
Data Cleaning and Query Answering with
Matching Dependencies and Matching Functions

Leopoldo Bertossi1, Solmaz Kolahi2, and Laks V. S. Lakshmanan2

1 Carleton University, Ottawa, Canada. bertossi@scs.carleton.ca
2 University of British Columbia, Vancouver, Canada. {solmaz,laks}@cs.ubc.ca

Abstract. Matching dependencies were recently introduced as declar-
ative rules for data cleaning and entity resolution. Enforcing a match-
ing dependency on a database instance identifies the values of some at-
tributes for two tuples, provided that the values of some other attributes
are sufficiently similar. Assuming the existence of matching functions for
making two attribute values equal, we formally introduce the process of
cleaning an instance using matching dependencies, as a chase-like pro-
cedure. We show that matching functions naturally introduce a lattice
structure on attribute domains, and a partial order of semantic domi-
nation between instances. Using the latter, we define the semantics of
clean query answering in terms of certain/possible answers as the great-
est lower bound/least upper bound of all possible answers obtained from
the clean instances. We show that clean query answering is intractable
in general. Then we study queries that behave monotonically w.r.t. se-
mantic domination order, and show that we can provide an under/over
approximation for clean answers to monotone queries. Moreover, non-
monotone positive queries can be relaxed into monotone queries.

1 Introduction

Matching dependencies (MDs) in relational databases were recently introduced
in [19] as a means of codifying a domain expert’s knowledge that is used in im-
proving data quality. They specify that a pair of attribute values in two database
tuples are to be matched, i.e., made equal, if similarities hold between other pairs
of values in the same tuples. This is a generalization of entity resolution [17],
where basically full tuples have to be merged or identified on the basis that they
seem to refer to the same entity of the outside reality. This form of data fusion
[12] is important in data quality assessment and in data cleaning.

Matching dependencies were formally studied in [20], as semantic constraints
for data cleaning and were given a model-theoretic semantics. The main emphasis
in that paper was on the problem of entailment of MDs and on the existence of
a formal axiom system for that task.

MDs as presented in [20] do not specify how the matching of attribute values
is to be done. In data cleaning, the user, on the basis of his or her experience
and knowledge of the application domain, may have a particular methodology
or heuristic for enforcing the identifications. In this paper we investigate MDs

in the context of matching functions. These are functions that abstract the im-
plementation of value identification. Rather than investigate specific matching
functions, we explore a class of matching functions satisfying certain natural
and intuitive axioms. With these axioms, matching functions impose a lattice-
theoretic structure on attribute domains. Intuitively, given two input attribute
values that need to be made equal, the matching function produces a value that
contains the information present in the two inputs and semantically dominates
them. We show that this semantic domination partial order can be naturally
lifted to tuples of values as well as to database instances as sets of tuples. The
following example illustrates the role of matching functions.

Example 1. Consider the database instanceD0 of schemaR(name, phone, address),
shown below. Assume there is a matching dependency stating that if for two tu-
ples the values of name and phone are similar, then the value of address should
be made identical. This MD can be formally written as:

R[name, phone] ≈ R[name, phone] → R[address]
 R[address].

Consider a similarity relation that indicates the values of name and phone are
similar for the two tuples in this instance. To enforce the matching dependency,
we create another instance D1 in which the value of address for two tuples
is the result of applying a matching function on the two previous addresses.
This function combines the information in those address values, and thus D1

semantically dominates D0.

D0 name phone address
John Doe (613)123 4567 Main St., Ottawa
J. Doe 123 4567 25 Main St.

⇓
D1 name phone address

John Doe (613)123 4567 25 Main St., Ottawa
J. Doe 123 4567 25 Main St., Ottawa

We can continue this process in a chase-like manner if there are still other MD
violations in D1. �

The framework of [20] leaves the implementation details of data cleaning pro-
cess with MDs completely unspecified and implicitly leaves it to the application
on hand. We point out some limitations of the proposal in [20] for purposes of
cleaning dirty instances in the presence of multiple MDs. We also show that a
formulation of the formal semantics of satisfaction and enforcement of MDs that
incorporates matching functions remedies this problem. In giving such a formu-
lation, we revisit the original semantics for MDs proposed in [20], propose some
changes and investigate their consequences. More precisely, we define intended
clean instances, those that are obtained through the application of the MDs in
a chase-like procedure. We further investigate properties of this procedure in
relation to the properties of the matching functions, and show that, in general,

2

the chase procedure produces several different clean instances, each of which
semantically dominates the original dirty instance.

We then address the problem of query answering over a dirty instance, where
the MDs do not hold. We take advantage of the semantic domination order
between instances, and define clean answers by specifying a tight lower bound
(corresponding to certain answers) and a tight upper bound (corresponding to
possible answers) for all answers that can be obtained from any of the possibly
many clean instances. We show that computing the exact bounds is intractable in
general. However, in polynomial time we can generate an under-approximation
for certain answers as well as an over-approximation for possible answers for
queries that behave monotonically w.r.t. the semantic domination order.

We argue that monotone queries provide more informative answers on in-
stances that have been cleaned with MDs and matching functions. We therefore
introduce new relational algebra operators that make use of the underlying lat-
tice structure on the domain of attribute values. These operators can be used
to relax a regular positive relational algebra query and make it monotone w.r.t.
the semantic domination order.

Recently, Swoosh [9] has been proposed as generic framework for entity res-
olution. In entity resolution, whole tuples are identified, or merged into a new
tuple, whenever similarities hold between the tuples on some attributes. Ac-
cordingly, the similarity and matching functions work at the tuple level. Given
their similarity of purpose, it is interesting to seek the relationship between the
frameworks of MDs and of Swoosh. We address this question in this paper.

In summary, we make the following contributions:

1. We identify some limitations of the original proposal of MDs [20] w.r.t. the
application of data cleaning in the presence of multiple MDs, and show how
they can be overcome by considering MDs along with matching functions.
We provide a precise formal and operational semantics for MD enforcement
with matching functions. It appeals to an appropriate notion of chase with
MDs.

2. We study matching functions in terms of their properties, captured in the
form of certain intuitive and natural axioms. Matching functions induce a
lattice framework on attribute domains which can be lifted to a partial order
over instances, that we call semantic domination. The semantics of MD en-
forcement is compatible with, and relies on, the semantic domination struc-
ture.

3. We formally characterize clean query answering over a dirty instance w.r.t.
a set of MDs. We define appropriate notions of certain and possible answer.
We establish that computing clean answers is intractable in general.

4. We define a notion of monotone query that is based on semantic domination.
We also introduce and investigate new monotone relational operators that
are defined on the lattice structure of the data domain. In particular, we use
them to provide a notion of query relaxation.

5. For queries that are monotone w.r.t. the semantic domination relation (which
happen to be still intractable), we develop a polynomial time heuristic pro-
cedure for obtaining under- and over-approximations of clean query answers.

3

6. We demonstrate the power of the framework of MDs and of our chase proce-
dure for MD application by reconstructing the general form of Swoosh, and
also its special and common case called the union and merge class. This is
all done by introducing appropriate matching dependencies with matching
functions.

The paper is organized as follows. In Section 2, we provide necessary background
on matching dependencies as originally introduced. We introduce matching func-
tions and the notion of semantic domination in Section 3. Then we define the
data cleaning process with MDs in Section 4. We explore the semantic of query
answering in Section 5. In Section 6, we introduce and study a notion of mono-
tone query, and relational operators that are sensitive to the semantic lattice
structures of the domains. We also investigate the use of these operators in
query relaxation. In Section 7 we show how clean answers can be approximated.
In Section 8 we establish a connection to entity resolution as captured in generic
terms by Swoosh [9]. In 9 we discuss ongoing and future research directions and
some related issues; and also related work. We present concluding remarks in
Section 10.

2 Background

A database schema R is a set {R1, . . . , Rn} of relation names. Every relation
Ri is associated with a set of attributes, written as Ri(A1, . . . , Am), where each
attribute Aj has a domain DomAj . We assume that attribute names are different
across relations in the schema, but two attributes Aj , Ak can be comparable, i.e.,
DomAj = DomAk

. An instance D of schema R assigns a finite set of tuples, each
denoted by t, or tD to emphasize its membership in D, to every relation Ri. Each
tD can be seen as a function that maps every attribute Aj in Ri to a value in
DomAj . We write tD[Aj] to refer to this value. The active domain of an attribute
A for an instance D, denoted adom(D,A), is the finite set that contains all the
values for A from DomA that appear in D. Of course, for comparable attributes
A1, A2 it may happen that adom(D,A1) ̸= adom(D,A2).

When X is a list of attributes, we may write tD[X] to refer to the corre-
sponding list of attribute values. A tuple tD for a relation name R ∈ R is called
an R-tuple. We deal with queries Q that are expressed in relational algebra, and
treat them as operators that map an instance D to an instance Q(D).

For every attribute A in the schema, we assume a binary similarity relation
≈A ⊆ DomA×DomA. Notice that whenever A and A′ are comparable, the similar-
ity relations ≈A and ≈A′ are identical. We assume that each ≈A is reflexive and
symmetric. When there is no confusion, we simply use ≈ for the similarity rela-
tion. In particular, for lists of pairwise comparable attributes, Xi = Ai

1, . . . , A
i
n,

i = 1, 2, we write X1 ≈ X2 to mean A1
1 ≈1 A2

1 ∧ · · · ∧A1
n ≈n A2

n, where ≈i is the
similarity relation applicable to attributes A1

i , A
2
i .

Given two pairs of pairwise comparable attribute lists X1, X2 and Y1, Y2

from relations R1, R2, resp., a matching dependency (MD) [20] is a sentence of

4

the form

φ : R1[X1] ≈ R2[X2] → R1[Y1]
 R2[Y2].
1 (1)

This dependency intuitively states that if for an R1-tuple t1 and an R2-tuple t2
in instance D, the attribute values in tD1 [X1] are similar to attribute values in
tD2 [X2], then we need to make the values tD1 [Y1] and tD2 [Y2] pairwise identical.

Enforcing MDs may cause a database instance D to be changed to another
instance D′. To keep track of every single change, we assume that every tuple
t in an instance has a unique identifier, which we will also denote with t, and
can be used to identify it in both instance D and its changed version D′. We
can use the notations tD and tD

′
introduced above to refer to a tuple in D and

its changed version in D′ that has resulted from enforcing an MD, resp. For
convenience, we may use the terms tuple and tuple identifier interchangeably.

Fan et al. [20] give a dynamic semantics for matching dependencies in terms
of a pair of instances: one where the similarities hold, and a second where the
specified identifications have been enforced:

Definition 1. [20] A pair of instances (D,D′) satisfies the MD φ : R1[X1] ≈
R2[X2] → R1[Y1]
 R2[Y2], denoted (D,D′) |= φ, if for every R1-tuple t1 and
R2-tuple t2 in D that match the left-hand side of φ, i.e., tD1 [X1] ≈ tD2 [X2], the
following holds in the instance D′:

(a) tD
′

1 [Y1] = tD
′

2 [Y2], i.e., the values of the right-hand side attributes of φ have
been identified in D′; and

(b) t1, t2 in D′ match the left-hand side of φ, that is, tD
′

1 [X1] ≈ tD
′

2 [X2].

For a set Σ of MDs, (D,D′) |= Σ iff (D,D′) |= φ for every φ ∈ Σ. An instance
D′ is called stable if (D′, D′) |= Σ. �

Notice that a stable instance satisfies the MDs by itself, in the sense that all
the required identifications are already enforced in it. Whenever we say that an
instance is dirty, we mean that it is not stable w.r.t. the given set of MDs.

While this definition may be sufficient for the implication problem of MDs
considered by Fan et al. [20], it does not specify how a dirty database should be
updated to obtain a clean instance, especially when several interacting updates
are required in order to enforce all the MDs. Thus, it does not give a complete
prescription for the purpose of cleaning dirty instances. Moreover, from a dif-
ferent perspective, the requirements in the definition may be too strong, as the
following example shows.

Example 2. Consider the set of MDs Σ consisting of φ1 : R[A] ≈ R[A] →
R[B]
 R[B] and φ2: R[B,C] ≈ R[B,C] → R[D]
 R[D]. The similarities are:
a1 ≈ a2, b2 ≈ b3, c2 ≈ c3. Instance D0 below is not a stable instance, i.e., it does
not satisfy φ1, φ2. We start by enforcing φ1 on D0.

