

addition, because of Proposition 4.2 we know that exists a stable model M ′

in SM (Π�)[AC], such that M = M ′. Now, there are two cases to consider:

P (c̄, td) is in M and P (c̄, td) is not in M .

First, for P (c̄, td) in M , we have that since P (c̄, t�) is in M , P (c̄, fa) has to

be false in M . Then, since M = M ′ and because of the interpretation rule in

Π� P (c̄, t��) ← P (c̄, t�), not P (c̄, fa), we have that there exists a model M�

such that P (c̄, t��) is in M� . Then we have reached a contradiction. Second,

for P (c̄, td) not in M , we have that since P (c̄, t�) is in M , P (c̄, ta) has to be

true in M and P (c̄, fa) has to be false in M . Then, since M = M ′ and because

of the interpretation rule in Π� P (c̄, t��) ← P (c̄, t�), not P (c̄, fa), we have

that there exists a model M� such that P (c̄, t��) is in M�. We have reached a

contradiction.

47

(2) For every stable model M� that belongs to SM (M ′ ∪ Π�[IR]), with M ′ in

SM (Π�)[AC], there exists a stable model M” that belongs to SM (M ∪ (Π)[IR]) with

M in SM (Π)[AC], such that M�[t��] = M”[t��].

By contradiction, let us assume that there exists a model M� that belongs to

SM (M ′ ∪Π�[IR]) with M ′ in SM (Π�)[AC], and there is not a stable model M” that

belongs to SM (M ∪ Π[IR]) with M in SM (Π)[AC], such that M�[t��] = M”[t��].

Here we have two cases depending if the repair obtained from M� is empty or not.

(a) The repair obtained from M� is empty. So M� does not have atoms with the

t�� constant. In this case M� = M ′ with M ′ in SM (Π�)[AC]. Then, because of

Proposition 4.2 we know that there exists a model M in SM (Π) [AC] such that

M ′ = M . So given the fact that M� = M ′, we now also have that M� = M .

Now, if M� has no atoms with t��, M�[t��] would be equal to M”[t��] (both

would be empty) and this would lead to a contradiction. Then, M”[t��] should

not be empty.

Then, there exists an atom P (c̄, t��) in M”. There are two cases to analyze,

P (c̄, td) is in M or P (c̄, td) is not in M . First, if P (c̄, td) is in M , then, P (c̄)

is in M ′ and P (c̄, t�) is in M ′. Moreover, since P (c̄, t��) is in M”, P (c̄, fa)

is not in M and P (c̄, fa) is not in M ′. Given the interpretation rule in Π�

P (c̄, t��)← P (c̄, t�), not P (c̄, fa), we have P (c̄, t��) is in M�. But, M�[t��] is

empty. We have reached a contradiction. Now, we need to analyze for P (c̄, td)

is not in M . Since P (c̄, t��) is in M”, P (c̄, fa) is not in M and P (c̄, ta) is in M .

Then, given the fact that M = M ′, then P (c̄, ta) is in M ′, and P (c̄, t�) is in M ′.

Hence given the interpretation rule in Π� P (c̄, t��)← P (c̄, t�), not P (c̄, fa), we

have P (c̄, t��) is inM�. But, M�[t��] is empty. We have reached a contradiction.

(b) The repair obtained from M� is not empty, so there exists P (c̄, t��) in M�. If

48

atom P (c̄, t��) is true in M� then we have that P (c̄, t�) is true in M ′ (M ′ is in

SM (Π�)[AC]), and P (c̄, fa) is false in M ′. If P (c̄, t�) is true, then either P (c̄)

or P (c̄, ta) are true in M ′. In addition, because of Proposition 4.2 we know that

exists a model M in SM (Π)[AC], such that M ′ = M . Now there are two cases

to consider: P (c̄) is in M ′ or P (c̄) is not in M ′. First we will assume that P (c̄)

is true in M ′, and therefore that P (c̄, fa) is false. Then because M = M ′, and

by using the interpretation rule P (c̄, t��)← P (c̄, td), not P (c̄, fa) of Π, P (c̄, t��)

is in M”. Then M” exists and we have reached a contradiction. Now, if P (c̄) is

not in M ′ we have that P (c̄, ta) is in M ′. Then because M = M ′, and by using

the interpretation rule P (c̄, t��) ← P (c̄, ta) of Π, P (c̄, t��) is in M”. Then M”

exists and we have reached a contradiction. �

Example 4.4 The repair program Π�(D , IC) for D = {P (a, b, null), P (b, b, a), R(a,

b), S(a, b, b), S(null , b, b)}, and IC : ∀xyz(P (x, y, z)→ R(x, y)), ∀xy(R(x, y)→ ∃zS(x,

y, z)), and ∀xyz(S(x, y, z)∧IsNull(x)→ false) contains the following facts and rules:

1. P (a, b, null). P (b, b, a). R(a, b). S(a, b, b). S(null , b, b).

2. P (x, y, z, fa) ∨R (x, y, ta)← P (x, y, z, t�), R (x, y, fa), x 	= null , y 	= null .

P (x, y, z, fa) ∨R (x, y, ta)← P (x, y, z, t�), not R(x, y), x 	= null , y 	= null .

3. R (x, y, fa) ∨ S (x, y, null, ta)← R (x, y, t�), not aux(x, y), x 	= null , y 	= null .

aux(x, y)← S (x, y, z, t�), not S (x, y, z, fa), x 	= null , y 	= null , z 	= null .

4. S (x, y, z, fa)← S (x, y, z, t�), x = null .

5. P (x, y, z, t�)← P (x, y, z).

P (x, y, z, t�)← P (x, y, z, ta).

R (x, y, t�)← R(x, y).

R (x, y, t�)← R (x, y, ta).

S (x, y, z, t�)← S(x, y, z).

S (x, y, z, t�)← S (x, y, z, ta).

49

6. P (x, y, z, t��)← P (x, y, z, t�), not P (x, y, z, fa).

R (x, y, t��)← R (x, y, t�), not R (x, y, fa).

S (x, y, z, t��)← S (x, y, z, t�), not S (x, y, z, fa).

7. ← S (x, y, z, ta), S (x, y, z, fa).

Note that program constraints are only generated for predicate S since for this predi-

cate there are rules generating atoms with both ta and fa annotations. This program

has two stable models:

M1 = {P (a, b, null), P (b, b, a), R(a, b), S(a, b, b), S(null , b, b), P (a, b, null , t�),

P (b, b, a, t�), R (a, b, t�), S (a, b, b, t�), S (null , b, b, fa), S (null , b, b, t�),

aux(a, b), R (b, b, ta), P (a, b, null , t��), P (b, b, a, t��), R (a, b, t��), R (b, b, t�),

S (b, b, null , ta), R (b, b, t��), S (b, b, null , t�), S (b, b, null , t��), S (a, b, b, t��)},

M2 = {P (a, b, null), P (b, b, a), R(a, b), S(a, b, b), S(null , b, b), P (a, b, null , t�),

P (b, b, a, t�), R (a, b, t�), S (a, b, b, t�), S (null , b, b, fa), S (null , b, b, t�),

aux(a, b), P (b, b, a, fa), P (a, b, null , t��), R (a, b, t��), S (a, b, b, t��)}.

Stable models of program Π�(D , IC) contain less predicates than the models of

Π(D , IC) (cf. Example 2.9), which is due to the fact that dom predicate was elimi-

nated from repair programs. Moreover, they construct the same database repairs, as

expected. �

From now on, repair programs are those given in Definition 4.2, and they will be

denoted just by Π(D , IC), as before.

Moreover, for a database D and a RIC-acyclic set IC of UICs, RICs, and NNCs,

the program Π(D, IC) without its program constraints is locally stratified.

50

Definition 4.4 [68] A program Π is locally stratified if its Herbrand base can be

partitioned into sets S0, S1, . . . (called strata) such that, for each rule

A1 ∨ · · · ∨ Al ← B1, . . . , Bm, not C1, . . . , not Cn,

in ground(Π), there exists an i ≥ 1 such that all A1, . . . , Al belong to Si, all B1, . . . ,

Bm, belong to S0 ∪ · · · ∪ Si, and all C1, . . . , Cn belong to S0 ∪ · · · ∪ Si−1. For such a

partition, we use Πi to denote the set of all rules from ground(Π) whose consequent

belong to Si. �

The notion of locally stratified programs differs from the definition of stratified pro-

grams.

Definition 4.5 [66] A program Π is stratified if there exists a level mapping ‖ ‖
from predicates (names) of Π to natural numbers, such that for every rule r of Π:

(a) For any positive literal l ∈ B+(r), and for any literal l′ in H(r), ‖ l ‖ ≤ ‖ l′ ‖

(b) For any negative literal l ∈ B−(r), and for any literal l′ in H(r), ‖ l ‖ < ‖ l′ ‖�

The difference between locally stratified and stratified programs is that in the former

the strata are generated by considering atoms on the ground version of program Π.

However, in the latter the strata are generated by considering the set of predicates

appearing in program Π.

We will use the next result in Chapter 5, to prove that we can use the magic sets

technique in the evaluation of repair programs. The magic set method we define is

applied to repair programs without considering its program constraints.

Proposition 4.3 For a database instance D and a RIC-acyclic set IC of UICs,

RICs and NNCs of the forms (2.3), (2.4), and (2.6), respectively, the repair program

Π(D , IC) without its program constraints is locally stratified.

51

Proof: Given a database D and a set of RIC-acyclic UICs, RICs, and NNCs, let

{V1, . . . , Vr} be the set of vertices of GC(IC). Since this graph is obtained by con-

tracting vertices of G(IC), each vertex in GC(IC) is a set of predicates of R. In fact,
⋃r
i=1 Vi = R, and Vj ∩ Vk = ∅, for Vj, Vk ∈ V . Since GC(IC) is acyclic, we can safely

assume that the vertices are numbered in a topological ordering, i.e. for every edge

(Vi, Vj), we have i < j. Then, for Π′(D , IC) := Π(D , IC) � PC , where PC is the set

of program constraints in program Π(D , IC), we can consider the following strata:

S0 = {P (x̄) | P ∈ R and x̄ ∈ U},
S1 = {P (x̄, y) | P ∈ Vr, x̄ ∈ U , and y ∈ {t�, ta, fa}},
S2 = {auxi(x̄) | Vr has an incoming edge in GC(IC) corresponding to the referential

integrity constraint ICi, and x̄ ∈ U},
S3 = {P (x̄, y) | P ∈ Vr−1, x̄ ∈ U , and y ∈ {t�, ta, fa}},
S4 = {auxi(x̄) | Vr has an incoming edge in GC(IC) corresponding to the referential

integrity constraint ICi, and x̄ ∈ U},
. . .

Si = {P (x̄, y) | P ∈ Vr−� i−1
2
�, x̄ ∈ U , and y ∈ {t�, ta, fa}}, for i ≤ (2r − 1) and odd,

Si = {auxi(x̄) | Vr−� i−1
2
� has an incoming edge in GC(IC) corresponding to the RIC

ICi, and x̄ ∈ U}, for i ≤ (2r − 1) and even,

. . .

S2r−1 = {P (x̄, y) | P ∈ V1, x̄ ∈ U , and y ∈ {t�, ta, fa}},
S2r = {P (x̄, y) | P ∈ R, x̄ ∈ U , and y ∈ {t��}}
It is easy to check that this stratification satisfies the conditions on every rule of

program Π′(D , IC) and, therefore program Π′(D , IC) is locally stratified. �

Notice that, since there is no recursion in FO queries, the query program Π(Q) is

always stratified, then it holds that program Π(D , IC) ∪ Π(Q) is locally stratified.

52

Proposition 4.4 For a database instance D , a RIC-acyclic set IC of UICs, RICs and

NNCs of the forms (2.3), (2.4), and (2.6), respectively, and a FO query Q, program

Π(D , IC ,Q) := Π(D , IC) ∪ Π(Q) without its program constraints is locally stratified.

Proof: Consider the strata for program Π′(D , IC) := Π(D , IC) � PC , i.e. the repair

program without its program constraints, defined in the proof of Proposition 4.3.

Since program Π(Q) only has rules with the head atom Ans, which is not present

anywhere else in program Π′(D , IC) (and neither in Π(D , IC)), and atoms of the

form P (x̄, t��) and not P (x̄, t��) in their bodies. The program Π′(D , IC ,Q) :=

Π′(D , IC) ∪ Π(Q) can be evaluated by considering the additional stratum S2r+1 =

{Ans(x̄) | x̄ ∈ U}. Therefore, program Π′(D , IC ,Q) is locally stratified. �

4.5 Summary

In this chapter repair programs have been simplified and optimized by eliminating

redundant rules, facts and annotations. It is important to remark that the processing

of database facts has been eliminated. Now database facts are used as they come

from the database, without adding any annotation. In Chapter 9 we will see that

the elimination of the td constant permits to import database facts directly into the

reasoning system.

Moreover, it was shown that program constraints, which are the rules that avoid

the generation of incoherent models, are not always needed. Thus, we defined a

methodology to detect database predicates for which program constraints should not

be generated. Their elimination is important because it avoids unnecessary model

checking in a reasoning system. In addition, important classes of ICs are identified

for which repair programs can be specified without program constraints. It becomes

relevant when magic sets techniques are applied with the DLV system (cf. Chapter

5), which implements magic sets for programs without program constraints.

53

Furthermore, it was proven that the new optimized programs (without program

constraints) are locally stratified. This result will be used in Chapter 5 to prove that

the MS methodology we define is sound and complete.

Chapter 5

Optimizing Query Evaluation from Repair Programs

5.1 Introduction

In this chapter we present optimizations of the evaluation of repair and query pro-

grams to obtain consistent answers.

Consistent answers are obtained from stable models of the combination of the

repair and query programs. Nevertheless, in most of the cases the former -so as its

stable models- contain more information than necessary to answer the query, because

repair programs are built considering all database predicates and database facts.

However, query predicates are related to a subset of the database predicates.

Furthermore, we are not interested in obtaining complete stable models (or re-

pairs), but only in obtaining the consistent answers to our queries. In consequence,

it is important to optimize the evaluation of the repair programs by considering only

predicates and facts that are relevant to the query. This is precisely the purpose

of the magic sets (MS) technique [8], that achieves it by simulating a top-down [23]

-and then query directed- evaluation of the query through bottom-up propagation

[23]. This technique produces a new program that contains a subset of the original

rules, along with a set of new, “magic”, rules.

Classic MS techniques for Datalog programs [8, 70] have been extended to logic

programs with unstratified negation under stable models semantics [35], to disjunc-

tive logic programs with stratified negation [45], with an optimized version [29] being

54

55

implemented in DLV. For this kind of programs, the MS technique is sound and com-

plete, i.e. the method computes all and only correct answers for the query. We know

by personal communication with the authors of [29, 35], that the same result can be

obtained as a combination of [29, Theorem 1] and [35, Theorem 3]. This result holds

for disjunctive programs with possibly unstratified negation, under certain conditions

(cf. Section 5.2). In [47] a sound but incomplete methodology is presented for dis-

junctive programs with constraints of the form ← C(x), where C(x) is a conjunction

of literals (i.e. positive or negated atoms).

In this chapter, we present a sound and complete MS methodology for our dis-

junctive repair programs with their program constraints, which fall in the category of

program constraints with only positive intensional literals in the body. The method-

ology works for the kind of programs we have, but not necessarily in the general case

of disjunctive programs with program constraints.

It works as follows: the set of program constraints PC is separated from the

rest of the rules, then the MS technique, as defined in [29, 35], is applied to the

resulting program. The latter is possible, since our disjunctive programs with program

constraints satisfy the conditions to apply MS as defined in [29, 35] (we explain this

in detail in Section 5.2). At the end of this process, the program constraints are put

back into the resulting program, and so enforcing that the rewritten program has

only coherent models.

Moreover, we develop another optimization technique that can be used as an al-

ternative to the MS method. This technique also captures the relevant database

predicates to compute a specific query. The relevant predicates are used to gener-

ate reduced repair programs, i.e. programs that consider the relevant predicates to

compute a query. This new repair program is evaluated together with the query pro-

gram. It is shown that the relevant predicates produced by this method correspond to

56

the predicates selected by the MS technique. In Chapter 9 we perform experiments

to show the effectiveness of the relevant predicates methodology for CQA, and we

compare it with the MS technique for query evaluation.

Optimizations to the evaluation of programs make query processing more efficient.

In general, consistent query answering over inconsistent databases is an expensive

computational task (worst case ΠP
2 -complete in data complexity [17, 27]). Therefore,

speeding up query evaluation over large data sets becomes particularly relevant.

The rest of the chapter is organized as follows: Section 5.2 introduces the magic

sets methodology for disjunctive repair programs with program constraints. In Section

5.3 we specify how to apply magic sets in the DLV systems to our repair programs.

In Section 5.4 we present a method to generate reduced repair programs based on

relevance of predicates. In Section 5.5 we discuss related work on optimizations of

the logic approach for CQA. Section 5.6 finalizes this chapter.

5.2 Magic Sets for Repair Programs

Given a query and a program, the MS selects the relevant rules from the program to

compute the answers to the query, and pushes down the constants in the query to

restrict the tuples involved in the computation of the answers. The MS methodology

carries this out by sequentially performing three well defined steps: adornment, gen-

eration and modification. The method will be illustrated using the following repair

program and query, where rules have been enumerated for reference.

Example 5.1 Given a database instance D = {S(a), T (a)}, a set IC with ∀x(S(x)→
Q(x)), ∀x(Q(x)→ R(x)) and ∀x(T (x)→ W (x)), and query Q: Ans(x)← S(x). The

program Π(D , IC ,Q) := Π(D , IC) ∪ Π(Q) consists of the rules:

57

1. S(a). T (a).

2. S (x, fa) ∨Q (x, ta)← S (x, t�), Q (x, fa), x 	= null.

3. S (x, fa) ∨Q (x, ta)← S (x, t�), not Q(x), x 	= null.

4. Q (x, fa) ∨R (x, ta)← Q (x, t�), R (x, fa), x 	= null.

5. Q (x, fa) ∨R (x, ta)← Q (x, t�), not R(x), x 	= null.

6. T (x, fa) ∨W (x, ta)← T (x, t�),W (x, fa), x 	= null.

7. T (x, fa) ∨W (x, ta)← T (x, t�), not W (x), x 	= null.

8. S (x, t�)← S (x, ta). 9. S (x, t�)← S(x).

10. Q (x, t�)← Q (x, ta). 11. Q (x, t�)← Q(x).

12. R (x, t�)← R (x, ta). 13. R (x, t�)← R(x).

14. T (x, t�)← T (x, ta). 15. T (x, t�)← T (x).

16. W (x, t�)← W (x, ta). 17. W (x, t�)← W (x).

18. S (x, t��)← S (x, t�), not S (x, fa).

19. Q (x, t��)← Q (x, t�), not Q (x, fa).

20. R (x, t��)← R (x, t�), not R (x, fa).

21. T (x, t��)← T (x, t�), not T (x, fa).

22. W (x, t��)← W (x, t�), not W (x, fa).

23. ← Q (x, ta), Q (x, fa).

24. Ans(x)← S (x, t��).

The stable models are:

M1 = {T (a), S(a), T (a, t�), S (a, t�), Q (a, ta), S (a, t��), Q (a, t�), R (a, ta),

Q (a, t��), R (a, t�), R (a, t��),Ans(a),W (a, ta), T (a, t��),W (a, t�),

W (a, t��)},

M2 = {T (a), S(a), T (a, t�), S (a, t�), Q (a, ta), S (a, t��), Q (a, t�), R (a, ta),

Q (a, t��), R (a, t�), R (a, t��),Ans(a), T (a, fa)},

58

M3 = {T (a), S(a), T (a, t�), S (a, t�), S (a, fa),W (a, ta), T (a, t��),W (a, t�),

W (a, t��)},

M4 = {T (a), S(a), T (a, t�), S (a, t�), S (a, fa), T (a, fa)}.

Since there are no ground Ans-atoms in common, there are no cautious answers to

the query, and then no consistent answers. �

Given the program Π(D , IC ,Q), the MS technique is applied to the program Π−(D ,

IC ,Q) := Π(D , IC ,Q)�PC , where PC contains the program constraint: ← Q (x̄, ta),

Q (x̄, fa).

For the adornment step, the relationship between the query predicates and the

predicates of program Π− are explicitly defined. The output of this step is a new

adorned program, where each intensional predicate (IDB) is of the form PA, where A

is a string of letters b, f , meaning bound and free, respectively, whose length is equal

to the arity of predicate P .

Starting from the given query, adornments are created. First Π(Q) : Ans(x) ←
S (x, t��) becomes:

Ansf (x)← S fb(x, t��),

meaning that the first argument of S is a free variable, and the second one is bound.

Notice that since annotation are constants, they are always bound. The adorned

predicate S fb is used to propagate bindings (adornments) onto the rules defining

atoms with predicate S. For instance, S fb propagates bindings to the rules 2, 3, 8, 9

and 18. As an illustration, the non-disjunctive rules 8 and rule 9 become, respectively:

S fb(x, t�)← S fb(x, ta). S fb(x, t�)← S(x).

59

Extensional predicates (EDB), i.e. facts as S(x) in the previous rule, only bind

variables and do not receive any annotation.

When an adorned predicate is in the head of a disjunctive rule, the adornments

are propagated to the body literals, and to the other head atoms. For instance, the

adorned predicate S fb when used in rule 2, propagates adornments over the body

atoms of the rule, and to the head atom Q (x, ta). Therefore, rule 2 becomes:

S fb(x, fa) ∨Q fb(x, ta)← S fb(x, t�), Q fb(x, fa), x 	= null.

Note that the adorned predicateQ fb also has to be processed. Therefore, predicate

Q fb produces adornments on rules defining atoms with predicate Q, i.e. in rules 2,

3, 4, 5, 10, 11, and 19. For instance, Q fb used in rule 4 produces:

Q fb(x, fa) ∨R fb(x, ta)← Q fb(x, t�), R fb(x, fa), x 	= null.

Again, the new adorned predicate R fb has to be processed.

After all the adornments are properly propagated, the adorned program below is

generated:

Program 5.1

Ansf (x)← S fb(x, t��).

S fb(x, fa) ∨Q fb(x, ta)← S fb(x, t�), Q fb(x, fa), x 	= null.

S fb(x, fa) ∨Q fb(x, ta)← S fb(x, t�), not Q(x), x 	= null.

S fb(x, t�)← S fb(x, ta).

S fb(x, t�)← S(x).

S fb(x, t��)← S fb(x, t�), not S fb(x, fa).

60

Q fb(x, fa) ∨R fb(x, ta)← Q fb(x, t�), R fb(x, fa), x 	= null.

Q fb(x, fa) ∨R fb(x, ta)← Q fb(x, t�), not R(x), x 	= null.

Q fb(x, t�)← Q fb(x, ta).

Q fb(x, t�)← Q(x).

Q fb(x, t��)← Q fb(x, t�), not Q fb(x, fa).

R fb(x, t�)← R fb(x, ta).

R fb(x, t�)← R(x).

R fb(x, t��)← R fb(x, t�), not R fb(x, fa). �

Different strategies can be used to process atoms and propagate bindings. The process

of passing bindings is called sideways information passing strategies (SIPS) [8]. Any

SIP strategy has to ensure that all of the body and head atoms are processed. We

follow the strategy adopted in [29], which is implemented in DLV. According to it,

only EDB predicates bind new variables, i.e. variables that do not carry a binding

already. As an illustration, suppose we have the adorned predicate P fbf and the

following rule:

P (x, y, z) ∨ T (x, y)← R(z), S(x, z),

R being a EDB predicate. The adorned rule is:

P fbf (x, y, z) ∨ T fb(x, y)← R(z), Sfb(x, z).

Notice that variable z is free according to the adorned predicate P fbf . However, the

EDB atom R(z) binds this variable, and propagates this binding to atom S(x, z),

where variable z becomes bound producing the adorned predicate Sfb.

Furthermore, when an adorned predicate is processed on a disjunctive rule, only

the atoms associated with the adorned predicate produce new bindings. Other head

61

atoms only receive bindings but cannot produce new ones. As an illustration, the

adorned predicate S bb processed in Rule (5.1) produces Rule (5.2):

S (x, fa) ∨Q (x, y, ta)← S (x, t�), Q (x, y, fa), x 	= null. (5.1)

S bb(x, fa) ∨Q bfb(x, y, ta)← S bb(x, t�), Q bfb(x, y, fa), x 	= null, (5.2)

that is, only variable x is bound in atom Q (x, y, ta), but y stays free.

The next step is the generation of magic rules; those that simulate a top-down

evaluation of the query. They are generated for each rule of the adorned program.

The generation differs for disjunctive and non-disjunctive adorned rules.

In the case of non-disjunctive adorned rules, for each adorned atom PA in the

body of an adorned rule, a magic rule is generated as follows:

(a) The head of the magic rule becomes the magic version of PA, i.e. an atom with

predicate symbol magic PA, from which all the variables labelled with f in A

are deleted.

(b) The atoms in the body of the magic rule become the magic version of the

adorned rule head, followed by the atoms (if any) that produced bindings on

atom PA.

As an illustration, considering the adorned atom S fb(x, ta) for the adorned rule:

S fb(x, t�)← S fb(x, ta),

the magic rule is:

magic S fb(ta)← magic S fb(t�).

62

Now, consider the adorned rule:

P fbf (x, y, z)← R(z), Sfb(x, z), T b(z),

where there are three atoms in the body, but only two have an adorned predicate.

The corresponding magic rule for the adorned atom Sfb(x, z) is:

magic Sfb(z)← magic P fbf (y), R(z).

Notice, that the magic rule contains atom R(z), which is added because it bound the

variable z on atom S(x, z). If this atom is not introduced in the magic rule, this rule

becomes unsafe. The magic rule for T b(z) is:

magic T b(z)← magic P fbf (y), R(z).

In the case of disjunctive adorned rules, first intermediate non-disjunctive rules

are generated. This is achieved by moving, one at a time, head atoms into the bodies

of rules. Next, magic rules are generated as described for non-disjunctive rules. For

instance, for the rule:

S fb(x, fa) ∨Q fb(x, ta)← S fb(x, t�), Q fb(x, fa), x 	= null, (5.3)

two non-disjunctive rules are generated by moving atoms S fb(x, fa) and Q fb(x, ta),

one at a time, into the body, obtaining the rules:

S fb(x, fa)← Q fb(x, ta), S
fb(x, t�), Q fb(x, fa), x 	= null, (5.4)

Q fb(x, ta)← S fb(x, fa), S
fb(x, t�), Q fb(x, fa), x 	= null. (5.5)

63

The magic rules for Rule (5.4) are:

(1) magic Q fb(ta) ← magic S fb(fa).,

(2) magic S fb(t�) ← magic S fb(fa)., and

(3) magic Q fb(fa) ← magic S fb(fa).

In addition, the magic version of the Ans predicate from the adorned query rule is

also generated at this step. This magic atom is called the magic seed atom. For the

adorned query rule:

Ansf (x)← S fb(x, t��),

the magic seed atom is magicAnsf .

The magic rules for the adorned Program 5.1 are:

Program 5.2

magic S fb(t��)← magic Ansf .

magic Q fb(ta)← magic S fb(fa).

magic S fb(t�)← magic S fb(fa).

magic Q fb(fa)← magic S fb(fa).

magic S fb(fa)← magic Q fb(ta).

magic S fb(t�)← magic Q fb(ta).

magic Q fb(fa)← magic Q fb(ta).

magic S fb(ta)← magic S fb(t�).

magic Q fb(ta)← magic Q fb(t�).

magic S fb(t�)← magic S fb(t��).

magic S fb(fa)← magic S fb(t��).

magic Q fb(t�)← magic Q fb(t��).

magic Q fb(fa)← magic Q fb(t��).

magic R fb(ta)← magic Q fb(fa).

magic Q fb(t�)← magic Q fb(fa).

magic R fb(fa)← magic Q fb(fa).

magic Q fb(fa)← magic R fb(ta).

magic Q fb(t�)← magic R fb(ta).

magic R fb(fa)← magic R fb(ta).

magic R fb(ta)← magic R fb(t�).

magic R fb(t�)← magic R fb(t��).

magic R fb(fa)← magic R fb(t��).

magicAnsf . �

The last phase is the modification step, where magic atoms constructed in the genera-

tion stage are included in the body of adorned rules. Thus, for each adorned rule, the

64

magic version of its head is inserted into the body. For instance, the magic versions

of the head atoms S fb(x, fa), and Q fb(x, ta) in Rule (5.3) are: magic S fb(fa) and

magic Q fb(ta) respectively, which are inserted into the body of Rule (5.3) generating

the modified rule:

S fb(x, fa)∨Q fb(x, ta)← magic S fb(fa),magic Q fb(ta), S
fb(x, t�), Q fb(x, fa), x 	= null.

In modified rules the rest of the adornments are now deleted. Hence, the modified

rule for Rule (5.3) becomes:

S (x, fa) ∨Q (x, ta)← magic S fb(fa),magic Q fb(ta), S (x, t�), Q (x, fa), x 	= null.

Therefore, the modified rules for the adorned Program 5.1 are:

Program 5.3

Ans(x)← magic Ansf , S (x, t��).

S (x, fa) ∨Q (x, ta)← magic S fb(fa),magic Q fb(ta), S (x, t�), Q (x, fa), x 	= null.

S (x, fa) ∨Q (x, ta)← magic S fb(fa),magic Q fb(ta), S (x, t�), not Q(x), x 	= null.

Q (x, fa) ∨R (x, ta)← magic Q fb(fa),magic R fb(ta), Q (x, t�), R (x, fa), x 	= null.

Q (x, fa) ∨R (x, ta)← magic Q fb(fa),magic R fb(ta), Q (x, t�), not R(x), x 	= null.

S (x, t�)← magic S fb(t�), S (x, ta). S (x, t�)← magic S fb(t�), S(x).

Q (x, t�)← magic Q fb(t�), Q (x, ta). Q (x, t�)← magic Q fb(t�), Q(x).

R (x, t�)← magic R fb(t�), R (x, ta). R (x, t�)← magic R fb(t�), R(x).

S (x, t��)← magic S fb(t��), S (x, t�), not S (x, fa).

Q (x, t��)← magic Q fb(t��), Q (x, t�), not Q (x, fa).

R (x, t��)← magic R fb(t��), R (x, t�), not R (x, fa). �

Notice that in the modified rules only the magic atoms keep adornments.

65

Definition 5.1 For a program Π with a set PC of program constraints, the final

rewritten program produced by the MS is denoted by MS←(Π) and consists of the

magic rules, the modified rules, and PC . �

Notice that, since in the rewritten program only the magic atoms have adornments,

the program constraints can be added as they come to the program without any

processing.

The rewritten version of the program in Example 5.1, MS←(Π(D , IC ,Q)), con-

sists of the magic rules in Program 5.2, the modified rules in Program 5.3, and the

program constraint: ← Q (x, ta), Q (x, fa). ProgramMS←(Π(D , IC ,Q)) has the fol-

lowing two stable models:

M1 = {magic Ansf , S(a), S (a, t�),magic S fb(t��),magic S fb(fa),magic S fb(ta),

magic S fb(t�),magic Q fb(fa),magic Q fb(ta),magic Q fb(t�),magic R fb(fa),

magic R fb(ta), Q (a, ta), S (a, t��), Q (a, t�), R (a, ta),Ans(a)},

M2 = {magic Ansf , S(a), S (a, t�),magic S fb(t��),magic S fb(fa),magic S fb(ta),

magic S fb(t�),magic Q fb(fa),magic Q fb(ta),magic Q fb(t�),magic R fb(fa),

magic R fb(ta), S (a, fa)}.

Since there are no ground Ans-atoms in common, from the original program there

are no answers to Q : Ans(x) ← S (x, t��), which is now expressed as Ans(x) ←
magic Ansf , S (x, t��) in the rewritten program.

For the rewritten program only models that are relevant to answer the query are

computed. Furthermore, these are partially computed, i.e. they can be extended

to stable models of the original program, without considering the magic predicates,

which are auxiliary predicates that are used to direct the course of query evaluation.

66

For instance, modelM1 of programMS←(Π(D , IC ,Q)) is a subset of the stable

models M1 and M2 in Example 5.1; and model M3 is a subset of stable models

M3 and M4 (without considering magic predicates). Instead of having four stable

models as the original program, the rewritten program has only two stable models.

In addition, the unique database predicates that are instantiated are the ones related

to the query, i.e. Q, and R, in this case via the ICs. For the same reason, program

MS←(Π(D , IC ,Q)) contains rules related to predicates S,Q,R of the original repair

program (plus the magic rules), but no rules for predicates T,W , which are not

relevant to the query.

Even though in [47] it was shown that for general disjunctive programs with pro-

gram constraints the MS technique does not always produce an equivalent rewritten

program (completeness may be lost), we claim that for the disjunctive repair programs

with program constraints as introduced in Definition 4.2, this MS methodology is both

sound and complete. As a consequence, the rewritten programMS←(Π(D , IC ,Q)),

and the original repair program Π(D , IC ,Q) are query equivalent under both brave

and cautious reasoning1.

Theorem 5.1 Given a database instance D , a set IC of UICs, RICs, and NNCs of

the forms (2.3), (2.4) and (2.6), respectively, and a possibly partially ground query

Q, programMS←(Π(D , IC ,Q)) ≡Q Π(D , IC ,Q) under both the brave and cautious

semantics. �

Intuitively, we first prove that the rewritten program MS(Π−(D , IC ,Q)) produced

by MS, which is applied to a program without program constraints, contains all the

1As defined in chapter 2, two programs Π1 and Π2 are bravely (resp. cautiously) equivalent wrt
a query Q, denoted Π1 ≡Q Π2, if for any set F of facts, brave (resp. cautious) answers to Q from
the program Π1 ∪ F are the same as the brave (resp. cautious) answers to Q from Π2 ∪ F .

67

rules that are needed to check the program constraints for the predicates in pro-

gram MS(Π−(D , IC ,Q)). Therefore, the final program MS←(Π(D , IC ,Q)) (with

program constraints) has only coherent models.

To show soundness of the MS method we need to prove that for each stable model

of program MS←(Π(D , IC ,Q)), there exists a coherent stable model of program

rel(Q, Π−(D , IC ,Q)) (cf. Definition 5.2 below) that contains a subset of the rules of

program Π−(D , IC ,Q), those that will be used to compute the query Q. Notice that

a correspondence between such models can be established by considering non-magic

atoms only. Therefore, we need to restrict the models to those atoms.

Finally, to prove the completeness of MS, we have to show that the answers to a

query Q obtained with MS are all the consistent answers to Q.

Now we introduce some definitions and obtain some technical results that are

needed for the proof of Theorem 5.1.

Definition 5.2 [29] Given a set S of ground rules of a program Π, R(S) denotes

the set {r ∈ ground(Π) |∃r′ ∈ S,∃q ∈ B(r′) ∪ H(r′) such that q ∈ H(r)}.2

Next, rel(Q,Π) is the least fixed point of the following sequence rel0(Q,Π) = {r ∈
ground(Π) |∃ q ∈ Q, and q ∩H(r)}, and rel i+1(Q,Π) = R(rel i(Q,Π)), for i ≥ 0. �

Thus, for a given query Q and a program Π, program rel(Q,Π) has a subset of the

rules of ground(Π), those that will be used in the computation of Q. The existence

of a fix point for the sequence rel i(Q,Π) can be guaranteed since the number of rules

in repair programs is finite, and also the database domain. We are assuming that the

queries are significant, in the sense that they involves database predicates appearing

in the repair programs.

2As a reminder, B(r) and H(r) denote, respectively, the body and the head of a rule r.

68

Definition 5.3 [34, 35] For every program Π composed by a finite collection of rules

of the form (2.1), there is a marked directed graph G(Π) = (V,E), called the predicate

dependency graph of Π, which is constructed as follows: each predicate of Π is a node

in N , and there is an edge (Pi, Pj) in E from Pi to Pj if there is a rule r such that Pi

and Pj occur in the body, respectively, in the head of r. Such an arc is marked if Pi

occurs under negation. �

Then, program Π is stratified (cf. Definition 4.5) if G(Π) has no cycle with a marked

arc, otherwise it is unstratified. Moreover, an odd cycle in G(Π) is a cycle comprising

an odd number of marked arcs.

By personal communication with the authors of [29, 35], we know that the follow-

ing lemmas, which are a combination of results presented in [29] and [35], have been

proven but not published yet.