1 All the variables in Xi, Yj are implicitly universally quantified in front of the formula.

5

D0 A B C D
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

D1 A B C D
a1 ⟨b1, b2⟩ c1 d1
a2 ⟨b1, b2⟩ c2 d2
a3 b3 c3 d3

Let ⟨b1, b2⟩ in instance D1 denote the value that replaces b1 and b2 to enforce φ1

on instance D0, and assume that ⟨b1, b2⟩ ̸≈ b3. Now, (D0, D1) |= φ1. However,
(D0, D1) ̸|= φ2.

If we identify d2, d3 via ⟨d2, d3⟩ producing instance D2, the pair (D0, D2)
satisfies condition (a) in Definition 1 for φ2, but not condition (b). Notice
that making more updates on D1 (or D2) to obtain an instance D′, such that
(D0, D

′) |= Σ, seems hopeless as φ2 will not be satisfied because of the broken
similarity that existed between b2 and b3. �

Definition 1 seems to capture well the one-step enforcement of a single MD.
However, as shown by the above example, the definition has to be refined in
order to deal with sets of interacting MDs and to capture an iterative process of
MD enforcement. We address this problem in Section 4.

Another issue worth mentioning is that stable instances D′ for D and Σ
are not subject to any form of minimality criterion on D′ in relation with D.
We would expect such an instance to be obtained via the enforcement of the
MDs, without unnecessary changes. Unfortunately, this is not the case here: If
in Example 2 we keep only φ1, and in instance D1 we change a3 by an arbitrary
value a4 that is not similar to either a1 or a2, we obtain a stable instance with
origin in D0, but the change of a3 is unjustified and unnecessary. We will also
address this issue.

Following [20], we assume in the rest of this paper that each MD is of the
form R1[X1] ≈ R2[X2] → R1[A1]
 R2[A2]. That is, the right-hand side of each
MD contains a pair of single attributes.

3 Matching Functions and Semantic Domination

In order to enforce a set of MDs (cf. Section 4) we need an operation that
identifies two values whenever necessary. With this purpose in mind, we will
assume that for each comparable pair of attributes A1, A2 with domain DomA,
there is a binary matching function mA : DomA × DomA → DomA, such that
the value mA(a, a

′) is used to replace two values a, a′ ∈ DomA whenever the two
values need to be made equal. Here are a few natural properties to expect of the
matching function mA (similar properties were considered in [9], cf. Section 8.2):
For a, a′, a′′ ∈ DomA:

I (Idempotency): mA(a, a) = a,
C (Commutativity): mA(a, a

′) = mA(a
′, a),

A (Associativity): mA(a,mA(a
′, a′′)) = mA(mA(a, a

′), a′′).

It is reasonable to assume that any matching function satisfies at least these
three axioms. Idempotency is a natural assumption as it is never desirable to

6

replace two values that are already identical with a new value. Commutativity
and associativity are also expected, intuitively because applying a matching
function to make two or more values identical should not be sensitive to the
order in which those values are visited. (We revisit the associativity property in
Section 9.1.)

Under these assumptions, the structure (DomA,mA) forms a join semilattice,
LA, that is, a partial order with a least upper bound (lub) for every pair of
elements. The induced partial order ≼A on the elements of DomA is defined
as follows: For every a, a′ ∈ DomA, a ≼A a′ whenever mA(a, a

′) = a′. The lub
operator with respect to this partial order coincides with mA: lub≼A

{a, a′} =
mA(a, a

′).

A natural interpretation for the partial order ≼A in the context of data
cleaning would be the notion of semantic domination. Basically, for two elements
a, a′ ∈ DomA, we say that a′ semantically dominates a if we have a ≼A a′. In
the process of cleaning the data by enforcing matching dependencies, we always
replace two values a, a′, whenever certain similarities hold, by the value mA(a, a

′)
that semantically dominates both a and a′. This notion of domination is also
related to relative information contents [13, 27, 29].

One of our key goals is to develop a semantic account of, and computational
mechanisms for, obtaining clean instances from a given input instance using MDs
together with matching functions. The assumptions about mA mentioned above
(which result in the existence of lub for every two elements in the domain) are
enough for realizing this goal. However, it turns out we additionally need the
existence of the greatest lower bound (glb) for any two elements in the domain
of an attribute, in order to define the semantics of query answering on the clean
instances obtained using MDs. In Section 5, we will make use of the existence
glb to define and compute certain answers whenever there are multiple clean
instances.

So far, we have assumed that the lattice-theoretic structure of an attribute
domain DomA is created via a matching function mA. However, it is also quite
natural that, for an attribute A, its domain DomA comes already endowed with a
lattice structure LA = ⟨DomA,≼A⟩. As a consequence, for any two-element sub-
set S of DomA, both glb≼A

(S) and lub≼A
(S) exist. We may also assume that

LA has bottom and top elements, generically denoted with ⊥,⊤, resp., such that
⊥ ≼A a ≼A ⊤ for every a ∈ DomA. On the basis of such a lattice structure on
DomA, we could now define the matching function mA by mA(a, b) := lub≼A{a, b}.
Of course, under this second alternative (i.e. using the lattice to define the match-
ing function), for every a ∈ DomA, mA(a,⊥) = a and mA(a,⊤) = ⊤.

The presence of ⊤ allows us to have a total matching function mA, because
whenever two values, a, b, do not naturally match, we can set mA(a, b) := ⊤.
This element could represent the existence of inconsistency in data whenever
the MDs force the matching of two completely unrelated elements from the
domain. However, the existence of ⊤ is not essential in our framework.

Either way we go, i.e. starting from mA or from a partial order ≼A, we will
assume that (DomA,mA) is a lattice (i.e., both lub and glb exist for every pair of

7

elements in DomA w.r.t. ≼A). Notice that if we add an additional assumption
to the semilattice, which requires that for every element a ∈ DomA, the set
{c ∈ DomA | c ≼A a} (the set of elements c with mA(a, c) = a), is finite, then
glb≼A

{a, a′} does exist for every two elements a, a′ ∈ DomA and is equal to
lub≼A

{c ∈ DomA | c ≼A a and c ≼A a′}.
The choice and implementation of a matching function for each attribute

domain is a decision that has to be made by a domain expert. A general matching
function that could potentially work for every attribute domain is a function that
treats attribute values as sets and takes the union of two sets whenever they need
to be identified. For numerical domains, in an application, this can be followed by
a step where an aggregation function such as average is applied. More specific
matching functions could be used depending on the domain, as shown in the
following example.

Example 3. We give a few concrete examples of matching functions for different
attribute domains. Our example functions have all the properties I, C, and A.

(a) Name, Address, Phone: Each atomic value s of these string domains could
be treated as a singleton set {s}. Then a matching function m(S1, S2) for
sets of strings Si could return S1 ∪ S2. E.g., when matching addresses,
m({“2366 Main Mall”}, {“Main Mall, Vancouver”}) could return the value
{“2366 Main Mall”, “Main Mall, Vancouver”}.
Alternatively, a more sophisticated matching function could merge two input
strings into a third string that contains both of the inputs. E.g., the match of
the two input strings above could instead be “2366 Main Mall, Vancouver”.
Part of the corresponding lattice is shown in Figure 1.

2366 Main Mall, Vancouver

Main Mall, Vancouver 2366 Main Mall

Main Mall

�
�
�

@
@

@

@
@
@

�
�

�

Fig. 1. A domain lattice

One way to formally reconstruct this kind of matching function is through
the identification of an attribute value (actually, even whole records or tu-
ples) with an object, in this case, a set of pairs (Attribute Name,Value) (with
a common id). For example, the values “2366 Main Mall” and “Main Mall,
Vancouver” are identified with the objects {(id ,House Number , 2366),
(id ,Street Name,Main Mall)} and {(id ,Street Name,Main Mall),

8

(id ,City ,Vancouver)}, respectively. If these values are matched through their
union, we obtain {(id ,House Number , 2366), (id ,Street Name,Main Mall),
(id ,City ,Vancouver)}, corresponding to “2366 Main Mall, Vancouver”.
The “union matching function” is further investigated in Section 8.2.

(b) Age, Salary, Price: Each atomic value a in these numerical domains could be
treated as an interval [a, a]. Then the matching function m([a1, b1], [a2, b2])
would return the smallest interval containing both [a1, b1] and [a2, b2], i.e.,
m([a1, b1], [a2, b2]) = [min{a1, a2},max{b1, b2}].

An example of corresponding lattice
is shown in the adjacent figure. In
this case, the semantic domination is
understood set-theoretically, specifi-
cally as interval inclusion.

[5,10]

[5,8] [7,10]

[7,8]

�
�
�

@
@

@

@
@
@

�
�

�

(c) Boolean Attributes: For attributes which take either a 0 or 1 value, the
matching function would return m(0, 1) = ⊤, where ⊤ shows inconsistency
in the data, and furthermore m(0,⊤) = ⊤ and m(1,⊤) = ⊤.

⊤

part-time full-time

⊥

�
�
�

@
@

@

@
@
@

�
�

�

In this case, the purpose of apply-
ing the matching function is to record
the inconsistency in the data and still
conduct sound reasoning in presence
of inconsistency.2 The adjacent figure
shows an example of this kind of lat-
tice. �

An additional property of matching functions worthy of consideration is simi-
larity preservation, that is, the result of applying a matching function preserves
the similarity that existed between the old value being replaced and other values
in the domain (a similar property was considered in [9], cf. Section 8.2). More
formally, for every a, a′, a′′ ∈ DomA:

S (Similarity Preservation): If a ≈ a′, then a ≈ mA(a
′, a′′).

Unlike the previous properties (I, C, and A), property S turns out to be a strong
assumption, and we must consider both matching functions with S and without
it. Indeed, notice that since ≈ is reflexive and mA is commutative, assumption
S implies a ≈ mA(a, a

′) and a′ ≈ mA(a, a
′), i.e., similarity preserving match-

ing always results in a value similar to the value being replaced. Actually, the
following simple result will be used later on.

2 Matching of boolean attributes requires the existence of the top element ⊤.

9

Proposition 1. Let mA be a similarity preserving function, and a1, a2, a3, a4 be
values in the domain DomA, such that a1 ≼ a3 and a2 ≼ a4. If a1 ≈A a2, then
a3 ≈A a4. �

In the rest of the paper, we assume that for every comparable pair of attributes
A1, A2, there is an idempotent, commutative, and associative binary matching
function mA. Unless otherwise specified, we do not assume that these functions
are similarity preserving.

Definition 2. Let D1, D2 be instances of schema R, and t1, t2 be two R-tuples
in D1, D2, respectively, with R ∈ R. We write t1 ≼ t2 if tD1

1 [A] ≼A tD2
2 [A] for

every attribute A in R. We write D1 ⊑ D2 if for every tuple t1 in D1, there is a
tuple t2 in D2, such that t1 ≼ t2. �

Clearly, the relation ≼ on tuples can be applied to tuples in the same instance.
The ordering ⊑ on sets has been used in the context of complex objects [8, 31]
and also powerdomains, where it is called Hoare ordering [13]. It is also used in [9]
for entity resolution (cf. Section 8.2). It is known that for ⊑ to be a partial order,
specifically to be antisymmetric, we need to deal with reduced instances [8], i.e.,

Definition 3. For an instance D, its ≼-reduced version is

Red≼(D) = {t ∈ D | there is no tuple t′ ∈ D different from t with t ≼ t′},

which is obtained from D by removing every tuple that is strictly dominated. �

Next we will show that the set of reduced instances with the partial order⊑ forms
a lattice: the least upper bound and the greatest lower bound for every finite set
of reduced instances exist. This result will be used later for query answering. We
adapt some of the results from [8], where they prove a similar result for a lattice
formed by the set of complex objects and the sub-object partial order.

Definition 4. Let D1, D2 be instances of schema R, and t1, t2 be two R-tuples
in D1, D2, respectively, for R ∈ R.

(a) D1 gD2 is Red≼(D1 ∪D2), where D1 ∪D2 is the set-theoretic union of D1

and D2.
(b) t1 f t2 is the tuple t, such that t[A] = glb≼A

{tD1
1 [A], tD2

2 [A]} for every at-
tribute A in R.

(c) D1 f D2 is the instance that assigns, to each R ∈ R, the set of tuples
Red≼({t1 f t2 | t1 ∈ D1, t2 ∈ D2, and t1, t2 are R-tuples}). �

Next we show that the operations defined in Definition 4 are equivalent to the
greatest lower bound and least upper bound of instances w.r.t. the partial order
⊑.