Lemma 5.1 Given a disjunctive possibly unstratified Datalog program Π, where

negation is involved only in even cycles, for every stable model M ′ of MS(Π,Q),

there exists a stable model M of rel(Q, Π), such that M = M ′[rel(Q,Π)].3 �

Lemma 5.2 Given a disjunctive possibly unstratified Datalog program Π, where

negation is involved only in even cycles, for every stable model M of rel(Q,Π), there

exists a stable model M ′ ofMS (Π,Q), such that M = M ′[rel(Q,Π)]. �

Notice that the correspondence between the stable models of the magic rewritten

program MS(Π,Q), and the stable models of program rel(Q,Π) is established by

focusing on non-magic atoms only. This is achieved in Lemmas 5.1 and 5.2 through

the condition M = M ′[rel(Q,Π)] (cf. Definition 4.3).

3As a reminder of Definition 4.3, given a model M of a program Π and a predicate symbol P ,
M [P] denotes the set of atoms in M whose predicate symbol is P , and M [Π] is the set of atoms in
M whose predicate symbol appears in the head of some rule in program Π.

69

We will use Lemmas 5.1 and 5.2 to prove that there exists a correspondence

between the stable models of the rewritten program MS(Π−(D , IC ,Q)) produced

by our MS, and the stable models of the program Π−(D , IC ,Q) restricted to the

atoms involved in the computation of the query. In order to use Lemmas 5.1 and 5.2,

we need to show that negation does not occur in odd cycles in the repair programs,

which, without the program constraints, are locally stratified (cf. Proposition 4.3).

This is proved in Proposition 5.1.

Proposition 5.1 For a disjunctive repair program Π, without considering the pro-

gram constraints, negation is not involved in odd cycles.

Proof: The repair program Π can be rewriten as follows: for every predicate P in Π

replace: (a) P (x̄, ta) by Pta(x̄). (b) P (x̄, fa) by Pfa(x̄). (c) P (x̄, t�) by Pt�(x̄). (d)

P (x̄, t��) by Pt��(x̄). The result follows from the fact that the predicate dependency

graph G(Π′) does not contain odd cycles. �

In order to show that the program MS(Π−(D , IC ,Q)) has all the rules needed to

check the program constraints, we need to introduce some concepts.

Definition 5.4 For a given database instance D , set IC of ICs, and query Q, we

denote with PCQ the set of program constraints of the form ← P (x̄, ta), P (x̄, fa)

taken from the set PC of program constraints of program Π(D , IC ,Q), for each

predicate P that is connected to a query predicate in Π(Q) in the dependency graph

G(IC). Moreover, PC �
Q is a program containing only rules of the form Ans(x) ←

P (x, ta), P (x, fa), for each program constraint in PCQ. �

For the proof of the following propositions, and Theorem 5.1 we simplify the nota-

tion as follows: Π denotes the program Π(D , IC , Q), and Π− denotes the program

70

Π−(D , IC ,Q) := Π(D , IC ,Q) � PC , MS(Π−) denotes the rewritten program con-

sisting of the magic rules, and the modified rules, andMS←(Π) =MS(Π−) ∪ PC .

Proposition 5.2 shows that the program MS(Π−(D , IC ,Q)) has all the rules

needed to check the program constraints.

Proposition 5.2 For a disjunctive program Π, and the set of program constraints

PCQ, the program rel(PC �
Q ∪ Q,Π−) has the same rules as program rel(Q,Π−).

Proof: It is easy to see that rel(PC �
Q ∪ Q,Π−) is equivalent to rel(PC �

Q,Π
−) ∪

rel(Q,Π−). Hence, it is sufficient to prove that rel(PC �
Q,Π

−) ⊆ rel(Q,Π−).

First, if there are no relevant program constraints to answer the query, then pro-

gram PC �
Q has no rules, and rel(PC �

Q,Π
−) is empty, and we have that rel(PC �

Q ∪
Q,Π−) has the same rules as program rel(Q,Π−). Hence, we focalize on the case

where there are program constraints which are relevant to answer the query.

PCQ is not empty and program PC �
Q has at least one rule of the form: Ans(x)←

P (ā, ta), P (ā, fa). It is easy to see that rel0(PC �
Q,Π

−) is composed by the rules of

program Π− whose heads contains either atom P (ā, ta) or P (ā, fa).

There are two cases to analyze: first predicate P is a query predicate and, second

P is connected to a query predicate in the graph G(IC).

First, P is a query predicate. Therefore, rel0(Q,Π−) is composed by the interpre-

tation rule P (ā, t��)← P (ā, t�), not P (ā, fa). Then, rel1(Q,Π−) is rel0(Q,Π−) plus

rules of Π− with head atoms P (ā, t�) or P (ā, fa). Then, rel2(Q,Π−) is rel1(Q,Π−)

plus rules of Π− with head atoms P (ā, ta) or database facts of the form P (ā). Thus,

we have that rel0(PC �
Q,Π

−) ⊆ rel2(Q,Π−), and as a consequence, rel(PC �
Q,Π

−) ⊆
rel(Q,Π−) holds.

Second, P is connected to a query predicate. Therefore, there exists an i such

that rel i(Q,Π−) has a rule with P (ā, ta) or P (ā, fa) in its head, otherwise P is not

71

connected to a query predicate. If P is connected to other predicates, then there

exists a j with j > i, such that rel j(Q,Π−) has a rule with P (ā, ta) or P (ā, fa) in its

head. Thus, rel0(PC �
Q,Π

−) ⊆ rel j(Q,Π−), and therefore rel(PC �
Q,Π

−) ⊆ rel(Q,Π−)

holds. If j does not exists, then we have that rel0(PC �
Q,Π

−) ⊆ rel i(Q,Π−), and

therefore rel(PC �
Q,Π

−) ⊆ rel(Q,Π−) holds. �

By Lemmas 5.1 and 5.2 and Proposition 5.1, we know that there exists a correspon-

dence between the stable models of the rewritten program MS(Π−) produced by

MS, and the stable models of the original program, without program constraints, re-

stricted to the atoms involved in the computation of the query (program rel(Q,Π−)).

By Proposition 5.2, we know that programMS(Π−(D , IC ,Q)) contains all the rules

needed to check the program constraints. Hence, we need to prove that the corre-

spondence between models still holds after introducing the program constraints into

the rewritten program MS←(Π) = MS(Π−) ∪ PC . This is established in the two

following propositions, whose proofs use Lemmas 5.1 and 5.2 above.

Proposition 5.3 For every stable model M ′ ofMS←(Π), there exists a stable model

M of rel(Q, Π−) such thatM is coherent, i.e. it satisfies the set of program constraints

PCQ, and M = M ′[rel(Q,Π−)].

Proof: By contradiction, let us assume that there exists a stable model M ′ ofMS←

(Π) such that there is no stable model M of rel(Q, Π−) that is coherent, and M =

M ′[rel(Q,Π−)].

M ′ is in SM (MS←(Π)). Then, sinceMS← =MS(Π−) ∪ PC , M ′ is in SM (MS
(Π−)). Now, by Lemma 5.1, there exists a model M” of rel(Q,Π−) such that M” =

M ′[rel(Q,Π−)]. Since, there are no coherent models of rel(Q, Π−), M” is incoherent.

We have two cases:

(a) M” is incoherent wrt a program constraint d in PC �PCQ. We know thatM” is

72

a model of rel(Q,Π−). By Proposition 5.2, M” is a model of rel(PC �
Q∪Q,Π−).

Since d is in PC � PCQ, there is no rule in rel(PC �
Q ∪ Q,Π−) defining atoms

that are relevant to d. Then, M” has no atoms relevant to d and it cannot be

violated. We have reached a contradiction.

(b) M” is incoherent wrt a program constraint d in PCQ, e.g. d :← S (x, ta),

S (x, fa). We have that S (x, ta), S (x, fa) are in M”, and that M” = M ′[rel

(Q,Π−)], therefore S (x, ta), S (x, fa) are in M ′. But M ′ satisfies PCQ. We

have reached a contradiction. �

Proposition 5.4 For every stable model M of rel(Q,Π−), such that M is coherent,

i.e. it satisfies the set of program constraints PCQ, there exists a stable model M ′ of

MS←(Π), such that M = M ′[rel(Q,Π−)].

Proof: M is in SM (rel(Q,Π−)). Then by Lemma 5.2, there exists a stable model

M” of MS(Π−), such that M = M”[rel(Q,Π−)]. M is coherent, therefore M” is

coherent as well. Then, since M” is coherent wrt PCQ, it will also be a model of

MS(Π−)∪PCQ. Now, sinceMS(Π−) does not have rules for predicates in PC�PCQ,

M” is also a model ofMS←(Π) =MS(Π−) ∪ PC . �

Proof of Theorem 5.1: By Proposition 5.3 and 5.4 we know that there exists

a correspondence between the stable models of program MS←(Π), which contains

program constraints, and the coherent stable models of program rel(Q, Π−).

Thus, in order to prove the soundness and completeness of MS applied to dis-

junctive programs with program constraints, we just need to prove that program

(rel(Q,Π−) ∪ PCQ) is query equivalent to program Π := Π(D , IC ,Q), under both

the cautious and brave semantics. Note that we need to add PCQ to rel(Q,Π−) since

in the previous propositions we refer to coherent models only.

73

The ground program Π can be split [63] into a bottom program Πb = rel(Q,Π−)

∪ PCQ, and a top program Πt = Π�Πb, using as a splitting set all the ground atoms

with predicates that are related to the query predicates in Π(Q).

This implies that the programs can be hierarchically evaluated in the following

way: The stable models of program Π are SM (Π) =
⋃
M SM (M ∪Πt), where the Ms

are the stable models of Πb. The results follows from the fact that for each predicate P

in query Q, SM (Π)[P] = (SM (Π) [rel(Q,Π−)])[P], i.e. the stable models of program

Π restricted to the query atoms are the same as the models of program Π restricted to

the atoms appearing in program rel(Q,Π−), and next restricted to the query atoms.

As a matter of fact, it can be shown that SM (Π)[rel(Q,Π−)] = SM (rel(Q,Π−) ∪
PCQ). �

Theorem 5.1 establishes that out MS technique is sound and complete, and therefore

can be used to evaluate queries. In [29, 47] important results on the application of MS

in evaluation of benchmark programs are reported. Moreover, in Chapter 9 we report

experimental results on the evaluation of queries by using our MS methodology.

This methodology, based on leaving aside the program constraints when the

MS technique is applied, adding them at the end, works always in the case of

repair programs. There are two reasons for this: First, the rewritten program

MS(Π−(D , IC,Q)) produced by the MS methodology contains all the rules that

are necessary to check the satisfiability of the program constraints that are relevant

to the query, in the sense that they contain predicates that are connected to the query

predicate in the graph G(IC). More precisely, we have program constraints of the

form ← P (x̄, ta), P (x̄, fa) in Π(D , IC) only when there are rules defining P (x̄, ta)

and P (x̄, fa) in Π(D , IC). InMS(Π−(D , IC,Q)), the output of the MS method, we

will still find all the rules defining P ; then it will be possible to check the satisfiability

of the program constraints in the models of MS(Π−(D , IC,Q)). Second, with MS

74

we obtain a “subset”(without considering the magic atoms) of the stable models of

the original program.

Since the rewritten program contains all the rules that are necessary to check

the satisfiability of the program constraints, the stable models of the MS program

satisfy the program constraints. Furthermore, each of these models of the MS program

contain limited extensions for database predicates (including annotations), those that

are sufficient to answer the query as well, however each of them can be extended to

a stable model of the original program.

More precisely, it is possible to prove that, for every stable model M of pro-

gram MS← (Π(D , IC, Q)) (without considering the magic atoms), there is a sta-

ble model M ′ of Π(D , IC ,Q) that extends M in the sense that M = M”, where

M” is the set of atoms of M ′ that appear in the head of a rule in (the ground

version of) MS←(Π(D , IC,Q)). As a consequence, the stable models of program

MS←(Π(D , IC,Q)) are all coherent models, they contain all the atoms needed to an-

swer a query, and they compute the same answers as the models of program Π(D , IC ,

Q) for the given query.

Our approach works for all our repair programs, but it will not necessarily work

for more general disjunctive logic program. Sometimes, even if the MS technique is

applied to a disjunctive program with program constraints that does not have stable

models, the method can produce a program with stable models. This might happen

if the query is related with a part of the program which is consistent regarding the

program constraint; and the MS method focalizes on that part of the program to

answer the query [47].

In addition, our MS methodology might not work for general logic programs that

do have stable models. For instance, for the database instance {R(a)} and program

Π:

75

Y (x)← S(x).

P (x)← R(x), not S(x).

S(x)← R(x), not P (x).

← Y (x).

there is only one stable model M = {R(a), P (a)}. But for query Ans(x) ← P (x),

our MS methodology produces a program that has two stable models (shown here

without magic atoms): M1 = {R(a), P (a),Ans(a)}; andM2 = {R(a), S(a)}, and as

a consequence there are no cautious answers to the query even though {a} should be

an answer to it. This happens because MS does not select the rule Y (x) ← S(x).

Then, when the constraint ← Y (x), is put back into the program, it is satisfied even

though it should not. In our case, when we deal with repair programs, a rule that

is relevant to check the satisfiability of a program constraint is never left out of the

rewritten program obtained via MS.

5.3 Applying Magic Sets with the DLV System

From Theorem 5.1 we can conclude that magic sets can be applied to the evaluation

of disjunctive repair programs with program constraints. However, we do not know

of any system that incorporates MS for programs that contain program constraints.

DLV does implement MS for disjunctive programs, but without program con-

straints [61]. In fact, when a program with constraints is evaluated in DLV with

its built-in MS option, DLV returns a warning message notifying that the program

contains program constraints, and that MS cannot be applied. As a consequence, the

program is evaluated without MS. On the contrary, when the program does not con-

tain constraints, and it is evaluated with the MS option, DLV applies MS internally,

without giving access to the rewritten program (to which it would be easy to add the

program constraints at the end). As a consequence, the application of MS with DLV

for the evaluation of repair programs with program constraints is not straightforward.

76

In this section we describe how to modify repair programs in order to be able to

apply MS directly through DLV. Basically, program constraints are rewritten in such

a way that DLV does not recognize them as program constraints, but it is still able to

consider, at query time, only coherent models, i.e. models without a same database

atom annotated both with both ta and fa.

Definition 5.5 Given a database instance D , and a set IC of ICs, program Π′′(D , IC)

is obtained from Π(D , IC) by replacing in it each program constraint of the form

← P (x̄, ta), P (x̄, fa) by the rule inc ← P (x̄, ta), P (x̄, fa), being inc a new propo-

sitional atom. �

Program Π′′(D , IC) may have stable models that are not coherent models of the

original program; namely those that contain both P (c̄, ta) and P (c̄, fa) for a given

predicate P and a constant c. However, those and only those have the atom inc in

them.

Example 5.2 (example 5.1 cont.) Program Π(D , IC) has one program constraint,

for predicate Q. Hence, Π′′(D , IC) contains the modified program constraint inc←
Q (x, ta), Q (x, fa), and has two additional stable models:

M1 = {T (a), S(a), T (a, t�), S (a, t�), Q (a, ta), S (a, t��), Q (a, t�), Q (a, fa),

W (a, ta), inc, T (a, t��),W (a, t�),W (a, t��)},

M2 = {T (a), S(a), T (a, t�), S (a, t�), Q (a, ta), S (a, t��), Q (a, t�), Q (a, fa),

T (a, fa), inc}.

Both are incoherent stable models. �

In order to retrieve consistent answers, a ground query Q has to be translated into

Q ∨ inc, and evaluated under the cautious semantics (being true in all stable models),

77

which does not require to discard the incoherent models. This is due to the fact that

coherent models do not satisfy atom inc, and then they are required to satisfy Q.

Example 5.3 (example 5.2 cont.) The Datalog query Q : Ans ← not S(a) ∨
R(a) expressed as a program contains two rules: Ans ← not S (a, t��) and Ans ←
R (a, t��). The answer to Q is yes in program Π(D , IC ,Q), but becomes no when

evaluated in Π′′(D , IC ,Q). However, the query Ans ← not S(a)∨R(a)∨ inc, which

as a program is: Ans ← not S (a, t��), Ans ← R (a, t��), and Ans ← inc, is yes when

evaluated in Π′′(D , IC ,Q). �

Notice that this will also work for queries involving only negative ground literals.

This is because, since the answer to a query of this class would be yes if each stable

model of the program contains atom Ans , the incoherent stable models would not

affect a positive answer, since they always contain the atom Ans . On the opposite, if

the answer is no, then it has to exists a coherent stable model that does not contain

the atom Ans . Therefore, the incoherent models would not affect the answer to the

query. It is illustrated in the example below.

Example 5.4 (example 5.3 cont.) For the Datalog query Q : Ans ← not S(b),

Π(Q) is Ans ← not S (b, t��). The answer to Q is yes in program Π(D , IC ,Q).

The answer to query Ans ← not S(b) ∨ inc, which as a program contains two rules:

Ans ← not S (b, t��), and Ans ← inc, is yes in Π′′(D , IC ,Q). This is because since

the atom S (b, t��) is not in the coherent stable models, the atom Ans is contained

in all of them. Moreover, the atom Ans is in all the incoherent stable models of

Π′′(D , IC ,Q).

The Datalog query Q : Ans ← not S(a) expressed as a program is: Ans

← not S (a, t��). The answer to Q is no in program Π(D , IC ,Q), because there

exists a coherent stable model containing atom S (a, t��). The answer to query

78

Ans ← not S(a) ∨ inc, which as a program contains two rules: Ans ← not S (a, t��),

and Ans ← inc, is also no in Π′′(D , IC ,Q), because still there exists a coherent stable

model having atom S (a, t��). �

The case of queries with variables, e.g. Ans(x) ← P (x, y, t��) is slightly different.

It cannot be transformed into Ans(x) ← P (x, y, t��) ∨ inc, due to the fact that

consistent answers are those contained in the intersection of all the Ans relations

in the coherent stable models of the program. Clearly, incoherent models, those

satisfying inc, when intersected with the coherent ones, could make us lose cautious

answers. In consequence, for incoherent models, we need to make sufficiently large

extensions of the Ans predicate. We illustrate this situation in the example below.

Example 5.5 For Σ = {S(A,B), R(A,B), T (A,B,C)}, database instance D = {S(a,

b), S(a, c), S(b, c), R(a, b), R(b, c), T (b, c, d), T (a, b, c).}, set IC : ∀xyz(S(x, y) ∧
S(x, z) → y = z), ∀xyz(R(x, y) ∧ R(x, z) → y = z), (IND) ∀xy(S(x, y) → R(x, y)),

(RIC) ∀xy(R(x, y) → ∃zT (x, y, z)), and query Q: Ans(x) ← S(x, y), R(x, y). Pro-

gram Π′′(D , IC ,Q) has the following rules:

S(a, b). S(a, c). S(b, c). R(a, b). R(b, c). T (b, c, d). T (a, b, c).

S (x, y, fa) ∨ S (x, z, fa)← S (x, y, t�), S (x, z, t�), y 	= z, x 	= null , y 	= null , z 	= null .

R (x, y, fa) ∨R (x, z, fa)← R (x, y, t�), R (x, z, t�), y 	= z, x 	= null , y 	= null , z 	= null .

S (x, y, fa) ∨R (x, y, ta)← S (x, y, t�), R (x, y, fa), x 	= null , y 	= null .

S (x, y, fa) ∨R (x, y, ta)← S (x, y, t�), not R(x, y), x 	= null , y 	= null .

R (x, y, fa) ∨ T (x, y, null , ta)← R (x, y, t�), not aux (x, y), x 	= null , y 	= null .

aux (x, y)← T (x, y, z, t�), not T (x, y, z, fa), x 	= null , y 	= null , z 	= null .

T (x, y, z, t�)← T (x, y, z). T (x, y, z, t�)← T (x, y, z, ta).

R (x, y, t�)← R(x, y). R (x, y, t�)← R (x, y, ta).

79

S (x, y, t�)← S(x, y). S (x, y, t�)← S (x, y, ta).

R (x, y, t��)← R (x, y, t�), not R (x, y, fa).

S (x, y, t��)← S (x, y, t�), not S (x, y, fa).

T (x, y, z, t��)← T (x, y, z, t�), not T (x, y, z, fa).

inc← R (x, y, ta), R (x, y, fa).

Ans(x)← S (x, y, t��), R (x, y, t��).

Program Π′′(D , IC ,Q) has three stable models:

M1 = {S(a, b), S(a, c), S(b, c), R(a, b), R(b, c), T (a, b, c), T (b, c, d), S (a, b, t�),

S (a, c, t�), S (b, c, t�), R (a, b, t�), R (b, c, t�), T (a, b, c, t�), T (b, c, d, t�),

aux (a, b), aux (b, c), S (a, c, fa), R (a, b, t��), R (b, c, t��), S (a, b, t��),

S (b, c, t��), T (a, b, c, t��), T (b, c, d, t��),Ans(a),Ans(b)},

M2 = {S(a, b), S(a, c), S(b, c), R(a, b), R(b, c), T (a, b, c), T (b, c, d), S (a, b, t�),

S (a, c, t�), S (b, c, t�), R (a, b, t�), R (b, c, t�), T (a, b, c, t�), T (b, c, d, t�),

aux (a, b), aux (b, c), R (a, c, ta), R (a, b, fa), R (b, c, t��), S (a, b, fa),

S (a, c, t��), S (b, c, t��), R (a, c, t�), T (a, c, null , ta), R (a, c, t��), T (a, c,

null , t�), T (a, b, c, t��), T (b, c, d, t��), T (a, c, null , t��),Ans(a),Ans(b)},

M3 = {S(a, b), S(a, c), S(b, c), R(a, b), R(b, c), T (a, b, c), T (b, c, d), S (a, b, t�),

S (a, c, t�), S (b, c, t�), R (a, b, t�), R (b, c, t�), T (a, b, c, t�), T (b, c, d, t�),

aux (a, b), aux (b, c), R (a, c, ta), R (a, b, t��), R (b, c, t��), S (a, b, fa),

S (a, c, t��), S (b, c, t��), R (a, c, t�), R (a, c, fa), T (a, b, c, t��), T (b, c, d, t��),

Ans(b), inc}.

The stable modelM3 is an incoherent model. If we intersect all the models of program

Π′′(D , IC ,Q) we obtain the Ans-atom {Ans(b)}, and therefore the answer to Q is

80

(b). Nevertheless, since the intersection of coherent models give us the Ans-atoms

{Ans(a),Ans(b)}, the consistent answers to Q should be (a), (b). �

A way to solve this problem is as follows: we introduce into the query program rules

of the form:

Act(xi)← P (x̄, t�), (5.6)

for each database predicate P and each variable xi in x̄, such that P is connected

to a query predicate in the graph G(IC) (this could also be done for each database

predicate P). In this way we are capturing the active domain of the database (or

better, the relevant part of it). If the query Q is domain independent [1] or safe

[1], this domain will be large enough to answer it correctly. In consequence, we will

assume that queries in this section are domain independent or safe.

We also add the rule:

Ans(x1, . . . , xn)← inc, Act(x1), . . . , Act(xn), (5.7)

to the query program, which in the incoherent models trivializes the answer to the

query by accepting in its answer set all the possible combinations of values taken from

the (relevant) active domain.4

Atoms of the form P (x̄, t�) are those that become true during the repair process,

i.e. the database facts and the atoms that are made true to restore consistency of

ICs. Moreover, notice that if null is not in the database domain, but it is introduced

when restoring consistency of a RIC, then it will be captured by an atom of the form

P (x̄, t�). Therefore, these are the ones allowing to give a larger extension for the Ans

predicate.

4It is easy to adapt this methodology to the case when there are types or distinct abstract domains
for the attributes involved in the query.

81

In other words, in the incoherent models, the answer to the query is a large and

relevant (to the query) portion of the active domain. When we intersect this portion

with the answers from the coherent models, we get only the latter. Of course, for this

to work the query has to be domain independent (or safe, a sound syntactic condition

for domain independence) [1].

Example 5.6 (example 5.5 cont.) Predicates {S,R, T} are all connected in the

corresponding graph G(IC). Therefore, for Q: Ans(x) ← S(x, y), R(x, y), program

Π(Q) has the following additional rules:

Act(x)← S (x, y, t�). Act(y)← S (x, y, t�).

Act(x)← R (x, y, t�). Act(y)← R (x, y, t�).

Act(x)← T (x, y, z, t�). Act(y)← T (x, y, z, t�).

Act(z)← T (x, y, z, t�). Ans(x)← inc,Act(x).

Program Π′′(D , IC ,Q) has the stable models:

M1 = {S(a, b), S(a, c), S(b, c), R(a, b), R(b, c), T (a, b, c), T (b, c, d), S (a, b, t�),

S (a, c, t�), S (b, c, t�), R (a, b, t�), R (b, c, t�), T (a, b, c, t�), T (b, c, d, t�),

aux (a, b), aux (b, c),Act(a),Act(b),Act(c),Act(d), S (a, c, fa), R (a, b, t��),

R (b, c, t��), S (a, b, t��), S (b, c, t��), T (a, b, c, t��), T (b, c, d, t��),Ans(a),

Ans(b)},

M2 = {S(a, b), S(a, c), S(b, c), R(a, b), R(b, c), T (a, b, c), T (b, c, d), S (a, b, t�),

S (a, c, t�), S (b, c, t�), R (a, b, t�), R (b, c, t�), T (a, b, c, t�), T (b, c, d, t�),

aux (a, b), aux (b, c),Act(a),Act(b),Act(c),Act(d), R (a, c, ta), R (a, b, t��),

R (b, c, t��), S (a, b, fa), S (a, c, t��), S (b, c, t��), R (a, c, t�), R (a, c, fa),

T (a, b, c, t��), T (b, c, d, t��), inc,Ans(a),Ans(b),Ans(c),Ans(d)},

82

M3 = {S(a, b), S(a, c), S(b, c), R(a, b), R(b, c), T (a, b, c), T (b, c, d), S (a, b, t�),

S (a, c, t�), S (b, c, t�), R (a, b, t�), R (b, c, t�), T (a, b, c, t�), T (b, c, d, t�),

aux (a, b), aux (b, c),Act(a),Act(b),Act(c),Act(d), R (a, c, ta), R (a, b, fa),

R (b, c, t��), S (a, b, fa), S (a, c, t��), S (b, c, t��), R (a, c, t�), T (a, c, null , ta),

R (a, c, t��), T (a, c, null , t�), T (a, b, c, t��), T (b, c, d, t��), T (a, c, null , t��),

Act(null),Ans(a),Ans(b)}.

Now,M2 is an incoherent model. Nevertheless if we intersect all the coherent models

of program Π′′(D , IC ,Q) we obtain the set of Ans-atoms {Ans(a),Ans(b)}, which is

a subset of the Ans-atoms {Ans(a),Ans(b),Ans(c),Ans(d)} on the incoherent model

M2. Therefore, from the intersection of all the models of program Π′′(D , IC ,Q) the

consistent answers to Q are (a), (b), as expected. �

Proposition 5.5 Given a database instance D , a set IC of ICs, and a safe stratified

Datalog query Q, let Π′′(Q) be the same as query program Π(Q) plus rules of the

form (5.6), for each predicate P that is connected to a query predicate in G(IC), plus

Rule 5.7. It holds Π′′(D , IC ,Q) ≡Q Π(D , IC ,Q) under the cautious semantics. �

Proof: For the proof, let Anscoh be the set of Ans-atoms from the intersection of

all the coherent models of program Π′′(D , IC ,Q), and let Ansinc be the set of Ans-

atoms in the fixed but arbitrary incoherent model M . We need to show that for every

incoherent model M , Anscoh ⊆ Ansinc.

By contradiction, let us assume that there exist an Ans-atom Ans(c̄) that is in

Anscoh, but is not in M . If Ans(c̄) is not in M , then there exists a query predicate

R such that atoms R (d̄, ta) and R (d̄, fa) are in M , and therefore R (d̄, t��) is false

in M . However, since M is incoherent, then program Π′′(D , IC ,Q) has rules of the

form Act(xi) ← P (x̄, t�) for each predicate P and attribute xi on x̄, such that P is

83

connected to a query predicate.

Since atoms of the form P (x̄, t�) are the ones that become true in the repair

process, then either P (f̄) is in M or P (f̄ , ta) is in M , and therefore Act(e) will

be true in M for each constant e in the attributes of the relevant predicates to

compute the query (including the query predicates). Moreover, since Ans(c̄) is a

cautious answer, it means that the constants in c̄ are in the active domain, then rule

Ans(c̄)← inc,Act(ci), . . . ,Act(cn) in the ground version of Π′′(D , IC ,Q) is satisfied

and Ans(c̄) is true in M . We have reached a contradiction. �

Notice that the methodology for query answering presented above is applicable in

particular to queries that are existentially quantified conjunctions of literals, as long

as they are safe, i.e. every variable in negative literal also appears in a positive

literal. (And then the method immediately applies to conjunctive queries.) A safe

conjunctive query is of the form:

Ans(x̄)← P1(x̄1), . . . , Pm(x̄m), not Rm+1(ȳm+1), . . . , not Rk(ȳk), (5.8)

with x̄ ⊆ ⋃m
i=1 x̄i, and

⋃k
j=m+1 ȳj ⊆

⋃m
i=1 x̄i.

However, for this kind of queries, we can optimize the method above, without

producing the possibly large active domain, as follows: instead of inserting rules of

the form (5.6) to capture the active domain, we introduce into the query program a

rule of the form:

Ans(x̄)← inc, Pi (x̄i, t
�), . . . , Pm (x̄m, t

�), (5.9)

where each Pi is a predicate appearing in a positive literal in query Q of the form

(5.8), such that x̄ ∩ x̄i 	= ∅.

Example 5.7 (example 5.5 cont.) For query Q: Ans(x) ← S(x, y), R(x, y), not

84

T (x, x, x), atoms S(x, y) and R(x, y) are the positive literals of the query, and for

both of them x∩ {x, y} = x holds. Therefore, program Π(Q) has the following rules:

Ans(x)← S (x, y, t��), R (x, y, t��), not T (x, x, x, t��).

Ans(x)← inc, S (x, y, t�), R (x, y, t�).

Program Π′′(D , IC ,Q) has three stable models:

M1 = {S(a, b), S(a, c), S(b, c), R(a, b), R(b, c), T (a, b, c), T (b, c, d), S (a, b, t�),

S (a, c, t�), S (b, c, t�), R (a, b, t�), R (b, c, t�), T (a, b, c, t�), T (b, c, d, t�),

aux (a, b), aux (b, c), S (a, c, fa), R (a, b, t��), R (b, c, t��), S (a, b, t��),

S (b, c, t��), T (a, b, c, t��), T (b, c, d, t��), Ans(a), Ans(b)},

M2 = {S(a, b), S(a, c), S(b, c), R(a, b), R(b, c), T (a, b, c), T (b, c, d), S (a, b, t�),

S (a, c, t�), S (b, c, t�), R (a, b, t�), R (b, c, t�), T (a, b, c, t�), T (b, c, d, t�),

aux (a, b), aux (b, c), R (a, c, ta), R (a, b, t��), R (b, c, t��), S (a, b, fa),

S (a, c, t��), S (b, c, t��), R (a, c, t�), R (a, c, fa), T (a, b, c, t��), T (b, c, d, t��),

inc, Ans(a), Ans(b)},

M3 = {S(a, b), S(a, c), S(b, c), R(a, b), R(b, c), T (a, b, c), T (b, c, d), S (a, b, t�),

S (a, c, t�), S (b, c, t�), R (a, b, t�), R (b, c, t�), T (a, b, c, t�), T (b, c, d, t�),

aux (a, b), aux (b, c), R (a, c, ta), R (a, b, fa), R (b, c, t��), S (a, b, fa),

S (a, c, t��), S (b, c, t��), R (a, c, t�), T (a, c, null , ta), R (a, c, t��),

T (a, c, null , t�), T (a, b, c, t��), T (b, c, d, t��), T (a, c, null , t��), Ans(a),

Ans(b)}.

M2 is an incoherent model, nevertheless if we intersect all the coherent models of pro-

gram Π′′(D , IC ,Q), we obtain the set of Ans-atoms {Ans(a),Ans(b)}, which coincides

with the Ans-atoms {Ans(a),Ans(b)} on the incoherent modelM2. Therefore, from

85

the intersection of all the models of program Π′′(D , IC ,Q) the consistent answers to

Q are (a), (b), as expected. �

In Chapter 9 we present an optimized system that implements our MS methodology

for disjunctive repair programs with program constraints. Thus, given a repair and a

query program, the system returns the MS rewritten program including the necessary

program constraints, which is directly evaluated in the DLV system. In this way, all

the extra processing of program constraints and queries presented in this section is

avoided. However we decided to present the methodology of this section because it is

interesting and relevant in itself.

5.4 Selecting and Importing Relevant Predicates

In this section we present a different optimization method that can be used as an al-

ternative to MS to evaluate queries. This method also captures the relevant database

predicates to compute a specific query. However, it is achieved by analyzing the re-

lationship between predicates in the ICs and the query predicates, which is captured

by the dependency graph in Definition 2.1.

The relevant predicates are used for pruning repair programs. In this manner, the

rules for predicates that are relevant to compute a query are kept in the program,

but the other rules are eliminated. By eliminating the database facts that will not be

involved in the computation of queries, the flow of data between the database system

and the reasoning system, that runs the repair programs, is reduced considerably. In

Chapter 9 we report experimental results that prove the effectiveness of this method.

Definition 5.6 A predicate P is relevant for the consistent answers to a Datalog

query Q wrt IC if P is in a connected component c of graph G(IC), and there is a

86

predicate P ′ appearing in Q and c. Rel(Q, IC) denotes the set of relevant predicates

for the consistent answers to query Q. �

Proposition 5.6 Let Π(D , IC ,Q) ↓Q denotes the same as program Π(D , IC ,Q)

except that the former contains only rules with head atoms for each predicate P ,

such that P is in Rel(Q, IC), and database facts of the form P (ā) with P (ā) ∈ D . It

holds that Π(D , IC ,Q)↓Q and Π(D , IC ,Q) retrieve the same cautious/brave answers

to query Q.

Proof: Let Π′ denotes the ground version of program Π(D , IC ,Q)↓Q. It is easy to

see that the ground program Π(D , IC ,Q) can be split [63] into a bottom program

Πb(D , IC ,Q) = Π′ and a top program Πt(D , IC ,Q) = Π(D , IC ,Q) � Πb(D , IC ,Q),

using as a splitting set all the atoms with a predicate P that is in Rel(Q, IC). Thus,

program Πb(D , IC ,Q) only contains rules for predicates that are connected with the

query predicates in the graph G(IC).

Program Π(D , IC ,Q) can be hierarchically evaluated in the following way: The

models of program Π(D , IC ,Q) are SM (Π(D , IC ,Q)) =
⋃
M SM (M ∪Πt(D , IC ,Q)),

for stable models M of Πb(D , IC ,Q). Since program Πt(D , IC ,Q) does not have rules

whose predicates are related with the query predicates, the extensions for the Ans

predicate (which collects the answers to query Q) can be obtained by using only the

rules from the bottom program Πb(D , IC ,Q). Then, all the stable models of program

Π(D , IC ,Q) contain the extensions of the Ans predicate. Therefore, Π(D , IC ,Q)↓Q
and Π(D , IC ,Q) retrieve the same cautious/brave answers to Q. �

Example 5.8 (example 5.1 cont.) Figure 5.1 shows the dependency graph G(IC)

for IC : ∀x(S(x) → Q(x)), ∀x(Q(x) → R(x)) and ∀x(T (x) → W (x)). For query

Q : Ans(x)← S (x, t��), the relevant predicates are {S,Q,R}.

87

S

WT

RQ

Figure 5.1: Dependency Graph G(IC) and Relevant Predicates

Therefore, program Π(D , IC ,Q)↓Q contains the following rules:

S(a).

S (x, fa) ∨Q (x, ta)← S (x, t�), Q (x, fa), x 	= null.

S (x, fa) ∨Q (x, ta)← S (x, t�), not Q(x), x 	= null.

Q (x, fa) ∨R (x, ta)← Q (x, t�), R (x, fa), x 	= null.

Q (x, fa) ∨R (x, ta)← Q (x, t�), not R(x), x 	= null.

S (x, t�)← S (x, ta). S (x, t�)← S(x).

Q (x, t�)← Q (x, ta). Q (x, t�)← Q(x).

R (x, t�)← R (x, ta). R (x, t�)← R(x).

S (x, t��)← S (x, t�), not S (x, fa).

Q (x, t��)← Q (x, t�), not Q (x, fa).

R (x, t��)← R (x, t�), not R (x, fa).

← Q (x, ta), Q (x, fa).

Ans(x)← S (x, t��).

The stable models are:

M1 = {S(a), S (a, t�), Q (a, ta), S (a, t��), Q (a, t�), R (a, ta), Q (a, t��), R (a, t�),

R (a, t��), Ans (a)},

M2 = {S(a), S (a, t�), S (a, fa)}.

Since there are no ground Ans-atoms in common, there are no cautious answers to

88

the query, as expected. However, now a subset of the stable models of program

Π(D , IC ,Q) have been computed. �

It is important to notice that by considering only the relevant predicates to compute

consistent answers to queries, there is an important reduction of database facts in-

volved in the computation of the stable models. For instance in Example 5.8, only

the database fact S(a) appears in the stable models.

Moreover, it can be proved that there is a one-to-one correspondence between the

relevant predicates for a given query and the predicates selected by the MS technique.

Thus, both methods presented in this section select the relevant portion of programs

to compute a query. However, as we show in Chapter 9, MS produces more gain in

terms of execution time of queries, specially for conjunctive queries with free variables

and involving more than one database predicate. In Chapter 9 we report experimental

results that compare the execution time of queries evaluated with both methodologies.

LetMS←(Π(D , IC,Q))[P] denotes the rewritten program produced by MS method-

ology reduced to the rules having a database predicate P , written as P , in their heads.

Proposition 5.7 Given a database instance D , a set IC consisting of UICs, RICs,

and NNCs, and a query Q , P is in Rel(Q, IC) iff there is a modified rule rm in the

rewritten programMS←(Π(D , IC,Q))[P] with P in H(rm), the head of rule rm.

Proof: We first prove that if P is a relevant predicate to compute a query, then there

exists a modified rule in the rewritten program MS←(Π(D , IC,Q))[P]. Next, we

prove that if there exists a modified rule in program MS←(Π(D , IC,Q))[P] then P

is relevant.

(a) P is in Rel(Q, IC), then there is a modified rule rm in the rewritten program

MS←(Π(D , IC,Q))[P] with P in its head.

89

By contradiction, let us assume that there exists a relevant predicate P , but

there is no a rule rm with P in its head. There are two cases. First P is in

Q, therefore MS will first adorn the interpretation rule P (c̄, t��) ← P (c̄, t�),

not P (c̄, fa). Hence, there is a modified rule with head P (c̄, t��) in MS← (Π

(D , IC, Q))[P]. We have reached a contradiction.

Second, P is not a query predicate, but it is in the same component as a

query predicate P ′. Therefore, P is directly or transitively connected with

P ′. Since P ′ is a query predicate, MS technique will adorn the rules defining

P ′, and will adorn rules with head predicate P at some step i of the adorn-

ment process. Therefore there are modified rules with head predicate P in

MS←(Π(D , IC,Q))[P]. We have reached a contradiction.

(b) There is a modified rule rm in the rewritten program MS←(Π(D , IC,Q))[P]

with P in its head, then P is in Rel(Q, IC).

By contradiction, let us assume that there exists a rule rm with P in its head,

but P is not in Rel(Q, IC).

It is easy to see that P cannot be a query predicate, otherwise P ∈ Rel(Q, IC)

trivially holds. Then, MS selects a rule with predicate P at some step i of the

adornment process. First assume i = 1. Since P is not a query predicate, the

rule being adorned is a disjunctive rule and P is in its head. Then, there exists

a IC having P either in its antecedent or consequent, and a query predicate P ′

in its consequent/antecedent. Hence, P is connected with P ′, and therefore P

is in Rel(Q, IC). We have reached a contradiction.

Assume that P is selected in a step i, with i > 1. When i > 1, the new rules

to be selected are the ones having head predicates selected in the step i − 1,

which are relevant to compute query answers. For instance, if P is selected in

90

step 2 then, there exists a IC having P either in its antecedent or consequent

and a predicate P ′′ in its consequent/antecedent. Predicate P ′′ is selected in

step 1, and P is connected with P ′′. Since P ′′ is selected in step 1, it was

connected to a query predicate, therefore P is also connected with a query

predicate and P is a relevant predicate. Thus, it is easy to see that for any step

i of the adornment process the predicates selected by MS are all relevant to

compute queries. Moreover, predicates selected in step i are connected with the

predicates selected in step i−1, and therefore they are from the same connected

component in the graph. We have reached contradiction. �

The selection of relevant database facts performed here differs from the one described

in [34], where database repairs are efficiently computed. Here, we are concerning on

query answering, but not in computation of repairs.

5.5 Related Work

Optimizations of the process of retrieving consistent answers have been studied and

introduced before in the context of data integration. In [34] techniques to efficiently

compute and store database repairs are described. Basically, database facts partici-

pating in violations of UICs are located and extracted from the database (which does

not contain null values). This splits the database in two parts: the affected database,

which contains data violating ICs; and the safe database, which stores consistent

data. That operation permits to speed up the computation of database repairs, that

are computed for the affected part only.

The concepts of safe and affected database wrt UICs is defined in [34] as follows:

Definition 5.7 [34] Consider a database instance D , and a set IC of UICs for a

relational database schema Σ = (U ,R ∪ B), with null 	∈ U . (a) The facts P1(t̄1)

91

and P2(t̄2), such that P1, P2 ∈ R and t̄1, t̄2 have constants in U , are constraint-

bounded (to each other), if they occur in the same ground (variable-free) constraint

icg ∈ ground(IC).5 (b) facts(icg) denotes the set of all facts P (t̄) that occur in

icg ∈ ground(IC). (c) The conflict set for a database instance D is the set of facts

CD = {P (t̄) | ∃icg ∈ ground(IC) ∧P (t̄) ∈ facts(icg) ∧ D 	|= icg}. (d) The conflict

closure for D , denoted by C�
D , is the least set C with CD ⊆ C that contains every

fact P (t̄) constraint-bounded in Σ with some fact P ′(t̄′) ∈ C. (e) SD = D �C�
D , and

AD = D ∩ C�
D are the safe database and the affected database respectively. �

Intuitively, set C�
D contains all the facts involved in ICs violations (CD), and the facts

which possibly have to be changed in order to avoid new violations of ICs during the

repair process. Note that the conflict set CD may contain facts that do not belong to

the database instance D .

Example 5.9 For D = {S(a, b), S(a, c), S(b, c), R(b, c), R(a, b)}, primary keys PK1:

∀xyz(S(x, y), S(x, z) → y = z); PK2 : ∀xyz(R(x, y), R(x, z) → y = z), and IND:

∀xy(S(x, y) → R(x, y)), the conflict set CD consists of the tuples that are involved

in violations of PK1, and the IND i.e. CD = {S(a, b), S(a, c), R(a, c)}. Here R(a, c)

does not belong to D , but C�
D = {S(a, b), S(a, c), R(a, c), R(a, b)}. Tuple R(a, b) is

constraint-bounded with R(a, c) due to icg : (R(a, c), R(a, b) → c = b). Thus, SD

= {S(b, c), R(b, c)} and AD = {S(a, b), S(a, c), R(a, b)}. The database repairs are:

{S(a, c), S(b, c), R(a, c), R(b, c)}, and {S(a, b), S(b, c), R(a, b), R(b, c)}. �

Having the database split, repairs are computed for the affected database only. In this

way, only a subset of the database is involved in the evaluation of repair programs.

The idea of this approach is to encode all the repairs into a single database, then after

5ground(IC) contains the ground instances of a set IC of ICs.

92

repairs are computed, a new database instance D ′ is generated, which contains a copy

of the relations in the original database, each of them with an extra attribute called

the marked attribute. This attribute is a binary string (containing only 0 and 1) of

length n, where n is the number of database repairs for D . Here, 1 in the ith position

means that the tuple belongs to the repair i, and 0 means that the tuple is not in the

repair i. In this way, the new marked database becomes a compact representation of

the database repairs. Consistent answers are computed by first translating Datalog

queries into new sentences that consider the new marked attribute; and secondly,

evaluating them in the new database instance.

Even though this methodology reduces the amount of data participating in the

evaluation of repair programs, at the end it computes database repairs. We do not

concentrate on computing repairs, but on efficient computation of consistent answers

to queries. Hence, our optimizations are conducted in that direction. We believe that

the MS methodology is a better way to achieve this goal (cf. Chapter 9).

5.6 Summary

In this chapter we presented a magic sets methodology that can be applied to our

repair programs with program constraints. This technique allows to focalize on a

part of the repair programs and facts, those that are relevant to answer the query at

hand. It was shown that this methodology is sound and complete when applied to

disjunctive repair programs with program constraints.

In order to apply magic sets to repair programs in DLV, a suitable pre-processing

of program constraints (if the program contains them) has to be performed. This

is due to the fact that currently DLV does not support magic sets for programs

with program constraints. In addition, DLV applies magic sets internally, without

returning the rewritten program. This implies that it is not possible to add the

93

program constraints later to the magic program.

As an alternative to MS, the evaluation of programs in DLV can also been op-

timized by selecting the relevant predicates to compute queries, and removing from

the repair programs the rules (and database facts) that do not involve relevant pred-

icates. In this manner, programs are smaller that the original ones, and the flow of

data between the database system and the reasoning system is decreased.

In Chapter 9 we describe a system that implements our MS methodology to com-

pute consistent answers to queries. The system also implements, as an alternative

to MS, the methodology that captures the relevant predicates to compute queries,

and uses them to create smaller programs. Moreover, we report experimental results

that show that both methods are faster to compute queries than the method which

performs a direct evaluation of programs.

Chapter 6

Logic-based Specification of Aggregate Queries

6.1 Introduction

In this chapter we describe how to specify logic programs to compute consistent

answers to aggregate queries with scalar functions, and aggregate queries with group-

by statements. The former return a single numerical value by applying an aggregation

function like min, max, count, sum, avg, to an attribute of a database relation. For

instance, the scalar aggregate SQL1 query “SELECT max(salary) FROM Emp” returns

the maximum value of “salary” in “Emp”.

Queries with group-by perform grouping on the values of an attribute or a set of

attributes, and return a single value for each group, instead of returning a unique

value for the whole relation as the scalar aggregate queries do. As an illustra-

tion, the SQL query “SELECT city, sum(sales) FROM Monthly Sales GROUP BY

city” returns the sum of the “sales” for each “city” from table “Monthly Sales”.

This query can also be written as a query program (rule): Ans(city, sum(sales))←
Monthly Sales(city , sales).

The notion of consistent answer to a scalar aggregate query wrt functional de-

pendencies (FDs) was defined in [4]. Intuitively, a consistent answer to an aggregate

query is the shortest numerical interval that contains the value of the aggregate query

in every possible repair wrt the FDs.

The notion of consistent answer to aggregate queries with group-by statements wrt

1SQL stands for Structured Query Language.

94

95

FDs will be based on this notion of consistent answer given in [4] for scalar aggregate

queries. Still informally, a tuple of the form 〈t1, . . . , tm, [a, b]〉 is a consistent answer

to an aggregate query with group-by statements for the attributes corresponding to

t1, . . . , tm, if first, the non-aggregate part 〈t1, . . . , tm〉 is a consistent answer in the

usual sense, i.e. it is true in every repair of the database, and secondly, for every

repair the aggregate value for the group of attributes values in t1, . . . , tm falls in the

numerical interval [a, b].

For instance, for the aggregate query Q:

Ans(city, sum(sales))← Monthly Sales(city , sales),

the tuples {(ottawa, [2000, 6000]), (montreal , [4000, 7000])} are consistent answers if

the cities ottawa,montreal appear in every possible repair, and if for every repair the

aggregate value for sum(sales) for ottawa falls in the interval [2000, 6000], and for

montreal it falls in the interval [4000, 7000].

As in [4, 5], we restrict our analysis to FDs, but it could be extended to general

sets of RIC-acyclic ICs.

In [4, 5], repairs wrt a set of FDs are represented as independent sets in a conflict

graph, which is a compact representation of all repairs. Here, we represent repairs as

disjunctive logic programs, as done in Chapter 2. By using logic programs, we are

able to exploit the capabilities of the DLV system [61] to compute aggregate functions

over stable models [36].

The semantics of aggregation under stable models semantics for disjunctive pro-

gram is investigated in [31, 36], and the implementation of aggregate queries in the

DLV system is described in [32]. Currently, the DLV system implements min, max,

count, times, sum, but not avg (average) [37].

96

The remaining of this chapter is organized as follows: Section 6.2 describes the

logic-based specification of repairs for scalar aggregate queries. Section 6.3 introduces

the notion of consistent answers to aggregate queries with grouping of attributes,

together with the logic-based specification of repairs for computing consistent answers.

Section 6.4 finalizes this chapter.

6.2 Aggregate Queries with Scalar Functions

A scalar aggregate query is of the form:

SELECT f FROM P, (6.1)

where f is one of min(A), max(A), count(A), sum(A), avg(A), and A is an at-

tribute of relation P , also f can be count(*) that returns the number of tuples in

relation P .

As a rule, the scalar aggregate query will be:

Ans(f)← P(x̄), (6.2)

The following definition of consistent answer is given in [4]. A consistent answer

to an aggregate query Q of the form (6.1) wrt a database instance D , and a set of

functional dependencies FD is a minimal numerical interval I = [a, b], such that, for

every repair D ′ of D wrt FD , the numerical value Q(D ′) of query Q in D ′ belongs to

I. The extreme values a, b are called the greatest lower bound answer (glb) and the

least upper bound answer (lub) answers to Q in D , respectively.

This definition guarantees that the value of the scalar function evaluated in every

repair can be found within the most informative interval.

Example 6.1 Consider the database schema Emp(Name, Salary) and FD: Name →

97

Salary . The following database instance D violates the FD through the first two

tuples:

Emp Name Salary

smith 5000

smith 8000

jones 3000

Thus, consistency can be restored by eliminating either tuples Emp(smith,5000) or

Emp(smith, 8000), therefore there are two repairs:

Emp Name Salary

smith 5000

jones 3000

Emp Name Salary

smith 8000

jones 3000

For the scalar aggregate query “SELECT max(Salary) FROM Emp”, the consistent an-

swer is the interval [5000, 8000], where 5000 is the glb answer, and 8000 is the lub

answer. �

In order to consistently answer scalar aggregate queries with logic programs, we first

have to generate the repair program Π(D ,FD) for the corresponding database in-

stance D and set FD of FDs. Notice that since we consider only FDs, the repair

program does not have program constraints (cf. Corollary 4.1, Chapter 4).

Instead of expressing aggregate queries in the SQL language, they have to be

specified as logic programs. Thus, given an aggregate query Q of the form (6.1), an

aggregate query ΠA(Q) is generated by expressing Q as an aggregate query rule in

DLV notation, which, according to the formalism given in [36], is a rule of the form:

Ans(w) ←− #f{x′ : P (x̄, t��)} = w, (6.3)

98

where Ans is a new predicate that is not present anywhere else in the repair program,

f is the aggregate function in Q, which is applied over variable x′ ∈ x̄ of predicate

P . The variable x′ is in the same position of attribute A in (6.1), and w is a variable

that will store the aggregate value returned by f in each stable model of the program

Π(D , IC) ∪ ΠA(Q). Notice that if f is count(*) then Rule 6.3 becomes:

Ans(w) ←− #count{x̄ : P (x̄, t��)} = w, (6.4)

The semantics of aggregation under stable models semantics for disjunctive program

present in [31, 36] is defined for aggregate-stratified disjunctive programs.

Definition 6.1 [31, 36] A program Π is aggregate-stratified if there exists a function

‖ ‖, called level mapping, from the set of predicates in Π to ordinals, such that for

each pair P and P ′ of predicates, occurring in the head and body of a rule r of Π,

respectively: (i) if P ′ appears in an aggregate atom, i.e. an atom over which an

aggregate function is computed, then ‖P ′‖ < ‖P‖, and (ii) if P ′ occurs in a non-

aggregate atom, then ‖P ′‖ ≤ ‖P‖. �

Example 6.2 The following program Π is aggregate-stratified, since the level map-

ping ‖R‖ = 1, ‖P‖ = 2 satisfies the required conditions.

R(a). R(b).

P (w) ←− #count{x : R(x)} = w.

However, if we add the rule R(x) ←− P (x), then no legal level mapping exists, and

therefore the program becomes aggregate-unstratified. �

The aggregate-stratification condition forbids recursion through aggregates. Notice

that our programs are always aggregate-stratified, since first repair programs for FDs,

99

that do not have program constraints, are locally-stratified (cf. Proposition 4.3, Chap-

ter 4). Moreover, aggregates only appear on rules with the head atom Ans , which

is not present elsewhere in programs, therefore recursion through aggregates is never

introduced.

Example 6.3 (example 6.1 cont.) For query “SELECT max(Salary) FROM Emp”,

the program ΠA(Q) is Ans(w)← #max{y : Emp (x, y, t��)} = w. Thus, the program

Π(D ,FD ,Q) := Π(D ,FD) ∪ ΠA(Q) has the following rules:

Emp(smith, 5000). Emp(smith, 8000). Emp(jones , 3000).

Emp (x, y, fa) ∨ Emp (x, z, fa)← Emp (x, y, t�), Emp (x, z, t�), y 	= z, x 	= null,

y 	= null, z 	= null.

Emp (x, y, t�)← Emp (x, y, ta).

Emp (x, y, t�)← Emp(x, y).

Emp (x, y, t��)← Emp (x, y, t�), not Emp (x, y, fa).

Ans(w)← #max{y : Emp (x, y, t��)} = w. �

Even though the specification above conforms to the formalism given in [36], and the

semantics of such programs returns the correct answers, the program will not run

in the DLV system. The reason is that DLV currently presents technical difficulties

with aggregation over predicates that are defined by unstratified or disjunctive rules,

as in the previous example, where the rule defining atom Emp (x, y, t��) involves

atom Emp (x, y, fa) which is in the head of a disjunctive rule. In these cases, DLV

returns a warning message notifying that the aggregate function cannot be applied

on disjunctive or unstratified predicates.

In these cases problems arise during the grounding process of DLV, which is per-

formed before the computation of the stable models. For instance, variable w in rule

Ans(w) ← #max{y : Emp (x, y, t��)} = w (cf. Example 6.3) is unbound before the

100

ground version of the program is computed, and DLV would have to compute all pos-

sible values for binding it when the ground version of the program is computed. For

the functions max, min the possible values are among the values taken by variable y,

but for other functions, like sum, they are not, and therefore grounding could become

very difficult.

As a consequence, in order for DLV to answer queries involving functions max

and min, rules have to be modified by inserting an extra argument that binds the

aggregation variable. Thus, assuming, without loss of generality, that the last variable

in atom P (x̄) corresponds to x′, i.e. the variable to which the aggregate function f

(max or min) is applied, Rule 6.3 is transformed into:

Ans(w)← #f{x′ : P (x̄, t��)} = w, P (ȳ, w, t��), (6.5)

where w is bounded by atom P (ȳ, w, t��), and ȳ are fresh variables for variables in

x̄ � {x′}. This solution works because the max and min are taken inside relation P

(for a finite Herbrand domain).

Notice that for the aggregate functions sum and count it is not possible in general

to bind the variable w to a value in a database predicate. Therefore, we are able to

compute consistent answers, in DLV system, to aggregate queries involving only the

aggregate functions max and min.

Example 6.4 (example 6.3 cont.) Program ΠA(Q) is now: Ans(w) ← #max{y :

Emp (x, y, t��)} = w, Emp (z, w, t��). Program Π(D ,FD ,Q) has two stable models:2

2Here and in the rest, the models of the programs are displayed without program facts.

101

M1 = {Emp (smith, 5000, t�),Emp (smith, 8000, t�),Emp (jones , 3000, t�),

Emp (smith, 5000, t��),Emp (smith, 8000, fa),Emp (jones , 3000, t��),

Ans(5000)},

M2 = {Emp (smith, 5000, t�),Emp (smith, 8000, t�),Emp (jones , 3000, t�),

Emp (smith, 5000, fa),Emp (smith, 8000, t��),Emp (jones , 3000, t��),

Ans(8000)}.

The aggregation function returns 5000 as the maximum salary in the first repair, and

8000 in the second one. �

Consistent answers, intervals in this case, are computed by capturing all the values

returned by the aggregation function across the models, which can be achieved by

running the program Π(D ,FD ,Q) := Π(D ,FD) ∪ ΠA(Q) under the brave semantics

[44].

The brave answers returned can be used as database facts for a separate program

that contains rules for the aggregate functions min and max, that once computed,

will return the left and right extremes of the (minimal) consistent interval, resp. So,

we use the rules

glb(w)← #min{x : Ans(x)} = w,Ans(w). (6.6)

lub(w)← #max{x : Ans(x)} = w,Ans(w). (6.7)

where Ans is the same as in Rule 6.5. The consistent answer to Q is obtained from

the unique stable model, and corresponds to the numerical interval [glb(c̄), lub(c̄)].

Example 6.5 (example 6.4 cont.) Tuples Ans(5000), Ans(8000) are the Ans-atoms

from all the stable models of program Π(D ,FD ,Q). They become facts of a new

program that contains the Rules 6.6 and 6.7. This new program has one stable model

102

M = {glb(5000), lub(8000)}. Therefore, the consistent answer to query “SELECT

max(Salary) FROM Emp” is the numerical interval [5000, 8000], as expected. �

Algorithm 6.1: CQA-Scalar Aggregate Queries(D ,FD ,Q)

Input: The database instance D , the set FD of FDs, the aggregate query Q
Output: consistent answer to query Q
Π(D ,FD) := GenerateRepairProgram(D ,FD);

ΠA(Q) := GenerateAProgram(Q);

Π(D ,FD ,Q) := Π(D ,FD) ∪ ΠA(Q);

Π := GenerateNewProgram();

Π := ComputeBraveAnswers(Π(D ,FD ,Q));

Add to Π rules:

glb(w)← #min{x : Ans(x)} = w,Ans(w).

lub(w)← #max{x : Ans(x)} = w,Ans(w).

ComputeStableModel(Π);

return ([glb(c̄), lub(c̄)])

Algorithm 6.1 computes consistent answers to scalar aggregate queries of the form

(6.1). The input to the algorithm consists of the database instance D , the set FD

of FDs, and the aggregate query Q. It first generates the repair program Π(D ,FD)

and the query program ΠA(Q), which are run together in DLV under the brave

semantics. In this way all the answers for the aggregate query from every stable

model are captured. The brave answers are used as program facts of a second program

Π, which also contains Rules 6.6 and 6.7. The consistent interval [glb(c̄), lub(c̄)] is

obtained from the unique stable model of program Π.

103

It is important to mention that the introduction of aggregates in disjunctive pro-

grams does not increase the intrinsic complexity of the brave and cautious reasoning

tasks [31, 36], which are ΣP
2 -complete, and ΠP

2 -complete, respectively. Briefly, ΣP
2

stands for NPNP , i.e. the NP problems that are solved with an oracle in NP . On the

contrary, ΠP
2 stands for co-NPNP , that is the problems whose complement problems

are in NPNP [30].

6.3 Aggregate Queries with Group-By Statements

An aggregate query with group-by statements is of the form:

SELECT Ai, . . . , Am, f(A) FROM P GROUP BY Ai, . . . Am, (6.8)

where Ai, . . . Am, A are attributes of relation P, and f is one of min(A), max(A),

count(A), sum(A), avg(A), applied to attribute A with A ∩ {Ai, . . . Am} = ∅.

A query like this can be expressed by means of a logic program Π containing an

answer predicate Ans(x1, . . . , xm, w), where the values of w are computed with the

aggregation function f , that is parameterized by the values (x1, . . . , xm) and applied

to a set of values of attribute A. We simply denote this value by f(x1, . . . , xm), so that

the answers to the query are of the form Ans(x1, . . . , xm, f(x1, . . . , xm)). Typically,

such an aggregate query will be based on a conjunctive query, in which case the query

program rule will take the form

Ans(x1, . . . , xm, w) ←− P1(x̄1), . . . , Pk(x̄k), w = f(x1, . . . , xm),

with {x1, . . . , xm} ⊆
⋃k
j=1 x̄j.

The definition of consistent answer for this kind of queries is inspired by the notion

104

of consistent answer to scalar aggregate queries [4].

Definition 6.2 Consider a database instance D , and a set FD of FDs, and an ag-

gregate query with group-by Q whose answer is given trough an answer predicate

Ans(x1, . . . , xm, w) defined by a logic program with aggregation function f(x1, . . . , xm).

A consistent answer to queryQ wrt FD is a tuple of the form 〈t1, . . . , tm, [a, b]〉 such

that: (a) [a, b] is a numerical interval. (b) For every repairD′ ofD wrt FD , 〈t1, . . . , tm,
f(t1, . . . , tm)〉 is an answer to Q inD′ and f(t1, . . . , tm) ∈ [a, b]. (c) [a, b] is the shortest

interval with the properties above. �

We can see that the non-aggregate part 〈t1, . . . , tm〉 of a consistent answer for an ag-

gregation query is a consistent answer in the usual non-aggregate sense. The extreme

values a, b are called the greatest lower bound answer (glb) and the least upper bound

answer (lub) answers for 〈t1, . . . , tm〉 in D , respectively. If a = b then the interval can

be represented as [a].

Example 6.6 For database schema Dept(ID ,Name,Budget ,Year) and FD: ID →
Name, the following database instance D violates the FD through the first four

tuples.

Dept ID Name Budget Year

1 cs 5000 2000

1 cs 8000 2001

1 math 3000 2000

1 math 6000 2001

2 biol 3000 2001

2 biol 7000 2002

105

Consistency can be restored by eliminating either database tuples {Dept(1, cs , 5000,

2000), Dept(1, cs , 8000, 2001)} or tuples {Dept(1,math, 3000, 2000), Dept(1, math,

6000, 2001)}, hence there are two repairs:

Dept ID Name Budget Year

1 cs 5000 2000

1 cs 8000 2001

2 biol 3000 2001

2 biol 7000 2002

Dept ID Name Budget Year

1 math 3000 2000

1 math 6000 2001

2 biol 3000 2001

2 biol 7000 2002

The answers to the query “SELECT Year, max(Budget) FROM Dept GROUP BY Year”

from the first and second repairs are: {(2000, 5000), (2001, 8000), (2002, 7000)}, and

{(2000, 3000), (2001, 6000), (2002, 7000)} respectively. For years 2000 and 2001

there are different answers in the repairs, that is because tuples with these years

are inconsistent wrt the FD. However, for year 2002 the answer is the same in both

repairs, which happens because the tuple (2, biol , 7000, 2002) is consistent wrt the

FD. Hence, the consistent answers to Q are (2000, [3000, 5000]), (2001, [6000, 8000]),

(2002, [7000]), i.e. for years 2000 and 2001 it is a minimal numerical interval that

contains the value of the aggregation function in every repair, and for year 2002 it is

a unique value.

For query “SELECT Name, max(Budget) FROM Dept GROUP BY Name” the answers

from the first repair are {(cs , 8000), (biol , 7000)}, and {(math, 6000), (biol , 7000)}
from the second one. Hence, the consistent answer to Q is (biol , [7000]), because biol

belongs to both repairs. However, for departments cs and math it is not possible to

compute a consistent answer, since they do not appear in all the repairs. �

It is important to remark that if there exists a repair where the aggregation function

106

is not defined for a certain group of attributes, then there is no consistent answer for

that group of attributes, as illustrated in the previous example.

As it is the case for scalar aggregate queries, in order to use logic programs to

compute consistent answers to queries with group-by statements, we have to generate

the repair program Π(D ,FD), for the database instance and set FD of FDs, and

translate the aggregate query into a logic program. Thus, given an aggregate query

Q of the form (6.8), a query program ΠA(Q) is generated by expressing Q as an

aggregate rule [36] of the form:

Ans(ȳ, w)← #f{x′ : P (x̄, t��)} = w, P (z̄, ȳ, w, t��), (6.9)

where Ans is a new predicate that is not present elsewhere in the repair program, f

is the aggregate function max or min in Q, which is applied over variable x′ ∈ x̄ of

predicate P and corresponds to attribute A, ȳ ⊆ x̄ is a set of the form yi, . . . , ym and

corresponds to the positions of attributes in Ai, . . . , Am (they are variables in the group-

by statement of Q), variables in z̄ are fresh variables for variables in x̄� (ȳ ∪ {x′}),
and w is a variable that stores the value returned by f in each stable model of program

Π(D ,FD) ∪ ΠA(Q). Atom P (z̄, ȳ, w, t��) binds the variables {ȳ, w} in each stable

model. We assume, without loss of generality, that the variables in atom P (x̄) appear

in the following order: (1) variables in x̄ � (ȳ ∪ {x′}), (2) variables in ȳ, and (3)

variable x′.

Example 6.7 (example 6.6 cont.) For query “SELECT Year, max(Budget) FROM

Dept GROUP BY Year”, the program Π(D ,FD ,Q) is:

Dept(1, cs , 5000, 2000). Dept(1, cs , 8000, 2001). Dept(1,math, 3000, 2000).

Dept(1,math, 6000, 2001). Dept(2, biol , 3000, 2001). Dept(2, biol , 7000, 2002).

Dept (x, y, j, w, fa) ∨Dept (x, z, u, v, fa)← Dept (x, y, j, w, t�),Dept (x, z, u, v, t�),

107

y 	= z, x 	= null , y 	= null , z 	= null .

Dept (x, y, z, w, t�)← Dept (x, y, z, w, ta).

Dept (x, y, z, w, t�)← Dept(x, y, z, w).

Dept (x, y, z, w, t��)← Dept (x, y, z, w, t�), not Dept (x, y, z, w, fa).

Ans(v, w)← #max{z : Dept (x, y, z, v, t��)} = w,Dept (t, r, w, v, t��).

The stable models of program Π(D ,FD ,Q) are:

M1 = {Dept (1, cs , 5000, 2000, t�),Dept (1, cs , 8000, 2001, t�),

Dept (1,math, 3000, 2000, t�),Dept (1,math, 6000, 2001, t�),

Dept (2, biol , 3000, 2001, t�),Dept (2, biol , 7000, 2002, t�),

Dept (1, cs , 5000, 2000, fa),Dept (1, cs , 8000, 2001, fa),

Dept (1,math, 3000, 2000, t��),Dept (1,math, 6000, 2001, t��),

Dept (2, biol , 3000, 2001, t��),Dept (2, biol , 7000, 2002, t��),

Ans(2000, 3000),Ans(2001, 6000),Ans(2002, 7000)},

M2 = {Dept (1, cs , 5000, 2000, t�),Dept (1, cs , 8000, 2001, t�),

Dept (1,math, 3000, 2000, t�),Dept (1,math, 6000, 2001, t�),

Dept (2, biol , 3000, 2001, t�),Dept (2, biol , 7000, 2002, t�),

Dept (1, cs , 5000, 2000, t��),Dept (1, cs , 8000, 2001, t��),

Dept (1,math, 3000, 2000, fa),Dept (1,math, 6000, 2001, fa),

Dept (2, biol , 3000, 2001, t��),Dept (2, biol , 7000, 2002, t��),

Ans(2000, 5000),Ans(2001, 8000),Ans(2002, 7000)}.

Thus, from stable model M1, the maximum budgets for years 2000, 2001, and 2002

are 3000, 6000, and 7000 respectively, because atoms Ans(2000, 3000), Ans(2001,

6000), Ans(2002, 7000) are in M1. The maximum budgets from stable model M2

108

are 5000, 8000, and 7000 respectively, because atoms Ans(2000, 5000), Ans(2001,

8000), Ans(2002, 7000) are inM2.

For query “SELECT Name, max(Budget) FROM Dept GROUP BY Name”, the pro-

gram ΠA(Q) is Ans(y, w)← #max{z : Dept (x, y, z, v, t��)} = w,Dept (t, y, w, r, t��),

program Π(D , FD , Q) has two stable models:

M1 = {Dept (1, cs , 5000, 2000, t�),Dept (1, cs , 8000, 2001, t�),

Dept (1,math, 3000, 2000, t�),Dept (1,math, 6000, 2001, t�),

Dept (2, biol , 3000, 2001, t�),Dept (2, biol , 7000, 2002, t�),

Dept (1, cs , 5000, 2000, t��),Dept (1, cs , 8000, 2001, t��),

Dept (1,math, 3000, 2000, fa),Dept (1,math, 6000, 2001, fa),

Dept (2, biol , 3000, 2001, t��),Dept (2, biol , 7000, 2002, t��),

Ans(cs , 8000),Ans(biol , 7000)},

M2 = {Dept (1, cs , 5000, 2000, t�),Dept (1, cs , 8000, 2001, t�),

Dept (1,math, 3000, 2000, t�),Dept (1,math, 6000, 2001, t�),

Dept (2, biol , 3000, 2001, t�),Dept (2, biol , 7000, 2002, t�),

Dept (1, cs , 5000, 2000, fa),Dept (1, cs , 8000, 2001, fa),

Dept (1,math, 3000, 2000, t��),Dept (1,math, 6000, 2001, t��),

Dept (2, biol , 3000, 2001, t��),Dept (2, biol , 7000, 2002, t��),

Ans(math, 6000),Ans(biol , 7000)}.

Hence, from stable model M1 the maximum budgets are 8000 and 7000 for depart-

ments cs and biol , respectively (Ans(cs , 8000),Ans(biol , 7000) are inM1), and from

stable modelM2 the maximum budgets are 6000 and 7000 for departments math and

biol , respectively (Ans(math, 6000), Ans(biol , 7000) are inM2). �

109

In order to compute consistent intervals, we first need to capture the consistent groups

of attributes i.e. those that appear in every repair. This is because, consistent answers

are computed for the groups of attributes for which the aggregate value is defined

in every repair (stable model). However, we cannot obtain the Ans-atoms from the

intersection of the stable models of program Π(D ,FD ,Q), as we illustrate in the

following example.

Example 6.8 (example 6.7 cont.) For query “SELECT Year, max(Budget) FROM

Dept GROUP BY Year”, the only Ans-atom that remains in the intersection of the

stable models of program Π(D ,FD ,Q) is Ans(2002, 7000), therefore we loose infor-

mation about years 2000 and 2001 which appear in both repairs. �

The consistent group of attributes can be obtained by evaluating program Π(D ,FD ,

Q) with the following rule under cautious reasoning [44]:

Ans′(ȳ)← Ans(ȳ, w), (6.10)

where Ans ′ is a new predicate that is not present anywhere else in the repair program,

ȳ are the variables for the attributes in the group-by, and w is the variable that stores

the aggregate value, as before.

In this way, the Ans ′ predicate captures the group of attributes for which there

exists an aggregate value in every possible repair.

Example 6.9 (example 6.8 cont.) For query “SELECT Year, max(Budget) FROM

Dept GROUP BY Year”, the Ans′-atoms that remains in the intersection of the stable

models of program Π(D ,FD ,Q) ∪ Ans′(v)← Ans(v, w) are Ans ′(2000), Ans ′(2001),

Ans ′(2002). �

110

In order to compute the consistent intervals for aggregate queries with group-by

we need to create a new program Π with the following rules and facts:

(a) All the possible Ans-atoms from the stable models of program Π(D ,FD ,Q),

which become program facts in Π. These atoms are obtained by evaluating

program Π(D ,FD ,Q) under brave reasoning [44].

(b) All the Ans ′-atoms obtained from the intersection of the stable models of repair

program Π(D ,FD ,Q) with Rule 6.10, which also become facts of program Π,

(c) The following rules:

glb(ȳ, w)← #min{x : Ans(ȳ, x)} = w,Ans(ȳ, w),Ans ′(ȳ). (6.11)

lub(ȳ, w)← #max{x : Ans(ȳ, x)} = w,Ans(ȳ, w),Ans ′(ȳ). (6.12)

Rule 6.11 computes the greatest lower bound answer, and Rule 6.12 computes

the least upper bound answer, which are only computed for the groups of at-

tributes that appear in every repair, which is achieved by adding atom Ans ′(ȳ)

to the rules.

Thus, the consistent answers to an aggregate query Q with group-by are obtained

from the unique stable model of program Π.

Example 6.10 (example 6.7 and 6.9 cont.) For Q “SELECT Year, max(Budget)

FROM Dept GROUP BY Year”, program Π contains the following rules and facts:

Ans ′(2000). Ans ′(2001). Ans ′(2002). } from Π(D ,FD ,Q) ∪ Ans′(v)← Ans(v, w)

Ans(2000, 3000). Ans(2000, 5000). Ans(2001, 6000).

Ans(2001, 8000). Ans(2002, 7000).

111

glb(x,w)← #min{y : Ans(x, y)} = w,Ans(x,w),Ans ′(x).

lub(x,w)← #max{y : Ans(x, y)} = w,Ans(x,w),Ans ′(x).