Lemma 1. For every two instances D1, D2 and R-tuples t1, t2 in D1, D2, the
following hold:

10

1. D1 gD2 is the least upper bound of D1, D2 w.r.t. ⊑.

2. t1 f t2 is the greatest lower bound of t1, t2 w.r.t. ≼.

3. D1 fD2 is the greatest lower bound of D1, D2 w.r.t. ⊑.

Proof: 1. Let D be the instance D1 gD2. Clearly, D1 ⊑ D and D2 ⊑ D. Now
let D′ be an arbitrary instance such that D1 ⊑ D′ and D2 ⊑ D′, and let t be a
tuple in D. Then, by definition, t is in D1 or in D2, and hence there should be
a tuple t′ in D′ such that tD ≼ t′D

′
. Therefore, we have D ⊑ D′, and thus D is

the least upper bound of D1, D2.

2. Let t be the tuple t1 f t2. Clearly, t ≼ tD1
1 and t ≼ tD2

2 . Let t′ be an arbitrary
tuple such that t′ ≼ tD1

1 and t′ ≼ tD2
2 . Then t′[A] ≼ tD1

1 [A] and t′[A] ≼ tD2
2 [A]

for every attribute A in the schema. Thus, t′[A] ≼ glb(tD1
1 [A], tD2

2 [A]) for every
attribute A, and hence t′ ≼ t.

3. Let D be the instance D1fD2. Let t be a tuple in D. Then there exist tuples
t1 in D1 and t2 in D2, such that t = t1 f t2, and thus tD ≼ tD1

1 and tD ≼ tD2
2 .

Therefore, it follows that D ⊑ D1 and D ⊑ D2.

Let D′ be an arbitrary instance such that D′ ⊑ D1 and D′ ⊑ D2, and let
t′ be a tuple in D′. Then there exist tuples t1 in D1 and t2 in D2, such that
t′D

′ ≼ tD1
1 and t′D

′ ≼ tD2
2 , and thus t′D

′ ≼ glb(tD1
1 , tD2

2), which exists in D. We
thus have D′ ⊑ D. �

In particular, we can see that ≼ imposes a lattice structure on R-tuples. Using
Lemma 1, we immediately obtain the following result.

Theorem 1. The set of reduced instances for a given schema with the ⊑ order-
ing forms a lattice. �

Example 4. Consider the following instances

D′ name phone address
John Doe (613)123 4567 25 Main St., Ottawa
J. Doe (613)123 4567 25 Main St., Ottawa
Jane Doe (604)123 4567 25 Main St., Vancouver

D′′ name phone address
John Doe (613)123 4567 Main St., Ottawa
J. Doe (604)123 4567 25 Main St., Vancouver
Jane Doe (604)123 4567 25 Main St., Vancouver

The domain of three attributes involved conform to the lattice structures shown
in Figure 2. They are of the kind shown in Figure 1, i.e., the lub or m of two
string values is a string that merges them whenever it makes sense. Notice that
an alternative lattice would be the subset lattice, when the lub of two string sets
is the union of the two sets.

The instance {t′ f t′′ | t′ ∈ D′, t′′ ∈ D′′, t1, t2} is:

11

⊤

John Doe Jane Doe

J. Doe

�
�
�

@
@

@

@
@
@

�
�

�

⊤

(613)123 4567 (604)123 4567

123 4567

�
�

�

@
@

@

@
@

@

�
�

�
⊤

25 Main St., Ottawa 25 Main St., Vancouver

25 Main St.Main St., Ottawa

Main St.

�
�
�

@
@

@

@
@
@

�
�

�

�
�

�

�
�

�

@
@

@

Fig. 2. Domain lattices Lname , Lphone , and Laddress

name phone address
John Doe (613)123 4567 Main St., Ottawa
J. Doe 123 4567 25 Main St.
J. Doe 123 4567 25 Main St.
J. Doe (613)123 4567 Main St., Ottawa
J. Doe 123 4567 25 Main St.
J. Doe 123 4567 25 Main St.
J. Doe 123 4567 Main St.
J. Doe (604)123 4567 25 Main St., Vancouver
Jane Doe (604)123 4567 25 Main St., Vancouver

After reduction, we obtain

D′ fD′′ name phone address
John Doe (613)123 4567 Main St., Ottawa
Jane Doe (604)123 4567 25 Main St., Vancouver

which is the glb⊑(D
′, D′′). �

4 Enforcement of MDs and Clean Instances

In this section, we define clean instances that can be obtained from a dirty
instance by iteratively enforcing a set of MDs in a chase-like procedure.

12

Definition 5. Let D,D′ be database instances with the same set of tuple iden-
tifiers, Σ be a set of MDs, and φ : R1[X1] ≈ R2[X2] → R1[A1]
 R2[A2] be an
MD in Σ. Let t1, t2 be an R1-tuple and an R2-tuple identifiers, respectively, in
both D and D′. We say that instance D′ is the immediate result of enforcing φ
on t1, t2 in instance D, denoted (D,D′)[t1,t2] |= φ, if

(a) tD1 [X1] ≈ tD2 [X2], but t
D
1 [A1] ̸= tD2 [A2];

(b) tD
′

1 [A1] = tD
′

2 [A2] = mA(t
D
1 [A1], t

D
2 [A2]); and

(c) D,D′ agree on every other tuple and attribute value. �
Definition 5 captures a single step in a chase-like procedure that starts from a
dirty instance D0 and enforces MDs step by step, by applying matching func-
tions, until the instance becomes stable. We propose that the output of this
chase should be treated as a clean version of the original instance for a given a
set of MDs. This is formally defined as follows.

Definition 6. For an instance D0 and a set of MDs Σ, an instance Dk is
(D0, Σ)-clean if Dk is stable, and there exists a finite sequence of instances
D1, . . . , Dk−1 such that, for every i ∈ [1, k], (Di−1, Di)[ti1,ti2] |= φ, for some

φ ∈ Σ and tuple identifiers ti1, t
i
2. We write Clean(D0, Σ) to denote the set of

(D0, Σ)-clean instances of D0 w.r.t. Σ. �
Notice that if (D0, D0) |= Σ, i.e., it is already stable, then D0 is its only (D0, Σ)-
clean instance. Moreover, we have Di−1 ⊑ Di, for every i ∈ [1, k], since we are
using matching functions to identify values, and the application of matching func-
tions leads to instances that semantically dominate the instances they replace.
In particular, we have D0 ⊑ Dk. In other words, clean instance Dk semantically
dominates dirty instance D0, and we might say Dk it is more informative than
D0 in the sense that every tuple has been replaced by a newer version of the
tuple that contains a more complete piece of information.

Theorem 2. Let Σ be a set of matching dependencies and D0 be an instance.
Then every sequence D1, D2, . . . such that, for every i ≥ 1, (Di−1, Di)[ti1,ti2] |= φ,

for some φ ∈ Σ and tuple identifiers ti1, t
i
2 in Di−1, is finite and computes a

(D0, Σ)-clean instance Dk in polynomial number of steps in the size of D0. It
also holds that D0 ⊑ D1 ⊑ . . . ⊑ Dk.

Proof: Suppose an MD φ : R1[X1] ≈ R2[X2] → R1[A1]
 R2[A2] is enforced on

a pair of tuples t
Di−1

1 , t
Di−1

2 ∈ Di−1 and let tDi
1 , tDi

2 be the corresponding tuples
in Di after the MD is enforced. It is easy to see that at least one of the following

must hold: t
Di−1

1 [A1] ≼A tDi
1 [A1] but t

Di−1

1 [A1] ̸= tDi
1 [A1], OR t

Di−1

2 [A2] ≼A

tDi
2 [A2] but t

Di−1

2 [A2] ̸= tDi
2 [A2]. That is, at least one of t

Di−1

1 [A1], t
Di−1

2 [A2]
must strictly grow w.r.t. the partial order ≼A. In other words, after each MD
application, at least one tuple changes and the change is a growth w.r.t. a partial
order ≼A on one of its attributes. Now, consider the instance Dmax consisting
of exactly one tuple in every relation, for which the value of every attribute A
is lub≼{a | a ∈ adom(D0, B) attribute B is A or comparable to A}.3 Clearly,

3 Remember that comparable attributes share the similarity relation and matching
function (and lattice structure).

13

Dmax is an upper bound on every instance in any chase sequence. Moreover,
the number of matching function applications required to produce each tuple
in Dmax is polynomial in the size of the original instance D0. This is because
for every attribute A, any arbitrary sequence of applying the matching function
mA on all the values appearing in the active domain of A (and its comparable
attributes) would result in computing the required lub≼ mentioned above.

From this, it follows that the stable instance Dk associated with every chase
sequence can be obtained in a finite number of steps which is polynomial in the
size of D0. �

This result says that the sequence of instances obtained by chasing MDs reaches
a fixpoint after polynomial number of steps, which is guaranteed to be a stable
instance w.r.t. all MDs. This is the consequence of assuming that matching
functions are idempotent, commutative, and associative.

Observe that, for a given instanceD0 and set of MDs Σ, many clean instances
may exist, each resulting from a different order of applications of MDs on D0

and from different selections of violating tuples. The number of possible clean
instances is clearly finite.

Notice also that for a (D0, Σ)-clean instance Dk, we may have (D0, Dk) ̸|= Σ
(cf. Definition 1). Intuitively, the reason is that some of the similarities that
existed inD0 could have been broken by iteratively enforcing the MDs to produce
Dk. We argue that this is a price we may have to pay if we want to enforce a set
of interacting MDs. However, each (D0, Σ)-clean instance is stable and captures
the persistence of attribute values that are not affected by MDs.

The following example illustrates these points. We simply write ⟨a1, . . . , al⟩
instead of mA(a1,mA(a2,mA(. . . , al))). This notation is well defined by virtue of
the associativity assumption.

Example 5. Consider the set of MDs Σ consisting of φ1 : R[A] ≈ R[A] →
R[B]
 R[B] and φ2: R[B] ≈ R[B] → R[C]
 R[C]. We have the similarities:
a1 ≈ a2, b2 ≈ b3. The following sequence of instances leads to a (D0, Σ)-clean
instance D2:

D0 A B C
a1 b1 c1
a2 b2 c2
a3 b3 c3

D1 A B C
a1 ⟨b1, b2⟩ c1
a2 ⟨b1, b2⟩ c2
a3 b3 c3

D2 A B C
a1 ⟨b1, b2⟩ ⟨c1, c2⟩
a2 ⟨b1, b2⟩ ⟨c1, c2⟩
a3 b3 c3

However, (D0, D2) ̸|= Σ, and the reason is that ⟨b1, b2⟩ ≈ b3 does not necessarily
hold. We can enforce the MDs in another order and obtain a different (D0, Σ)-
clean instance:

D0 A B C
a1 b1 c1
a2 b2 c2
a3 b3 c3

D′
1 A B C
a1 b1 c1
a2 b2 ⟨c2, c3⟩
a3 b3 ⟨c2, c3⟩

D′
2 A B C
a1 ⟨b1, b2⟩ c1
a2 ⟨b1, b2⟩ ⟨c2, c3⟩
a3 b3 ⟨c2, c3⟩

D′
3 A B C
a1 ⟨b1, b2⟩ ⟨c1, c2, c3⟩
a2 ⟨b1, b2⟩ ⟨c1, c2, c3⟩
a3 b3 ⟨c2, c3⟩

Again, D′
3 is a (D0, Σ)-clean instance, but (D0, D

′
3) ̸|= Σ. �

14

It would be interesting to know when there is only one (D0, Σ)-clean instance
Dk, and also when, for a clean instance Dk, (D0, Dk) |= Σ holds. The following
two propositions establish natural sufficient conditions for these properties to
hold.

Proposition 2. If every matching function mA is similarity preserving, then,
for every set of MDs Σ and every instance D0, there is a unique (D0, Σ)-clean
instance D. Furthermore, (D0, D) |= Σ. �

For the proof we state first the following lemma.

Lemma 2. Assume the matching functions are similarity preserving. LetD1, . . . ,
Dk be a sequence of instances such that Dk is stable, and for every i ∈ [1, k],
(Di−1, Di)[ti1,ti2] |= φ, for some φ ∈ Σ and tuple identifiers ti1, t

i
2. Let D be a

(D0, Σ)-clean instance not necessarily equal to Dk. Then for every i ∈ [0, k], the
following holds:

1. tDi [A1] ≼ tD[A1], for every tuple identifier t and every attribute A1.
2. if tDi [A1] ≈ t′Di [A2], then tD[A1] ≈ t′D[A2], for every two tuple identifiers

t, t′ and two comparable attributes A1, A2.

Proof: The proof of this lemma is by an induction on i. For i = 0, we clearly
have tD0 [A1] ≼ tD[A1] sinceD is a (D0, Σ)-clean instance. Moreover, if tD0 [A1] ≈
t′D0 [A2], then tD[A1] ≈ t′D[A2] by Proposition 1.

Suppose 1. and 2. hold for every i < j. If 1. holds for i = j, then 2.
also holds for i = j by Proposition 1. Suppose 1. does not hold for i = j:
tDj [A1] ̸≼ tD[A1]. Since 1. holds for every i < j, the value of tDj [A1] should
be different from tDj−1 [A1]. Therefore, there should be an MD φ : R1[X1] ≈
R2[X2] → R1[A1]
 R2[A2] in Σ and a tuple identifier t′, such that Dj is the
immediate result of enforcing φ on t, t′ in Dj−1. That is, t

Dj−1 [X1] ≈ t′Dj−1 [X2],
tDj−1 [A1] ̸= t′Dj−1 [A2], and tDj [A1] = t′Dj [A2] = mA(t

Dj−1 [A1], t
′Dj−1 [A2]).

Since tDj−1 [X1] ≈ t′Dj−1 [X2], by induction hypothesis, we have tD[X1] ≈ t′D[X2],
and thus, tD[A1] = t′D[A2], because D is a stable instance. Again by induction
hypothesis, tDj−1 [A1] ≼ tD[A1] and t′Dj−1 [A2] ≼ t′D[A2] = tD[A1]. Therefore,
tDj [A1] = mA(t

Dj−1 [A1], t
′Dj−1 [A2]) ≼ tD[A1] since mA takes the least upper

bound, which leads to a contradiction. �

Proof of Proposition 2: Let D,D′ be two (D0, Σ)-clean instances. To prove
the first part of the proposition, notice that, from Lemma 2, we obtain tD[A] ≼
tD

′
[A] and tD

′
[A] ≼ tD[A] for every tuple identifier t and every attribute A.

Thus, the two (D0, Σ)-clean instances D,D′ should be identical.
To prove the second part of the proposition, let φ : R1[X1] ≈ R2[X2] →

R1[A1]
 R2[A2] be an MD in Σ, and let D be the unique (D0, Σ)-clean in-
stance. By Lemma 2, if tD0

1 [X1] ≈ tD0
2 [X2], then tD1 [X1] ≈ tD2 [X2], for every two

tuple identifiers t1, t2. Since D is a stable instance, tD1 [A1] = tD2 [A2], and thus
(D0, D) |= φ and (D0, D) |= Σ. �

15

Definition 7. A set of MDs Σ is interaction-free if for every two MDs φ1, φ2 ∈
Σ, not necessarily distinct, the set of attributes on the right-hand side of φ1 is
disjoint from the set of attributes on the left-hand side of φ2. �

Notice that the two sets of MDs in Examples 2 and 5 are not interaction-free.

Proposition 3. Let Σ be an interaction-free set of MDs. Then, for every in-
stance D0, there is a unique (D0, Σ)-clean instance D. Furthermore, (D0, D) |=
Σ. �

The proof of this proposition immediately follows from the following lemma,
which is similar to Lemma 2.

Lemma 3. Let Σ be an interaction-free set of MDs. Also let D1, . . . , Dk be a se-
quence of instances such thatDk is stable, and for every i ∈ [1, k], (Di−1, Di)[ti1,ti2]
|= φ, for some φ ∈ Σ and tuple identifiers ti1, t

i
2. Let D be a (D0, Σ)-clean in-

stance not necessarily equal to Dk. Then for every i ∈ [0, k], the following holds:

1. For every two tuple identifiers t, t′ and every MD φ ∈ Σ, tDi [X1] = tD0 [X1]
and t′Di [X2] = t′D0 [X2], where X1, X2 are the lists of attributes on the
left-hand side of φ.

2. tDi [A] ≼ tD[A], for every tuple identifier t and every attribute A.

Proof: Notice that 1. trivially holds: since MDs are interaction-free, there is
no MD φ′ ∈ Σ, such that the attributes on the right-hand side of φ′ has an
intersection with X1, X2, and therefore no MD enforcement could change the
values in tDi [X1] or t

′Di [X2] into something different from the original values in
D0.

We prove 2. by an induction on i. For i = 0, we clearly have tD0 [A] ≼ tD[A]
since D is a (D0, Σ)-clean instance. Now suppose 2. holds for i < j, and it does
not hold for i = j: tDj [A] ̸≼ tD[A]. Then there should be an MD φ : R1[X1] ≈
R2[X2] → R1[A]
 R2[A

′] in Σ and a tuple identifier t′, such that Dj is the
immediate result of enforcing φ on t, t′ in Dj−1. That is, t

Dj−1 [X1] ≈ t′Dj−1 [X2],
tDj−1 [A] ̸= t′Dj−1 [A′], and tDj [A] = t′Dj [A′] = mA(t

Dj−1 [A], t′Dj−1 [A′]). Since
tDj−1 [X1] ≈ t′Dj−1 [X2], by part 1 we have tD[X1] ≈ t′D[X2], and thus tD[A] =
t′D[A′], because D is a stable instance. By induction assumption, tDj−1 [A] ≼
tD[A] and t′Dj−1 [A′] ≼ t′D[A′] = tD[A]. Therefore, tDj [A] = mA(t

Dj−1 [A],
t′Dj−1 [A′]) ≼ tD[A], since mA takes the least upper bound, which leads to a
contradiction. �

The chase-like procedure that produces a (D0, Σ)-clean instance makes only
those changes to instanceD0 that are necessary, and are imposed by the dynamic
semantics of MDs. In this sense, we can say that the chase implements minimal
changes necessary to obtain a clean instance.

Another interesting question is whether (D0, Σ)-clean instances are at a min-
imal distance to D0 w.r.t. the partial order ⊑. This is not true in general. For
instance in Example 5, observe that for the two (D0, Σ)-clean instances D2 and

16

D′
3, D2 ⊑ D′

3, but D′
3 ̸⊑ D2, which means D′

3 is not at a minimal distance to
D0 w.r.t. ⊑. We have actually no reason to expect the clean instances to be
minimal in this sense since they are obtained as fixpoints of two different chase
paths. However, both of these clean instances may be useful in query answer-
ing, because, informally speaking, they can provide a lower bound and an upper
bound for the possible clean interpretations of the original dirty instance w.r.t.
the semantic domination. This issue is discussed in the next section.

5 Clean Query Answering

Most of the literature on data cleaning has concentrated on producing a clean
instance starting from a dirty one. However, the problem of characterizing and
retrieving the data in the original instance that can be considered to be clean
has been neglected. In this section we study this problem, focusing on query
answering. More precisely, given an instance D, a set Σ of MDs, and a query Q
posed to D, we want to characterize the answers that are consistent with Σ, i.e.,
that would be returned by an instance where all the MDs have been enforced. Of
course, we have to take into account that there may be several such instances.

This situation is similar to the one encountered in consistent query answering
(CQA) [5, 10, 15, 11], where query answering is characterized and performed on
database instances that may fail to satisfy certain classic integrity constraints
(ICs). For such a database instance, a repair is an instance that satisfies the
integrity constraints and minimally differs from the original instance. For a given
query, a consistent answer (a form of certain answer) is defined as the set of tuples
that are present in the intersection of answers to the query when posed to every
repair. A less popular alternative is the notion of possible answer, that is defined
as the union of all tuples that are present in the answer to the query when posed
to every repair.

A similar semantics for clean query answering under matching dependencies
can be defined. However, the partial order relationship ⊑ between a dirty in-
stance and its clean instances establishes an important difference between clean
instances w.r.t. matching dependencies and repairs w.r.t. traditional ICs.

Intuitively, a clean instance has improved the information that already ex-
isted in the dirty instance and made it more informative and consistent. We
would like to carefully take advantage of this partial order relationship and use
it in the definition of certain and possible answers. We do this by taking the
greatest lower bound (glb) and least upper bound (lub) of answers of the query
over multiple clean instances, instead of taking the set-theoretic intersection [29]
and union.

Definition 8. Let Σ be a set of MDs, D0 be a database instance, and Q be a
query. The certain and possible answers to Q from D0 are defined as follows:

CertQ(D0) = glb⊑{Q(D) | D is a (D0, Σ)-clean instance}, (2)

PossQ(D0) = lub⊑{Q(D) | D is a (D0, Σ)-clean instance}, (3)

respectively. �

17

The glb and lub above are defined on the basis of the partial order ⊑ on sets of
tuples. Since there is a finite number of clean instances for D0, these glb and lub
exist (cf. Theorem 1). In Eq. (2) and (3) we are assuming that each Q(D) is re-
duced (cf. Section 3). By Definition 4 and Lemma 1, CertQ(D0) and PossQ(D0)
are also reduced. Moreover, we clearly have CertQ(D0) ⊑ PossQ(D0).

Remark 1. If the query in Definition 8 is boolean, i.e. a sentence, then, for an
instance D, Q(D) := {yes} when Q is true in D, and {no}, otherwise. We also
assume that no ≼ yes, but yes ̸≼ no, creating a two-valued lattice. Accordingly,
we define {no} ⊑ {yes}. With this definition we can also give a natural account
of boolean queries: CertQ(D0) = {yes} iff Q(D) = {yes} for every (D0, Σ)-
clean instance D. Similarly, PossQ(D0) = {yes} iff Q(D) = {yes} for some
(D0, Σ)-clean instance D.4 �
The following example motivates these choices. It also shows that, unlike some
cases of inconsistent databases and consistent query answering [10], certain an-
swers could be quite informative and meaningful for databases with matching
dependencies.

Example 6. Consider relation R(name, phone, address), and set Σ consisting of
the following MDs:

φ1: R[name, phone, address]≈R[name, phone, address] → R[address]
 R[address]

φ2: R[phone, address]≈R[phone, address] → R[phone]
 R[phone].

Suppose that in the dirty instance D0, shown below, the following similarities
hold:

“John Doe” ≈ “J. Doe”, “Jane Doe” ≈ “J. Doe”,
“(613)123 4567” ≈ “123 4567”, “(604)123 4567” ≈ “123 4567”,
“25 Main St.” ≈ “Main St., Ottawa”, “25 Main St.” ≈ “25 Main St., Vancouver”.

Other non-trivial similarities that are not mentioned do not hold. Moreover, the
matching functions act as follows:

mphone(“(613)123 4567”, “123 4567”) = “(613)123 4567”,
mphone(“123 4567”, “(604)123 4567”) = “(604)123 4567”,
maddress(“Main St., Ottawa”, “25 Main St.”) = “25 Main St., Ottawa”,
maddress(“25 Main St.”, “25 Main St., Vancouver”) = “25 Main St., Vancouver”.

Notice that these values are consistent with (or better, emerge from) the lat-
tices Lphone ,Laddress (implicitly) introduced in Example 4; in the sense that
mA(a, b) = lubLA{a, b}. It is also the case that mA(a, glbLA

{a, b}) = a. Further-
more, notice that, for example, maddress(“25 Main St., Ottawa”, “25 Main St.,
Vancouver”) = ⊤. In Example 4 we also have a lattice Lname , for the Name
attribute, even without having an explicit matching function for it or MDs that
involve it in the right-hand side. We can still use Lname for establishing semantic
domination between attributes values, tuples, and instances.

4 For the same purpose we could also use the classic four-value lattice: ⊥ ≼
false, true ≼ ⊤, like the one in Example 3(c).

18

D0 name phone address
John Doe (613)123 4567 Main St., Ottawa
J. Doe 123 4567 25 Main St.
Jane Doe (604)123 4567 25 Main St., Vancouver

Observe that fromD0 we can obtain two different (D0, Σ)-clean instancesD′, D′′,
depending on the order of enforcing MDs on different pairs of tuples.