The Ans ′-atoms are obtained from the intersection of the stable models of program

Π(D ,FD ,Q) ∪ Ans′(v) ← Ans(v, w). The Ans-atoms are the brave answers to

Q obtained from program Π(D ,FD ,Q). The stable model of program Π is:

M1 = {glb(2000, 3000), glb(2001, 6000), glb(2002, 7000), lub(2000, 5000),

lub(2001, 8000), lub(2002, 7000)}.

Hence, the consistent answers to Q are (2000, [3000, 5000]), (2001, [6000, 8000]) (2002,

[7000]), as expected.

For query “SELECT Name, max(Budget) FROM Dept GROUP BY Name”, the pro-

gram Π has the following rules:

Ans ′(biol). Ans(cs , 8000). Ans(math, 6000). Ans(biol , 7000).

glb(x,w)← #min{y : Ans(x, y)} = w,Ans(x,w),Ans ′(x).

lub(x,w)← #max{y : Ans(x, y)} = w,Ans(x,w),Ans ′(x).

The stable model is: M1 = {glb(biol , 7000), lub(biol , 7000)}. Therefore, the consis-

tent answer to Q is (biol , 7000), as expected. �

Algorithm 6.2 computes consistent answers to aggregate queries of the form (6.8). The

input to the algorithm consists of the database instance D , the set FD of FDs, and

aggregate queryQ. It first generates the repair program Π(D ,FD), the query program

ΠA(Q), and Rule 6.10, which is evaluated together with program Π(D ,FD ,Q) under

the cautious semantics to obtain the valid groups of attributes for which there exists a

consistent interval. The Ans ′-atoms are inserted as program facts in the new program

Π.

After that, the repair program Π(D ,FD) is evaluated together with the query

112

program ΠA(Q) under the brave semantics. In this way, every possible answers to

the aggregate query from the stable models are captured. The Ans-atoms are also

added to program Π as program facts. Finally, Rules 6.11 and 6.12 are inserted into

program Π, which is evaluated in DLV system.

Algorithm 6.2: CQA-AggregateGroupBy(D ,FD ,Q)

Input: the database instance D , the set FD of FDs, the aggregate query Q
Output: consistent answers to query Q
Π(D ,FD) := GenerateRepairProgram(D ,FD);

ΠA(Q) := GenerateAProgram(Q);

Π(D ,FD ,Q) := Π(D ,FD) ∪ ΠA(Q);

Π := GenerateNewProgram();

generate rule r : of the form Ans ′(ȳ)← Ans(ȳ, w) according to Q;

Π := ComputeCautiousAnswers(Π(D ,FD) ∪ {r});
Π := Π′ ∪ ComputeBraveAnswers(Π(D ,FD ,Q));

Add to Π rules:

glb(ȳ, w)← #min{x : Ans(ȳ, x)} = w,Ans(ȳ, w),Ans ′(ȳ).

lub(ȳ, w)← #max{x : Ans(ȳ, x)} = w,Ans(ȳ, w),Ans ′(ȳ).

ComputeStableModel(Π);

for each valid group Ans ′(ȳ)

do return ((ȳ, [glb, lub]))

6.4 Summary

In this chapter we specified logic programs to compute consistent answers to aggregate

queries with both scalar functions, and group-by statements. For the former, we

113

adopted the notion of consistent answers given in [4]. For the latter, we gave a notion

of consistent answers which is based on the range semantics defined in [4] for scalar

aggregates.

The logic programming specification with aggregate rules is restricted to FDs, and

it works for the aggregate functions max and min only. Nevertheless, it should be

possible to apply this approach straightforwardly to RIC-acyclic sets of ICs of the

form (2.2).

We explored the aggregation capabilities of the DLV system for computing con-

sistent answers to scalar aggregate queries as defined in [4]. The current version of

DLV implements five aggregation functions. However, there are technical difficulties

when aggregates are defined over atoms appearing in the head of disjunctive rules. In

theses cases problems arise during the grounding process which is executed before the

computation of the stable models. Specifically, the variable that holds the aggregate

value may become unbound when the ground version of the program is computed,

and DLV would have to compute all possible values for binding it. For some func-

tions, such as max and min this problem can be solved by adding extra atoms into

the aggregate rule to bind the aggregate variable, but for other functions such as sum

that is not possible, and grounding could become more difficult.

Nevertheless, it is important to remark that this is only a technical difficulty, that

should be solved in a future release of the DLV system.3 It is important to notice that

the DLV system does compute programs with aggregate functions like sum or count,

but the restriction is that the aggregate atom cannot be defined by a disjunctive rule.

In [20] a method to compute normal programs with aggregates is described. Basi-

cally, normal programs with aggregates are translated into normal programs without

aggregates. The stable models of the latter are used to define the semantics of the

3By personal communications with the authors of [36], we know that this problem is going to be
fixed in a future version of DLV.

114

original program. The method works for stratified and unstratified non-disjunctive

programs [20].

Chapter 7

Well-Founded Semantics for CQA

7.1 Introduction

The core of a program is the set of atoms in the intersection of all its stable models.

For instance, the core of the original database (or of the repair program) wrt a set of

ICs is the set of database atoms in the intersection of all its repairs, or equivalently, of

database atoms in the intersection of all stable models of the repair program. In this

chapter, we show that in some cases we can compute consistent answers to queries by

using a core computation that can be captured by the well-founded semantics (WFS)

of programs, as an alternative to computing and querying all the stable models. In

those cases, the core of the program can be computed in polynomial time. Core

computations have been considered before for CQA [4].

The well-founded semantics for normal logic programs was introduced in [75], and

later extended to disjunctive logic programs [60, 67]. It has been used as an alternative

to the stable models semantics [43, 44, 68]. In fact, if a general logic program has

a total well-founded model, that model is the unique stable model [75]. Here we

adopt the framework presented in [60], that defines the WFS in terms of an operator

that maps interpretations to interpretations, obtaining a well-founded interpretation

(WFI) as a least fixpoint. The WFI of a disjunctive program can be computed in

polynomial time [60].

The WFI of a program is composed by three sets of atoms: the (definitely) true,

the (definitely) false, and the undetermined atoms. On the other hand, the stable

115

116

models semantics tries to find alternative models for the program (possibly more than

one), giving to all atoms a true or false value. Therefore, a program can have several

alternative stable models, but only one WFI. The stable models can be computed

from the WFI by, starting from the atoms which are true or false, trying to give

different values to the unknown atoms. Therefore, the set W+ of true atoms of the

WFI is contained in every stable model of the program, and the set of false atoms of

the WFI is a subset of the set of atoms that are false in every stable model [60, 75].1

In [60] the WFI of a disjunctive program is used as a starting point to compute

the stable models of a program. Moreover, in [19] the WFI of a program is used to

compute the deterministic set of a program. This set contains the atoms that can be

deterministically inferred from a program given a certain interpretation. This set is

also contained in every stable model of a program.

In this chapter we explore the applicability of the WFS to CQA. We show that,

under certain conditions, for UICs, RICs, and NNCs, and conjunctive queries without

existential quantifiers, the core of the program Π(D , IC ,Q) coincides with the set of

true atoms of the WFI of Π(D , IC ,Q). This generalizes some preliminary results

obtained in [3] (for a different specification of repair programs). This property is

significant, because in those cases CQA becomes polynomial in data complexity.

In addition, we take advantage of the set of undetermined atoms of the WFI,

to compute consistent answers wrt functional dependencies for a restricted class of

conjunctive queries with existential quantifiers. This is important because for queries

containing projections (existential quantifiers), the set of true atoms of the WFI alone

is not enough to retrieve all the consistent answers.

We also analyze the use of the WFS as a first step towards answering ground dis-

junctive queries, leaving the stable models semantics for a second stage, if necessary.

1In our case, stable models are sets of ground atoms, every ground atom outside this set is
considered to be false.

117

Moreover, we consider the use of the WFS as a general way of computing consistent

answers, and by doing so and by complexity theoretic reasons, just providing a lower

complexity approximation to CQA. For example, with the WFS we retrieve a subset

of the consistent answers to positive Datalog queries.

The rest of the chapter is structured as follows: in Section 7.2 the concept of

core computation to CQA is presented. Section 7.3 presents the WFS of repair

programs. In Section 7.4 we analyze the use of the WFS as a core computation to

CQA. In particular, Section 7.5 describes the applicability of the WFS to CQA in

presence of functional dependencies. Section 7.6 presents the WFS of programs as an

approximation method to CQA. Section 7.7 reviews tools to compute well-founded

answers. Section 7.8 summarizes this chapter.

7.2 Core Answers

The core of a logic program Π is the intersection of all its stable models.

Definition 7.1 For a program Π, the core of Π is:

Core(Π) :=
⋂
{S | S is a stable model of Π} �

In particular, Core(Π(D , IC)) denotes the intersection of all the stable models of

the repair program Π(D , IC); and Core(Π(D , IC ,Q)) is the intersection of all the

stable models of the repair program Π(D , IC) plus the query program Π(Q). Since

we are interested in the database atoms in a repair, we will restrict the core of

a repair program to the atoms annotated with constant t��. In this manner, the

Core(Π(D , IC)) can be seen as a new database instance, which contains the database

atoms that are true in every repair of D . This instance can be a repair but this may

not be always the case.

118

Definition 7.2 Given a database instance D , a set IC of ICs, and a query Q, a

tuple of constants t̄ is a core answer to Q(x̄) iff Ans(t̄) ∈ Core(Π(D , IC ,Q)). If a

query Q is an L−sentence, i.e. a boolean query, the core answer is yes if Ans ∈
Core(Π(D , IC ,Q)); and no, otherwise. The set of core answers to a query Q in D

wrt IC is denoted by CoreA(Q). �

Example 7.1 For database instance D = {S(a, b), S(a, c), S(b, c)} and IC : ∀xyz
(S(x, y) ∧S(x, z) → y = z). Program Π(D , IC) has two stable models:

M1 = {S (a, b, t�), S (a, c, t�), S (b, c, t�), S (a, c, fa), S (a, b, t��), S (b, c, t��)},

M2 = {S (a, b, t�), S (a, c, t�), S (b, c, t�), S (a, b, fa), S (a, c, t��), S (b, c, t��)}.

Therefore, the database repairs are {S(a, b), S(b, c)} and {S(a, c), S(b, c)}. Here,

Core (Π (D , IC)) = {S (b, c, t��)}, and produces the instance {S(b, c)}, which satisfies

IC , but does not minimally differ from D ; hence, is not a repair of D .

For the query Ans(x, y) ← S (x, y, t��), program Π(D ,FD ,Q) has two stable

models:

M1 = {S (a, b, t��), S (a, c, t��), S (b, c, t��), S (a, c, fa), S (a, b, t��), S (b, c, t��),

Ans(a, b),Ans(b, c)},

M2 = {S (a, b, t��), S (a, c, t��), S (b, c, t��), S (a, b, fa), S (a, c, t��), S (b, c, t��),

Ans(a, c),Ans(b, c)}.

Here, Core(Π(D , IC ,Q)) = {S (b, c, t��),Ans(b, c)}, and hence CoreA(Q)= (b, c),

which in this case coincides with the consistent answer to Q. �

In [4], a core computation of repairs is used to efficiently compute consistent answers

to aggregate queries with scalar functions. In fact, the core of the database repairs wrt

119

functional dependencies and the core answers are computed in polynomial time. It

becomes relevant to analyze the relation between the core answers and the consistent

answers to queries.

In particular, if set IC only contains unary ICs and NNCs of the forms (2.3)

and (2.6), respectively, i.e. ICs with only one database atom in the antecedent, and

a built-in in the consequent, there exists a unique database repair which coincides

with the core of the repair program. Hence, for Datalog queries that, when ex-

pressed as logic programs, become normal programs, the core answers obtained from

Core(Π(D , IC ,Q)) are exactly the consistent answers to queries.

Proposition 7.1 For database instance D , set IC of unary ICs and NNCs of the

forms (2.3) and (2.6), respectively, and a query Q such that Π(Q) is a Datalog normal

program, the consistent answers to Q in D wrt IC coincide with the core answers to

Q obtained from Core(Π(D , IC ,Q)).

Proof: Since for unary ICs (including NNCs) consistency is restored by deletion of

tuples, the repair program Π(D , IC) becomes a program without disjunction. More-

over, this program does not contain any program constraint, and therefore is locally

stratified (cf. Proposition 4.3). Actually, the program Π(D , IC) can be evaluated

considering the following strata:

S0 = {P (x̄) | P ∈ R and x̄ ∈ U},
S1 = {P (x̄, y) | P ∈ R, x̄ ∈ U , and y ∈ {t�, fa}},
S2 = {P (x̄, y) | P ∈ R, x̄ ∈ U , and y ∈ {t��}}
Moreover, since we are considering unary ICs, and NNCs, program Π(D , IC) has a

unique stable model S. Therefore, Core(Π(D , IC)) coincides with the model S (re-

stricted to the atoms annotated with t��). Given the fact that the query program

is always a program without disjunction, and only have rules with the head predi-

cate Ans , program Π(D , IC ,Q) has also a unique stable model S ′. S ′ coincides with

120

Core(Π(D , IC ,Q)) (restricted to the atoms annotated with t�� plus the Ans-atoms).

It follows that a tuple t̄ is a consistent answer to Q in D wrt IC iff Ans(t̄) is in

Core(Π(D , IC ,Q)). �

Example 7.2 For database instance D = {Emp(john, ceo, 10), Emp(mary , eng , 20),

Emp(peter , ceo, 30)} and IC : ∀xyz(Emp(x, y, z) ∧ y = ceo → z > 20). Program

Π(D , IC) has one stable model:

M1 = {Emp (john, ceo, 10, fa),Emp (john, ceo, 10, t�),Emp (mary , eng , 20, t�),

Emp (peter , ceo, 30, t�),Emp (mary , eng , 20, t��),Emp (peter , ceo, 30, t��)}.

Thus, Core(Π(D , IC)) = {Emp(mary , eng , 20, t��),Emp(peter , ceo, 30, t��)}, pro-

ducing the instance {Emp(mary , eng , 20), Emp(peter , ceo, 30)}, which corresponds

to the unique database repair for D .

For query Ans(x) ← Emp (x, y, z, t��), Core(Π(D , IC ,Q)) = {Emp(mary , eng ,

20, t��),Emp(peter , ceo, 30, t��),Ans(peter), Ans(mary)}. Therefore, the core an-

swers are (peter), (mary), which are also the consistent answers to Q. �

In the general case of RIC-acyclic ICs, and for conjunctive queries without existential

quantifiers, the core answers to queries, CoreA(Q), coincide with their consistent

answers, ConsA(Q).2

Proposition 7.2 For a RIC-acyclic set IC of UICs, RICs and NNCs of the forms

(2.3), (2.4), and (2.6), respectively, and a conjunctive query Q without existential

quantifiers, the consistent answers to Q in D wrt IC , ConsA(Q), coincide with the

core answers to Q, CoreA(Q), obtained from Core(Π(D , IC ,Q)).

2As in Definition 2.12, ConsA(Q) denotes the set of consistent answers to a query Q.

121

Proof: We need to prove that if a tuple t̄ is a consistent answer to a query Q, then

Ans(t̄) is in Core(Π(D , IC ,Q)), and viceversa. First, we prove that if a tuple ā is a

consistent answer to Q, then Ans(ā) is in Core(Π(D , IC ,Q)). Second, we show that

if an atom Ans(ā) is in Core(Π(D , IC ,Q)) then the tuple ā is a consistent answer to

Q.

(a) By contradiction, let us assume that there exists a tuple ā that is a consistent

answer to Q, but Ans(ā) is not in Core(Π(D , IC ,Q)). If this happen, then all

the query atoms of the form P (c̄, t��) on Q with ā ⊆ c̄ defining Ans(ā) are true

in every repair. Since the query atoms are true in every repair, they appear in

Core(Π(D , IC)). As a consequence, Ans(ā) is in Core(Π(D , IC ,Q)). We have

reached a contradiction.

(b) By contradiction, let us assume that there exists an atom Ans(ā) that is in

Core(Π(D , IC ,Q)) but tuple ā is not a consistent answer to Q. Since the query

program does not contain rules defining any of the query predicates, and since

Ans(ā) is in Core(Π(D , IC ,Q)), then all the query atoms of the form P (c̄, t��)

on Q with ā ⊆ c̄ are true in every repair, because the query does not have

existentially quantified variables. Therefore, tuple ā has to be a consistent

answer to Q. We have reached a contradiction. �

This result is important because for conjunctive queries without existential quan-

tifiers, we can compute consistent answers by focusing on the core of the program

Π(D , IC ,Q), avoiding the full computation of all the stable models. This is assuming

that the core of a program can be obtained without the generation of every stable

model of the program. For queries with existential quantifiers, it would be possible

that the core of program Π(D , IC ,Q) will not retrieve all the consistent answers. We

will illustrate this in Example 7.3.

122

In this chapter, we show that the well-founded interpretation of programs can be

considered as a core computation to CQA. As a matter of fact, in Section 7.4 we prove

that for a RIC-acyclic set of ICs, that is interaction-free (cf. Definition 7.6), the core

of a repair coincides with the set of true atoms of the WFI of program Π(D , IC) (cf.

Theorem 7.1). Intuitively, a set of ICs is interaction-free if there is no interaction

between unary ICs (and NNCs) and the other ICs, or between RICs and other ICs.

Moreover, for conjunctive queries without existential quantifiers it also holds that the

core of program Π(D , IC ,Q) coincides with set of true atoms of the WFI of program

Π(D , IC ,Q) (cf. Theorem 7.1).

In this manner, the core of a program can be obtained without computing all its

stable models. Moreover, it can be computed in polynomial time, and as a conse-

quence CQA for conjunctive queries without projections wrt interaction-free sets of

RIC-acyclic ICs becomes polynomial (cf. Corollary 7.1).

In [2, 22, 27, 39] there are polynomial time algorithms for consistently answering

this kind of queries wrt UICs. The methods in [27, 39] also apply to conjunctive

queries with restricted forms of projection, obtaining for them also polynomial time.

However, we cannot always compute consistent answers to existentially quantified

conjunctive queries, or disjunctive queries by using a core computation alone. This

is illustrated in the example below.

Example 7.3 (example 7.1 cont.) For the existential query: Ans(y)← S (x, y, t��),3

CoreA(Q)= (c), that coincides with the consistent answer to Q. For the ground dis-

junctive query Ans ← S (b, c, t��) ∨ S (a, b, t��), which program contains rules: Ans ←
S (b, c, t��), and Ans ← S (a, b, t��), both the core and the consistent answers are yes.

For the boolean query Ans ← S(x1, y), S(x2, y), x1 	= x2, where the existentially

quantifier variables are x1, x2, the core and the consistent answers are no.

3In this query, the variable x is existentially quantified.

123

However, for Q: Ans(x) ← S (x, y, t��), CoreA(Q)= (b), but the consistent an-

swers are (b), (a). For Q: Ans ← S (a, b, t��) ∨ S (a, c, t��), the query program

contains rules: Ans ← S (a, b, t��), and Ans ← S (a, c, t��), the consistent answer is

yes, but the core answer is no. This happens because both queries involve tuples that

appear in different repairs, which are not captured in Core(Π(D , IC ,Q)). �

Nevertheless, we can use a core computation as a first step to retrieve query answers,

leaving the stable model computation as a possible second stage. This idea is devel-

oped in Section 7.6. In the following section, we explore the use of the well-founded

semantics of programs as a core computation to CQA.

7.3 Well-Founded Semantics of Repair Programs

The well-founded interpretation for a ground disjunctive program Π consists of three

disjoint and complementary sets of ground atoms: WΠ = 〈W+, W−, W u〉, where

W+ is the set of true atoms, W− is the set of false atoms, and W u is the set of

undetermined atoms [60]. The WFI is defined as the least fixpoint of an operator

WΠ, that is a mapping between interpretations of the form I = 〈I+, I−, Iu〉, with

I+, I−, Iu disjoint sets of ground atoms that cover the whole Herbrand base of the

program.

If we define a literal as a formula of the form A or not A, with A atomic, then

interpretations I can be represented as sets of ground literals. In this case, I+ is the

set of atoms (i.e. positive literals) in I, and I− is not .{ not A | not A ∈ I},4

and Iu = {A | A is ground atom and both A, not A /∈ I}. On the other hand, an

interpretation of the form I = 〈I+, I−, Iu〉 can be represented as the set of literals

I = I+ ∪ not .I−, where not .I− = { not A | A is an atom in I−}. Then, Iu

4Remark not .L, with L a set of literals, is the set of literals that are complementary to those in
L. For a literal L, not .L denotes the literal that is complementary to L.

124

becomes implicitly the set of atoms A such that neither A nor not A can be found

in I+ ∪ not .I−.

From now on, an interpretation will be a set I of ground literals, that is I is a

subset of BΠ ∪ not .BΠ,5 such that for no atom A, both A and not A belong to I.

For a ground literal L, L is true (false) wrt I if L ∈ I (not .L ∈ I). A literal L is

undetermined in I if it is neither true nor false in I.

The operator WΠ is based in an extension of the notion of unfounded set to

disjunctive programs (Definition 7.3). An unfounded set is a subset of atoms from

the Herbrand base BΠ of program Π. Unfounded sets single out the atoms that are

definitely not derivable from a given program wrt a given interpretation, and as a

consequence, they are declared false.

Definition 7.3 [60] Let I be an interpretation for (the ground version of a) program

Π. A set X ⊆ BΠ of ground atoms is an unfounded set for Π wrt I if for each a ∈ X
(an unfounded atom in X), for each rule r ∈ Π (the instantiated i.e. ground version

of Π), such that a ∈ H(r), the head of rule r, at least one of the following conditions

holds:

(a) B(r) ∩ not .I 	= ∅, i.e. the body of r is false regarding I.

(b) B+(r) ∩X 	= ∅, i.e. some positive body literal belongs to X.

(c) (H(r) � X) ∩ I 	= ∅, i.e. an atom in the head of r, distinct from a and other

elements in X, is true wrt I. �

The union of all the unfounded sets for a program Π regarding an interpretation I,

GUSΠ(I), is called the greatest unfounded set wrt I. For normal programs, the GUS

is also an unfounded set, but for disjunctive programs this might not be the case

5As a reminder, BΠ stands for the Herbrand base of a program Π.

125

(so we might have a greatest unfounded set that is not unfounded) [60]. However,

GUSΠ(I) is unfounded when I is an unfounded-free interpretation, i.e. when it has

empty intersection with every set that is unfounded regarding I [60].

Definition 7.4 Given a ground disjunctive program Π, the well-founded operator

(WFO), denoted by WΠ, is defined on interpretations I for which GUSΠ(I) is un-

founded, by:

WΠ(I) := ΓΠ(I) ∪ not .GUSΠ(I),

where ΓΠ(I) is the immediate consequence operator that declares an atom A true wrt

I if there exists a rule in Π, such that A is in the head of the rule, the body of the

rule is true wrt I, and the other atoms in the head of the rule (if any) are false wrt

I. �

Definition 7.5 The well founded interpretation (WFI) of a ground program Π is

defined as the fixpoint WΠ of the interpretations defined by:

W0 := ∅,

Wk+1 :=WΠ(Wk).

WΠ can be computed in polynomial time [60]. �

Moreover, we can guarantee that for our repair programs, GUS is always unfounded.

This given the following result proved in [60].

Proposition 7.3 [60] For a program Π, an interpretation I, and a stable model M

of Π. If I ⊆M , then (a) I is unfounded-free. (b) WΠ ⊆M . �

126

Therefore, since the repair programs always have stable models (it is guarantee that

every database has a repair [2]), we have that I = ∅ is unfounded-free, hence the

GUSΠ(I) is always unfounded.

Moreover, in [60] it is proven that for every function-free program Π, the WΠ as

defined in Definition 7.5 always reaches a fixpoint.

Example 7.4 (example 7.1 cont.) For database instance D = {S(a, b), S(a, c),

S(b, c)}, and IC : ∀xyz(S(x, y) ∧ S(x, z) → y = z), program Π(D , IC) contains

the following rules:

S(a, b). S(a, c). S(b, c).

S (x, y, fa) ∨ S (x, z, fa)← S (x, y, t�), S (x, z, t�), y 	= z, x 	= null, y 	= null, z 	= null.

S (x, y, t�)← S(x, y).

S (x, y, t�)← S (x, y, ta).

S (x, y, t��)← S (x, y, t�), not S (x, y, fa).

WΠ is defined as follows:

1. For W0 = ∅ the unfounded set is:

GUSΠ(W0) = {S(a, a), S(b, b), S(c, c), S(b, a), S(c, a), S(c, b)},

which is composed by the atoms that are false regarding I. Specifically, these

atoms do not appear in the head of any instantiated rule, therefore they are im-

mediately put into the unfounded set, because the conditions for unfoundedness

are checked for atoms in heads.

Thus,WΠ(W0) = {S(a, b), S(a, c), S(b, c)} ∪ not .GUSΠ(W0), i.e. the database

127

atoms in the program, plus the complement of the unfounded set constructed

so far.

2. For W1 =WΠ(W0), GUSΠ(W1) is composed by the set of atoms in GUSΠ(W0)

plus the atoms that are unfounded wrt WΠ(W0).

Here, all the atoms of the form S (c̄, ta) are declare unfounded, because there are

no rules defining them in the program. Also, the atoms defined by annotation

rules of the form S (c̄, t�)← S (c̄, ta), for which the body becomes false, are also

declared unfounded (cf. item (a) in Definition 7.3).

Therefore, the greatest unfounded set is:

GUSΠ(W1) = GUSΠ(W0) ∪ {S (a, a, t�), S (b, b, t�), S (c, c, t�), S (b, a, t�),

S (c, a, t�), S (c, b, t�), S (a, a, ta), S (b, b, ta), S (c, c, ta),

S (b, a, ta), S (c, a, ta), S (c, b, ta), S (a, b, ta), S (a, c, ta),

S (b, c, ta)}.

Now, since atoms S(a, b), S(a, c), S(b, c) are in WΠ(W0), we obtain atoms

S (a, b, t�), S (a, c, t�), S (b, c, t�), by using the annotation rules of the form

S (c̄, t�)← S(c̄). Hence,

WΠ(W1) = {S(a, b), S(a, c), S(b, c), S (a, b, t�), S (a, c, t�), S (b, c, t�)}

∪ not .GUSΠ(W1).

3. For W2 =WΠ(W1), GUSΠ(W2) is composed by the set of atoms in GUSΠ(W1)

plus the atoms that are unfounded wrt WΠ(W1).

Here, all the atoms of the form S (c̄, fa), for which the body becomes false, are

128

declared unfounded. There are no new positive consequences of the program.

Hence,

GUSΠ(W2) = GUSΠ(W1) ∪ {S (b, c, fa), S (b, a, fa), S (b, b, fa), S (a, a, fa),

S (c, c, fa), S (c, a, fa), S (c, b, fa)}.

WΠ(W2) = {S(a, b), S(a, c), S(b, c), S (a, b, t�), S (a, c, t�), S (b, c, t�)}

∪ not .GUSΠ(W2).

4. For W3 =WΠ(W2), GUSΠ(W3) is composed by the set of atoms in GUSΠ(W2)

plus the atoms that are unfounded wrt WΠ(W2).

Here, all the atoms of the form S (c̄, t��), for which the body becomes false are

declared unfounded. Atom S (b, c, t��) is a positive consequence of the program.

Therefore,

GUSΠ(W3) = GUSΠ(W2) ∪ {S (a, a, t��), S (b, b, t��), S (c, c, t��), S (b, a, t��),

S (c, a, t��), S (c, b, t��)}.

WΠ(W3) = {S(a, b), S(a, c), S(b, c), S (a, b, t�), S (a, c, t�), S (b, c, t�),

S (b, c, t��)} ∪ not .GUSΠ(W3).

5. W4 =WΠ(W3) =WΠ(W4). We have reached a fixpoint.

The WFI of the program Π(D , IC) is:

W+ = {S(a, b), S(a, c), S(b, c), S (a, b, t�), S (a, c, t�), S (b, c, t�), S (b, c, t��)},

W u = {S (a, b, fa), S (a, b, t��), S (a, c, fa), S (a, c, t��)},

129

W− = {S(a, a), S(b, b), S(c, c), S(b, a), S(c, a), S(c, b), S (a, a, t�), S (b, b, t�),

S (c, c, t�), S (b, a, t�), S (c, a, t�), S (c, b, t�), S (a, a, ta), S (b, b, ta),

S (c, c, ta), S (b, a, ta), S (c, a, ta), S (c, b, ta), S (a, b, ta), S (a, c, ta),

S (b, c, ta), {S (b, c, fa), S (b, a, fa), S (b, b, fa), S (a, a, fa), S (c, c, fa),

S (c, a, fa), S (c, b, fa), S (a, a, t��), S (b, b, t��), S (c, c, t��), S (b, a, t��),

S (c, a, t��), S (c, b, t��)}.

From the setW+ of the positive atoms of the WFI of Π(D , IC), we obtain the database

instance D ′ = {S(b, c)} (S (b, c, t��) ∈ W+). Here D ′ is consistent wrt IC , but not

a repair of D . Actually, the repairs are: {S(b, c), S(a, b)} and {S(b, c), S(a, c)}. But

atoms S (a, b, t��), S (a, c, t��) are undetermined in the WFI of Π(D , IC). Actually,

since there are undetermined atoms, the WFI of the repair program Π(D , IC) cannot

be considered as a model of Π(D , IC). In fact, it does not capture the semantics of

the program, i.e. the database repairs. �

It is important to notice that for a disjunctive repair program, the WFI is usually not a

model of the program, but only an interpretation [60].6 This happens because the WFI

does not conclude anything positive from disjunctive rules, and therefore head atoms

in these rules are declared as undetermined. As an illustration, in Example 7.4, atoms

S (a, b, fa), S (a, c, fa), which are in the head of the only disjunctive rule in Π(D , IC),

are declared as undetermined, and as a consequence the atoms S (a, b, t��), S (a, c, t��)

become undetermined.

In our setting, stable models are sets of ground atoms. A stable model is a

total interpretations (and a model), because any ground atom that is not in it is

considered to be false, by applying a closed world assumption to the model [69]. If

6A model is a total interpretation I, with Iu = ∅, that makes the program true.

130

a stable model M is conceived as an interpretation for the program, we would have

M+ = M,M− = {A | A is ground atom and A /∈ M}, Mu = ∅. The true and

false atoms in the WFI of a program Π are contained in the intersection of all the

stable model of Π, in the sense that W+ ⊆ ⋂{M | M is a stable model of Π}, and

W− ⊆ ⋂{M− | M is a stable model of Π} [60].

Example 7.5 (example 7.4 cont.) Program Π(D , IC) has two stable models:

M1 = {S (a, b, t�), S (a, c, t�), S (b, c, t�), S (a, c, fa), S (a, b, t��), S (b, c, t��)},

M2 = {S (a, b, t�), S (a, c, t�), S (b, c, t�), S (a, b, fa), S (a, c, t��), S (b, c, t��)}.

Therefore, M+
1 = M1, M−

1 = {S (a, a, t�), S (b, b, t�), S (a, c, t��), . . . }; M+
2 =

M2, M−
2 = {S (a, a, t�), S (b, b, t�), S (a, b, t��), . . . }. The set of true atoms of the

WFI of the program (without considering program facts) is:

W+ = {S (a, b, t�), S (a, c, t�), S (b, c, t�), S (b, c, t��)},

and W+ ⊆ M+
1

⋂M+
2 , actually as a matter of fact, they coincide. The set of false

atoms is:

W− = {S (a, a, t�), S (b, b, t�), S (c, c, t�), S (b, a, t�), S (c, a, t�), S (c, b, t�), . . . },

and W− ⊆M−
1

⋂M−
2 . The atoms that are declared as undetermined in the WFI of

the program, i.e. set W u = {S (a, b, fa), S (a, b, t��), S (a, c, fa), S (a, c, t��)}, are not

undetermined in the stable models, but we have {S (a, c, fa), S (a, b, t��)} ⊆ M1, and

{S (a, b, fa), S (a, c, t��)} ⊆ M2. �

131

7.4 The Well-Founded Semantics as a Core Computation to CQA

Even though the WFI of a program may not capture the semantics of the program,

it can be used as a core computation to CQA. In general, the WFI of a disjunctive

program is contained in the intersection of all its stable models [60]. However, we

will show that, for a restricted set of ICs and queries, the set W+ (restricted to the

Ans-atoms) of the WFI of program Π(D , IC ,Q) coincides with the core of program

Π(D , IC ,Q).

Definition 7.6 A RIC-acyclic set IC of UICs, RICs and NNCs of the forms (2.3),

(2.4), and (2.6), respectively, is interaction-free if the following holds: (a) If there is a

unary IC or NNC on relation P , there is no other IC in IC having P in its consequent.

(b) If there exists a RIC with P in its consequent, there is no other IC in IC having

P neither in its antecedent nor its consequent. �

In other words, a RIC-acyclic set of ICs is interaction-free if for a given set of ICs

there is no interaction between unary ICs (and NNCs) and other ICs, or between

RICs and other ICs.

We now show that for interaction-free sets of ICs, and conjunctive queries without

projections, the WFI of programs provides the same consistent answers as the stable

model semantics. Notice that we are considering generic ICs [11], in the sense that

they do not enforce the presence of any atom in the database.

Theorem 7.1 For a database instance D , an interaction-free set IC of ICs, and con-

junctive queries without existential quantifiers, the following holds: (a) Core(Π(D , IC))

coincides with set W+ of the WFI of program Π(D , IC), restricted both to the atoms

annotated with constant t��. (b) Core(Π(D , IC ,Q)) coincides with W+ of the WFI

of program Π(D , IC ,Q), restricted both to the Ans-atoms.

132

Proof: The proof is divided in two parts. First we show that for a given database

instance D , and an interaction-free set IC of ICs, Core(Π(D , IC)) and W+ of the

WFI of program Π(D , IC) coincide. Second, we prove that for conjunctive queries

without projection, Core(Π(D , IC ,Q)) coincides with W+ of the WFI of program

Π(D , IC ,Q).

(a) Since it is always the case that the WFI of a program Π is contained in the core

of the program [60], we only need to show that Core(Π(D , IC)) � WΠ(D ,IC).

It is necessary to show that, whenever an atom of the form P (ā), P (ā, y), aux(ā)

belongs to Core(Π(D , IC)), where ā is a tuple of elements in the database

domain U , and y ∈ {fa, ta, t
�, t��}, it holds that P (ā) (resp. P (ā, y), aux(ā))

can be fetched into W n
Π(∅) for some integer n.

We need to analyze the possible cases for the atom:

1. P (ā) ∈ Core(Π(D , IC)). To prove: P (ā) ∈ WΠ(D ,IC).

P (ā) is database fact, then P (ā) is fetched into W 1
Π(∅).

2. P (ā, ta) ∈ Core(Π(D , IC)). To prove: P (ā, ta) ∈ WΠ(D ,IC).

By contradiction, if an atom of the form P (ā, ta) is true in the program,

then there exists a disjunctive rule r with P (ā, ta) in H(r), and whose

body is true in the program. However, if this happens, and given the fact

that the set of ICs is interaction-free, some models will get P (ā, ta), and

other models will get other head atoms in H(r), and as a consequence

atom P (ā, ta) cannot be in Core(Π(D , IC)). But, P (ā, ta) is in the core.

We have reached a contradiction.

3. P (ā, t�) ∈ Core(Π(D , IC)). To prove: P (ā, t�) ∈ WΠ(D ,IC).

If P (ā, t�) belongs to the core, then there are two cases: first, P (ā, t�)

is in the core because P (ā) is a program fact, and as a consequence rule

133

P (ā, t�) ← P (ā) is satisfied in the program. In this case, due to the fact

that P (ā) is in W 1
Π(∅), then P (ā, t�) is in W 2

Π(∅).

The second case is when P (ā, t�) is true in the core because atom P (ā, ta)

is true in the program, and as a consequence rule P (ā, t�) ← P (ā, ta) is

satisfied in the program. However, if P (ā, ta) is true in the program, then

atom P (ā, t�) cannot be true in the core. This is because, as we showed

in item 2, in this case, some models will have P (ā, ta) and some will not.

Then, it is easy to see that some models will have P (ā, t�) and others

will not. Therefore, the only way to have P (ā, t�) in the core, is because

P (ā) is a program fact, and in this case it also belongs to the well-founded

interpretation.