D′ name phone address
John Doe (613)123 4567 25 Main St., Ottawa
J. Doe (613)123 4567 25 Main St., Ottawa
Jane Doe (604)123 4567 25 Main St., Vancouver

D′′ name phone address
John Doe (613)123 4567 Main St., Ottawa
J. Doe (604)123 4567 25 Main St., Vancouver
Jane Doe (604)123 4567 25 Main St., Vancouver

Notice that these are the instances D′, D′′ in Example 4.
Now consider the query Q : πaddress(σname=“J. Doe”R), asking for the residen-

tial address of J. Doe. We are interested in a certain answer. It can be obtained
by taking the greatest lower bound of the two answer sets:

Q(D′) = {(“25 Main St., Ottawa”)},
Q(D′′) = {(“25 Main St., Vancouver”)}.

In this case, and according to [8], and using Lemma 1,

glb⊑{Q(D′),Q(D′′)} = {a′ f a′′ | a′ ∈ Q(D′), a′′ ∈ Q(D′′)}
= {(“25 Main St., Ottawa”)f (“25 Main St., Vancouver”)}
= {(glb≼address{“25 Main St., Ottawa”, “25 Main St., Vancouver”})}

= {(“25 Main St.”)}.

We can see that, no matter how we clean D0, we can say for sure that J. Doe is
at 25 Main St. Notice that the set-theoretic intersection of the two answer sets
is empty. If we were interested in all possible answers, we could take the least
upper bound of two answer sets, which would be the union of the two in this
case. �

We define a clean answer to be a pair consisting of an upper and lower bound
of query answers over all possible clean interpretations of a dirty database in-
stance. This definition is inspired by the same kind of approximations used in the
contexts of partial and incomplete information [36, 1], inconsistent databases [5,
10, 15], and data exchange [35]. These upper and lower bounds could provide
useful information about the value of aggregate functions, such as sum and count
[7, 22, 3].

19

Remark 2. Considering Definition 8, and the fact that for a query Q posed to
a database instance D0 and a set of MDs Σ, CertQ(D0) ⊑ PossQ(D0), we can
say that the clean answers to Q are specified by the two bounds or, equivalently,
by the “interval” ⟨CertQ(D0),PossQ(D0)⟩. Notice that in the case of similarity-
preserving matching functions or non-inter-acting matching dependencies, from
the results in Section 4, these bounds would collapse into a single set, which is
obtained by running the query on the unique clean instance. �

5.1 Complexity of Computing Clean Answers

Here we study the complexity of computing clean answers over database in-
stances in presence of MDs. As with incomplete and inconsistent databases, this
problem easily becomes intractable for simple MDs and queries, which moti-
vates the need for developing approximate solutions to the problem. We explore
approximate solutions for queries that behave monotonically w.r.t. the partial
order ⊑ in Section 7.

Theorem 3. (complexity of clean query answering) There are a schema with
two interacting MDs and a relational algebra query, for which deciding whether
a tuple belongs to the certain answer set for an instance D0 is coNP-complete
(in the size of D0).

Proof: Consider relation schema R(C, V, L), the conjunctive boolean query Q :
πL(R)(⊤), and set Σ consisting of two MDs φ1 : R[C] ≈ R[C] → R[C]
 R[C]
and φ2 : R[CV] ≈ R[CV] → R[L]
 R[L]. The domains of attributes, simi-
larity relations, and matching functions are as follows: DomC = {⊥, c, c1, d1, c2,
d2, . . .}, DomV = {⊥, y, x1, x2, . . .}, DomL = {⊥,⊤,+,−}. For every ci, di ∈
DomC , we have ci ≈ di and mC(ci, di) = mC(di, ci) = c. We also have mL(+,−) =
mL(−,+) = ⊤. Notice that similarity relations and match functions are not fully
described here. The full descriptions can be derived using the reflexivity and
symmetry of similarity relations and idempotency, commutativity, and associa-
tivity of match functions.

In this case, we confront the problem of deciding membership of C := {D0 |
CertQ(D0) = {yes}}. Its complement is Cc = {D0 | CertQ(D0) = {no}}. An
instance D0 belongs to Cc iff there is a cleaning chase history h that, starting at
D0, produces a clean instance D that makes Q false. Such a history h describes
the sequence of applications of MDs starting from the initial instance, and it
also includes for each of them the pair of tuples to which it was applied.

A non-deterministic algorithm to do this checking consists of guessing such
a history h, and checking that: (a) it is applied according to the chase rules, (b)
it leads to a stable instance D, and (c) D makes Q false. Notice that when such
a certificate h exists, its size is polynomial in the size of D0, and (a)-(c) can be
all verified in polynomial time.

To prove hardness, we reduce from 3SAT. Let C = C1 ∧ . . . ∧ CN be CNF
formula, where each clause Ci, i ∈ [1, N], is a disjunction of three literals li1 ∨
li2 ∨ li3, and each literal lik, k ∈ [1, 3], is either xj or ¬xj for some variable

20

xj ∈ DomV . We create an instance D0 of R as follows. For every clause Ci

and every literal lik of variable xj in Ci, there is a tuple t with tD0 [C] = ci,
tD0 [V] = xj , t

D0 [L] = + if lik = xj (a positive literal), and tD0 [L] = − if
lik = ¬xj (a negative literal). Moreover, for every clause Ci, there is another
tuple t with tD0 [C] = di, t

D0 [V] = y, and tD0 [L] = +.
We show that the CNF formula C is satisfiable if and only if CertQ(D0) =

{no}. Let C be a satisfiable formula. For each clause Ci, we pick a tuple cor-
responding to the literal that is made true in the satisfying assignment and also
the only tuple with tD0 [C] = di, and enforce the MD φ1 on these two tuples.
It is easy to see that the result would be a stable instance D. In particular,
(D,D) |= φ2 since for each variable the satisfying assignment has picked only
one of the positive or negative literals to be true. Therefore, we do not need to
enforce φ2, which means that ⊤ does not appear for any value of attribute L,
and hence Q(D) = {no} and CertQ(D0) = {no}.

Conversely, if CertQ(D0) = {no}, there is a (D0, Σ)-clean instance D in
which ⊤ does not appear for any value of attribute L. To obtain the clean in-
stance D starting from D0, we need to enforce φ1 once for each clause Ci, as
described above, before we can enforce φ2 on any tuple corresponding to Ci.
Moreover, for every two tuples in D that match the left-hand side of φ2, we
should have identical values for attribute L (either + or −), otherwise we would
get ⊤ when enforcing φ2. Therefore, for each clause, we can make true the literal
corresponding to the tuple on which φ1 has been enforced, and obtain a correct
satisfying assignment. �

6 Monotone Queries

So far we have seen that clean instances are a more informative view of a dirty
instance obtained by enforcing matching dependencies. That is, D0 ⊑ D, for
every (D0, Σ)-clean instance D. From this perspective, it would be natural to
expect that for a positive query, we would obtain a more informative answer if
we pose it to a clean instance instead of to the dirty one. We can translate this
requirement into a monotonicity property for queries w.r.t. the partial order ⊑.

Definition 9. A query Q is ⊑-monotone if, for every pair of instances D,D′,
such that D ⊑ D′, we have Q(D) ⊑ Q(D′). �

Monotone queries have an interesting behavior when computing clean answers.
For these queries, we can under-approximate (over-approximate) certain answers
(possible answers) by taking the greatest lower bound (least upper bound) of all
clean instances and then running the query on the result. Notice that we are not
claiming that these are polynomial-time approximations.

Proposition 4. If D is a finite set of database instances and Q is a ⊑-monotone
query, the following hold:

Q(glb⊑{D | D ∈ D}) ⊑ glb⊑{Q(D) | D ∈ D}, (4)

21

lub⊑{Q(D) | D ∈ D} ⊑ Q(lub⊑{D | D ∈ D}). (5)

Proof: For every instanceD′ ∈ D, we clearly have glb⊑{D | D ∈ D} ⊑ D′, since
Q is a monotone query, it holds Q(glb⊑{D | D ∈ D}) ⊑ Q(D′). Consequently,
Q(glb⊑{D | D ∈ D}) ⊑ glb⊑{Q(D′) | D′ ∈ D}. With a similar argument, it can
be shown that (5) holds. �

Notice that we can apply Proposition 4 to the (finite) class Clean(D0, Σ) of all
clean instances.

As is well known, positive relational algebra queries composed of selection,
projection, Cartesian product, and union, are monotone w.r.t. ⊆. However, the
following example shows that monotonicity w.r.t. ⊑ does not hold even for very
simple positive queries involving selections.

Example 7. (example 6 continued) Consider instance D0 and the two (D0, Σ)-
clean instances D′ and D′′. Let Q be a query asking for names of people residing
at “25 Main St.”, expressed in relational algebra as

πname(σaddress=“25 Main St.”(R)). (6)

Observe that Q(D0) = {(“J. Doe”)}, and Q(D′) = Q(D′′) = ∅. Query Q is
therefore not ⊑-monotone, because we have D0 ⊑ D′, D0 ⊑ D′′, but Q(D0) ̸⊑
Q(D′), Q(D0) ̸⊑ Q(D′′). Notice that CertQ(D0) = ∅. �

6.1 Lattice-sensitive operators

It is not surprising that ⊑-monotonicity is not satisfied by usual relational
queries, in particular, by queries that are monotone w.r.t. set inclusion. After all,
the queries we have considered so far do not even mention the ≼ predicate that
is at the basis of the ⊑ order. Next we will consider queries expressing conditions
in terms of the semantic-domination lattices associated to the attribute domains,
making queries sensitive to these underlying lattices. This is natural and inter-
esting in its own right. Furthermore, we will also achieve ⊑-monotonicity when
we replace relational selections by their natural counterparts in terms of lattice-
based selection operators (cf. Section 6.2 and Example 9). In Section 6.2 these
new operators will be used to relax monotone relational queries.

We introduce the (negation free) language relaxed relational algebra,RA≼, by
providing two selection operators σa≼A and σA1on≼A2 (for comparable attributes
A1, A2), defined as follows.

Definition 10. The language RA≼ is composed of relational operators π,×,∪
(with usual definitions), plus σa≼A, and σA1on≼A2 , defined on an instance D by:

(a) σa≼A(D) = {tD | a ≼A tD[A]} (here a ∈ DomA),

(b) σA1on≼A2(D) = {tD | ∃a ∈ DomA s.t. a ≼A tD[A1], a ≼A tD[A2], a ̸= ⊥}. �

22

For string attributes, for instance, the selection operator σa≼A checks whether
the value of attributeA dominates the substring a, and the join selection operator
σA1on≼A2 checks whether the values of attributes A1, A2 dominate a common
substring different from the lattice bottom element. Notice that queries in the
language RA≼ are not domain independent: The result of posing a query to an
instance depends not only on the values in the active domain of the instance
but also on the domain lattices. And since those lattices emerge from matching
functions, query answering depends on how data cleaning is being implemented.
We claim that this is as it should be, since different implementations of data
cleaning and matching functions can lead to very different answers.

It can be easily observed that all operators in the language RA≼ are ⊑-
monotone: if a tuple t satisfies a selection condition, so does a tuple t′ with t ≼ t′,
and the other operators are ⊑-monotone for the same reason that they are ⊆-
monotone. Thus, every query expression in RA≼ that is obtained by composing
these operators is also ⊑-monotone.

Proposition 5. Let Q be a query in RA≼. For every two instances D,D′ such
that D ⊑ D′, we have Q(D) ⊑ Q(D′).

Proof: We can prove the proposition by an structural induction on the rela-
tional algebra expression. It is enough to show that every operation in RA≼ is
monotone. Projection, cartesian product, and union are clearly monotone opera-
tors w.r.t. ⊑. Now let D,D′ be two instances such that D ⊑ D′. Consider query
Q : σa≼AR for relation R in the schema. Let t be an R-tuple in Q(D). Clearly
t is an R-tuple in D. Therefore, there is an R-tuple t′ in D′ with t ≼ t′. Now it
holds a ≼ tD[A] ≼ t′D

′
[A], and thus t′ is in Q(D′).

Now consider the query Q′ : σA1on≼A2R, and let t be an R-tuple in Q′(D).

Then there is a ∈ DomA s.t. a ≼ tD[A1], a ≼ tD[A2], and a ̸= ⊥. Since D ⊑ D′,
there should be an R-tuple t′ in D′ with t ≼ t′. Now it holds a ≼ tD[A1] ≼
t′D

′
[A1] and a ≼ tD[A2] ≼ t′D

′
[A2]. Therefore, t

′ is in Q(D′). The inductive case
where query Q is σa≼A(Q′) or σA1on≼A2(Q′) for a sub-query Q′ can be similarly
obtained. �

From Propositions 4 and 5 we obtain

Theorem 4. For an instanceD0 subject to a set of MDs, and every ⊑-monotone
queryQ, whether inRA or inRA≼, the following holds:Q(glb⊑(Clean(D0, Σ))) ⊑
CertQ(D0) ⊑ PossQ(D0) ⊑ Q(lub⊑(Clean(D0, Σ))). �

Example 8. (example 6 continued) Consider the monotone query

Q̃ : πname(σ“25 Main St.”≼address
(R)). (7)

23

For the clean instances D′, D′′ it holds: Q̃(D′) = {John Doe, J. Doe, Jane Doe}
and Q̃(D′′) = {J. Doe, Jane Doe}. We obtain

CertQ̃(D0) = glb≼name{Q̃(D′), Q̃(D′′)} = Q̃(D′)f Q̃(D′′)

= Red≼name({b
′ f b′′ | b′ ∈ Q̃(D′), b′′ ∈ Q̃(D′′)}

= Red≼name({John Doef J. Doe, John Doef Jane Doe,

J. Doef J. Doe, J. Doef Jane Doe,

Jane Doef J. Doe, Jane Doef Jane Doe}
= Red≼name({J. Doe, Jane Doe}) = {Jane Doe}).

On the other side, in Example 4 we found that D′ fD′′ is

D′ fD′′ name phone address
John Doe (613)123 4567 Main St., Ottawa
Jane Doe (604)123 4567 25 Main St., Vancouver

Then, we obtain Q̃(glb
⊑
{D′, D′′}) = Q̃(D′fD′′) = {Jane Doe}, which coincides

with CertQ̃(D0). �

In the proof of Theorem 3 we use a monotone relational query. As a consequence,
we obtain the following theorem.

Theorem 5. Certain query answering for⊑-monotone queries is coNP-complete
(in the size of the initial instance D0). �

Corollary 1. Certain query answering for queries in RA≼ is coNP-complete
(in the size of the initial instance D0). �

6.2 Query relaxation

As shown in Example 7, we may not get natural and expected clean answers by
running a usual relational algebra query on an instance subject to matching de-
pendencies. In particular, the usual relational selection operator uses conditions
that are too strong to satisfy. As we saw in Section 6.1 it is not sensitive to the
underlying lattice-theoretic structures on the domain.

We therefore propose to relax the queries, by taking advantage of the un-
derlying ≼A-lattice structures obtained from matching functions, to make them
⊑-monotone. In this way, we achieve two goals: First, the resulting queries pro-
vide more informative answers; and second, we can approximate clean answers
from above (cf. Corollary 2 below).

Now suppose that we have a query Q, written in positive relational algebra,
i.e., composed of π,×,∪, σA=a, σA1=A2 , the last two being hard selection condi-
tions, which is to be posed to an instance D0. After cleaning D0 by enforcing a
set of MDs Σ to obtain a (D0, Σ)-clean instance D, running query Q on D may
no longer provide the expected answer, because some of the values have changed
in D, i.e., they have semantically grown w.r.t. ≼.

24

In order to capture this semantic growth, our query relaxation framework
proposes the following:

Query rewriting methodology: Given a query Q in positive RA, transform
it into a query Q≼ in RA≼, the relaxed rewriting of Q, by:

(a) replacing operator σA=a by σa≼A; and
(b) replacing operator σA1=A2 by σA1on≼A2 .

The following result follows from the construction of the relaxed query.

Proposition 6. For every positive relational algebra query Q and instance D,
we have Q(D) ⊑ Q≼(D), where Q≼ is the relaxed rewriting of Q. �

Corollary 2. For an instance D0 subject to a set of MDs, and every positive
relational algebra query Q, we have CertQ(D0) ⊑ CertQ≼(D0), and PossQ(D0) ⊑
PossQ≼(D0).

Proof: From Proposition 6, {Q(D) | D ∈ Clean(D0, Σ)} ⊑ {Q≼(D) | D ∈
Clean(D0, Σ). Now, taking glb⊑ on both sides, and next also lub⊑ on both sides,
we obtain the two conclusions, respectively. �

Example 9. (example 8 continued) Consider again instancesD0 and the (D0, Σ)-
clean instances D′ and D′′, and query Q asking for names of people residing at
“25 Main St.”, expressed as πname(σaddress=“25 Main St.”(R)). This is query (6)
in Example 7, where we obtained the empty answer from each of D′, D′′. So, in
this case we have CertQ(D0) = PossQ(D0) = ∅, not a very informative outcome.

However, after the relaxation of Q, we obtain the monotone query Q≼ :

πname(σ“25 Main St.”≼address(R)), which is query Q̃ in (7) in Example 8, where
we obtained

Q≼(D
′) = {John Doe, J. Doe, Jane Doe},

Q≼(D
′′) = {J. Doe, Jane Doe},

and also CertQ≼(D0) = {Jane Doe}. This outcome is much more informative
than the one obtained from Q; and, above all, is sensitive to the underlying
information lattice. �

7 Approximating Clean Answers

Given the high computational cost of clean query answering when there are
multiple clean instances, it would be desirable to provide an approximation to
clean answers that is computable in polynomial time. In this section, we are in-
terested in approximating clean answers by producing an under-approximation
of certain answers and an over-approximation of possible answers for a given
⊑-monotone query Q. Remember that, by Theorem 5, we know that clean query
answering for monotone queries is coNP-complete. As a consequence, approx-
imating clean query answering is a natural and relevant problem. That is, we

25

would like to obtain sets of query answers (instances) Q↓(D0),Q↑(D0), such that
Q↓(D0) ⊑ CertQ(D0) and PossQ(D0) ⊑ Q↑(D0).

Since Q is a monotone query, by Proposition 4, we have

Q(glb⊑{D | D is (D0, Σ)-clean}) ⊑ CertQ(D0), (8)

and moreover,

PossQ(D0) ⊑ Q(lub⊑{D | D is(D0, Σ)-clean}). (9)

In consequence, it is good enough to find an under-approximation D↓ for the
greatest lower bound in (8) and an over-approximation D↑ for the least upper
bound in (9); and then pose Q to these approximations to obtain Q↓(D0) and
Q↑(D0).

The reason for having multiple clean instances is that matching dependencies
are not necessarily interaction-free and the matching functions are not necessar-
ily similarity preserving. Intuitively speaking, we can under-approximate the
greatest lower bound of clean instances by not enforcing some of the interacting
MDs. On the other side, we can over-approximate the least upper bound by
assuming that the matching functions are similarity preserving. This would lead
us to keep applying MDs on the assumption that unresolved similarities still
persist. We present two chase-like procedures to compute two instances D↓ and
D↑ corresponding to these approximations.

7.1 Under-approximating the greatest lower bound

To provide an under-approximation for the greatest lower bound of all clean
instances, we provide a new chase-like procedure, which enforces only MDs that
are enforced in every clean instance. These MDs are applicable to those initial
similarities that exist in the original dirty instance, which are never broken by
enforcing other MDs during any chase procedure of producing a clean instance.

Let Σ be a set of MDs, and φ,φ′ ∈ Σ. We say that φ precedes φ′ if the set
of attributes on the left-hand side of φ′ contains the attribute on the right-hand
side of φ. We say that φ interacts with φ′ if there are MDs φ1, . . . , φk ∈ Σ, such
that φ precedes φ1, φk precedes φ′, and φi precedes φi+1 for i ∈ [1, k − 1], i.e.,
the interaction relationship can be seen as the transitive closure of precedence
relationship.

Let D0 be a dirty database instance. Let φ : R1[X1] ≈ R2[X2] → R1[A1]

R2[A2] be an MD in Σ. We say φ is freshly applicable on t1, t2 in D0 if tD0

1 [X1] ≈
tD0
2 [X2], and tD0

1 [A1] ̸= tD0
2 [A2]. We say φ is safely applicable on t1, t2 in D0

if φ is freshly applicable on t1, t2 in D0, and for every φ′ ∈ Σ that interacts
with φ, φ′ is not freshly applicable on t1, t3 or t2, t3 in D0 for any tuple t3 (see
Example 10).

Definition 11. For an instance D0 and a set of MDs Σ, an instance Dk is
(D0, Σ)-under clean if there exists a finite sequence of instances D1, . . . , Dk−1,
such that

26

1. For every i ∈ [1, k], (Di−1, Di)[ti1,ti2] |= φi, for some φi ∈ Σ and tuple identi-

fiers ti1, t
i
2, such that φi is safely applicable on ti1, t

i
2 in D0.

2. For every MD φ : R1[X1] ≈ R2[X2] → R1[A1]
 R2[A2] in Σ and tuples
t1, t2, such that φ is safely applicable on t1, t2 in D0, we have tDk

1 [A1] =
tDk
2 [A2]. �

Definition 11 characterizes a chase-based procedure that keeps enforcing MDs
that are safely applicable in the original dirty instance until all such MDs are
enforced. Notice that an under clean instance may not be stable. Moreover, safely
applicable MDs never interfere with each other, in the sense that enforcing one
of them never breaks the initial similarities in the dirty instance that are needed
for enforcing other safely applicable MDs.

Proposition 7. For every instanceD0 and every set of MDsΣ, there is a unique
(D0, Σ)-under clean instance D↓. �

The proof of this proposition is very similar to that of Proposition 3. It imme-
diately follows from the following lemma.

Lemma 4. Let D1, . . . , Dk be a sequence of instances for deriving an (D0, Σ)-
under clean instance D↓ (as in Definition 11). Let D be any (D0, Σ)-under clean
instance, not necessarily equal to D↓. Then, for every i ∈ [0, k], it holds

1. tDi
1 [X1] = tD0

1 [X1] and tDi
2 [X2] = tD0

2 [X2], for every tuple identifiers t1, t2,
where X1, X2 are the lists of attributes on the left-hand side of φi.

2. tDi [A] ≼ tD[A], for every tuple identifier t and every attribute A.

Proof: For 1., suppose that for some i ∈ [0, k], tDi
1 [X1] ̸= tD0

1 [X1]. Then there
exists j < i, tuple t3, and MD φj ∈ Σ, such that (Dj−1, Dj)[t1,t3] |= φj , with
attribute B1 ∈ X1 on the right-hand side of φj . MD φj has to be safely appli-
cable on t1, t3 in D0, which means that φi cannot be safely applicable on t1, t2
in D0, a contradiction. The proof of 2. is similar to the proof of 2. in Lemma 3. �

Clearly, an under clean instance D↓ can be computed in polynomial time in the
size of the dirty instance D0. To construct it, we first need to identify safely
applicable MDs in D0, and then enforce them in any arbitrary order until no
such MDs can be enforced. Next we show that D↓ is an under-approximation
to every (D0, Σ)-clean instance. Intuitively, this is because D↓ is obtained by
enforcing MDs that are enforced in every chase-based procedure of producing a
clean instance.

Proposition 8. (soundness of under-approximation) For every instance D0 and
every set of MDs Σ, for the (D0, Σ)-under clean instance D↓ and every (D0, Σ)-
clean instance D, it holds D↓ ⊑ D. �

The proof of this proposition follows from the following two lemmas.

27

Lemma 5. Let D0 be an instance subject to a set of MDs Σ, and D be
a (D0, Σ)-clean instance. For every two tuples t1, t2 and MD φ : R1[X1] ≈
R2[X2] → R1[A1]
 R2[A2] in Σ, such that φ is safely applicable on t1, t2 in
D0, it holds t

D
1 [X1] = tD0

1 [X1] and tD2 [X2] = tD0
2 [X2]. �

Lemma 6. Let D0 be an instance subject to a set of MDs Σ, D be a (D0, Σ)-
clean instance, D↓ be the (D0, Σ)-under clean instance; and D1, . . . , Dk be a
sequence of instances for deriving D↓ (as in Definition 11). Then, for every
i ∈ [0, k], it holds tDi [A] ≼ tD[A], for every tuple identifier t and every attribute
A. �

The proof of this lemma is by induction on i; and, not surprisingly, is very
similar to the proof of 2. in Lemma 3, which applies to interaction-free sets of
MDs. From Proposition 8 we immediately obtain

Corollary 3. If D↓ is a (D0, Σ)-under clean instance, then

D↓ ⊑ glb⊑(Clean(D0, Σ)). �

Notice that an arbitrary (D0, Σ)-clean instance D may not be a sound under-
approximation for every other (D0, Σ)-clean instances D′, because D ⊑ D′ may
not hold.