4. P (ā, fa) ∈ Core(Π(D , IC)). To prove: P (ā, fa) ∈ WΠ(D ,IC).

If P (ā, fa) is in the core, then atom P (ā) participates in a violation of a

IC. There are two cases to evaluate. First, the IC is a unary IC or a NNC.

Let us assume that it is unary IC of the form: P (ā) → ϕ(ā), with P (ā)

true in the program and ϕ(ā) false. Therefore, in order to generate atom

P (ā, fa), the following rule is satisfied, with a true body, in the program:

P (ā, fa)← P (ā, t�), ϕ̄(ā), ā 	= null, where ϕ̄ is equivalent to the negation

of ϕ. Given the fact that P (ā, t�) is in W 2
Π(∅), and the built-in ϕ̄(ā) is

true in the program, then P (ā, fa) is in W 3
Π(∅).

The second case is when atom P (ā) is involved in a violation of an IC

having more than one database atom. We prove that in this case it is not

possible to have P (ā, fa) in the core. If an atom of the form P (ā, fa) is

true in the program, then there is a disjunctive rule r with P (ā, fa) in

H(r). However, if this happens, and given the fact that the set of ICs is

interaction-free, some models will get P (ā, fa) and other models will get

134

other atoms in H(r), and as a consequence atom P (ā, fa) cannot be in

Core(Π(D , IC)).

5. P (ā, t��) ∈ Core(Π(D , IC)). To prove: P (ā, t��) ∈ WΠ(D ,IC).

If P (ā, t��) is true in the core, then P (ā, t�) is true in the program and

P (ā, fa) is false; then rule P (ā, t��) ← P (ā, t�), not P (ā, fa), is satisfied

in the program. There is only one possible option. Atom P (ā, t��) is in

the core because atom P (ā) is not involved in any violation of ICs. If this

happen, then rules having P (ā, fa) in the head have a false body. In this

case, P (ā, fa) is unfounded in WΠ(D ,IC), and as a consequence, it becomes

false in WΠ(D ,IC). Given the fact that P (ā, t�) is in W 2
Π(∅), and P (ā, fa)

is false, then P (ā, t��) is in W 3
Π(∅).

If atom P (ā) is involved in the violation of a IC, then atom P (ā, ta) has

to be in the core, but according to item 2, such atom is never in the core,

therefore in this case P (ā, t��) cannot be true in the core.

6. aux(ā) ∈ Core(Π(D , IC)). To prove: aux(ā) ∈ WΠ(D ,IC).

If aux(ā) is true in the core, then a rule of the form aux (ā)← P (ā, c̄, t�),

not P (ā′, c̄, fa), ā 	= null, c̄ 	= null has a true body in the instantiated

program. Atom P (ā, c̄, t�), is in W 2
Π(∅) (item 3), since P (ā′, c̄, fa) is false

in the core, then there is no rule with a positive body having P (ā′, c̄, fa)

in the head. As a consequence, P (ā′, c̄, fa) is declared as false in W 2
Π(∅),

and therefore, aux(ā) is in W 3
Π(∅).

(b) Since Core(Π(D , IC)) coincides with set W+ of the WFI of program Π(D , IC),

the result follows from Proposition 7.2. �

Theorem 7.1 extends the preliminary results presented in [3], which hold for a set of

ICs containing functional dependencies and unary ICs only, to interaction-free sets of

135

ICs, that properly contain those former classes.

Definition 7.7 For a database instance D , a set IC of ICs, and a conjunctive query

Q without projection, a tuple t̄ is a well-founded answer to Q if Ans(t̄) is in the set

W+ of the WFI of program Π(D , IC ,Q). The set of well-founded answers to Q is

denoted by WFA+(Q). �

From now on, W+ is restricted to the atoms annotated with t�� when applied to

program Π(D , IC), and to the Ans-atoms when applied to program Π(D , IC ,Q).

Corollary 7.1 For a database instance D , an interaction-free set IC of ICs, and

queries that are conjunctions of atoms without existential quantifiers:

(a) Core(Π(D , IC)), and Core(Π(D , IC ,Q)) can be computed in polynomial time

in data complexity (i.e. relative to the size of D).

(b) The sets of core, consistent, and well-founded answers to queries coincide, i.e.

ConsA(Q)=CoreA(Q)=WFA+(Q).

(c) CQA for quantifier free conjunctive queries can be computed in polynomial

time.

Proof: (a) The result follows from the fact that the WFI of a disjunctive program can

be computed in polynomial time [60]. (b) It follows from Theorem 7.1 and Proposition

7.2. (c) It follows from Theorem 7.1, Proposition 7.2, and the fact that the WFI of a

program can be computed in polynomial time [60]. �

Example 7.6 For D = {S(a, b), S(a, c), S(b, c), R(b, c), P (a) P (b)}, and UIC:

∀xyz(S(x, y), S(x, z) → y = z); and RIC: ∀x(P (x) → ∃yR(x, y)), the repair pro-

gram Π(D , IC) has four stable models, and Core(Π(D , IC)) = W+ = {S (b, c, t��),

P (b, t��), R (b, c, t��)}.

136

Now consider D = {S(a, b), S(a, c), S(b, c), R(b, c), R(a, b)}, and set IC of FDs:

∀xyz(S(x, y), S(x, z) → y = z); ∀xyz(R(x, y), R(x, z) → y = z); IND: ∀xy(S(x, y)

→ R(x, y)); unary IC: ∀xy(R(x, y) → y = b). Program Π(D , IC) has one stable

model, and Core(Π(D , IC))= {S (a, b, t��), R (a, b, t��)}. However, W+ does not have

any atoms annotated with t��, and W+ � Core(Π(D , IC)). This happens because

the set of UICs is not interaction-free: there is a unary IC on R, and R appears in

the consequent of the IND.

For D = {S(a, b), S(a, c), S(b, c), R(b, c), R(a, b), P (a) P (b)}, and set IC of FDs:

∀xyz(S(x, y), S(x, z) → y = z); ∀xyz(R(x, y), R(x, z) → y = z); IND: ∀xy(S(x, y)

→ R(x, y)); and RIC: ∀x(P (x) → ∃yR(x, y)), program Π(D , IC) has two stable

models. Here, Core(Π(D , IC))= {P (a, t��), P (b, t��), S (b, c, t��), R (b, c, t��)}, W+

= {P (b, t��), S (b, c, t��), R (b, c, t��)}, and W+ � Core(Π(D , IC)). This happens

because the set of ICs is not interaction-free: predicate R is involved both in the RIC

and the IND. �

Example 7.7 (example 7.4 cont.) For program Π(D , IC), W+ of the WFI of pro-

gram Π(D , IC) is {S (b, c, t��)}, which coincides with Core(Π(D , IC)). For query

Ans(x, y) ← S (x, y, t��), Core(Π(D , IC ,Q))= W+ = {Ans(b, c)}. Hence, the well-

founded and the core answer is (b, c), which is also the consistent answer to the query.

For Q: Ans(y) ← S (x, y, t��), Core(Π(D , IC ,Q))= W+ = {Ans(c)}, hence the

well-founded, the core, and the consistent answer is (c). For Q: Ans ← S (b, c, t��),

S (a, b, t��), Core(Π(D , IC ,Q))= W+ = ∅, therefore the well-founded answer is no,

as the consistent and core answers to Q.

Nevertheless, for query: Ans(x) ← S (x, y, t��), Core(Π(D , IC ,Q))= W+ =

{Ans(b)}. Hence, the well-founded and the core answer is (b), but the consistent

answers are (b), (a). This happens because the query involves inconsistent tuples that

do not fall in a core computation. �

137

We can see that with the WFI of programs we can compute consistent answers to

a restricted set of conjunctive queries with existential quantifiers. Nevertheless, in

the following section we show that in presence of FDs (at most one per relation) it

is possible to use sets W+ and W u of the WFI of programs to retrieve consistent

answers to a restricted class of conjunctive queries with existential quantifiers.

It is important to mention that according to the results presented in [27, 39], it is

impossible to use a core computation as the WFI of programs to compute consistent

answers to all the conjunctive queries with projections. Because, in this case, CQA

will be polynomial for this kind of queries.

So far, we have that for interaction-free sets of ICs we can compute all the con-

sistent answers to conjunctive queries without projection with the WFI of programs.

Moreover, this can be done in polynomial time. As we will show in Example 7.8,

for this kind of ICs, we can also use the WFI of programs as a first step to compute

consistent answer to ground disjunctive queries. For this kind of queries we cannot

ensure that W+ of Π(D , IC ,Q) coincides with the core of Π(D , IC ,Q), but, we can

use the WFI as a started point to compute answers. In this manner, the computation

of stable models is considered only as a second step, if needed.

Example 7.8 For D = {S(a, b), R(a, b), S(b, c)} and IC : ∀xy(S(x, y) → R(x, y)),

and the disjunctive query: Ans ← S (a, b, t��) ∨ R (b, c, t��), which program con-

tains rules: Ans ← S (a, b, t��), and Ans ← R (b, c, t��), W+ of the WFI of program

Π(D , IC ,Q) is {Ans}. Therefore, WFA+(Q) is yes, which coincides with the consis-

tent answer to Q.

For the query: Ans ← S (b, c, t��) ∨ R (b, c, t��), which program contains rules:

Ans ← S (b, c, t��), and Ans ← R (b, c, t��), W+ of the WFI of Π(D , IC ,Q) does

not contain any Ans atom. Hence, the well-founded answer is no, but the consistent

138

answer is yes. This happens because the query involves tuples that are in different

database repairs, and they are not captured by a core computation, like the WFI

of a program. Therefore, the consistent answer to this query should be obtained by

evaluating program Π(D , IC ,Q) under the stable models semantics. �

Algorithm 7.1 computes consistent answers to ground disjunctive queries in a database

instance D , wrt a set IC of interaction-free ICs. The input to the algorithm consists

of database instance D , the set IC of interaction-free ICs, and the query Q. The

algorithm first generates program Π(D , IC ,Q), and it computes the WFI of the pro-

gram. After that, it tries to answer the query by using W+ of the WFI of the program

Π(D , IC ,Q). If there are no answers, then answers are computed by evaluating pro-

gram Π(D , IC ,Q) under the stable models semantics.

Algorithm 7.1: Mixed computation of consistent answers(D , IC ,Q)

Input: database instance D , set IC of interaction-free ICs, query Q
Output: consistent answers to Q
Π(D , IC) := GenerateRepairProgram(D , IC);

Π(Q) := GenerateQueryProgram(Q);

calculate the WFI of program Π(D , IC ,Q)

if Ans ∈ W+

then return (yes)

else

⎧⎪⎨
⎪⎩

run: Π(D , IC ,Q) under cautious semantics

return (answer)

139

7.5 Well-Founded Answers with respect to Functional Dependencies

We consider only one functional dependency or key dependency per relation.7 In this

section a FD on a relation P is written with X → Y , where X and Y are set of

attributes of P and X ∩ Y = ∅. The functional dependency on P is satisfied if for

two tuples in P that have the same values in attributes in X, they also have the same

value for the attributes in Y .

In order to use the WFI of programs for CQA we have to restrict ourselves to the

following restricted classes of conjunctive queries.

Definition 7.8 [27] A conjunctive query of the form:

Ans(w1 . . . wm)← ∃z1 . . . zn(P1(x̄1), . . . Pn(x̄n)),
8 (7.1)

where w1 . . . wm, z1 . . . zn are all the variables that appear in the atoms of the body of

the query, each x̄i matches the arity of Pi, variables w1 . . . wm are the free variables

of the query. The query is called simple if there are no constants and no repeated

symbols in the query (no joins between relations are allowed). �

In particular, we consider conjunctive queries without free variables, i.e. boolean

queries of the form:

Ans ← ∃z1 . . . zn(P1(x̄1), . . . Pn(x̄n)), (7.2)

where z1 . . . zn are variables that appear in the atoms of the query, and x̄1 . . . x̄n are

variables and/or constants, and no joins between relations are allowed.

7A primary key IC can be defined by one or more functional dependencies.
8Usually the existential quantifiers are implicit on the query, but in this section, we will write

them explicitelly on queries.

140

In this section we use the concepts of safe database and conflict closure of a

database, which were presented in [34] and reviewed in Chapter 5 (cf. Section 5.5).

According to Definition 5.7, the safe database SD is the portion of the database that

does not participate in any violation of ICs, and that will never be touched by the

repair process. The conflict closure of the database C�
D is the set of tuples that violate

ICs or are going to be changed to avoid new violations of ICs. We assume that the

database domain may contain the null value.

Moreover, we understand satisfaction of ICs as used so far, i.e. a IC is satisfied if

any of the relevant attributes has a null value, or the IC is satisfied in the traditional

way, that is, as first-order satisfaction and with null values treated as any other

constant.

We claim that for FDs (at most one per relation), there is a direct relationship

between the safe portion of a database instance D , the set W+ of the WFI of program

Π(D ,FD); and also between the conflict closure of the database and the set W u of

the WFI of the repair program.

Lemma 7.1 For a database instance D , and a set FD of FDs, if an atom of the form

P (c̄, t��) is in W+ of the WFI of program Π(D ,FD), where c̄ are constants in U ,

then P (c̄) is in the safe portion of database instance D wrt FD .

Proof: We have to prove that for every atom of the form P (ā, t��) that is in W+ of

the WFI of program Π(D ,FD), the atom P (ā) is in SD . This is done in item (a).

Also, we need to show that if atom P (ā) is consistent, then P (ā, t��) is in W+. This

is done in item (b).

(a) By contradiction, let us suppose that there exists an atom P (ā, t��) in W+, but

P (ā) is not in SD .

141

If atom P (ā, t��) is true in W+, then according to the interpretation rule

P (ā, t��) ← P (ā, t�), not P (ā, fa), the atom P (ā, t�) is true and P (ā, fa)

is false in W+. If atom P (ā, t�) is true, then either P (ā) is a database fact,

or P (ā, ta) is true in the program. However, the atom P (ā, ta) cannot be true

in W+, because we are considering FDs, which are repaired by tuple deletion

only. Then, the atom P (ā, t�) is true because P (ā) is a database fact. If atom

P (ā, fa) is false, then atom P (ā) is not involved in any inconsistency (or is not

touched by the repair process). Otherwise, a disjunctive rule in the instanti-

ated program Π(D ,FD) will have P (ā, fa) in its head, and P (ā, fa) will become

undetermined. As a consequence, the atom P (ā) is a consistent database fact.

But P (ā) is not in SD . We have reached a contradiction.

(b) By contradiction, let us assume that there exists an atom P (ā) in SD , but

P (ā, t��) is not in W+.

If P (ā) is in SD , then P (ā, t�) is true, and there is no disjunctive rule hav-

ing P (ā, fa) in its head, therefore P (ā, fa) is false. As a consequence, atom

P (ā, t��) is a positive consequence of program Π(D ,FD). We have reached a

contradiction. �

Lemma 7.2 For a database instance D , and a set FD of FDs, if an atom of the form

P (c̄, t��) is in W u of the WFI of program Π(D ,FD), where c̄ are constants in U , then

P (c̄) is in the conflict closure of database instance D wrt FD .

Proof: We have to prove that for every atom of the form P (ā, t��) that is in W u

of the WFI of program Π(D ,FD) there exists an atom P (ā) in C�
D . This in done in

item (a). Also, we prove that if P (ā) is in the conflict closure of D , then P (ā, t��) is

in W u. This is done in item (b).

142

(a) By contradiction, let us assume that there exists an atom P (ā, t��) in W u, but

P (ā) is not in C�
D .

If atom P (ā, t��) is undetermined then according to rule P (ā, t��)← P (ā, t�),

not P (ā, fa), either atom P (ā, t�) or atom P (ā, fa) are undetermined. First,

if atom P (ā, t�) is undetermined, then the atom P (ā, ta) is undetermined.

However, we are considering FDs only, therefore there are no atoms annotated

with constant ta. Therefore, P (ā, t�) cannot be undetermined.

Hence, the atom P (ā, fa) is undetermined, which means that atom P (ā, fa) is

in the head of a disjunctive rule whose body is true. Then, according to the

WFS no decision can be done about the atoms in the disjunctive head, and as

a consequence atoms P (ā, fa) and P (ā, t��) are undetermined. It is easy to see

that P (ā, fa) is in a disjunctive rule with body true iff there exists a violation

of a FD, and P (ā) violates the FD. Then P (ā) is in C�
D . We have reached a

contradiction.

(b) By contradiction, let us assume that there exists an atom P (ā) in C�
D , but

P (ā, t��) is not in W u.

If atom P (ā) is in C�
D then it participates in the violation of a IC or it is

affected by the repair process. But, since we are dealing with FDs only, the

unique possibility is that atom P (ā) is in D and it violates a FD. Then, there

exists a disjunctive rule having atom P (ā, fa) in its head, and a true body, and

therefore according to the WFS the atom P (ā, fa) is undetermined, and so does

atom P (ā, t��). We have reached a contradiction. �

From Lemmas 7.1 and 7.2 we can conclude that for FDs, we can capture the safe

and affected database by using W+ and W u of the WFI of program Π(D ,FD), re-

spectively. Therefore, as in [34] we could compute database repairs by computing

143

the repairs for the affected portion of data, and then combining them with the safe

portion of data. However, we are not interested in computing repairs, but in retriev-

ing consistent answers to queries. Thus, what we want is to use as much as possible

sets W+ and W u of the WFI of program Π(D ,FD), to compute consistent answers

to conjunctive queries with projections wrt FDs.

Definition 7.9 For a database instance D , set FD of FDs, and a conjunctive query

Q of the form (7.1), a tuple t̄ is a well-founded answer to Q if Ans(t̄) is in W+∪W u of

the WFI of program Π(D ,FD ,Q). The set of well-founded answers to Q are denoted

by WFA+u(Q). �

As we show in the example below, we cannot use W+ and W u of the WFI of programs

directly for computing consistent answers to queries, because for some queries we can

obtain incorrect answers.

Example 7.9 Consider Σ = {R(X,Y, Z,W)}, FD X → Y and D = {R(a, b, c, d),

R(a, c, c, b), R(b, c, d, e)}. For program Π(D , IC), W+ is {R (b, c, d, e, t��)}, and W u

is {R (a, b, c, d, t��), R (a, c, c, b, t��)}. That is, W+ contains the tuples that are con-

sistent wrt the FD, and W u the tuples that are not consistent.

For query: Ans(x)←∃ yzw R(x, y, z, w), W+ of the WFI of program Π(D , FD ,Q)

is {Ans(b)}, and W u is {Ans(a)}, therefore WFA+u(Q) are (b), (a), which coincides

with the consistent answers to Q. This works, because the query is retrieving the

values for the attribute in the antecedent of the FD, and even though the tuples in

W u are inconsistent, they share the same value for that attribute.

However, for query Ans(w) ← ∃ yzw R(x, y, z, w), W+ of the WFI of pro-

gram Π(D ,FD ,Q) is {Ans(e)} and W u is {Ans(d),Ans(b)}, therefore WFA+u(Q)=

(e), (d), (b), but the consistent answer to Q is (e). This happens because, the query

144

is retrieving the values of an attribute that is not in the antecedent of the FD, and

therefore tuples in W u do not necessarily have the same value for that attribute. �

The previous example suggests that set W u of the WFI of programs can only be used

directly for CQA when the attributes projected in the query are attributes in the

antecedent of some FD, because in this case, the inconsistent tuples from W u will

have the same value for that attribute. Therefore, we can use the WFI of programs

directly to compute consistent answers to queries of the form (7.1) when each of the

free variables on it refer to attributes in the antecedent of a FD on a relation P .

Definition 7.10 Given a relation P with FD X → Y , the attributes of P are divided

into: (a) Antecedent attributes, i.e. the attributes in X. (b) Consequent attributes,

i.e. the attributes in Y . (c) Simple attributes, which are attributes neither in X nor

Y .

Moreover, for a query Q of the form (7.1), we say that a free variable wi with

wi ∈ {w1 . . . wm} refers to an antecedent (respectively, consequent, simple) attribute,

if wi matches a variable in the position of an antecedent (respectively, consequent,

simple) attribute on a query predicate P . �

Example 7.10 For the FD: ID → Name on relation R(ID ,Name,Age), the free

variable x in query Ans(x) ← ∃ yz R(x, y, z) refers to the attribute ID , which is in

the antecedent of the FD. For query Ans(y) ← ∃ xz R(x, y, z), the free variable y

refers to an attribute in the consequent of the FD. For query Ans(z)← ∃ xy R(x, y, z),

the free variable z refers to a simple attribute. �

Proposition 7.4 For a database instance D , set FD of FDs (at most one functional

or key dependency per relation), if the free variables in query Q of the form (7.1)

refer to antecedent attributes, then the consistent answers to Q wrt FD coincide with

the well-founded answers to Q.

145

Proof: We need to prove that if a tuple t̄ is a consistent answers to Q, then Ans(ā)

is either in W+ or in W u of Π(D ,FD ,Q), and viceversa.

There are three cases to evaluate. First, we need to show that for every tuple

ā that is a consistent answer to Q, there exists an atom Ans(ā) in W+ or in W u.

Second, if there exists an atom Ans(ā) in W+, then ā is a consistent answer to Q.

Finally, we need to show that if there exists an atom Ans(ā) in W u, then ā is a

consistent answer to Q.

(a) If tuple ā is a consistent answer to Q, then Ans(ā) is in W+ or W u.

There are two cases to analyze. First, the instantiated atoms of the form

P (c̄, t��) on the query rule are not involved in any inconsistency wrt FD . In

this case, the atoms P (c̄, t��) and Ans(ā) are trivially in W+ of Π(D ,FD ,Q).

Second, some of the atoms P (c̄, t��) (could be all of them) participate in the

violation of FDs in FD . If atom P (c̄) is inconsistent wrt FD , then there exists

another atom P (b̄) such that P (c̄) and P (b̄) together violate FD . Then, atoms

of the form P (b̄, t��) and P (c̄, t��) are in W u of Π(D ,FD ,Q), and therefore

Ans(ā) is in W u.

(b) If atom Ans(ā) is in W+ of Π(D ,FD ,Q), then ā is a consistent answer to Q.

Since Ans(ā) is in W+, the instantiated query rule is satisfied in the program,

and every atom in the body of the rule is consistent wrt FD . Otherwise, some

atom P (b̄, t��) in the query will be in the head of a disjunctive rule, and in this

case P (b̄, t��) would be undetermined and also atom Ans(a). Therefore, tuple

ā is a consistent answer to Q.

(c) If atom Ans(ā) is in W u of Π(D ,FD ,Q), then ā is a consistent answer to Q.

If Ans(ā) is in W u, then some of the atoms in the instantiated query rule is

inconsistent wrt FD . Therefore, there exists at least two atoms of the form

146

P (b̄), P (c̄) with ā ∩ (b̄ ∪ c̄) 	= ∅ that together violate FD , and as a consequence

atoms P (b̄, t��) and P (c̄, t��) are in W u. Since we are considering only one FD

per relation (or a key dependency), a database repair will have either P (b̄) or

P (c̄). Hence, since the free variables in the query refer to antecedent attributes

only, Ans(ā) will be true in every repair, and hence ā is a consistent answer. �

As shown in Example 7.9, when the free variables in a query of the form (7.1) do not

refer to attributes in the antecedent of FDs, we cannot use set W u of Π(D ,FD ,Q)

directly to compute consistent answers to queries with projections. However, we can

rewrite queries in such a way, that when they are evaluated on W u of Π(D ,FD), i.e.

the repair program alone, they only retrieve consistent answers. We illustrate this in

the example below.

Example 7.11 For Σ = {R(X,Y, Z,W)}, FD: Z → W , and D = {R(a, b, c, d),

R(a, b, c, e), R(b, c, d, e)}. For the repair program Π(D ,FD), W+ = {R (b, c, d, e, t��)},
and W u = {R (a, b, c, d, t��), R (a, b, c, e, t��)}. There are two repairs: {R(b, c, d, e),

R(a, b, c, d)} and {R(b, c, d, e), R(a, b, c, e)}.
For Q: Ans(z, w)← ∃xyR(x, y, z, w), the free variable z refers to the attribute in

the antecedent of the FD, and variable w refers to its consequent. For Π(D ,FD ,Q) it

holdsW+ = {Ans(d, e)}, andW u = {Ans(c, d),Ans(c, e)}. Therefore, WFA+u(Q) are

(d, e), (c, d), (c, e), but the consistent answer to Q is (d, e). Thus, in this case, W u of

Π(D ,FD ,Q) does not provide consistent answer to the query. However, we can filter

the inconsistent tuples from W u of Π(D ,FD) by evaluating the following query on it:

Q′ : Ans(z, w)← ∃xyR (x, y, z, w, t��) ∧ ∀x′y′w′(R (x′, y′, z, w′, t��)→ w′ = w).

When Q′ is evaluated on W u of Π(D ,FD) , the answer is empty. Therefore, the final

answer to Q is (d, e), which coincides with the consistent answer to Q.

147

For query Q: Ans(z, x) ← ∃ywR(x, y, z, w), where the free variable z refers to

the attribute in the antecedent of the FD, and variable x refers to a simple attribute,

W+ of Π(D ,FD ,Q) is {Ans(d, b)}. Since z refers to an antecedent attribute, we

know that tuples in W u that are inconsistent wrt FD will share the value for that

attribute. Thus, we just need to ensure that tuples from W u have the same value for

the attribute referenced by variable x. Therefore, Q′ is:

Q′ : Ans(z, x)← ∃ywR (x, y, z, w, t��) ∧ ∀x′y′w′(R (x′, y′, z, w′, t��)→ x′ = x).

The answer to Q′ evaluated on W u of Π(D ,FD) is (c, a). Therefore, the final well-

founded answers to Q are (d, b), (c, a), which coincide with the consistent answers to

Q.

Moreover, for Q: Ans(y)← ∃xzw R (x, y, z, w), where variable y refers to a simple

attribute, W+ of Π(D ,FD ,Q) is {Ans(c)}. Here we just need to ensure that the value

for the attribute referenced by variable y is the same in every inconsistent tuple in

W u. Hence, Q′ is:

Q′ : Ans(y)← ∃xzwR (x, y, z, w, t��) ∧ ∀x′y′z′w′(R (x′, y′, z′, w′, t��)→ ȳ′ = y).

The answer to Q′ evaluated on W u of Π(D ,FD) is (b). Therefore, the well-founded

answers to Q are (c), (b), which coincide with the consistent answers to Q. �

The situation is not different for boolean conjunctive queries of the form (7.2). For

this kind of queries we also need a new, rewritten query in order to retrieve consistent

answers from the set of undetermined atoms of the WFI of a repair program. However,

the new query is only needed when it is not possible to compute an answer from W+

of Π(D ,FD ,Q). We illustrate this in the example below.

148

Example 7.12 (example 7.11 cont.) For Q: Ans ← ∃xzw R(x, c, z, w), W+ of

Π(D ,FD ,Q) is {Ans}, therefore the well-founded answer is yes, which coincides with

consistent answer. For Q: Ans ← ∃yzw R(a, y, z, w), W+ of Π(D ,FD ,Q) does not

have an Ans-atom, then we need to check if we can obtain an answer from W u of the

repair program. The rewritten query is:

Q′ : Ans ← ∃yzwR (a, y, z, w, t��) ∧ ∀x′y′z′w′(R (x′, y′, z′, w′, t��)→ x′ = a).

When query Q′ is evaluated on W u = {R (a, b, c, d, t��), R (a, b, c, e, t��)}, the answer

is yes, since every inconsistent tuple wrt the FD has the same value for the first

attribute. Therefore, the well-founded answer is yes, and coincides with the consistent

answer to Q.

Moreover, for Q: Ans ← ∃xyz R(x, y, z, f), there is no Ans-atom in W+ of

Π(D ,FD ,Q), then the following rewritten query is generated:

Q′ : Ans ← ∃xyzR (x, y, z, f, t��) ∧ ∀x′y′z′w′(R (x′, y′, z′, w′, t��)→ w′ = f.)

However, the answer to Q′ is also negative in W u, hence the well-founded answer to

Q is no, which coincides with the consistent answer to Q. �

The rewriting of queries we introduced in Examples 7.11 and 7.12 corresponds to the

rewriting method presented in [39], where it is used to compute consistent answers

wrt primary key ICs, to conjunctive queries with existential quantifiers. This method

works for a more general case of conjunctive queries, the C-Tree queries, which allow

joins between different database relations.

In [39] the rewritten query is evaluated directly on the inconsistent database in-

stance. In this manner, its answers correspond to the consistent answers to the

149

original query. Here, the rewritten query filters inconsistent answers from set W u of

the WFI of a repair program. Thus, the rewritten query is evaluated on a subset of

the database, the portion of data that falls in W u. Therefore, we compute rewritten

queries on small portions of the database, instead of processing them on the original

database.

Algorithm 7.2: Rewritten Query Generation(FD ,Q)

Input: query Q, and set FD of FDs

Output: rewritten query Qrew
Variables: FANS, AV, CV, AVP, CVP: set of variables;⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π(Q) := GenerateQueryProgram(Q);

Qrew := Π(Q);

FANS := IdentifyFreeV ariables(Q);

AV := IdentifyV ariablesInAntecedentsFDs(Q,FD);

CV := IdentifyV ariablesInConsequentsFDs(Q,FD);

for each P (x̄) ∈ Q

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AVP := x̄ ∩ AV ; CVP := x̄ ∩ CV ; FVP := x̄ ∩ FANS ;

if ({AVP ∪ CVP ∪ FVP} 	= ∅)

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ȳ := x̄� AVP ;

ȳ := GenerateFreshVariables(ȳ);

Qrew := Qrew ∧ ∀ȳGenerateAtom(P (x̄), ȳ,AVP ,CVP ,FVP);

return (Qrew)

Algorithm 7.2 generates a rewritten query Qrew for a given query Q of the form

(7.1). The input to the algorithm consists of the set FD of FDs, and the query Q.

The algorithm first identifies the free variables in Q. After that, it determines which

150

variables refer to attributes in FDs. Then, for each atom in the query that share

variables with the Ans predicate, an atom in the rewritten query is generated. A

tuple t̄ is an answer to the rewritten query if tuples from set W u of Π(D ,FD) have

the same values for the attributes referenced by the free variables in the query.

For boolean conjunctive queries of the form (7.2) the rewritten query is only

generated when the original query cannot be answered with set W+ of Π(D ,FD ,Q).

Algorithm 7.3 generates a rewritten query Qrew for a query Q of the form (7.2). The

algorithm first identifies the query predicates that have instantiated variables. Then

for each of those query atoms, the algorithm generates a corresponding atom in the

rewritten query. The answer to Qrew will be yes if tuples from W u of Π(D ,FD) have

the same values for the instantiated variables in the original query.

Algorithm 7.3: Rewritten Query Generation(Q)

Input: query Q
Output: rewritten query Qrew
Variables: CONS : set of constants;⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π(Q) := GenerateQueryProgram(Q);

Qrew := Π(Q);

CONS := IdentifyConstants(Q);

for each P (x̄) ∈ Q

do

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

if ({CONS ∩ x̄} 	= ∅)

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ȳ := x̄� {CONS ∩ x̄};
ȳ := GenerateFreshVariables(ȳ);

Qrew := Qrew ∧ ∀ȳGenerateAtom(P (x̄), ȳ,CONS);

return (Qrew)

151

It is important to notice that when the ICs are FDs only (at most one functional or

key dependency per relation), we can also use W u of Π(D ,FD ,Q) to obtain consistent

answers to ground disjunctive queries. This is illustrated in the example below.

Example 7.13 (example 7.9) For query: Ans ← R (a, b, c, d, t��) ∨ R (b, c, d, e, t��),

which program contains rules: Ans ← R (a, b, c, d, t��), and Ans ← R (b, c, d, e, t��),

atom Ans is in W+ of Π(D ,FD ,Q). Therefore, the well-founded answer to Q is yes,

which coincides with the consistent answer to Q.

For Q: Ans ← R (a, b, c, d, t��) ∨ R (a, b, c, e, t��), which program contains rules:

Ans ← R (a, b, c, d, t��), and Ans ← R (a, b, c, e, t��), atom Ans is not in W+, but it is

in W u of Π(D ,FD ,Q). Therefore, the well-founded answer is yes, and also coincides

with the consistent answer to Q. �

Definition 7.11 For a database instance D , and set FD of FDs (at most one func-

tional or key dependency per relation), the consistent answer to a ground disjunctive

query Q wrt FD is yes if Ans is in W+ ∪ W u of Π(D ,FD ,Q). Otherwise, the

consistent answer to Q is no. �

The use of the WFI of programs to compute consistent answers wrt FDs (at most

one per relation) is relevant. This is because, for conjunctive queries of forms (7.1)

and (7.2) CQA can be computed in polynomial time.

Proposition 7.5 For a database instance D , and a set FD of FDs (at most one

functional or key dependency per relation), the consistent answers to a query that is

either a possibly existentially quantified conjunctive query of the forms (7.1), (7.2),

or a ground disjunctive queries can be computed in polynomial time.

Proof: It follows from the fact that the WFI of a program can be computed in

152

polynomial time [60]. �

In [27], a polynomial time rewriting method retrieves consistent answers, regarding

FDs (at most one per relation), for the class of closed simple conjunctive queries, which

are queries of the form (7.2). The authors use graph representations for database

repairs. The first-order query rewriting method presented in [39] also computes,

in polynomial time, consistent answers wrt primary key constraints for conjunctive

queries with existential quantifiers. This method works for a more general case of

conjunctive queries, the C-Tree queries, which allow joins between different database

relations.

We adopt the rewritten method presented in [39] for computing consistent answers

to the restricted set of conjunctive queries of the forms (7.1), and (7.2). However, we

compute the rewritten query on a subset of the database, the portion of data that

falls in W u of program Π(D ,FD). Therefore, we compute rewritten queries on small

portions of the database, instead of processing them on the original database.

7.6 Well-Founded Semantics as an Approximation to CQA

For RIC-acyclic sets of ICs, W+ of Π(D , IC) is a subset of the intersection of their

stable models. Therefore, the WFI of programs will not retrieve all the consistent

answers to positive Datalog queries, i.e. conjunctive or disjunctive queries with pro-

jection but without negation. However, for Positive Datalog queries, we can ensure

that the well-founded answers, those obtained from W+ of Π(D , IC ,Q), are a subset

of the consistent answers to queries. We call to these answers approximate consistent

answers.

To obtain approximate answers may be important if, for example, we are not

looking for all the consistent answers, but we want to now if the queries have some

153

consistent answer. The approximate consistent answers can be computed in polyno-

mial time, and as we show in Section 7.7 we can obtain answers from W+ efficiently

in the XSB system [25].

Definition 7.12 For a given database instance D , a RIC-acyclic set IC of ICs, and

a positive Datalog query Q, a tuple t̄ is an approximate consistent answer to Q if

Ans(t̄) is in W+ of the WFI of program Π(D , IC ,Q).9 �

Thus, the set of approximate consistent answers to a query Q is a subset of the set

of consistent answers to Q. We illustrate this in the example below.

Example 7.14 (example 7.6 cont.) For D = {S(a, b), S(a, c), S(b, c), R(b, c), R(a, b),

P (a) P (b)}, and set IC of FDs: ∀xyz(S(x, y), S(x, z)→ y = z); ∀xyz(R(x, y), R(x, z)

→ y = z); IND: ∀xy(S(x, y) → R(x, y)); and RIC: ∀x(P (x)→ ∃yR(x, y)). Program

Π(D , IC) has two stable models:

M1 = {S (a, b, t�), S (a, c, t�), S (b, c, t�), R (a, b, t�), R (b, c, t�), P (a, t�), P (b, t�),

aux (b), aux (a), P (a, t��), P (b, t��), R (a, c, ta), S (a, b, fa), S (a, c, t��),

S (b, c, t��), R (a, b, fa), R (b, c, t��), R (a, c, t�), R (a, c, t��)},

M2 = {S (a, b, t�), S (a, c, t�), S (b, c, t�), R (a, b, t�), R (b, c, t�), P (a, t�), P (b, t�),

aux (b), aux (a), P (a, t��), P (b, t��), S (a, c, fa), S (a, b, t��), S (b, c, t��),

R (a, b, t��), R (b, c, t��)}.

Here, Core(Π(D , IC))= {P (a, t��), P (b, t��), S (b, c, t��), R (b, c, t��)}, W+ of Π(D ,

IC) is {P (b, t��), S (b, c, t��), R (b, c, t��)}, and W+ � Core(Π(D , IC)). This happens

because the set of ICs is not interaction-free: predicate R is involved in the RIC and

in the IND.
9Here set W+ of the WFI of program Π(D , IC ,Q) is a subset of Core(Π(D , IC ,Q)).

154

For query Ans(x) ← P (x), Core(Π(D , IC ,Q))= {Ans(a),Ans(b)}, but W+ of

Π(D , IC ,Q) is {Ans(b)}. Therefore, the well-founded answer is (b), but the consistent

answers are (a), (b). Thus, with set W+ we obtain an approximate answer set to the

query.

For the disjunctive query Ans(x) ← P (x) ∨ R(x, y), that as a program be-

comes: Ans(x)← P (x, t��), and Ans(x)← R (x, y, t��). Again, Core(Π(D , IC ,Q))=

{Ans(a), Ans(b)}, but W+ of the WFI of program Π(D , IC ,Q) is {Ans(b)}. Thus,

the well-founded answer (b) is an approximate answer to Q. �

In this manner, consistent answers to queries are computed by focalizing on W+ of

the WFI of program Π(D , IC ,Q), which contains a subset of the Ans-atoms that

belong to every stable model of Π(D , IC ,Q). Therefore, for positive Datalog queries

we obtain a subset of the consistent answers to queries. Nevertheless, we have a

polynomial time approximation algorithm for CQA.

Corollary 7.2 For a database instance D , a RIC-acyclic set IC of ICs, and a positive

Datalog query Q, i.e. a conjunctive or disjunctive query with projection but without

negation, the well-founded answers to Q, obtained from W+ of Π(D , IC ,Q), are a

subset of the consistent answers to Q. In symbols, WFA+(Q) ⊆ ConsA(Q).10

Proof: It follows from the fact that for a disjunctive program Π, W(Π) � Core(Π)

[60]. �

It is important to remark that we cannot use W+ of Π(D , IC ,Q) alone for computing

consistent answers to Datalog queries with negation. We illustrate this in the example

below.

10As defined in Definition 7.7, WFA+(Q) is the set of well-founded answers to Q obtained from
W+ of Π(D , IC ,Q).

155

Example 7.15 (example 7.14 cont.) For query Ans ← not P (a), W+ of Π(D ,

IC ,Q) is ∅, but we cannot ensure that the consistent answer is no. Actually, atom

Ans is in W u of Π(D , IC ,Q), therefore the answer to this query will be undefined

under the well-founded semantics.11 �

Notice that, since for interaction-free sets of RIC-acyclic ICs, and conjunctive queries

without projection, Core(Π(D , IC ,Q)) coincides with W+ of Π(D , IC ,Q) (cf. The-

orem 7.1), the set of approximate consistent answers to this kind of queries coincides

with the set of consistent answers.

7.7 Computing Well-Founded Answers to Queries

The XSB system is a logic programming and deductive database system, which uses

SLG resolution [25] to compute queries to normal programs (programs without dis-

junction) under the WFS. In [9] it was shown that a head-cycle free disjunctive pro-

gram can be translated into an equivalent normal program.

Definition 7.13 For a given disjunctive program Π, a dependency graph is con-

structed as follows: each literal in ground(Π) is a node in the graph, and there is an

edge from L to L′ iff there is a rule r in which L appears positive in the body, and

L′ appears in the head of r. Π is head-cycle free (HCF) if the graph does not contain

directed cycles that go through two literals that belong to the head of the same rule.

�

A HCF disjunctive program Π can be transformed into a non-disjunctive program

sh(Π) with the same stable models [9], that is obtained by replacing every disjunctive

11In this section, we are analyzing the computation of well-founded answers from W+ of the WFI
of program Π(D , IC ,Q), only.

156

rule on Π of the form
n∨
i=1

pi(x̄i)←
m∧
j=1

qj(ȳj),

by the n rules:

pi(x̄i)←
m∧
j=1

qj(ȳj) ∧
∧
k �=i

not pk(x̄k),

where i = 1, . . . , n.

HCF programs have better computational complexity than general disjunctive

programs. In fact, the computational complexity of skeptical (or cautious) query

evaluation for HCF programs is co-NP-complete, but for general disjunctive programs

is ΠP
2 -complete [30].

In [7] it was proven that if the ICs are only of the form
∧n
i=1 Pi (x̄i) → ϕ, where

Pi(x̄i) is an atom and ϕ is a formula containing built-ins, the corresponding repair

program is always HCF.12 Notice that this is also valid for NNCs. Therefore, for HCF

programs, the well-founded answers to queries can be computed directly in the XSB

system.

XSB evaluates queries based in the WFI of the program, but when a program is

evaluated in the XSB system, it does not show explicitly the whole sets W+,W u or

W− of the WFI of the program. For instance, for a ground conjunctive queries XSB

returns either: yes, no or undefined as an answer; for conjunctive queries with free

variables, XSB computes one by one the true and undefined answers. The consistent

answers would be the answers that are defined as true. Hence, the complete set of

answers can be obtained by doing backtracking.13

Example 7.16 (example 7.1 cont.) For the database instance D = {S(a, b), S(a, c),

S(b, c)} and IC : ∀xyz(S(x, y) ∧ S(x, z) → y = z), the repair program Π(D , IC) is

12That includes important classes of UICs such as, key constraints, and functional dependencies.
13In XSB, backtracking can be executed by typing any key on the keyboard different from the

“Enter” key.

157

HCF, and therefore it can be translated into the following non-disjunctive program:

S(a, b). S(a, c). S(b, c).

S (x, y, fa)← S (x, y, t�), S (x, z, t�), y 	= z, x 	= null, y 	= null, z 	= null, not S (x, z, fa).

S (x, z, fa)← S (x, y, t�), S (x, z, t�), y 	= z, x 	= null, y 	= null, z 	= null, not S (x, y, fa).

S (x, y, t�)← S(x, y).

S (x, y, t�)← S (x, y, ta).

S (x, y, t��)← S (x, y, t�), not S (x, y, fa).

ForQ: Ans(x, y)← S (x, y, t��), XSB returns x = b, y = c, as true answer to the XSB

query obtained from program Π(D , IC ,Q).14 This well-founded answer coincides with

the consistent answer to Q.

For Q: Ans(x) ← S (x, y, t��), XSB returns x = b as true answer, but the

consistent answers are (b), (a). This happens because the query involves tuples

{S(a, b), S(a, c)} which belong to different repairs, and therefore they are not cap-

tured by the WFI of program Π(D , IC ,Q).

Moreover, for the ground disjunctive query: Ans ← S (a, b, t��) ∨ S (a, c, t��),

which is expressed by the two non-disjunctive rules: Ans ← S (a, b, t��), and Ans ←
S (a, c, t��), XSB returns undefined as an answer, but the consistent answer is yes.

Again, this happens because the tuples involved in the query are in different repairs,

and as a consequence, they cannot be fetched in W+ of the program.

However, for the ground disjunctive query Ans ← S (b, c, t��) ∨ S (a, c, t��), which

is expressed by: Ans ← S (b, c, t��) and Ans ← S (a, c, t��), XSB returns yes as an

answer, which coincides with the consistent answer to Q. �

In addition, well-founded answers to queries can also be computed by using the deter-

ministic set of a (disjunctive) logic program, which is efficiently computed in the DLV

14In the XSB system queries are entered as rules without head. For instance, in order to obtain
the answers to query Ans(x, y) ← S (x, y, t��), we have to add the query : −Ans(x, y). The answers
are obtained by doing backtracking.

158

system [61].15 This set corresponds to the atoms that can be deterministically inferred

from a program given a certain interpretation. This set, det(Π), is contained in every

stable model of the program, and can be computed in polynomial time [19]. In fact, for

a program Π, it holds thatW+ ⊆ det(Π) ⊆ ⋂{S | S is a stable model of program Π},
where W+ is the set of positive atoms in the WFI of program Π [19].

In particular, from Theorem 7.1 we can conclude that for a database instance D ,

an interaction-free set IC of ICs, and queryQ that is a conjunctive query without exis-

tential quantifiers, W+ of Π(D , IC ,Q), det(Π(D , IC ,Q)) and Core(Π(D , IC ,Q)) co-

incide, where det(Π(D , IC ,Q)) is the deterministic set of program Π(D , IC ,Q) re-

stricted to the Ans-atoms. Therefore, the deterministic set becomes an important

tool to be used in CQA for non-existentially quantified conjunctive queries.

Example 7.17 (example 7.16 cont.) For query: Ans(x, y) ← S (x, y, t��), the de-

terministic set of program Π(D , IC ,Q) is {Ans(b, c)}, therefore the answer is (b, c),

which coincides with the consistent, and the well-founded answers to Q. �

7.8 Summary

In this chapter we proved that for interaction-free sets of ICs, the core of a repair

program Π(D , IC), and the core of program Π(D , IC ,Q) for queries that are con-

junction of atoms without existential quantifiers coincide with the true atoms in the

WFI of the respective programs. This is relevant because, since the WFI is computed

in polynomial time, core computations for CQA become also polynomial.

In addition, we showed that in the presence of FDs (at most one FD or key

dependency per relation) it is possible to use the set of undetermined atoms of the

WFI of programs to CQA. In fact, by using both sets W+ and W u, we can compute

15The deterministic set of a program can be captured in the DLV system by running the program
with option -det.

159

all the consistent answers for a restricted set of conjunctive queries with existential

quantifiers.

The method presented in [27], where database repairs are specified by graph repre-

sentations, also retrieves consistent answers regarding FDs (at most one per relation)

for the class of closed simple conjunctive queries of the form (7.2). Moreover, the first-

order query rewriting method in [39] also computes, in polynomial time, consistent

answers wrt primary key constraints for a more general set of conjunctive queries with

existential quantifiers. Query rewriting in [39] coincides with the rewriting presented

here for the restricted set of conjunctive queries of the forms (7.1) and (7.2).

It is relevant to mention that the set of true atoms of the WFI of a program can

be used as a first step to compute consistent answers to ground disjunctive queries

wrt interaction-free sets of ICs. In this manner, the computation of stable models is

left as a second option, if needed. Moreover, we showed that if the WFI of a program

is used as a unique way to compute consistent answers, for positive Datalog queries,

we may retrieve only a subset of the consistent answers. Nevertheless, we have a

polynomial time algorithm for CQA. This is relevant given the high data complexity

of CQA (in general CQA is Π2
p-complete in data complexity [17]).

We can compute well-founded answers using the XSB system, for the restricted

class of HCF programs. The XSB system does not show the sets W+,W u or W− of

the WFI of the program. But, it evaluates queries based in the WFI of the program.

For instance, for conjunctive queries with free variables, XSB computes one by one

the true and undefined answers. The true answers are those that fall in W+ of the

WFI of the program, and the undefined answers are those in W u.

Moreover, when the set of ICs is interaction-free, we can compute consistent an-

swers to projection free conjunctive queries by using the deterministic set of program

Π(D , IC ,Q). This set is computed by DLV system in polynomial time.

Chapter 8

A Repair Semantics for Multidimensional Databases

8.1 Introduction

In this chapter we present a semantic framework for CQA in Multidimensional Databases

(MDBs) [50, 51]. Specifically, we focus in Multidimensional Data Warehouses (MDWs),

which are data repositories that integrate and materialize data from different sources

and also keep historical data [24]. They can be queried by OLAP (On-Line Analytical

Processing) systems, which in particular, require aggregation of data stored in the

data warehouse [24].

The MDWs consist mainly of dimensions and facts. Dimensions reflect the way in

which the data is organized. Some typical dimensions are time, location, customers,

products, etc. The facts correspond to quantitative data related with the dimensions.

For example, facts related with sales may be associated to the dimensions time,

product, and location; and should be understood as the sales of products at the

locations at certain periods of time.

Data warehouses can be modelled and implemented by using a relational (RO-

LAP) or a multidimensional (MOLAP) approach. In the former, the data is stored

in relational databases, and special access methods are develop in order to efficiently

implement the aggregation of data, which is the most common task in data ware-

houses. In the latter, the multidimensional data is stored in special data structures,

and aggregate operations are implemented over these special data structures [24].

The multidimensional approach is better than the relational one to support data

160

161

aggregation, because aggregations can be computed in a straightforward way from

the multidimensional structure. We base our work on the multidimensional model

proposed in [48, 49], where dimensions are modelled by hierarchy schemas together

with a set of constraints, while the facts are represented by tables that refer to the

dimensions. Here, we only consider basic dimension schemas, called strictly homoge-

neous dimension schemas (cf. section 8.2), but not other complex schemas such as

the heterogeneous dimension schemas [48, 49].

Usually, dimensions are considered the static part of the MDWs, whereas the facts

are considered to be the dynamic part, in the sense that the update operations affect

mainly the fact tables. In [50, 51] the need for updates on dimensions is analyzed.

The authors argue that dimensions have to be adapted to changes in data sources

or to the business structure. They define a set of update operators for homogeneous

dimension schemas and instances.

In the presence of such update operations, MDWs may become inconsistent wrt

dimension constraints. We are interested in studying the effects of violations of a spe-

cific class of dimension constraints, the so-called partitioning constraints in homoge-

neous dimension instances (from now on, homogeneous instances). These constraints

are fundamental for enforcing navigability properties in dimension schemas. One of

the effects that we will analyze in detail is how, the violation of constraints, affects

the summarizability property (SUMM) of the MDWs, which is the capability of cor-

rectly computing queries (cube views) using other pre-computed aggregate views. We

will concentrate on aggregate queries with group-by statements, that is, queries that

perform grouping of attributes and return a value for each group (cf. Chapter 6).

We also intend to retrieve consistent answers to queries, even when the MDWs

are inconsistent. Therefore, a characterization of such answers becomes necessary. In

order to do this, we use the concept of repair of MDWs that are inconsistent wrt the

162

dimension constraints. In this respect, we show that the previous notions of repairs,

e.g. the relational notion given in [2], are not suitable for MDWs. In consequence, we

give a new definition of repair for MDWs subject to sets of partitioning constraints.

We define repairs of dimension instances wrt partitioning constraints by intro-

ducing minimal changes over the original inconsistent dimension instances. In order

to achieve this, and given that we are considering hierarchical representations with

multiple levels, we explore the notion of prioritized minimization (as given in [62]).

The rest of the chapter is organized as follows: Section 8.2 reviews the multidi-

mensional model, including partitioning constraints. In Section 8.3 we discuss the

necessity of defining a new notion of repair for MDBs. In Section 8.4 the notions of

dimension instance repair and consistent answer to aggregate queries are presented.

This version of repair is used as an auxiliary element to compute consistent answers

to aggregate queries. Section 8.5 finalizes this chapter.

8.2 The Multidimensional Model

A hierarchy schema is a directed acyclic graph H = (C,↗), where C is a set of

categories, and ↗ is a child/parent relation between categories (edges in the graph),

i.e. for a pair of categories C1, C2 ∈ C, we write C1 ↗ C2 to denote that (C1, C2) is an

edge in H . ↗∗ is the transitive and reflexive closure of ↗. For simplicity, categories

do not have any attributes, and for technical reasons, there is a distinguished top

category named All , whose only element is {all}, which is reachable from all other

categories via ↗∗. The category at the lowest level is named the bottom category.1

Example 8.1 The National Parks’ hierarchy schema is defined by:

• A set of categories C = {Park, Type, Location, Country, All},
1We restrict ourselves to dimension schemas with only one bottom category. But, they may have

more than one bottom category.

163

• The child/parent relation ↗ consisting of the edges {(Park, Type), (Park, Lo-

cation), (Type, Country), (Location, Country),(Country, All)}; and

• ↗∗=↗ ∪ {(Park,Park), (Type, Type), (Park, Country), ...}

This hierarchy schema is shown in Figure 8.1.

Park

Location

Country

All

Type

Figure 8.1: National Parks’ Hierarchy Schema

We can see that the bottom category is Park , and that Type and Location are direct

ancestors of Park , being Country and All indirect ancestors. �

The hierarchy schema has a domain U that can be infinite. The categories and their

elements contain values from U , and for two names n1, n2 it holds n1 	= n2 (unique

name assumption). An instance over a hierarchy schema can be represented as a

first-order logic structure of the form:

D = 〈U , CU1 , ..., CUm, cU1 , . . . , cUn , CUbottom, AllU , allU , AU , <U , <∗
U 〉, (8.1)

where U is the Herbrand domain of H [64], whose elements must be interpreted with

their own values. CU1 , ..., C
U
m, C

U
bottom,All

U ⊆ U , are unary predicates that represent

categories, CU1 = CUbottom is the bottom category, CUm = AllU = {allU} is the top

category, and cU1 , . . . , c
U
n are names for elements of categories. AU ⊆ {pCi,Cj | i, j =

164

1, ...,m}, where each pCi,Cj represents an edge between the categories CUi and CUj on

the hierarchy schema. There is a child/parent relation between elements of categories,

which is represented by <U⊆ U×U . <∗
U⊆ U×U is the reflexive and transitive closure

of <U . In this sense, <∗
U

can be seen as an interpreted relation name, which has a

fixed interpretation depending on the interpretation of <U . A dimension instance

D indicates relationships between those categories that must be connected in the

hierarchy schema. That pCi,Cj ∈ AU indicates that Ci ↗ Cj.

Example 8.2 (example 8.1 cont.) D = 〈U , Park(·)U , Type(·)U , Location(·)U , All(·)U ,
Country(·)U , allU , AU , <U , <∗

U 〉2 is an instance for the hierarchy schema in Figure

8.1, where U is composed by names for categories, parks, types, locations, countries,

i.e. U = { Park, Type, Location, Country, Banff, Jasper, Crater Lake, P, S, Alberta,

Oregon, Canada, US, All, all}, and:

• ParkU = {Banff , Jasper ,CraterLake}, TypeU = {P , S},3

LocationU = {Alberta,Oregon}, CountryU = {Canada,US}, AllU = {allU}.

• AU = {pPark ,Type , pPark ,Location , pType,Country , pLocation,Country , pCountry,All}.

• <U = {(Banff, P), (Banff, Alberta), (Jasper, P), (Jasper, Alberta),

(Crater Lake, S), (Crater Lake, Oregon), (P, Canada), (S, US),

(Alberta, Canada), (Oregon, US), (Canada, All), (US, All)}.

• <∗U=<U ∪ {(Banff, Banff), (Banff,Canada)... }.

Figure 8.2 is the dimension instance D .

�

2P (·) for any category P indicates that the arity of P is one.
3P denotes Province and S denotes State.

165

Banff

Alberta

Canada

all

Crater Lake

US

OregonP

Jasper

S

Figure 8.2: National Parks’ Dimension Instance

The properties of hierarchy schemas and their instances can be expressed with a

first-order language. This, by using the symbols of H plus the symbols ↗∗, <, <∗,

etc.

A roll-up function is a relation based on <∗ between elements of two fixed cate-

gories:

RCj

Ci
(D) := {(x, y) | CUi (x) ∧ CUj (y) ∧ x <∗ y} (8.2)

We can see that those functions are parameterized by a pair of categories and de-

pend on the instance D at hand. These functions are fundamental for computing

aggregation of data.

Dimension instances must satisfy a set of constraints [48]. The partitioning con-

straint is one of them, and for a pair of categories Ci and Cj is defined by the following

L-sentence:

∀xyz(Ci(x) ∧ Cj(y) ∧ Cj(z) ∧ x <∗ y ∧ x <∗ z → y = z). (8.3)

It enforces that roll-up functions are functional, and so they allow for the correct

computation of aggregations.

In data warehousing, aggregation of data or cube views can be performed at dif-

ferent granularities, i.e. set of categories from the dimension schemas. The notion

166

of summarizability (SUMM) in dimension schemas [48, 49] refers to the capability of

correctly compute any cube view defined at a category Ci from a pre-computed ag-

gregate view defined at category Cj by using the roll-up functions between categories

Ci y Cj.

Definition 8.1 [48, 49] A category Ci is summarizable from a category Cj in a

dimension instance D of H iff (a) Cj ↗∗ Ci, and (b) RCi
Cbottom(D) = R

Cj

Cbottom(D) ��

RCi
Cj

(D), where �� is the join operator [1]. �

Example 8.3 (example 8.2 cont.) The partitioning constraint is: ∀xyz(Park(x) ∧
Country(y) ∧ Country(z) ∧ x <∗ y ∧ x <∗ z → y = z), which establishes that

every element of the category Park has to be associated with a unique element in

the category Country . The roll-up function between categories Park and Country

is RCountry
Park (D) = {(Banff ,Canada), (Jasper , Canada), (CraterLake, US)}, which

by the SUMM property, can be computed by using the intermediate category Type

and the roll-up functions RType
Park(D) = {(Banff , P), (Jasper , P), (CraterLake, S)} and

RCountry
Type (D) = { (P,Canada), (S,US)}, since RCountry

Park (D) = RType
Park(D) �� RCountry

Type (D).

�

There are other constraints to model hierarchy schemas [48, 49]. Those are used to

specify paths and the existence of distinguished elements in the categories. We call

to them specific dimensions constraints. In particular, the dimension constraints that

establish conditions on paths between categories are called path constraints. Those

that specify that paths are mandatory are called into constraints. The dimension

constraints that specify the existence of values in categories are called equality con-

straints.

167

Example 8.4 For the hierarchy schema in Figure 8.1, the following L-sentences are

dimension constraints:

(a) ∀x(Park(x)→ ∃y(Type(y)∧x < y)). This is an into constraint that establishes

that every element in Park is associated (rolls-up) with an element in Type.

(b) ∃x(C ountry(x) ∧ x = Canada). This is an equality constraint that establishes

that there exists an element named Canada in category C ountry.

(c) ∀xy(Park(x) ∧ Type(y) ∧ y = P ∧ x < y → ∃z(C ountry(z) ∧ x <∗ z ∧ z =

Canada)), which asserts that for every element x in Park, if x rolls-up to P in

Type, then x is associated with Canada in C ountry. This is a combination of

a path and an equality constraint. �

An homogeneous dimension schema is a schema modelled by into constraints. There-

fore, all the paths on it are mandatory. In homogeneous schemas, roll-up functions

are expected to be total between elements of categories. A schema is called strictly

homogeneous when it has one bottom category, e.g. the hierarchy schema in Figure

8.1.

In data warehouses cube views, i.e. aggregate queries, are computed from the

dimensions instances through the roll-up functions and the fact tables. The roll-up

functions are treated as relational tables. For instance, the roll-up function RType
Park can

be seen as a relational table with schema R(Park ,Type).

We will concentrate on aggregate queries with group-by statements. In MDWs an

aggregate query is of the form:

SELECT Aj, . . . An, f(A)

FROM T, Ri, . . . Rm WHERE conditions

GROUP BY Aj, . . . An (8.4)

168

where Aj, . . . An are attributes of the fact table T or of the roll-up functions Ri, . . . Rm

(treated as tables), and f is one of min(A), max(A), count(A), sum(A), avg(A),

applied to attribute A with A ∩ {Aj, . . . An} = ∅.

Example 8.5 (example 8.3 cont.) Consider the facts table Sales below storing sales

for national parks, and the roll-up function RType
Park(D) = {(Banff , P), (Jasper , P),

(CraterLake, S)}, which can be seen as the relational table R(Park, Type):

Sales Park Amount

Banff 5000

Jasper 5000

Crater Lake 10000

R Park Type

Banff P

Jasper P

Crater Lake S

For the aggregate query:

SELECT R.Type, SUM(S.Amount)

FROM Sales S, R

WHERE R.Park = S.Park

GROUP BY R.Type

The answers are (P, 10000), (S, 10000). �

8.3 The Need for MDWs Repairs and Consistent Answers

In general, MDWs are conceived as collections of materialized views whose main

sources are operational databases. As a consequence, much effort has been centered

around keeping consistency between the sources and the MDWs [40, 41, 72, 74]. To

the best of our knowledge, the first work related to consistency in dimension schemas

in the sense of satisfiability of partitioning constraints [48] is presented in [56]. The

authors argue that a dimension schema is consistent if their instances satisfy the

169

partitioning constraints. The notion of consistency the authors present is used to

guide the update operations on dimension schemas in such a way that the partitioning

constraints are satisfied.

However, there has been no work, so far, that tackles the problem of already having

an inconsistent dimension instance wrt a specific class of constraints, but still being

able to provide consistent answers, in a sense similar to the notion of consistent answer

introduced in [2, 5, 7] for relational databases. In this regard, the work presented here

is the first attempt to handle the problem of consistent query answering in MDWs.

Here, we analyze the effect, over query answering, of having inconsistent dimension

instances wrt partitioning constraints. We illustrate this in the example below.

Example 8.6 (example 8.5 cont.) The dimension instance in Figure 8.3 is inconsis-

tent wrt the partitioning constraint: ∀xyz(Park(x) ∧ C ountry(y) ∧ C ountry(z) ∧
x <∗ y ∧ x <∗ z → y = z). This is because the element Crater Lake rolls-up

to Canada via type P , and also to US via location Oregon. As a consequence,

the roll-up function RCountry
Park = {(Banff ,Canada), (Jasper , Canada), (C raterLake,

Canada), (CraterLake,US)} is not functional.

Banff

Alberta

Canada

all

Crater Lake

US

OregonP

Jasper

Figure 8.3: Inconsistent Dimension Instance

Suppose the facts table Sales in Example 8.5, the roll-up function RCountry
Park repre-

sented by the relational table R(Park, Country) below, and the aggregate query:

170

SELECT R.Country, SUM(S.Amount)

FROM Sales S, R

WHERE R.Park = S.Park

GROUP BY R.Country

R Park Country

Banff Canada

Jasper Canada

Crater Lake Canada

Crater Lake US

The answers to the query are (Canada, 20000), (US , 10000). �

Clearly, this result presents an anomaly, the sales of the park Crater Lake are added

twice, as sales of Canada and also as sales of US.

Now, let us explore how that violation affects the summarizability property.

Example 8.7 (example 8.6 cont.) Consider the roll-up functionsRType
Park = {(Banff , P),

(Jasper , P), (CraterLake, P)}, and RLocation
Park = {(Banff ,Alberta), (Jasper ,Alberta),

(CraterLake,Oregon)}, which are computed on the inconsistent dimension instance

in Figure 8.3, and that represented as tables become, respectively:

R1 Park Type

Banff P

Jasper P

Crater Lake P

R2 Park Location

Banff Alberta

Jasper Alberta

Crater Lake Oregon

Consider also the materialized views Sales-Type and Sales-Loc, which are defined as

follows:

SELECT R1.Type, SUM(S.Amount)

FROM Sales S, R1

WHERE R1.Park = S.Park

GROUP BY R1.Type

SELECT R2.Location, SUM(S.Amount)

FROM Sales S, R2

WHERE R2.Park = S.Park

GROUP BY R2.Location

171

Sales-Type Type Amount

P 20000

Sales-Loc Location Amount

Alberta 10000

Oregon 10000

The roll-up functions RCountry
Type = {(P, Canada)}, and RCountry

Location = {(Alberta, Canada),

(Oregon, US)}, seen as the relational tables:

R3 Type Country

P Canada

R4 Location Country

Alberta Canada

Oregon US

For the queries Q and Q’, respectively:

SELECT R3.Country, SUM(S.Amount)

FROM Sales-Type S, R3

WHERE R3.Type = S.Type

GROUP BY R3.Country,

SELECT R4.Country, SUM(S.Amount)

FROM Sales-Loc S, R4

WHERE R4.Location = S.Location

GROUP BY R4.Country

The answer to Q is (Canada, 20000), and the answers to Q’ are (Canada, 10000),

(US , 10000). Nevertheless, by the summarizability property, the answers must be the

same. �

It has been shown that for strictly homogeneous dimensions that satisfy their parti-

tioning constraints, the summarizability property is guarantee [48]. In fact, in those

schemas a category Ci is summarizable from any of their child categories, i.e. from

any Cj such that Cj ↗∗ Ci.
This is important because we can verify summarizability by testing satisfiability

of partitioning constraints. This test could be easily performed by using views. In

this way, we could also identify the elements participating in violations of partitioning

172

constraints and use that information to fix dimension instances. We illustrate this in

the example below.

Example 8.8 (example 8.6 cont.) To check if there are elements of category Park

that roll-up to different elements in category Country, we can define the following

view Check which captures the tuplas from R, which is the relational representation

of the roll-up function RCountry
Park :

CREATE VIEW Check AS

SELECT *

FROM R

WHERE EXISTS (SELECT *

FROM R R2

WHERE R2.Park = R.Park AND R2.Country <> R.Country)

If the view Check is evaluated on relation R it returns tuples (Crater Lake, Canada),

(Crater Lake, US). Therefore, we can conclude that the dimension instance violates

the partitioning constraint, since the roll-up between elements of categories Park and

Country is not functional. �

The notion of database repair for relational databases does not capture the mini-

mality required by the natural process of repairing MDWs. This, when the MDW

is represented as an instance of a non-normalized relational database (the ROLAP

approach). We illustrate this with an example.

Example 8.9 (example 8.6 cont.) Figure 8.4 is a star schema [24], that is a non-

normalized relational representation for the National Parks’ dimension, where the

primary key for each table appears underlined. The partitioning constraint can be

enforced by the following first-order integrity constraint IC : ∀xyzwv(Park(x , y , z) ∧
Type(y ,w) ∧ Country(w) ∧ Location(z , v) ∧ Country(v) → w = v).

173

PARK

PK ID_Park

ID_Type

ID_Location

LOCATION

PK ID_Location

ID_Country

TYPE

PK ID_Type

ID_Country

COUNTRY

PK ID_Country

Figure 8.4: Star Schema for National Parks’ Dimension

The dimension instance D below is the relational representation of the inconsistent

dimension instance in Figure 8.3.

Park ID Park ID Type ID Location

Banff P Alberta

Jasper P Alberta

CraterLake P Oregon

Country ID Country

Canada

US

Location ID Location ID Country

Alberta Canada

Oregon US

Type ID Type ID Country

P Canada

In a relational sense, consistency can be restored [2] by deleting tuple Park(Crater

Lake, P, Oregon). This relational tuple represents the edges (Crater Lake, P) and

(Crater Lake, Oregon) in the multidimensional schema. Therefore, if we apply this

change in the multidimensional representation in Figure 8.3, we have to delete both

edges . However, we will see in Section 8.4 this is not a minimal change in a multi-

dimensional sense, since consistency will be reestablished by eliminating just one of

them.

Notice that if we use a normalized snowflake schema [24] to model the dimension

Park, we will obtain the relations Park Type(ID Park , ID Type) and Park Location

174

(ID Park , ID Location). In this new schema, consistency will be restored by delet-

ing tuple Park Type(Crater Lake, P), or tuple Park Location(Crater Lake, Oregon),

which corresponds to the elimination of edges (Crater Lake, P) and (Crater Lake,

Oregon) in Figure 8.3, respectively. Nevertheless, we want to be able of working

directly in the multidimensional dimension instance, which usually, by query opti-

mization purposes, cannot be represented by a set of normalized relational tables

[24]. �

The idea of changing the relation schema before repairing inconsistencies is presented

in [77]. In this paper, a project-join dependency is applied to relations prior to

repairing them wrt FDs by tuple deletion. In this way, more meaningful repairs wrt

FDs are obtained.

The problem in the non-normalized relational model is that a tuple in a dimension

table may represent many pairs of edges in the multidimensional representation (in

Example 8.9 the tuple represents two pairs). In that sense, the relational model does

not allow us to work on a granularity lower than a tuple.

Our definition of repair (cf. Section 8.4) captures exactly the minimality of changes

desired for MDWs. We achieve this by first identifying the edges on dimension in-

stances that involve elements of categories that participate in violations of partitioning

constraints. Then, since the roll-up functions capture the edges in a dimension in-

stance, we identify the roll-up functions that contain pairs of inconsistent elements,

and we eliminate pair of elements from them to restore consistency. Intuitively, the

repairs are those that recover consistency by doing prioritized minimal changes over

the dimension instance (inspired by the notion of prioritized minimization given in

[62]).

The importance of the summarizability property of MDWs has been analyzed in

175

[53, 65]. In [65] a particular class of heterogeneous hierarchies is transformed into

homogeneous hierarchies to support summarizability. This is achieved by inserting

null values, merging other values, and introducing new categories when partitioning

constraints are violated. Although these operations, which allow us to get summariz-

ability, could be used for repairing inconsistent MDWs, they do not produce minimal

repairs. In addition, we believe that the fusion of values may produce undesired

changes in the semantics of the dimension instances.

8.4 Repairs and Consistent Answers in MDWs

In this section we give the notion of repair for multidimensional dimension instances.

The notion of repair is used as an auxiliary concept to compute consistent answers

to aggregate queries.

8.4.1 Repairs of Dimension Instances

Partitioning constraints can be seen as functional dependencies in relational databases.

The general way to repair inconsistent databases wrt FDs is by deleting the tuples

participating in the violations [5]. However, in dimension instances, there are no tu-

ples in the sense of relational databases, but there exist dimension tuples [48], so we

could consider as tuples the pairs in the roll-up functions (treated as tables).

Example 8.10 (example 8.7 cont.) The roll-up functionRLocation
Park = {(Banff ,Alberta),

(Jasper ,Alberta), (CraterLake,Oregon)} can be seen as the relational table:

R Park Type

Banff P

Jasper P

Crater Lake P

176

Here, the dimensional tuples are (Banff , P), (Jasper , P), and (CraterLake, P). �

We can see that hierarchical dimension instances determine a set of roll-up functions.

This is, there are roll-up functions for every pair of categories that are connected in

the dimension schema. Moreover, the roll-up functions may contain elements that

participate in violations of partitioning constraints. Then, we should identify from

which roll-up functions pairs are to be deleted in order to get a good repair. In-

spired by the notion of prioritized minimization given in [62], we propose to minimize

changes, but assigning higher priority to lower categories. In this manner, we ensure

that the edges between categories that are involve directly in inconsistencies will be

deleted. For this purpose, we define levels of categories on a dimension instance, and

associate a set of roll-up functions to each level.

Definition 8.2 Given a dimension instance D of the form (8.1) with dimension

schema H, and maximum distance n between the categories in H. A level Li, with

0 ≤ i ≤ n, is a set of elements belonging to categories with distance i to the bottom

category. For each level Li, and categories Cj, Ck in H, there exists a set Ri ⊆<∗

defined by Ri := {(a, b) | a < b ∧ Cj(a) ∈ Li ∧ Ck(b) ∈ Li+1}.4 �

Example 8.11 For the dimension instance D in Figure 8.3, we have:

• L0 = {Banff , Jasper ,CraterLake}, R0 = {(Banff , P), (Banff , Alberta), (Jasper ,

P), (Jasper , Alberta), (CraterLake, P), (CraterLake, Oregon)}.

• L1 = {P ,Alberta,Oregon}, R1 = {(P , Canada), (Alberta, Canada), (Oregon,

US)}.

• L2 = {Canada,US}, R2 = {(Canada, all), (US , all)}.
4Where < is the child/parent relation between elements of categories.

177

• L3 = {all}, R3 = ∅. �

In order to define repairs of dimension instances we need to introduce some concepts.

Definition 8.3 Let D ,D ′,D ′′ be dimension instances over the same dimension schema

and domain. The distance, between D ′ and D ′′ at level Li, with 0 ≤ i ≤ n is defined

by ∆i(D
′,D ′′) := {(a, b) | (a, b) ∈ Ri of D ′, and (a, b) 	∈ Ri of D ′′, or (a, b) ∈ Ri of D ′′,

and (a, b) 	∈ Ri of D ′}, where Ri is the set of roll-up functions at level Li. In other

words, ∆i(D
′,D ′′) contains all the pairs (a, b) that do not appear in both dimension

instances D ′,D ′′ at certain level Li.

There is a parcial order between dimension instances:

(a) It holds D ′ ≤D ,i D ′′ iff for every dimension tuple (a, b) ∈ ∆i(D ,D
′), it holds

that (a, b) ∈ ∆i(D ,D
′′).

(b) It holds D ′ ≤D D ′′ iff there exists an i such that ∆k(D ,D
′) = ∆k(D ,D

′′), for

k < i, and D ′ ≤D ,i D ′′. �

A dimension instance repair wrt a set of partitioning constraints MPC is defined as

follows:

Definition 8.4 Given a dimension instance D , and a set of partitioning constraints

MPC , a repair of D wrt MPC is a dimension instance D ′, over the same dimension

schema H, and domain U , such that D ′ |= MPC , and D ′ is ≤D -minimal in the class

of dimension instances that satisfy MPC .

The set of repairs of D is denoted by RepairsMPC (D). �

Example 8.12 (example 8.9 cont.) Figure 8.5 shows the dimension instance repairs

for the dimension instance D in Figure 8.3.