From Theorem 4 and Corollary 3 we immediately obtain the following result.

Theorem 6. If D↓ is a (D0, Σ)-under clean instance, then for every monotone
query Q, it holds Q(D0) ⊑ Q(D↓) ⊑ Q(glb⊑(Clean(D0, Σ))) ⊑ CertQ(D0). �

Example 10. (Example 5 continued) For the given instance D0 and set of MDs
Σ, observe that MD φ1 is safely applicable on the first and second tuples in D0.
Moreover, φ2 is freshly applicable, but not safely applicable on the second and
third tuples. Accordingly, we obtain (D0, Σ)-under clean instance D↓, shown
below, by enforcing φ1 on the first two tuples.

D↓ A B C
a1 ⟨b1, b2⟩ c1
a2 ⟨b1, b2⟩ c2
a3 b3 c3

Notice that for the two (D0, Σ)-clean instances D2, D
′
3 in Example 5, we have

D↓ ⊑ D2 and D↓ ⊑ D′
3. Also notice that D↓ is not a stable instance. Now

consider the query Q : πC(σA=a2R). This query behaves monotonically for our
purpose, because the values of attribute A are not changing by enforcing MDs. If
we poseQ toD↓, we obtainQ(D↓) = {c2}. Observe that CertQ(D0) = {⟨c1, c2⟩},
and thus Q(D↓) provides an under-approximation for CertQ(D0). This example
also shows that an arbitrary clean instance, D′

3 here, may not provide a sound
approximation to certain answer since Q(D′

3) = {⟨c1, c2, c3⟩} ̸⊑ CertQ(D0). �

28

7.2 Over-approximating the least upper bound

To provide an over-approximation for the least upper bound of all clean in-
stances, we modify every similarity relation so that the corresponding match-
ing function becomes similarity preserving. For a similarity relation ≈A and
the corresponding matching function mA, we define ≈∗

A as follows: For every
a, a′ ∈ DomA, a ≈∗

A a′ iff there is a′′ ∈ DomA, such that a ≈A a′′ and
mA(a

′, a′′) = a′. Given a set of MDsΣ, we obtainΣ∗ by replacing every similarity
relation ≈A in the MDs by ≈∗

A.

Notice that the relation ≈∗
A is well defined in the sense that a and a′ are

interchangeable. Secondly, it should be obvious that the matching function mA

is similarity preserving w.r.t. the relation ≈∗
A.

Definition 12. For an instance D0 and a set of MDs Σ, an instance D↑ is
(D0, Σ)-over clean if it is (D0, Σ

∗)-clean. �

Proposition 9. For every instanceD0 and every set of MDsΣ, there is a unique
(D0, Σ)-over clean instance D↑. Moreover, D↑ can be computed in polynomial
time in the size of D0.

Proof: The first claim follows from Proposition 2, because we are transforming
a set Σ of MDs into a set Σ∗ that uses similarity preserving matching functions.
For the second claim, to construct D↑, we first need to obtain Σ∗, as described
above, and enforce MDs in Σ∗ in any arbitrary order until getting a stable in-
stance w.r.t. Σ∗. �

Next we show that D↑ is an over-approximation for every (D0, Σ)-clean instance.
Intuitively, this is because D↑ is obtained by enforcing (at least) all MDs that
are present in any chase-like procedure of producing a clean instance.

Proposition 10. (completeness of over-approximation) Let D0 be an instance
subject to a set of MDs. For the (D0, Σ)-over clean instance D↑ and every
(D0, Σ)-clean instance D, it holds D ⊑ D↑. �

Notice again that an arbitrary (D0, Σ)-clean instance D may not be an over-
approximation for every other (D0, Σ)-clean instance D′, because D′ ⊑ D may
not hold.

From Propositions 10 and 4, we immediately obtain the following result.

Theorem 7. Let D0 be an instance subject to a set of MDs, and D↑ be the
(D0, Σ)-over clean instance. Then, for every monotone query Q, it holds

PossQ(D0) ⊑ Q(lub⊑(Clean(D0, Σ))) ⊑ Q(D↑). �

Example 11. (Example 10 continued) By assuming that old similarities hold
after applying matching functions (e.g., ⟨b1, b2⟩ ≈∗ b3), we obtain the (D0, Σ)-
over clean instance D↑ shown below.

29

D↑ A B C
a1 ⟨b1, b2⟩ ⟨c1, c2, c3⟩
a2 ⟨b1, b2⟩ ⟨c1, c2, c3⟩
a3 b3 ⟨c1, c2, c3⟩

Notice that for the two (D0, Σ)-clean instances D2, D
′
3 in Example 5, we have

D2 ⊑ D↑ and D′
3 ⊑ D↑. If we pose query Q : πC(σA=a2R) to D↑, we ob-

tain Q(D↑) = {⟨c1, c2, c3⟩}. Observe that PossQ(D0) = {⟨c1, c2, c3⟩}, and thus
Q(D↑) provides an over-approximation for PossQ(D0). It can be seen that an
arbitrary (D0, Σ)-clean instance, say D2 for instance, may not provide a com-
plete approximation to possible answer since PossQ(D0) ̸⊑ Q(D2) = {⟨c1, c2⟩}.
�

8 The Swoosh’s Entity Resolution Connection

In [9], a generic conceptual framework for entity resolution is introduced. It
considers a general match relation M , which is close to our similarity predicates
≈, and a general merge function, µ, which is close to our m functions. In this
section we establish a connection between our MD framework and Swoosh.

A full comparison between our framework and Swoosh has its subtleties due
to the differences between these frameworks, for example: (a) Swoosh works at
the record level, and MDs at the attribute level. (b) Swoosh does not use tuple
identifiers and some tuples may be discarded, those that are dominated by others
in the instance. The main problem is (a).

We make a comparison, or better, we reconstruct Swoosh in the MD frame-
work, by considering first, in Section 8.1, a general, attribute-free version of
Swoosh, and next, in Section 8.2, a particular – but still general enough – case
of Swoosh, namely the combination of the union case with merge domination
that does consider attributes. These embeddings of Swoosh into our MD frame-
work give additional evidence for the strength of the latter.

8.1 MDs and general Swoosh

Here we follow Swoosh’s general abstraction, where the match relation M and
the merge function µ are defined at the record level. That is, when two records
in a database instance are matched (found similar), we can merge them into
a new record. We keep doing this until the entity resolution of the instance is
computed. In this section we establish a connection between our MD framework
and Swoosh framework.

Swoosh views a database instance I as a finite set of records I = {r1, . . . , rn}
taken from an infinite domain of records Rec. Relation M maps Rec × Rec into
{true, false}. When two records are similar and have to be merged, M takes the
value true. Moreover, µ is a partial function from Rec×Rec into Rec. It produces
the merge of two records into a new record, and is defined only when M takes
the value true.

30

Given an instance I, the merge closure of I is defined as the smallest set of
records Ī, such that I ⊆ Ī, and, for every two records r1, r2 for whichM(r1, r2) =
true, we have µ(r1, r2) ∈ Ī. The merge closure of an instance is unique and can
be obtained by adding merges of matching records until a fixpoint is reached.

Swoosh considers a general domination relationship between two records
r1, r2, written as r1 ≼s r2, which means the information in r1 is subsumed by
the information in r2. Then for two instances I1, I2, we write I1 ⊑s I2 whenever
every record of I1 is dominated by some record in I2. Notice, we use the sub-
script s for ≼s and ⊑s in Swoosh to avoid confusion with the ≼ and ⊑ symbols
introduced and used in the previous sections.

For an instance I, an entity resolution is defined as a subset-minimal set of
records I ′, such that I ′ ⊆ Ī and Ī ⊑s I ′. It is shown that for every instance I,
there is a unique entity resolution I ′ [9], which can be obtained from the merge
closure by removing records that are dominated by other records.

Here we are interested in the Swoosh case where match relation M is reflex-
ive and symmetric, and the merge function µ is idempotent, commutative, and
associative. We then use the domination order imposed by the merge function,
which is defined by: r1 ≼s r2 if and only if µ(r1, r2) = r2. Under these assump-
tions, the merge closure and therefore the entity resolution of every instance are
finite [9].5

Now we reconstruct the Swoosh framework using matching dependencies. We
assume that records in a Swoosh instance I are taken from a relation R(A) with
the single attribute A. This is to make sure that comparing and merging records
are done at the record level. Attribute A in the relation R(A) could be thought
of as a complex-type attribute containing multiple atomic attributes of a record
(cf. Section 8.2). Notice that this is an abstraction and not a restriction. That
is, we can still evaluate the similarity of two records based on the similarity of
individual atomic attribute values, and merge two records by merging pairwise
atomic attribute values.

Given a Swoosh instance I = {r1, . . . , rn}, we introduce tuple identifiers, and
construct a relational instance D0 = {ti | ti is a unique tuple identifier and ti[A]
= ri}. Furthermore, we let the set of matching dependencies Σ contain only one
MD:

φ : R[A] ≈ R[A] → R[A]
 R[A].

We let the similarity relation ≈ be equal to Swoosh’s match relation M , and the
matching function mA to be equal to Swoosh’s merge function µ. Clearly, our
partial orders ≼ and ⊑ used in the previous sections now precisely coincide with
Swoosh’s partial orders ≼s and ⊑s. We therefore drop the subscript s hereafter.

Example 12. Consider a Swoosh instance I = {r1, r2, r3}, where two similarities
hold: M(r1, r2) = true and M(r2, r3) = true. Let ⟨r1, r2⟩ and ⟨r2, r3⟩ denote
µ(r1, r2) and µ(r2, r3), resp. Also assume thatM(⟨r1, r2⟩, ⟨r2, r3⟩) = true; and let

5 Finiteness is shown for the case when match and merge have the representativity
property (equivalent to being similarity preserving) in addition to other properties.
However, the proof in [9] can be modified so that representativity is not necessary.

31

⟨r1, r2, r3⟩ denote µ(⟨r1, r2⟩, ⟨r2, r3⟩), the result of merging ⟨r1, r2⟩ and ⟨r2, r3⟩.
The figure below shows instance I, its merge closure Ī, and its entity resolution
I ′.

I
r1
r2
r3

Ī
r1
r2
r3

⟨r1, r2⟩
⟨r2, r3⟩

⟨r1, r2, r3⟩

I ′

⟨r1, r2, r3⟩

To illustrate the computations involved, notice that, e.g., µ(r1, ⟨r1, r2⟩) = µ(⟨r1,
r1⟩, r2) = µ(r1, r2) = ⟨r1, r2⟩. Then, r1 ≼ ⟨r1, r2⟩. Similarly, µ(⟨r1, r2⟩, ⟨r1, r2, r3⟩)
= ⟨r1, r2, r3⟩, and then, ⟨r1, r2⟩ ≼ ⟨r1, r2, r3⟩.

As described above, from I, we construct an instance D0 of R(A), and we
let Σ contain the single MD φ : R[A] ≈ R[A] → R[A]
 R[A]. The follow-
ing similarities hold r1 ≈ r2, r2 ≈ r3, and ⟨r1, r2⟩ ≈ ⟨r2, r3⟩. We also have
mA(r1, r2) = ⟨r1, r2⟩, mA(r2, r3) = ⟨r2, r3⟩, and mA(⟨r1, r2⟩, ⟨r2, r3⟩) = ⟨r1, r2, r3⟩.
With these elements we obtain two (D0, Σ)-clean instances D′ and D′′:6

D0 A
t1 r1
t2 r2
t3 r3

D′ A
t1 ⟨r1, r2⟩
t2 ⟨r1, r2⟩
t3 r3

D′′ A
t1 r1
t2 ⟨r2, r3⟩
t3 ⟨r2, r3⟩ �

We can naturally compare a Swoosh instance with an instance with tuple iden-
tifiers w.r.t. partial order ⊑. In the example above, D′ ⊑ I ′ holds, because for
every tuple tD

′
(in D′), there is a record r in I ′ such that t[A]D

′ ≼ r. This sug-
gests a relationship between the unique Swoosh entity resolution I ′ of instance
I and an arbitrary (D0, Σ)-clean instance D.

Theorem 8. LetD0 andΣ be associated to record instance I. For every (D0, Σ)-
clean instance D, and the Swoosh entity resolution I ′, it holds D ⊑ I ′.

For the proof of Theorem 8, we need the following lemma.