178

Banff

Alberta

Canada

all

Crater Lake

US

OregonP

JasperBanff

Alberta

Canada

all

Crater Lake

US

OregonP

Jasper

Figure 8.5: Dimension Instance Repairs D ′ and D ′′

Here, ∆0(D ,D
′) = {(CraterLake,P)}, and ∆0(D ,D

′′) = {(CraterLake,Oregon)}.
The dimension instance D ′′′ in Figure 8.6 is not a repair.

Banff

Alberta

Canada

all

US

OregonP

Jasper

Figure 8.6: Non-Minimal Dimension Instance

This is because ∆0(D ,D
′′′) = {(CraterLake,P), (CraterLake,Oregon)} and it

holds that D ′ ≤D ,0 D ′′′, and D ′′ ≤D ,0 D ′′′. �

The repairs of dimension instances satisfy the partitioning constraints, however they

may not be homogeneous instances anymore.

Proposition 8.1 Let D ,D ′ be dimension instances over the same dimension schema

and domain. If D ′ is a repair of the homogeneous instance D , then D ′ is not homo-

geneous.

Proof: In homogeneous schemas the roll-up functions between elements of categories

are expected to be total. This is, for every element x of a category Ci, if Ci ↗∗ Cj

179

in a hierarchy schema H, then there exists an element y in Cj such that x <∗ y in a

dimension instance D of H. It is easy to see that if D ′ is a repair of D , there exists

a pair of categories Cj, Ck in H such that Cj ↗∗ Ck, for which the roll-up function

RCk
Cj

in D ′ contains a subset of the pairs in the roll-up function RCk
Cj

in D . Therefore,

in D′, there is an element y in Cj for which there is no element z in Ck such that

y <∗ z. Hence, the roll-up function RCk
Cj

is not total, and as a consequence, D ′ is not

homogeneous. �

This happens because consistency is recovered by deleting edges in dimension in-

stances, i.e. pairs from roll-up functions. As an illustration, in the first repair of

Figure 8.5 the roll-up function between categories Park and Type is not total, be-

cause element Crater Lake is not related with an element of Type. Moreover, in the

second repair, there is no relation between element Crater Lake and an element of Lo-

cation. Therefore the roll-up function between Park and Location is not total either.

As a consequence, the summarizability property may not be satisfied in the repairs.

However, we could obtain total functions and also summarizability by introducing

“dummy” elements in some categories in the repairs, as in [65]. It becomes interest-

ing to analyze the possible advantages of implementing the idea of using “dummy”

elements, in the query answering process for MDWs.

Also, we could use the method proposed in [65] to repair MDWs and compute

consistent answers.

8.4.2 Consistent Answers

We adopt the notion of consistent answers wrt FDs to aggregate queries with group by

statements presented in Chapter 6. In multidimensional databases aggregate queries

are computed from roll-up functions, and fact tables, both represented as relational

tables.

180

A tuple of the form 〈t1, . . . , tm, [a, b]〉 is a consistent answer to an aggregate query

with group-by statements of the form (8.4), wrt a set MPC of partitioning constraints,

if first 〈t1, . . . , tm〉 is a consistent answer in the usual sense, i.e. it is true in every repair

of the dimension instance, and second, if for every repair there exists an aggregate

value for the group of attributes values in t1, . . . , tm, such that it falls in the minimal

numerical interval [a, b].

Example 8.13 (example 8.6 and 8.12 cont.) The roll-up function RCountry
Park in di-

mension instances D ′ and D ′′ (cf. Figure 8.5) are (represented as relational tables),

respectively:

R Park Country

Banff Canada

Jasper Canada

Crater Lake US

R Park Country

Banff Canada

Jasper Canada

Crater Lake Canada

For the aggregate query Q:

SELECT R.Country, SUM(S.Amount)

FROM Sales S, R

WHERE R.Park = S.Park

GROUP BY R.Country

The answers from repair D ′ are {(Canada, 10000), (US , 10000)}, and {(Canada,

20000)} from D ′′. Therefore, the only consistent answer to the query is (Canada,

[10000, 20000]), as expected. �

8.5 Summary

In this chapter we presented a repair semantics for MDBs, specifically we concentrated

our work on multidimensional data warehouses (MDWs). It was shown that the

181

relational notion of repair [2, 5, 7] does not capture the minimality required by the

natural process of repairing MDWs. This, when the MDW is represented as an

instance of a non-normalized relational database. However, the notion of database

repair we presented captures the minimality required in MDBs.

It is relevant to analyze the idea of translating dimension instances into sets of

normalized relational tables before repairing them. In this way, we could apply the

notion of relational database repair of [2]. This idea is presented in [77], where a

project-join dependency is applied to a relation prior to repairing wrt FDs by tuple

deletion. In this way, they obtain more meaningful repairs wrt FDs. Moreover, it is

important to analyze the gains and costs, in terms of execution of queries, of doing

such transformation. This is important because, a non-normalized representation of

dimension instances, allows a better execution time of queries [24].

The repair definition of dimension instances can be improved by using knowl-

edge from equality atoms constraints [48], which impose the existence of certain dis-

tinguished elements in the categories. We could require that repairs satisfy those

constraints to get more meaningful repairs.

For future research, we leave the development of a methodology for computing

repairs (if necessary, because this should be avoided whenever possible due to its

complexity), and consistent answers.

This is a preliminary study that we will extend to heterogeneous dimension schemas

[48], which are modelled by other kind of dimension constraints. Moreover, we are

interested in analyzing consistent query answering wrt aggregation constraints [73].

This issue is still open.

Chapter 9

The Consistency Extractor System

9.1 Introduction

In this chapter we describe the “Consistency Extractor System”, from now on just

named the ConsEx system. ConsEx computes consistent answers to FO queries

posed to inconsistent databases that may contain null values. It implements the logic

programs of Definition 4.2, and adopts the semantics of ICs satisfaction defined in

[16], and presented in Chapter 2. The system considers UICs, RICs and NNCs of the

forms (2.3), (2.4), and (2.6), respectively.

ConsEx implements two methods to compute consistent answers, which can be

selected by the user before the evaluation of queries. The first one is the MS method-

ology defined in Chapter 5. MS simulates a top-down [23] -and then query directed-

evaluation of the query through bottom-up propagation [23]. This technique produces

a new program that contains a subset of the original rules, those that are relevant to

evaluate the query, along with a set of new, “magic”, rules.

The second methodology takes advantage of the relevant predicates to compute

query answers in the generation of repair programs (cf. Definition 5.6). In this way,

ConsEx generates repair programs for a subset of the database predicates, those that

will be involved in the computation of the query. Thus, query answers are computed

by running the new, smaller repair program together with the query program.

We show that the methods implemented in ConsEx compute consistent answers

to queries faster than the straightforward evaluation of programs (cf. Section 9.4).

182

183

Another goal is to take advantage of the interaction between logic programming

environments and database management systems (DBMS), by exploiting all the ca-

pabilities of the DBMS such as storing and indexing; and taking advantage of the

robustness of logical reasoning as provided by the DLV system [61]. For instance,

bringing the whole database into DLV, to compute consistent answers, is inefficient.

Therefore, we reduce as much as possible the interaction between the DBMS, where

the data resides, and the logic programming environments, where the repair programs

are evaluated.

ConsEx is the first attempt to implement optimized methods for CQA based

on logic programs for relational databases, considering a broad range of integrity

constraints, like UICs, RICs and NNCs.

As far as we know, the INFOMIX system [58] implements logic programs for CQA,

in the context of data integration [54, 57] under the GAV approach [54]. INFOMIX

implements the logic approach presented in [34], which works for UICs, but it does

not support other ICs like RICs. In INFOMIX queries are restricted to the union of

conjunctive queries, when the ICs involve inclusion dependencies, and in absence of

them, queries can be recursive Datalog queries with aggregates and stratified negation.

The rest of the chapter is organized as follows: Section 9.2 presents the architecture

of ConsEx. Section 9.3 describes the graphical user interface of ConsEx. Section

9.4 describes the experimental evaluation and the results. Section 9.5 finalizes this

chapter.

9.2 ConsEx Architecture

The input to ConsEx consists of the database parameters, like database name, ip

(for remote connections), user and password; FO queries; ICs; and the options of

the methodology selected by the user to evaluate the query, i.e. the MS technique

184

or the methodology that generates programs for the relevant predicates to compute

queries. From now on, the latter methodology will be referenced as the RP (for

relevant predicates) methodology.

We will use the example below (which is a variation of Example 5.1) to describe

the architecture of ConsEx.

Example 9.1 Consider the database schema Σ = {S (ID),Q(ID),R(ID),T (ID),

W (ID)}, database instance D = {S(a), T (a), S(b), Q(b), R(b)}, a set IC with ∀x
(S(x)→ Q(x)), ∀x(Q(x)→ R(x)) and ∀x(T (x)→ W (x)).

D is inconsistent wrt IC , because tuples S(a), T (a) belong to D , but Q(a),W (a)

are not in D . There are four repairs:

1. {T (a), W (a), S(a), S(b), Q(b), R(b), Q(a), R(a)}

2. {S(a), S(b), Q(b), R(b), Q(a), R(a)}

3. {T (a), W (a), S(b), Q(b), R(b)}

4. {S(b), Q(b), R(b)}

For query Q: Ans(x)← S(x) the consistent answer is (b). �

Figure 9.1 shows the architecture of ConsEx.

The database parameters are received by the Database Connection module, which

gets connected with the database instance.

The Query Processing module is the central module in ConsEx. It coordinates all

the tasks that are needed to compute the consistent answers to queries. This module

receives the F0 queries, the ICs, and the options of the methodology selected by the

user to evaluate the queries. In order to compute consistent answers, this module

interacts with other modules which perform specific tasks.

185

 Relevant
Predicates

Identification

 Dependency
Graph

Construction

MS
Rewriting

 Database
Connection

Answers
Collection

DLVDB

Query
Processing

RIC-acyclic
Checking

Consistency
Checking

ConsEx System

Consistent
Answers

ICs

Query

Options

Repair Program
Construction

Connection

Figure 9.1: ConsEx Architecture

The sequence of tasks performed by the Query Processing module are:

(1) Sintaxis checking. It checks that queries are syntactically correct. ConsEx

supports any F0 query expressed as a DLV sentence [61].1 Also, ConsEx supports

SQL queries that are conjunction of atoms, but not disjunctive SQL queries.

Query Ans(x)← S(x) in Example 9.1 is correct, i.e. it is a well-written sentence.

Also, it queries predicates S which is a valid database relation.

(2) Translation of queries. It translates the FO queries into logic program (cf.

Chapter 2). Likewise, if the query is a SQL query, it is first translated into an

equivalent Datalog program [64], and then into a logic program.

For query Ans(x)← S(x), the query program Π(Q) contains rule:

Ans(x)← S(x, t��).

1In DLV, a rule of the form P (x)← Q(x) will be written as P (x) : − Q(x), i.e. the implication
symbol “←” is replaced by symbol “: −”. In this chapter, and for presentation purposes, we will
use symbol “←” instead of “: −”.

186

(3) Generation of the dependency graph. It calls to the Dependency Graph Con-

struction module with the set of ICs, which generates the dependency graph (cf.

Definition 2.1). This graph is used later to identify the relevant predicates to com-

pute queries, and also to generate the program constraints for repair programs.

Figure 9.2 shows the dependency graph G(IC) for the ICs in Example 9.1.

S

WT

RQ

Figure 9.2: Dependency Graph G(IC) for Example 9.1

(4) Identification of relevant predicates. It calls to the Relevant Predicates Iden-

tification module with the query and the dependency graph. This module identifies

the relevant predicates to compute the query, which is achieved by examining the

interaction between predicates in the dependency graph, and the query predicates,

i.e. those database predicates in the query (cf. Section 5.4).

For query Ans(x) ← S(x) and dependency graph G(IC), the relevant predicates

are S,Q,R.

The identification of the relevant predicates is important to determine if the query

can be answered directly on the database. This is done next in the Query Processing

module.

(5) Direct computation of queries. The Query Processing module also checks if

the query can be computed directly in the database instance, without generating any

repair program. In order to do that, it calls to the Consistency Checking module with

the query, and the dependency graph restricted to the predicates (nodes) that are

relevant to compute the query.

Figure 9.3 shows the dependency graph restricted to the relevant predicates to

187

compute query Ans(x)← S(x).

S RQ

Figure 9.3: Dependency Graph G(IC) Restricted to the Relevant Predicates

The Consistency Checking module detects if the database instance violates the

ICs involving predicates that are relevant to compute the query. In order to do that,

it generated an ah-doc SQL query, for each relevant IC, that checks the satisfiability

of the IC in the database. If the database is consistent wrt the relevant ICs, then the

query can be answered directly by the DBMS; otherwise the repair program has to

be generated.

The relevant ICs for query Ans(x)← S(x) are:

• ∀x(S(x)→ Q(x)).

• ∀x(Q(x)→ R(x)).

The Consistency Checking module generates the following SQL queries Q1 and Q2 to

check, respectively, consistency of the relevant ICs:

SELECT S.ID

FROM S

WHERE S.ID NOT IN (SELECT S.ID

FROM S, Q

WHERE S.ID = Q.ID)

SELECT Q.ID

FROM Q

WHERE Q.ID NOT IN (SELECT Q.ID

FROM Q, R

WHERE Q.ID = R.ID)

Since the evaluation of Q1 in the database instance D returns tuple (a), D does not

satisfy the IC ∀x(S(x)→ Q(x)). As a consequence, the query Ans(x)← S(x) cannot

be answered directly in the database, and the repair program has to be generated.

188

Notice that in absence of atom S(a), the database instance is consistent wrt the

relevant ICs, and query Ans(x)← S(x) can be answered directly in the database. In

this case, the Consistency Checking module will generate the SQL query:

“SELECT ID FROM S”,

which is evaluated directly in the database instance and retrieves the consistent an-

swers to Q.

(6) Checking RIC-acyclic property. If the database is inconsistent wrt the relevant

ICs to compute the query, then the repair program has to be generated. Therefore,

it is necessary to check if the set of ICs is RIC-acyclic. In order to do that, the Query

Processing module calls to the RIC-acyclic Checking module, which checks if the ICs

are RIC-acyclic.

The RIC-acyclic Checking module receives the dependency graph G(IC), gener-

ates the contracted dependency graph (cf. Definition 2.2), and checks if there are

cycles in it. If the contracted dependency graph has cycles, then the set of ICs is not

RIC-acyclic.

Figure 9.4 shows the contracted dependency graph for G(IC).

S,Q ,R T ,W

Figure 9.4: Contracted Dependency Graph GC(IC) for Example 9.1

Since there are no loops in GC(IC), the set IC in Example 9.1 is RIC-acyclic.

This property has to be checked since the specification of repair programs imple-

mented in the system works for RIC-acyclic sets of UICs, RICs, and NNCs. If the

set of ICs is non-RIC-acyclic, the generation of repair programs is avoided, and a

189

warning message is sent to the user.

(7) Evaluation of queries by using MS. If the user selects MS to compute the

query, the Query Processing module first calls to the Repair Program Construction

module, with the set of ICs, which generates the repair program (cf. Definition 4.2).

Repair programs are constructed “on the fly”, that is, all the annotations that

appear in the programs are generated by the system, and the database is not affected.

Also, database facts are not imported into the ConsEx system. Instead, suitable

sentences to import data are added to a repair program. As an illustration, for the

database instance D in Example 9.1, the repair program will contain sentences of the

form:

#import(dbName, “dbUser”, “dbPass”, “SELECT DISTINCT ∗ FROM P”,P)

(9.1)

where dbName is the database name, dbUser is the database user, and dbPass is the

user password. The SQL statement collects the tuples stored in relation P. Note that

by using “DISTINCT” in the query, we do not import multiples copies of a same

tuple stored in relation P. The last parameter is the name of the predicate that will

contain, in the repair program, the tuples retrieved from relation P.

As a result, when the program is evaluated in the DLV system, the database facts

are imported directly to the reasoning system.

Program 9.1 is the repair program generated by the Repair Program Construction

module, for the database instance and ICs in Example 9.1. We assume the following

parameters:

• Database name: test.

• Database user and password: user01.

190

Program 9.1

#import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROMS”, S)

#import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROMQ”,Q)

#import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROMR”,R)

#import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROMT”,T)

#import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROMW ”,W)

S (x, fa) ∨Q (x, ta)← S (x, t�), Q (x, fa), x 	= null.

S (x, fa) ∨Q (x, ta)← S (x, t�), not Q(x), x 	= null.

Q (x, fa) ∨R (x, ta)← Q (x, t�), R (x, fa), x 	= null.

Q (x, fa) ∨R (x, ta)← Q (x, t�), not R(x), x 	= null.

T (x, fa) ∨W (x, ta)← T (x, t�),W (x, fa), x 	= null.

T (x, fa) ∨W (x, ta)← T (x, t�), not W (x), x 	= null.

S (x, t�)← S (x, ta).

S (x, t�)← S(x).

S (x, t��)← S (x, t�), not S (x, fa).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(Similarly for Q,R, T and W)

← Q (x, ta), Q (x, fa). �

Repair programs are stored for later computations. This is possible since repair

programs depend on the ICs and database relations, but not on queries. Therefore,

repair programs do not need to be generated every time a query is processed. In fact,

they are re-generated only when the ICs or the data schema are modified.

After the repair program is generated, the Query Processing module calls to the

MS Rewriting module with the query and repair programs. The latter module gen-

erates the MS rewritten program (cf. Chapter 5).

Program 9.2 is the magic program generated by the MS Rewriting module, for

the repair program in 9.1 and the query program Ans(x)← S(x, t��).

191

Program 9.2

#import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROMS”, S)

#import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROMQ”,Q)

#import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROMR”,R)

Ans(x)← magic Ansf , S (x, t��).

S (x, fa) ∨Q (x, ta)← magic S fb(fa),magic Q fb(ta), S (x, t�), Q (x, fa), x 	= null.

S (x, fa) ∨Q (x, ta)← magic S fb(fa),magic Q fb(ta), S (x, t�), not Q(x), x 	= null.

Q (x, fa) ∨R (x, ta)← magic Q fb(fa),magic R fb(ta), Q (x, t�), R (x, fa), x 	= null.

Q (x, fa) ∨R (x, ta)← magic Q fb(fa),magic R fb(ta), Q (x, t�), not R(x), x 	= null.

S (x, t�)← magic S fb(t�), S (x, ta). S (x, t�)← magic S fb(t�), S(x).

Q (x, t�)← magic Q fb(t�), Q (x, ta). Q (x, t�)← magic Q fb(t�), Q(x).

R (x, t�)← magic R fb(t�), R (x, ta). R (x, t�)← magic R fb(t�), R(x).

S (x, t��)← magic S fb(t��), S (x, t�), not S (x, fa).

Q (x, t��)← magic Q fb(t��), Q (x, t�), not Q (x, fa).

R (x, t��)← magic R fb(t��), R (x, t�), not R (x, fa).

magic S fb(t��)← magic Ansf .

magic Q fb(ta)← magic S fb(fa).

magic S fb(t�)← magic S fb(fa).

magic Q fb(fa)← magic S fb(fa).

magic S fb(fa)← magic Q fb(ta).

magic S fb(t�)← magic Q fb(ta).

magic Q fb(fa)← magic Q fb(ta).

magic S fb(ta)← magic S fb(t�).

magic Q fb(ta)← magic Q fb(t�).

magic S fb(t�)← magic S fb(t��).

magic S fb(fa)← magic S fb(t��).

magic Q fb(t�)← magic Q fb(t��).

magic Q fb(fa)← magic Q fb(t��).

magic R fb(ta)← magic Q fb(fa).

magic Q fb(t�)← magic Q fb(fa).

magic R fb(fa)← magic Q fb(fa).

magic Q fb(fa)← magic R fb(ta).

magic Q fb(t�)← magic R fb(ta).

magic R fb(fa)← magic R fb(ta).

magic R fb(ta)← magic R fb(t�).

magic R fb(t�)← magic R fb(t��).

magic R fb(fa)← magic R fb(t��).

magicAnsf .

← Q (x, ta), Q (x, fa). �

192

Notice that in Program 9.2 only the relevant portion of the database is imported to

DLV. This is, only tuples for relations S, Q and R, which are the relevant predicates

to compute the query, are imported to DLV. Moreover, since there are no constants

in the query, all the magic atoms appear with annotation “fb” in the MS program.

For instance, in the modified rule:

S (x, fa) ∨Q (x, ta)← magic S fb(fa),magic Q fb(ta), S (x, t�), Q (x, fa), x 	= null,

the magic atom magic S fb(fa) establishes that the first attribute of “S ” is free, and

the second, which corresponds to the constant fa is bound. Therefore, the import

sentence for predicate S imports all the tuples from relation S. This also happens for

the relevant predicates Q and R.

For a ground (or partially-ground) query like Ans← S(b), the MS program would

import a more reduced amount of tuples. This is because the constants in the query

would be used to restrict the tuples involve in the computation of the query (cf.

Chapter 5). As an illustration, for query Ans ← S(b), again the relevant predicates

to compute the query are S, Q and R, which share the attribute ID. Since the query

asks for a specific value in the attribute ID, the corresponding MS program will push-

down the constant “b” into the rules containing predicates S, Q, and R. Then, the

following import sentences will be generated in the MS program (assuming the same

database parameters):

• #import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROM S

WHERE ID = ‘b‘”, S)

• #import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROM Q

WHERE ID = ‘b‘”,Q)

193

• #import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROM R

WHERE ID = ‘b‘”,R)

In Section 9.4 we present more examples of ground (and partially-ground) con-

junctive queries, and also we show that the selection of tuples performed by MS has

a direct relation with the good performance of MS to evaluate queries.

After creating the MS rewritten program, the Query Processing module sends

it to DLV where it is evaluated. It is important to remark that DLV will import

the database facts directly from the database instance. In this way, facts are never

bringing to the main memory, and the flow of data between the ConsEx system and

the database is reduced.

DLV returns the query answers to the Answer Collection module. This module,

collect answers, performs any formatting needed, and constructs a final answer to be

returned to the user. For the Program 9.2, DLV returns (b) as the consistent answer

to the query. This answer is sent to the Answer Collection module, which constructs

the final answer:

ID

b

which is displayed in the user interface.

(8) Evaluation of queries by using the RP methodology. If the user selects the

RP methodology instead of MS, the Query Processing module calls to the Repair

Program Construction module with the relevant predicates to compute the query. In

this manner, the repair program is generated for the relevant predicates, only (cf.

Section 5.4).

194

Program 9.3 is the repair program for predicates S,Q,R, which are the relevant

predicates to compute query Ans(x)← S(x, t��).

Program 9.3

#import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROMS”, S)

#import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROMQ”,Q)

#import(test , “user01”, “user01”, “SELECT DISTINCT ∗ FROMR”,R)

S (x, fa) ∨Q (x, ta)← S (x, t�), Q (x, fa), x 	= null.

S (x, fa) ∨Q (x, ta)← S (x, t�), not Q(x), x 	= null.

Q (x, fa) ∨R (x, ta)← Q (x, t�), R (x, fa), x 	= null.

Q (x, fa) ∨R (x, ta)← Q (x, t�), not R(x), x 	= null.

S (x, t�)← S (x, ta).

S (x, t�)← S(x).

S (x, t��)← S (x, t�), not S (x, fa).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(Similarly for Q and R)

← Q (x, ta), Q (x, fa). �

The Query Processing module sends the new repair program together with the query

program to DLV, which returns the consistent answer (b) to the Answer Collection

module. The latter constructs the final answer, which is displayed in the user inter-

face.

In the next section we present the user interface of the system.

9.3 Graphical User Interface

Figure 9.5 is the connection screen in ConsEx. It receives the database parameters,

i.e. the database name, ip (for remote connections), user, and password. In this

manner, ConsEx gets connected with the database instance.

195

Figure 9.5: Database Connection in ConsEx

When the system is connected to the database, the main menu in Figure 9.6 is

displayed. The main menu consists of five options.

The first option is “DB Edition”, which allows the edition of the data stored in

the database. Here, the user can add new relations, and tuples; eliminate relations

and tuples; and update relations. Figure 9.7 shows information about the database

instance in Example 9.1.

Figure 9.6: Main Menu in ConsEx

The second option in ConsEx is “Integrity Constraints”. Here the user can list,

196

add and eliminate integrity constraints (ConsEx supports UICs, RICs, and NNCs).

Figure 9.8 shows the ICs in Example 9.1.2

Figure 9.7: Database Edition in ConsEx

We can see that the system allows to check if a specific IC is satisfied by the

database instance. In Figure 9.8 the button “Check” besides every IC performs the

checking of the corresponding IC.

Figure 9.8: Integrity Constraints in Example 9.1

The third option in ConsEx is “Queries”. Here, the user can list and add new

2In ConsEx, ICs and queries (but not SQL queries) are written as DLV sentences, then it uses
symbol “ : −” instead of symbol “← ”.

197

queries. Also, there is an option to evaluate queries directly on the database, which

will be allow only if the database satisfy the relevant ICs to compute the query. Figure

9.9 shows the query program for query Ans(x)← S(x) in Example 9.1.

Figure 9.9: Query in Example 9.1

Figure 9.10: Warning Message for the Query in Example 9.1

If the user wants to evaluate the query Ans(x) ← S(x) directly in the database,

the system will send the warning message in Figure 9.10. This is because, since the

database is inconsistent wrt the relevant ICs (cf. Example 9.1), the query cannot be

answered directly in the database, and the repair program has to be generated.

198

The four option in the system is “Evaluate Query”. Here, the system allows to

evaluate queries using the MS or the RP methodologies. Also, and just for experi-

mental purposes, the system allows the straightforward evaluation of the query and

repair programs. As an illustration, Figure 9.11 shows the consistent answer for query

Ans(x)← S(x) in Example 9.1 obtained with the MS methodology.

Figure 9.11: Consistent Answer for the Query in Example 9.1

Figure 9.12: Stable Models for the Repair Program in Program 9.1

The last option in ConsEx is “Repair Program” which lists the repair program,

the MS rewritten program, and the repair program generated by RP. Also, it permits

to display the stable models of the repair program. Figure 9.12 displays the stable

199

models of the repair program in Program 9.1.

9.4 Experimental Evaluation

In this section we analyze the results of the experiments we performed to quantify

the gain, in terms of the execution time of queries, of the methods implemented in

ConsEx.

9.4.1 Experimental Setup

The experiments were performed on a Intel Pentium 4 PC, processor of 3.00 Ghz, 512

MB of RAM, and with Linux distribution UBUNTU 6.0. The database instances were

stored on DB2 Universal Database Server Edition, version 8.2 for Linux platforms.

All the programs were run in the DLV prototype for Linux distribution released on

Jan 12, 2006.

For the experiments we use database instances D1 and D2 for an airport system,

with database schema composed by the following relations:

• Passenger (PID, PNAME,PHONE). It stores the ID, name and phone number

of passengers.

• Luggage(TAG, WEIGHT). It stores the tag number, and weight of luggages.

• Planetype(TID, TNAME, MAXPASS, MAXLUGGWEIGHT). It stores the ID,

name, maximum of passengers and weight of plane types.

• Plane(PID, TYPE). It stores the ID, and plane type of planes.

• Inspection(IID, DATE, TIME, PID, STATUS). It stores the ID, date, time,

plane ID, and status of inspections performed to planes.

200

• Flight(FNUM, DEPART, ARR, DATE, ORIGIN, DESTINATION, GATE,

ASEATS, PID). It stores the number, departure and arrival times, date, cities

of origin and destination, gate, available seats, and plane ID of flights.

• Flying(PID, TAG, FNUM). It stores passenger IDs, tags and flight numbers.

• Booking(BID, PID, FNUM, SNUMBER). It stores booking IDs, passengers IDs,

flights and seats numbers.

The set IC of ICs is:

1. ∀xyzsw(Passenger(x, y, z) ∧ Passenger(x, s, w)→ y = s)

2. ∀xyzsw(Passenger(x, y, z) ∧ Passenger(x, s, w)→ z = w)

3. ∀xyz(Luggage(x, y) ∧ Luggage(x, z)→ y = z)

4. ∀xyzwsmu(Planetype(x, y, z, w) ∧ Planetype(x, s,m, u)→ y = s)

5. ∀xyzwsmu(Planetype(x, y, z, w) ∧ Planetype(x, s,m, u)→ z = m)

6. ∀xyzwsmu(Planetype(x, y, z, w) ∧ Planetype(x, s,m, u)→ w = u)

7. ∀xyz(Plane(x, y) ∧ Plane(x, z)→ y = z)

8. ∀xyzws(Booking(x, y, z, w) ∧ Booking(x, y, z, s)→ w = s)

9. ∀xyzwsmurt(Inspection(x, y, z, w, s) ∧ Inspection(x,m, u, r, t)→ y = m)

10. ∀x0x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17 (Flight(x0, x1, x2,

x3, x4, x5, x6, x7, x8) ∧ Flight(x0, x10, x11, x12, x13, x14, x15, x16, x17)→ x1 =

x10)

11. ∀zx(Plane(z, x) → ∃yuw(Planetype(x, y, u, w))

201

12. ∀xyzws(Inspection(x, y, z, w, s) → ∃u(Plane(w, u))

13. ∀x0x1x2x3x4x5x6x7x8 (Flight(x0, x1, x2, x3, x4, x5, x6, x7, x8) →
∃z Plane(x8, z))

ICs 1−8 specify the primary keys for relations Passenger, Luggage, Planetype, Plane,

and Booking. ICs 9 − 10 are FDs over relations Inspection and Flight. ICs 11 − 13

are RICs.

Figure 9.13 is the dependency graph G(IC) for the set of ICs.

Plane
Type

Plane

Inspection

Luggage

Passenger

Booking

Flight

Figure 9.13: Dependency Graph G(IC) for the ICs in the Experimental Database

Assuming the database name airport, and database user and password db2inst2,

the repair program for the database instance D1 (also D2) contains the rules in Pro-

gram 9.4.

Program 9.4
#import(airport , “db2inst2”, “db2inst2”,

“SELECT DISTINCT∗
FROM Passenger”,Passenger).

Passenger (x, y, z, t�)← Passenger (x, y, z, ta).

Passenger (x, y, z, t�)← Passenger(x, y, z).

Passenger (x, y, z, t��)← Passenger (x, y, z, t�),

not Passenger (x, y, z, fa).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(For each relation in D1)

202

Passenger (x, y, z, fa) ∨ Passenger (x, s, w, fa)← Passenger (x, y, z, t�),

Passenger (x, s, w, t�), y 	= s, x 	= null , s 	= null , y 	= null .

Passenger (x, y, z, fa) ∨ Passenger (x, s, w, fa)← Passenger (x, y, z, t�),

Passenger (x, s, w, t�), z 	= w, x 	= null , w 	= null , z 	= null .

Luggage (x, y, fa) ∨ Luggage (x, z, fa)← Luggage (x, y, t�),

Luggage (x, z, t�), y 	= z, x 	= null , z 	= null , y 	= null .

Planetype (x, y, z, w, fa) ∨ Planetype (x, s,m, u, fa)← Planetype (x, y, z, w, t�),

Planetype (x, s,m, u, t�), y 	= s, x 	= null , s 	= null , y 	= null .

Planetype (x, y, z, w, fa) ∨ Planetype (x, s,m, u, fa)← Planetype (x, y, z, w, t�),

Planetype (x, s,m, u, t�), z 	= m,x 	= null ,m 	= null , z 	= null .

Planetype (x, y, z, w, fa) ∨ Planetype (x, s,m, u, fa)← Planetype (x, y, z, w, t�),

Planetype (x, s,m, u, t�), w 	= u, x 	= null , u 	= null , w 	= null .

Plane (x, y, fa) ∨ Plane (x, z, fa)← Plane (x, y, t�),Plane (x, z, t�),

y 	= z, x 	= null , z 	= null , y 	= null .

Booking (x, y, z, w, fa) ∨ Booking (x, y, z, s, fa)← Booking (x, y, z, w, t�),

Booking (x, y, z, s, t�), w 	= s, x 	= null , y 	= null , z 	= null , s 	= null ,w 	= null .

Inspection (x, y, z, w, s, fa)∨Inspection (x,m, u,R, T, fa)← Inspection (x, y, z, w, s, t�),

Inspection (x,m, u,R, T, t�), y 	= m, x 	= null ,m 	= null , y 	= null .

Flight (x0, x1, x2, x3, x4, x5, x6, x7, x8, fa)∨
Flight (x0, x10, x11, x12, x13, x14, x15, x16, x17, fa)←
Flight (x0, x1, x2, x3, x4, x5, x6, x7, x8, t�), Flight (x0, x10, x11, x12, x13, x14, x15, x16,

x17, t�), x1 	= x10, x0 	= null , x10 	= null .

Plane (z, x, fa) ∨ Planetype (x, null , null , null , ta)← Plane (z, x, t�), not aux1 (x),

x 	= null .

aux1 (x)← Planetype (x, y, U, w, t�), not Planetype (x, y, u, w, fa), x 	= null , y 	= null .

aux1 (x)← Planetype (x, y, u, w, t�), not Planetype (x, y, u, w, fa), x 	= null , u 	= null .

203

aux1 (x)← Planetype(x, y, u, w, t�), not Planetype (x, y, u, w, fa), x 	= null , w 	= null .

Inspection (x, y, z, w, s, fa) ∨ Plane (w, null , ta)← Inspection (x, y, z, w, s, t�),

not aux2 (w), w 	= null .

aux2 (w)← Plane (w, u, t�), not Plane (w, u, fa), w 	= null , u 	= null .

Flight (x0, x1, x2, x3, x4, x5, x6, x7, x8, fa) ∨ Plane (x8, null , ta)←
Flight (x0, x1, x2, x3, x4, x5, x6, x7, x8, t�), not aux3 (x8), x8 	= null .

aux3 (x8)← Plane (x8, z, t�), not Plane (x8, z, fa), x8 	= null , z 	= null .

← Planetype (x, y, z, w, ta),Planetype (x, y, z, w, fa).

← Plane (x, y, ta),Plane (x, y, fa). �

We can notice that the repair program will import the whole database to DLV to

evaluate programs. Instead, the MS and the RP methodologies generate programs

that will import only a subset of the relations in the database. We illustrate this

below.

For evaluation purposes we consider the following three conjunctive queries:

1. Ans(x, y, z) ← P lane(x, y),P lanetype(y, w, z, s), i.e. a conjunctive query with

projection, but without constants, that asks for the id, type, and maximum

capacity of passengers of planes.

2. Ans(x, y) ← Passenger(1, w, v),F lying(1, y, x), i.e. a partially-ground con-

junctive query with projections, that asks for the flight, and tag numbers for

passenger with PID equals to 1.

3. Ans← Passenger(1, smith, 1), i.e. a boolean (or ground) conjunctive query.

For query Ans(x, y, z) ← P lane(x, y),P lanetype(y, w, z, s), the programs gener-

ated by the MS and the RP methodologies contain import sentences for predicates

Plane, Planetype, Flight, and Inspection, only. This is because those are the relevant

204

predicates to compute the query (cf. Dependency Graph in Figure 9.13). Therefore,

DLV will import only the tuples stored in the relations that are relevant to compute

the query, but not the whole set of relations.

For query Ans(x, y) ← Passenger(1, w, v),F lying(1, y, x), the programs gener-

ated by RP and MS contain import sentences for predicates Passenger and Flying,

only. Nevertheless, the MS program will import a more reduced amount of tuples,

than the repair program generated by the RP methodology.

Program 9.5 is the MS program (without the import sentences) for the partially-

ground query Ans(x, y) ← Passenger(1, w, v),F lying(1, y, x).

Program 9.5

Ans(x)← magic Ans f ,Passenger (1, w, v, t��),Flying (1, y, x, t��).

Flying (x0, x1, x2, t�)← magic Flying bffb(x0, t�),Flying (x0, x1, x2, ta).

Flying (x0, x1, x2, t�)← magic Flying bffb(x0, t�),Flying(x0, x1, x2).

Flying (x0, x1, x2, t��)← magic Flying bffb(x0, t��),Flying (x0, x1, x2, t�),

not Flying (x0, x1, x2, fa).

Passenger (x0, x1, x2, t�)← magic Passenger bffb(x0, t�),Passenger (x0, x1, x2, ta).

Passenger (x0, x1, x2, t�)← magic Passenger bffb(x0, t�),Passenger(x0, x1, x2).

Passenger (x0, x1, x2, t��)← magic Passenger bffb(x0, t��),Passenger (x0, x1, x2, t�),

not Passenger (x0, x1, x2, fa).

Passenger (x, y, w, fa) ∨ Passenger (x, z, t, fa)← magic Passenger bffb(x, fa),

magic Passenger bffb(x, fa), Passenger (x, y, w, t�),Passenger (x, z, t, t�),

y 	= z, x 	= null , z 	= null , y 	= null .

Passenger (x, y, w, fa) ∨ Passenger (x, z, s, fa)← magic Passenger bffb(x, fa),

magic Passenger bffb(x, fa),Passenger (x, y, w, t�),Passenger (x, z, s, t�),

w 	= s, x 	= null , s 	= null , w 	= null .

magic Passenger bffb(1, t��)← magic Ans f .

205

magic Flying bffb(1, t��)← magic Ans f .

magic Flying bffb(x0, ta)← magic Flying bffb(x0, t�).

magic Flying bffb(x0, t�)← magic Flying bffb(x0, t��).

magic Flying bffb(x0, fa)← magic Flying bffb(x0, t��).

magic Passenger bffb(x0, ta)← magic Passenger bffb(x0, t�).

magic Passenger bffb(x0, t�)← magic Passenger bffb(x0, t��).

magic Passenger bffb(x0, fa)← magic Passenger bffb(x0, t��).

magic Passenger bffb(x, fa)← magic Passenger bffb(x, fa).

magic Passenger bffb(x, t�)← magic Passenger bffb(x, fa).

magic Passenger bffb(x, t�)← magic Passenger bffb(x, fa).

magic Ans f . �

We can see that the rules in the MS program involving database atoms are:

Flying (x0, x1, x2, t�)← magic Flying bffb(x0, t�),Flying(x0, x1, x2).

Passenger (x0, x1, x2, t�)← magic Passenger bffb(x0, t�),Passenger(x0, x1, x2).

In particular, for the first rule, in order to generate the atom Flying (x0, x1, x2, t�)

in the program, a database fact of the form Flying(c̄) has to be true in the database,

and the magic atom magic Flying bffb(x0, t�) has to be true in the program. This

magic atom says that the first argument, i.e. variable x0, is bound in the predicate

Flying (also the last argument, which is the constant t�). This means that in the

evaluation of the MS program, only a subset of the tuples from relation Flying will be

used in the computation of the program. Those, that in the first attribute have the

value taken by variable x0 in the magic atom magic Flying bffb(x0, t�). This magic

206

atom is generated by the rule:

magic Flying bffb(x0, t�)← magic Flying bffb(x0, t��).

The atom magic Flying bffb(x0, t��) is generated by the rule:

magic Passenger bffb(1, t��)← magic Ans f .

Therefore, since the magic seed atom magic Ans f is true in the program (cf. Chapter

5), the variable x0 will take the value 1.

The same analysis can be done for relation Passenger. For this relation, also the

tuples with value 1 in the first attribute will be used in the computation of the MS

program. This attribute is PID in both relations. Therefore, the import sentences in

the MS program are:

#import(airport , “db2inst2”, “db2inst2”, “SELECT DISTINCT ∗

FROM Passenger WHERE PID = 1”,Passenger).

#import(airport , “db2inst2”, “db2inst2”, “SELECT DISTINCT ∗

FROM Flying WHERE PID = 1”,Flying). (9.2)

While the import sentences in the repair program generated by the RP method-

ology are:

#import(airport , “db2inst2”, “db2inst2”, “SELECT DISTINCT ∗

FROM Passenger”,Passenger).

207

#import(airport , “db2inst2”, “db2inst2”, “SELECT DISTINCT ∗

FROM Flying”,Flying). (9.3)

For query Ans ← Passenger(1, smith, 1), both programs generated by MS and

RP contain only an import sentence for relation Passenger. However, the MS program

will import the tuples of Passenger that have PID equals to 1, or PNAME equals to

smith, or PHONE equals to 1. Because MS will push-down these constants into the

rules for the predicate Passenger in the MS program. The import sentence in the

MS program is:

#import(airport , “db2inst2”, “db2inst2”, “SELECT DISTINCT ∗
FROM Passenger WHERE PID = 1

OR PNAME = ‘smith ′ OR PHONE = 1”,Passenger).

The queries were evaluated on database instances D1 and D2 with 3200, and

6400 tuples, respectively. Each database had n inconsistent tuples wrt the primary

keys of relations Passenger , Plane, and Flight . We considered values for n in the

range of 20-400. Also, the inconsistent tuples in relation Flight violated the RIC

∀x0x1x2x3x4x5x6x7x8 (Flight(x0, x1, x2, x3, x4, x5, x6, x7, x8) → ∃z Plane(x8, z)),

and the inconsistent tuples in relation Plane violated the RIC ∀zx(Plane(z, x) →
∃yuw(Planetype(x, y, u, w)).

9.4.2 Experimental Results

Figures 9.14, 9.15, and 9.17 show the execution times of the three queries on database

instances D1 and D2, respectively. In the charts, R&Q denotes the straightforward

evaluation of programs.

Figure 9.14 shows the running time for the conjunctive query Ans(x, y, z) ←

208

Plane(x, y), P lanetype(y, w, z, s). First, we can see that the optimized methodolo-

gies in ConsEx are faster to compute answers than the straightforward evaluation of

programs. As an illustration, for n = 200 the MS and the RP methodologies return

answers in less than ten seconds, while the straightforward evaluation of programs

returns answers after one minute (in both database instances).

Database Instance D1 Database Instance D2

Figure 9.14: Running Time for the Conjunctive Query with Projections

Second, we can see that the execution times of the MS methodology are almost in-

variant, while the execution times of the RP methodology grow-up when the database

contains more inconsistent tuples. For instance, for n greater than 200 the execution

times of RP start growing up considerably. Notice also that for n less that 200 the

RP methodology returns answers a bit faster than MS. This happen because the in-

stantiation of the MS program takes more time in DLV, than the instantiation of

the program generated by the RP methodology. This is because the MS program

has more rules than the RP program (cf. Chapter 5). The “instantiation time” is

almost invariant for the MS program, but for n less than 200 it is greater than the

time needed by the program generated by the RP methodology. As a consequence,

for n less than 200 RP returns answers faster than MS. However, since MS performs

a partial computation of the stable models, and simulates a top-down evaluation of

209

queries, the time that MS spends in the computation of queries is slower than the

time consumed by the RP methodology, which does not perform any of those addi-

tional optimizations. This is more notice for n greater than 200. In particular, when

n = 400 MS returns answers in less than ten seconds (in both database instances),

while RP provides answers after one minute.

Moreover, the scalability of the optimized methods to compute consistent answers

is good. As an illustration, the database instance D2 doubles the amount of tuples in

database instance D1, and MS still returns consistent answers in less than ten seconds.

Figure 9.15 shows the execution time for the partially-ground query Ans(x, y)←
Passenger(1, w, v),F lying(1, y, x).

Database Instance D1 Database Instance D2

Figure 9.15: Running Time for the Partially-Ground Conjunctive Query

We can see that, as expected, MS is much better to compute the partially-ground

conjunctive query than the other methods (in both database instances). This happens

because, since the query has constants, less tuples are imported to DLV and, as an

immediate consequence the instantiation of the MS program is reduced. Moreover,

MS pushes down the query constants and the query is evaluated in a simulated top-

down way, which produces a better performance.

Moreover, for this query the difference between the MS and the RP methodology

210

is more considerable in both database instances. As an illustration, in Figure 9.14, in

both database instances, the MS curve intersects the RP curve at (more less) n = 200,

but in Figure 9.15 this happens before, when n = 100 (more less). After that point,

the execution times of the RP methodology grows-up considerably.

MS produces gain in the execution times of partially-ground queries even if the

constants in the query are not considered when importing relations to DLV. For in-

stance, if for query Ans(x, y)← Passenger(1, w, v),F lying(1, y, x) we use the import

sentences in 9.3 instead of the import sentences in 9.2, MS still has a good perfor-

mance computing the query. We proved it in the largest database instance D2. Figure

9.16 shows the execution times for the partially-ground conjunctive query computed

with the MS program with the import sentences in 9.3 (MS in the chart), and the

import sentences in 9.2 (MS-NF in the chart).

Figure 9.16: Running Times of MS

Figure 9.17 shows the execution time for query Ans ← Passenger(1, smith, 1).

Here, we can appreciate that, as expected, the methods implemented in ConsEx are

faster to compute answers than the direct evaluation of programs. Moreover, MS

returns answers faster than the RP methodology, but the difference in the running

times of MS and RP is not considerable. Also, the scalability of the methods is good,

since the running times of both methods are very similar in the database instance D2,

211

which has the double of tuples of D1.

Database Instance D1 Database Instance D2

Figure 9.17: Running Time for the Boolean Query

Given the experimental results, we conclude that any of the methods implemented

in ConsEx is faster to compute queries than the straightforward evaluation of pro-

grams. Moreover, for conjunctive queries with projections, MS computes answers

much faster than the RP methodology and, therefore, we achieve a better perfor-

mance in query processing by using MS. Furthermore, we could use the RP method-

ology instead of MS to evaluate boolean conjunctive queries with one database atom,

since for this kind of queries, both methodologies have similar performance (cf. Fig-

ure 9.17). This may be important, since if we use the RP methodology, we do not

have to generate the extra MS program.

In this analysis we did not consider the time that the system takes in the generation

of programs. Basically because since the system does not bring any data from the

database to the main memory, the generation of programs is considerably fast.

212

9.5 Summary

In this chapter we described ConsEx, which is the first logic programming-based sys-

tem for CQA over inconsistent databases. The system implements our MS method-

ology, and the RP methodology to compute consistent answers to FO queries (cf.

Chapter 5). In ConsEx only the relevant data to compute queries is imported to

DLV. In this manner, the flow of data between ConsEx and the database is reduced.

We performed experiments in databases instances of 3200 and 6400 tuples, with

different levels of inconsistency. We consider three examples of conjunctive queries. It

was shown that the optimized methodologies are faster to compute queries than the

straightforward evaluation of programs. In particular, for conjunctive queries with

projection, MS computes answers much faster than the RP methodology. Hence,

MS is a good alternative to optimize CQA over inconsistent databases. For boolean

queries with one database atom, the RP methodology has good performance, and it

can be used instead of MS to evaluate queries. In this case, the generation of the

extra, new rewritten MS program, is avoided.

The optimized methods to compute consistent answers implemented in ConsEx

have a good scalability in the databases instances we considered. It is a future work, to

perform more experiments considering larger databases, and other class of queries like

disjunctive queries. Also, we leave as feature work the implementation of aggregate

queries in ConsEx.

Based in the experiments performed, we conclude that CQA based on logic pro-

grams is viable, and can be efficiently implemented. Especially because it is not

expected that databases contain enormous amounts of inconsistent tuples.

Chapter 10

Conclusions

In this thesis we were concerned with finding ways to improve the logic approach

for CQA. We claimed that even though we cannot reduce the intrinsic complexity

of CQA over inconsistent databases, which in the worst case is ΠP
2 -complete in data

complexity [28], we can optimize CQA based on logic programs.

We started by defining structural optimizations to repair programs. Essentially,

annotations on database facts and auxiliary predicates were eliminated. The elimi-

nation of the annotations on database facts permit us to import facts directly to the

DLV system, where programs are evaluated. This improves both the generation of

repair programs, and their evaluation.

We also presented a methodology to generate only the needed program constraints

for repair programs. Program constraints avoid the generation of incoherent models.

Originally they were defined for every database predicate, but it was shown that only

a subset of the program constraints are needed in repair programs. The elimination

of these rules is important because it eliminates unnecessary model checking in a

reasoning system. In addition, important classes of ICs were identified for which repair

programs can be specified without program constraints at all. It becomes relevant

when magic sets techniques are applied with the DLV system, which implements

magic sets for programs without program constraints.

Therefore, with the structural optimizations we generated new programs that have

less rules and annotations than the original ones. Moreover, we showed that the repair

213

214

programs (without considering the program constraints) are locally stratified, which

was important to prove that the MS methodology we defined, for disjunctive repair

programs with program constraints, is sound and complete.

The evaluation of programs in reasoning systems has also been optimized. We

defined a suitable MS methodology for our repair programs with program constraints.

MS techniques allow the focalization on part of programs and facts that are relevant

to answer a query. The methodology works as follows: The set of program constraints

(if any) is separated from the rest of the rules in the repair program, then the MS

technique is applied to the resulting program. Program constraints are added to the

rewritten program generated by the MS technique.

It is important to mention that the methodology works for our repair programs

and program constraints, but not necessarily for general constraint rules, i.e. rules

of the form ← C(x), where C(x) is a conjunction of literals (a positive or negated

atom). For this kind of rules in disjunctive programs is known that MS is sound but

incomplete [47].

We also presented a way to encode program constraints of repair programs (if

any) in order to apply MS in the DLV system, which does not support MS for pro-

grams with constraints. DLV applies MS internally, without returning the rewritten

program. This implies that it is not possible to add the program constraints later

to the magic program. Nevertheless, this extra processing of programs is avoided in

the “Consistency Extractor System”, which implements our MS methodology for re-

pair programs. However we decided to present the methodology of encoding program

constraints into programs because it is interesting in itself.

Furthermore, we presented a different optimization methodology, which also cap-

tures the relevant database predicates to compute a specific query. However, relevant

predicates are captured by analyzing the relationship between predicates in the ICs

215

and the query predicates, which is captured by the dependency graph (cf. Definition

2.1).

The relevant predicates are used to generate repair programs for a subset of the

database relations. As a matter of fact, only the rules, and more important the base

data, for predicates that are relevant to compute a query are kept in programs. In

particular, this produce a reduction of the flow of data between the database system

and the reasoning system where programs are evaluated.

Moreover, we presented a logic programming specification to compute consistent

answers to aggregate queries with both scalar functions, and group-by statements

wrt FDs. For the former queries, the notion of consistent answers we considered

is the same presented in [4]. For the latter, we introduced a notion of consistent

answer, which is based in the notion of consistent answers to scalar queries. The logic

programming specification is restricted to FDs. Nevertheless, it should be possible to

apply this approach straightforwardly to RIC-acyclic sets of ICs.

The logic programming specification is based in the formalism supported by the

DLV system. The current version of DLV implements five aggregation functions.

However, there are technical difficulties when aggregates are defined over atoms ap-

pearing in the head of disjunctive rules. In theses cases problems arise during the

grounding process which is executed before the computation of the stable models.

Specifically, the variable that holds the aggregate value can become unbound when

the ground version of the program is computed, and the DLV system would have

to compute all possible values to bind it. For some functions, such as max and min

this problem can be solved by adding extra atoms into the aggregate rule to bind

the aggregate variable, but for other functions such as sum that is not possible, and

grounding could become very difficult. Nevertheless, it is important to remark that

this is only a technical difficulty, that should be solved in a future release of the DLV

216

system.

In this thesis we also analyzed the use of the WFS of programs to CQA. This

semantics has lower data complexity than the stable models semantics of programs,

and therefore it becomes a good alternative to compute consistent answers. Actually,

the WFI of a program can be computed in polynomial time (data complexity).

It was proven that for interaction-free sets of ICs (cf. Definition 7.6), and con-

junctive queries without existential quantifiers, the core answers, i.e. the answers

obtaining from the intersection of all the stable models of program Π(D , IC ,Q), co-

incide with the well-founded answers, obtained from W+ of the WFI of Π(D , IC ,Q).

This is relevant because, since the WFI of a program is computed in polynomial

time, we can compute consistent answer to this kind of queries in polynomial time.

This result extends preliminary results presented in [3], which hold for a set of ICs

containing FDs and unary ICs only.

In addition, it was shown that when the set of ICs is restricted to FDs and

considering at most one FD or key dependency per relation, it is possible to use W u

of the WFI of programs for CQA. In fact, by using both W+ and W u, we can compute

all the consistent answers for a restricted set of conjunctive queries with existential

quantifiers. In order to use W u of the WFI of programs, it is necessary to rewrite

queries. The rewriting we used coincides with the rewriting method presented in

[39], that works for primary key constraints, and a more general class of conjunctive

queries.

We also use the WFS of programs as first step to compute consistent answers

to ground disjunctive queries wrt interaction-free sets of ICs. In this manner, the

computation of stable models is left as a second option if needed. Moreover, it was

shown that if the WFI of a program is used as a unique way to compute consistent

answers, for positive Datalog queries, i.e. conjunctive or disjunctive queries with

217

projection but without negation, we retrieve only a subset of the consistent answers.

Nevertheless, we have a polynomial time algorithm for CQA.

When programs are HCF [9], the well-founded answers can be computed in the

XSB system [71]. Also, for sets of interaction-free ICs, the well-founded answers

can be computed by using the deterministic set of programs, which is efficiently

computed in the DLV system [19]. This is because, for interaction-free sets of ICs,

the deterministic set and W+ of the WFI of Π(D , IC ,Q), coincide.

Table 10.1 summarizes the optimizations to CQA presented in this thesis.

Optimization Contribution
Structural Changes to Programs Smaller programs that are easier to evaluate
MS Methodology Focalization on relevant parts of programs
Methodology to encode denial rules Use of MS as implemented in DLV
Analysis of WFS Identification of ICs and queries for which

the WFS retrieves all (and subsets) of the
consistent answers

Logic programs to compute Extension of logic programs to compute
aggregate queries aggregate queries, by using the

capabilities of DLV to compute aggregates
ConsEx The first optimized logic programming-based

implementation to compute consistent
answers to FO queries

Table 10.1: Summary of Optimizations and Contributions

In this thesis we also developed a repair semantics for Multidimensional Databases.

We provided a suitable notion of repair for multidimensional dimension instances wrt

partitioning constraints (MPC). A repair of a multidimensional dimension instance

satisfies the MPC, however is not homogeneous. This is because some roll-up functions

on it are not total. Moreover, the summarizability property cannot be reestablished in

the repairs. Nevertheless, we could recover summarizability by introducing “dummy”

elements in some categories in the repairs as in [65]. It is a future work to analyze

if this way of recovering summarizability can be used to repair MDWs and compute

218

consistent answers.

The analysis of consistency in MDBs is a preliminary study that we will extend

to heterogeneous dimension schemas [48], where the situation could be a bit different;

mainly because of the different dimension constraints.

For future research we leave the improvement of the definition of dimension repairs

by using knowledge from equality constraints [48]. These constraints impose the

existence of certain distinguished elements in the categories. Thus, we could require

that repairs satisfy those constraints to get more meaningful repairs. Also, it is a

future work to develop a methodology for computing repairs (if necessary, because this

should be avoided whenever possible due to its complexity) and consistent answers.

Moreover we are interested in analyzing consistent query answering wrt aggrega-

tion constraints [73]. Also, we will analyze the idea of translating dimension instances

into sets of normalized relational tables before repairing them. This by following the

idea presented in [77], where a project-join dependency is applied to a relation prior

to repairing wrt FDs. In this way, they obtain more meaningful repairs wrt FDs.

Finally, we developed the “Consistency Extractor System” (ConsEx), the first

optimized logic programming-based implementation to compute consistent answers

to FO queries, from stand alone relational databases. It is a future work to extend

ConsEx to compute consistent answers to aggregate queries.

ConsEx implements our MS methodology to disjunctive repair programs with

program constraints, and the RP methodology, which generates programs considering

the relevant predicates, i.e. predicates that are involved in the computation of queries

(cf. Chapter 5).

We reported experimental results performed on database instances with different

levels of inconsistency (cf. Chapter 9). The results showed that the optimized meth-

ods implemented in ConsEx are faster to compute consistent answers to queries than

219

the straightforward evaluation of programs. Moreover, the MS methodology is faster

returning answers to conjunctive queries than the RP methodology. Nevertheless,

the latter methodology could be used, instead of MS, to evaluate boolean conjunctive

queries with one database atom, since for this kind of queries, both methodologies

have similar performance.

Based in the experiments performed, we conclude that CQA based on logic pro-

grams is viable, and can be efficiently implemented. Especially because it is not

expected that databases contain enormous amounts of inconsistent tuples.

Bibliography

[1] Abiteboul, S., Hull, R. and Vianu, V. Foundations of Databases. Addison-Wesley,
1995.

[2] Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query Answers in Incon-
sistent Databases. In Proc. 18th ACM Symposium on Principles of Database
Systems (PODS 99), ACM Press, 1999, pp. 68–79.

[3] Arenas, M., Bertossi, L. and Chomicki, L. Answer Sets for Consistent Query An-
swering in Inconsistent Databases. Theory and Practice of Logic Programming,
2003, 3(4-5): 393–424.

[4] Arenas, M., Bertossi, L. and Chomicki, J. Scalar Aggregation in FD-Inconsistent
Databases. In Proc. International Conference on Database Theory (ICDT 01),
Springer LNCS 1973, 2001, pp. 39–53.

[5] Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V. and Spinrad, J.
Scalar Aggregation in Inconsistent Databases. Theoretical Computer Science,
2003, 296(3):405–434.

[6] Barcelo, P. and Bertossi, L. Logic Programs for Querying Inconsistent Databases.
In Proc. 5th International Symposium on Practical Aspects of Declarative Lan-
guages (PADL 03), Springer LNCS 2562, 2003, pp. 208–222.

[7] Barcelo, P., Bertossi, L. and Bravo, L. Characterizing and Computing Semanti-
cally Correct Answers from Databases with Annotated Logic and Answer Sets.
Chapter in book Semantics of Databases, Springer LNCS 2582, 2003, pp. 1–27.

[8] Beeri, C. and Ramakrishnan, R. On the Power of Magic. In Proc. 6th ACM
Symposium on Principles of Database Systems (PODS 87), ACM Press, 1987,
pp. 269–284.

[9] Ben-Eliyahu, R. and Dechter, R. Propositional Semantics for Disjunctive Logic
Programs. Annals of Mathematics in Artificial Intelligence, 1994, 12:53–87.

[10] Bertossi, L., Bravo, L., Franconi, E. and Lopatenko, A. Complexity and Ap-
proximation of Fixing Numerical Attributes in Databases Under Integrity Con-
straints. In Proc. of the Databases Programming Languages Conference (DBPL
05), Springer LNCS 3774, 2005, pp. 262–278.

[11] Bertossi, L. and Chomicki, J. Query Answering in Inconsistent Databases. Chap-
ter in book Logics for Emerging Applications of Databases, J. Chomicki, G. Saake
and R. van der Meyden (eds.), Springer, 2003, pp. 43–83.

220

221

[12] Bravo, L. and Bertossi, L. Logic Programs for Consistently Querying Data
Sources. In Proc. 18th International Joint Conference on Artificial Intelligence
(IJCAI 03), Morgan Kaufmann, 2003, pp. 10–15.

[13] Bravo, L. and Bertossi, L. Consistent Query Answering under Inclusion Depen-
dencies. In 14th Annual IBM Centers for Advanced Studies Conference (CAS-
CON 2004), 2004, pp. 202–216.

[14] Bertossi, L. and Bravo, L. Query Answering in Peer-to-Peer Data Exchange
Systems. In Current Trends in Database Technology. Springer LNCS 3268, 2004,
pp. 478–485.

[15] Bravo, L. and Bertossi, L. Deductive Databases for Computing Certain and
Consistent Answers from Mediated Data Integration Systems. Journal of Applied
Logic, 2005, 3(2):329–367.

[16] Bravo, L. and Bertossi, L. Semantically Correct Query Answers in the Presence
of Null Values. In Pre-Proc. EDBT WS on Inconsistency and Incompleteness in
Databases (IIDB 06), J. Chomicki and J. Wijsen (eds.), 2006, pp. 33–47.

[17] Cali, A., Lembo, D. and Rosati, R. On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In Proc. Symposium on
Principles of Database Systems (PODS 03), ACM Press, 2003, pp. 260–271.

[18] Cali, A., Lembo, D. and Rosati, R. Query Rewriting and Answering Under Con-
straints in Data Integration Systems. In Proc. 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI 03), Morgan Kaufmann, 2003, pp. 16–21.

[19] Calimeri, F., Faber, W., Leone, N. and Pfeifer, G. Pruning Operators for Dis-
junctive Logic Programming Systems. Fundamenta Informaticae, 2006, 71(2-
3):183-214.

[20] Cao, T., Pontelli, E. and Elkabani, I. On Logic Programming with Aggregates.
NMSU Technical Report, NMSU-CS-2005-005, 2005.

[21] Caniupan, M. and Bertossi, L. Optimizing Repair Programs for Consistent Query
Answering. In Proc. 25th International Conference of the Chilean Computer
Science Society (SCCC 2005), IEEE Computer Society Press, 2005, pp. 3–12.

[22] Celle, A. and Bertossi, L. Querying Inconsistent Databases: Algorithms and Im-
plementation. In Computational Logic - CL 2000, Stream: International Confer-
ence on Rules and Objects in Databases (DOOD 00), Springer LNAI 1861, 2000,
pp. 942–956.

[23] Ceri, S., Gottlob, G. and Tanca, L. Logic Programming and Databases. Springer-
Verlag, 1990.

222

[24] Chaudhuri, S. and Dayal, U. An Overview of Data Warehousing and OLAP
Technology. SIGMOD Rec., 1997, 26(1):65–74.

[25] Chen, W., Swift, T. and Warren, D. Efficient Top-Down Computation of
Queries under the Well-Founded Semantics. Journal of Logic Programming,
1995, 24(3):161–199.

[26] Chomicki, J. and Marcinkowski, J. On the Computational Complexity of Con-
sistent Query Answers. CoRR paper cs.DB/0204010, 2002.

[27] Chomicki, J. and Marcinkowski, J. Minimal-Change Integrity Maintenance Using
Tuple Deletions. Information and Computation, 2005, 197(1-2):90–121.

[28] Chomicki, J. and Marcinkowski, J. On the Computational Complexity of
Minimal-Change Integrity Maintenance in Relational Databases. In Inconsis-
tency Tolerance, Springer LNCS 3300, State of the Art Survey Series, 2004, pp.
119–150.

[29] Cumbo, C., Faber, W., Greco, G. and Leone, N. Enhancing the Magic-Set
Method for Disjunctive Datalog Programs. In Proc. 20th International Confer-
ence on Logic Programming (ICLP 04), Springer LNCS 3132, 2004, pp. 371–385.

[30] Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. Complexity And Expressive
Power of Logic Programming. ACM Computer Surveys, 2001, 33(3):374–425.

[31] Dell’Armi, T., Faber, W., Ielpa, G., Leone, N. and Pfeifer, G. Aggregate Func-
tions in Disjunctive Logic Programming: Semantics, Complexity, and Imple-
mentation in DLV. In Proc. 18th International Joint Conference on Artificial
Intelligence (IJCAI 03), Morgan Kaufmann, 2003, pp. 847–852.

[32] Dell’Armi, T., Faber, W., Ielpa, G., Leone, N. and Pfeifer, G. Aggregate Func-
tions in DLV. In Proc. Answer Set Programming: Advances in Theory and
Implementation, Marina de Vos and Alessandro Provetti, 2003, pp. 274–288.

[33] Eiter, T., Gottlob, G. and Mannila, H. Disjunctive Datalog. ACM Transactions
on Database Systems, 1997, 22(3):364–418.

[34] Eiter, T., Fink, M., Greco, G. and Lembo, D. Efficient Evaluation of Logic
Programs for Querying Data Integration Systems. In Proc. 19th International
Conference on Logic Programming (ICLP 03), Springer LNCS 2916, 2003, pp.
163–177.

[35] Faber, W., Greco, G. and Leone, N. Magic Sets and their Application to Data
Integration. In Proc. International Conference on Database Theory (ICDT 05),
Springer LNCS 3363, 2005, pp. 306–320.

223

[36] Faber, W., Leone, N. and Pfeifer, G. Recursive Aggregates in Disjunctive Logic
Programs: Semantics and Complexity. In Proc. 9th European Conference on
Artificial Intelligence (JELIA 2004), Springer LNCS 3229, 2004, pp. 200–212.

[37] Faber, W. Unfounded Sets for Disjunctive Logic Programs with Arbitrary Ag-
gregates. In Logic Programming and Nonmonotonic Reasoning, 8th International
Conference (LPNMR’05), Springer Verlag, 2005, pp. 40–52.

[38] Franconi, E., Laureti-Palma, A., Leone, L., Perri, S. and Scarcello, F. Cen-
sus Data Repair: a Challenging Application of Disjunctive Logic Programming.
In Proc. of the Artificial Intelligence on Logic for Programming (LPAR 01),
Springer Verlag (3-540-42957-3), 2001, pp. 561–578.

[39] Fuxman, A. and Miller, R. First-Order Query Rewriting for Inconsistent
Databases. In Proc. International Conference on Database Theory (ICDT 05),
Springer LNCS 3363, 2004, pp. 337–354.

[40] Garcia-Molina, H., Labio, W. J. and Yang, J. Expiring Data in a Warehouse.
In Proc. 24th International Conference on Very Large Data Bases (VLDB 98),
1998, pp. 500–511.

[41] Gupta, H. and Mumick, I. S. Selection of Views to Materialize under a Main-
tenance Cost Constraint. In Proc. 7th International Conference on Database
Theory (ICDT 99), Springer LNCS 1540, 1999, pp. 453–470.

[42] Gelfond, M. and Leone, N. Logic Programming and Knowledge Representation
- The A-Prolog Perspective. Artificial Intelligence, 2002, 138(1-2):3–38.

[43] Gelfond, M. and Lifschitz, V. The Stable Model Semantics for Logic Program-
ming. In Logic Programming, Proc. 5th International Conference and Symposium
(ICLP/SLP 88), MIT Press, 1988, pp. 1070–1080.

[44] Gelfond, M. and Lifschitz, V. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing, 1991, 9:365–385.

[45] Greco, S. Binding Propagation Techniques for the Optimization of Bound Dis-
junctive Queries. In IEEE Transactions on Knowledge and Data Engineering,
2003, 15(2):368–385.

[46] Greco, G., Greco, S. and Zumpano, E. A Logical Framework for Querying and
Repairing Inconsistent Databases. IEEE Transactions on Knowledge and Data
Engineering, 2003, 15(6):1389–1408.

[47] Greco, G., Greco, S., Trubtsyna, I. and Zumpano, E. Optimization of Bound Dis-
junctive Queries with Constraints. Theory and Practice of Logic Programming,
2005, 5(6):713–745.

224

[48] Hurtado, C. Structurally Heterogeneous Olap Dimensions. Doctoral Thesis,
Computer Science Depto, University of Toronto, 2002.

[49] Hurtado, C., Gutierrez, C. and Mendelzon, A. Capturing Summarizability with
Integrity Constraints in OLAP. ACM Transactions on Database Systems, 2005,
30(3):854–886.

[50] Hurtado, C., Mendelzon, A. and Vaisman, A. Updating OLAP Dimensions.
In Proc. 2nd IEEE-DOLAP Workshop, Kansas City, Missouri, USA, 1999, pp.
60–66.

[51] Hurtado, C., Mendelzon, A. and Vaisman, A. Maintaining Data Cubes under
Dimension Updates. In Proc. 15th IEEE-ICDE Conference, Sydney, Australia,
1999, pp. 346–357.

[52] Johnson, C.A. Top-down Query Processing in First Order Deductive Databases
under the WFS. In Proc. 12th International Symposium on Foundations of In-
telligent Systems, Springer-Verlag, 2000, pp. 377–388.

[53] Lakshmanan, L., Ng, R., Xing Wang, C., Zhou. X. and Johnson, T. The Gener-
alized MDL Approach for Summarization. In Proc. 28th Int. Conf. Very Large
Data Bases, (VLDB 02), Hong Kong, China, 2002, pp. 766–777.

[54] Lenzerini, M. Data Integration: A Theoretical Perspective. In Proc. ACM
Symposium on Principles of Database Systems (PODS 02), ACM Press, 2002,
pp. 233–246.

[55] Lembo, D., Lenzerini, M. and Rosati, R. Source Inconsistency and Incomplete-
ness in Data Integration. In Proc. Workshop on Knowledge Representation Meets
Databases (KRDB 02), CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/Vol-54/, 2002.

[56] Letz, C., Henn, E. T. and Vossen, G. Consistency in Data Warehouse Dimen-
sions. In Proc. International Database Engineering and Applications Symposium,
(IDEAS’02), IEEE Press (0-7695-1638-6), 2002, pp. 224–232.

[57] Levy, A. Logic-Based Techniques in Data Integration. Chapter in Logic Based
Artificial Intelligence, J. Minker (ed.), Kluwer Publishers, 2000.

[58] Leone, N., Greco, G., Ianni, G., Lio, V., Terracina, G., Eiter, T., Faber, W.,
Fink, M., Gottlob, G., Rosati, R., Lembo, D., Lenzerini M., Ruzzi, M., Kalka,
E., Nowicki, B. and Staniszkis, W. The INFOMIX System for Advanced Inte-
gration of Incomplete and Inconsistent Data In Proc. International Conference
on Management of Data (SIGMOD ’05), ACM Press, 2005, pp. 915–917.

225

[59] Leone, N., Scarcello, F. and Subrahmanian, V.S. Optimal Models of Disjunctive
Logic Programs: Semantics, Complexity, and Computation. IEEE Transactions
on Knowledge and Data Engineering, 2004, 16(4):487–503.

[60] Leone, N., Rullo, P. and Scarcello, F. Disjunctive Stable Models: Unfounded
Sets, Fixpoint Semantics, and Computation. Information and Computation,
1997, 135(2):69–112.

[61] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scar-
cello, F. The DLV System for Knowledge Representation and Reasoning. ACM
Transactions on Computational Logic, 2006, 7(3):499–562.

[62] Lifschitz, V. Circumscription. Handbook of Logic in AI and Logic Programming,
Oxford University Press, 1994, 3:298–352.

[63] Lifschitz, V. and Turner, H. Splitting a Logic Program. In Proc. International
Conference on Logic Programming (ICLP 94), MIT Press, 1994, pp. 23–37.

[64] Lloyd, J.W. Foundations of Logic Programming. Second ed., Springer-Verlag,
1987.

[65] Pedersen, T., Jensen, C. and Dyreson, C. Extending Practical Pre-Aggregation
in On-Line Analytical Processing. In Proc. 25th Int. Conf. Very Large Data
Bases, VLDB, Edinburgh, Scotland, 1999, pp. 663–674.

[66] Przymusinski, T.C. On the Declarative Semantics of Deductive Databases and
Logic Programs. Foundations of Deductive Databases and Logic Programming,
Morgan Kaufmann Publishers Inc., 1988, 193–216.

[67] Przymusinski, T.C. Well-Founded Semantics Coincides with Three-Valued Stable
Semantics. Fundamenta Informaticae, IOS Press, 1990, 13(4):445–463.

[68] Przymusinski, T.C. Stable Semantics for Disjunctive Programs. New Generation
Computing, 1991, 9(3-4):401–424.

[69] Reiter, R. Towards a Logical Reconstruction of Relational Database Theory.
In On Conceptual Modelling, M.L. Brodie, J. Mylopoulos, J.W. Schmidt (eds.),
Springer, 1984, pp. 191–233.

[70] Ross, K. Modular Stratification and Magic Sets for Datalog Programs with
Negation. Journal of the ACM, 1994, 41(6):1216–1266.

[71] Sagonas, K.F., Swift, T. and Warren, D.S. XSB as an Efficient Deductive
Database Engine. In Proc. International Conference on Management of Data
(SIGMOD 94), ACM Press, 1994, pp. 442-453.

226

[72] Schlesinger, L. and Lehner, W. Extending Data Warehouses by Semi-Consistent
Views. In Proc. 4th International Workshop of Design and Management of Data
Warehouses (DMDW 2002), CEUR Workshop Proceedings, 2002, pp. 43–51.

[73] Ross, K., Srivastava, D., Stuckey, P., and Sudarshan, S. Foundations of Aggre-
gation Constraints. Theoretical Computer Science, 1998, 193(1-2):149–179.

[74] Theodoratos, D. and Bouzeghoub, M. A General Framework for the View Se-
lection Problem for Data Warehouse Design and Evolution. In Proc. 3rd ACM
International Workshop on Data warehousing and OLAP, ACM Press, 2000, pp.
1–8.

[75] Van Gelder, A., Ross, K.A. and Schlipf, J.S. Unfounded Sets and Well-Founded
Semantics for General Logic Programs. In Proc. Symposium on Principles of
Database Systems (PODS 88), ACM Press, 1988, pp. 221–230.

[76] Wijsen, J. Condensed Representation of Database Repairs for Consistent Query
Answering. In Proc. 9th International Conference on Database Theory (ICDT
03), Springer-Verlag (3-540-00323-1), 2002, pp. 378–393.

[77] Wijsen, J. Project-Join-Repair: An Approach to Consistent Query Answering
Under Functional Dependencies. In Proc. 7th International Conference on Flex-
ible Query Answering Systems (FQAS 06), 2006, pp. 1–12.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