Lemma 7. Let D0 and Σ = {φ} be associated to record instance I, and let
D1, . . . , Dk be a sequence of instances such that, for every i ∈ [1, k], (Di−1,
Di)[ti1,ti2] |= φ for two tuple identifiers ti1, t

i
2. Let Ī be the merge closure of I.

Then for every i ∈ [0, k], Di ⊆ Ī holds. More precisely, for every tuple t in Di,
there is a record r in Ī such that t[A] = r.

Proof: The proof of this lemma is by an induction on i. For i = 0, we have
I ⊆ Ī by definition of merge closure, and thus D0 ⊆ Ī clearly holds. Sup-
pose that for j < i, Dj ⊆ Ī holds. Now consider the instance Di and let

6 Notice that the single MD does not form an interaction-free set of MDs.

32

t1, t2 be the only two tuples that have changed during the transition from

Di−1 to Di. That is (Di−1, Di)[t1,t2] |= φ. We then have t
Di−1

1 [A] ≈ t
Di−1

2 [A],

and tDi
1 [A] = tDi

2 [A] = mA(t
Di−1

1 [A], t
Di−1

2 [A]). Moreover, by the induction hy-

pothesis, t
Di−1

1 [A], t
Di−1

2 [A] are equal to two records r, r′ in Ī, respectively, and
M(r, r′) = true (the two records are similar and matched). By definition of
merge closure, Ī should contain a record ⟨r, r′⟩ corresponding to the result of
merging r, r′. Notice that tDi

1 [A] = tDi
2 [A] = ⟨r, r′⟩ since the result of applying

the matching function mA to t
Di−1

1 [A], t
Di−1

2 [A] is the same as the result of ap-
plying the merge function µ to r, r′. Thus, Di ⊆ Ī. �

Proof of Theorem 8: Since D is a clean instance, there is a chase sequence for
it. From Lemma 7, we obtain D ⊆ Ī, where Ī is the merge closure of instance I.
By definition, for the merge closure Ī and the entity resolution I ′ it holds Ī ⊑ I ′.
Thus, D ⊑ I ′ holds. �

From Theorem 8, we immediately conclude that the Swoosh entity resolution I ′

dominates the least upper bound of all clean instances. That is, lub⊑(Clean(D0,
Σ)) ⊑ I ′. An interesting question is whether the reverse is also true, i.e., whether
the entity resolution is actually equivalent to the least upper bound of all clean
instances. The following example shows that this does not hold.

Example 13. (example 12 continued) Consider the instances D0, D
′ and D′′.

The following instance shows the result of computing the least upper bound of
D′ and D′′, which is obtained by taking the union of the two instances and
removing tuples that are dominated by other tuples.

D′ gD′′ A
⟨r1, r2⟩
⟨r2, r3⟩

Comparing this instance with Swoosh entity resolution I ′ in Example 12, we can
easily observe that D′gD′′ ⊑ I ′, but I ′ ̸⊑ D′gD′′ (assuming that ⟨r1, r2, r3⟩
is different from ⟨r1, r2⟩ and ⟨r2, r3⟩). �

Corollary 4. For D0, Σ associated to a record instance I, the Swoosh entity
resolution I ′ is an over-approximation for the least upper bound of all clean in-
stances, i.e., lub⊑(Clean(D0, Σ)) ⊑ I ′. However, the reverse does not necessarily
hold. �

8.2 MDs and the union case for Swoosh

In this section we assume that records as conceived by Swoosh correspond to
ground tuples of a single relational predicate, say R. In consequence, Rec denotes
the set of ground tuples of the form R(s̄). If the attributes of R are A1, . . . , An,
then the component si of s̄ belongs to an underlying domain DomAi .

33

As in the previous section, relation M maps Rec×Rec into {true, false}; and
µ is a partial function from Rec×Rec into Rec. It is defined only when M takes
the value true.

Now, the union case for Swoosh [9, sec. 2] arises when the merge function
µ produces the union of the records, defined as the component-wise union of
attribute values. This latter union makes sense if the attribute values are sets of
values from an even deeper data domain.

This case can be seen as a special case of the general case described in Section
8.1, by considering the generic auxiliary attribute A there as a complex attribute
that represents the attributes A1, . . . , An we are considering here. Due to the
intrinsic interest in, and subtleties and technical details of the union case, we
are presenting here a direct MD-based reconstruction of Swoosh for this case.

For each of the n attributes Ai of R, we consider a possibly denumerable do-
mainDAi (repeated attributes in R share the same domain, but it is conceptually
simpler to assume that attributes are all different). Each DAi

has a similarity
relation ≈Ai , which is reflexive and symmetric. Now, for each attribute Ai of R,
its domain becomes DomAi := ∪k∈NPk(DAi), where k > 0 and Pk(DAi) denotes
the set of subsets of DAi of cardinality k. Thus, the elements of Rec are of the
form R(s1, . . . , sn), with each si being a set that belongs to DomAi . An initial
instance D, before any entity resolution, will be a finite subset of Rec, and each
attribute value in a record, say si for Ai, will be a singleton of the form {ai},
with ai ∈ DAi .

The ≈Ai relation on DAi induces a similarity relation ≈{Ai} on DomAi , as
follows: s1 ≈{Ai} s2 holds iff there exist a1 ∈ s1, a2 ∈ s2 with a1 ≈Ai a2.
Each ≈{Ai} is reflexive and symmetric. (s ≈{Ai} s, because there is a ∈ s
and ≈Ai is reflexive; and symmetry follows from the symmetry of ≈Ai .) We
also consider matching functions m{Ai} : DomAi × DomAi → DomAi defined
by m{Ai}(s1, s2) := s1 ∪ s2. The structures ⟨DomAi ,≈{Ai},m{Ai}⟩ have all the
properties described in Sections 2 and 3.

Proposition 11. Each matching function m{Ai} is total, idempotent, commu-
tative and associative. It is also similarity preserving w.r.t. the ≈{Ai} similarity
relation.

Proof: In fact: If s1 ≈{A} s2, then there are a1 ∈ s1, a2 ∈ s2 with a1 ≈A a2.
Since a2 also belongs to s2 ∪ s3, for every s3 ∈ DomA, it holds s2 ∪ s3 =
m{A}(s2, s3) ≈{A} s1. �

Now, based on [9] (cf. proof of proposition 2.4 in it), we are ready to define the
“union match and merge case” for Swoosh. Consider two elements of Rec, say
r1 = R(s̄1), r2 = R(s̄2): (a) M(r1, r2) := true iff for some i, s1i ≈{Ai} s2i . (b)
When M(r1, r2) := true, µ(r1, r2) := R(m{A1}(s

1
1, s

2
1), . . . , m{An}(s

1
n, s

2
n)).

34

Function M is reflexive and commutative, which follows from the reflexivity
and symmetry of the ≈{A}. From [9, Prop. 2.4] we obtain that the combination
of M and µ has Swoosh’s ICAR properties, namely:7

Is: Idempotency: ∀r ∈ Rec,M(r, r) holds, and µ(r, r) = r.
Cs: Commutativity: ∀r1, r2 ∈ Rec,M(r1, r2) iff M(r2, r1). AlsoM(r1, r2) implies

µ(r1, r2) = µ(r2, r1).
As: Associativity: ∀r1, r2, r3 ∈ Rec, if µ(r1, µ(r2, r3)) and µ(µ(r1, r2), r3) exist,

then they are equal.
Rs: Representativity: ∀r1, r2, r3, r4 ∈ Rec, if r3 = µ(r1, r2) and M(r1, r4) holds,

then M(r3, r4) also holds.

Now, Swoosh framework with M and µ on DomA can be reconstructed by means
of the following set ΣS of MDs: For 1 ≤ i, j ≤ n,

R[Ai] ≈{Ai} R[Ai] −→ R[Aj]
 R[Aj]. (10)

The RHS of (10) has to be applied, as expected, with the matching functions
m{Aj}. From Propositions 2 and 11, we obtain that there is a single (D,ΣS)-clean
instance Dm. Consistently with our MD framework, we will assume that records
have tuple identifiers. Actually, in order to make the comparison between the
two frameworks clearer, in this section and for the MD framework, we will use
explicit tuple ids. They will be positioned in the first, extra attribute of each
relation. When the MDs are applied, only the new version of a tuple is kept.

In the case of Swoosh, the application of µ generates a new, merged tuple,
but the old ones may stay. However, Swoosh applies a pruning process based
on an abstract domination partial order between records, ≼S . The framework
concentrates mostly on the merge domination relation ≤, which is defined by:

r1 ≤ r2 :⇐⇒ M(r1, r2) = true and µ(r1, r2) = r2. (11)

The IsCsAsRs properties make≤ a partial order with some pleasant and expected
monotonicity properties [9].

According to Section 3, we may consider each of the partial orders ≼{Ai} on
the DomAi : s ≼{Ai} s′ :⇔ m{Ai}(s, s

′) = s′. They induce a ≼ relation on Rec
(cf. Definition 2).

Proposition 12. The general dominance relation ≼ on Rec coincides with the
merge domination relation ≤ obtained from M and µ.

Proof: For ≼{A} on DomA it holds: s ≼{A} s′ :⇔ m{A}(s, s
′) = s′ ⇔ s∪ s′ =

s′ ⇔ s ⊆ s′. Now, for records r1 = R(s11, . . . , s
1
n), r2 = R(s21, . . . , s

2
n), it holds

r1 ≼ r2 :⇔ for every i, s1i ≼{A} s2i ⇔ for every i, s1i ⊆ s2i .
On the other side, from (11) we obtain that, for records r1 = R(s11, . . . , s

1
n), r2 =

R(s21, . . . , s
2
n), it holds: r1 ≤ r2 ⇔ M(r1, r2) = true and for every i, s1i ⊆ s2i .

7 We use the superscript s, for Swoosh, to distinguish them from the properties listed
in Section 3.

35

Since the sji are non-empty, the first condition on the RHS is implied by the
second one. �

Given a dirty instance D, it is a natural question to ask about the relation-
ship between the clean instance Dm obtained under our approach, by enforc-
ing the above MDs, and the entity resolution instance Ds obtained directly
via Swoosh. The entity resolution Ds is defined in [9, Def. 2.3] through the
conditions: 1. Ds ⊆ D̄. 2. D̄ ≤ Ds. 3. Ds is ⊆-minimal for the two previ-
ous conditions. Here, the partial-order ≤ between instances is induced by the
partial order ≤ between records as in Definition 2. Instance D̄ is the merge clo-
sure of D, i.e., the ⊆-minimal instance that includes D and is closed under M :
r1, r2 ∈ D̄ and M(r1, r2) = true ⇒ µ(r1, r2) ∈ D̄.

Notice that, in order to obtain Dm, tuple identifiers are introduced and kept,
whereas under Swoosh, there are no tuple identifiers and new tuples are gen-
erated (via µ) and some are deleted (those ≤-dominated by other tuples). In
consequence, the elements of D and Dm under the MD framework are of the
form R(t, s1, . . . , sn), and those in D and Ds under Swoosh are the records r
of the form R(s1, . . . , sn). Since t is a tuple identifier, for every R(t, s1, . . . , sn),
r(t) denotes the record R(s1, . . . , sn).

Proposition 13. (a) For every r in Ds there is a tuple in Dm with tuple iden-
tifier t, such that r(t) = r.
(b) For every tuple t ∈ Dm, there is a record r ∈ Ds, such that r(t) ≤ r.

Proof: (sketch) As a preliminary and useful remark, let us mention that the
IsCsAsRs properties make ≤ a partial order with the following monotonicity
properties [9]: (A) M(r1, r2) = true =⇒ r1 ≤ µ(r1, r2) and r2 ≤ µ(r1, r2). (B)
r1 ≤ r2 and M(r1, r) = true =⇒ M(r2, r) = true. (C) r1 ≤ r2 and M(r1, r) =
true =⇒ µ(r1, r) ≤ µ(r2, r). (D) r1 ≤ s, r2 ≤ s and M(r1, r2) = true =⇒
µ(r1, r2) ≤ s.

More specifically for our proof, first notice that every application of µ can
be simulated by a finite sequence of enforcement of the MDs in (10). More pre-
cisely, given two tuples R(t1, s̄

1), R(t2, s̄
2) in an instance D, such that M(r(t1),

r(t2)) holds, then µ(r(t1), r(t2)) = r(t) for some tuple R(t, r(t)) of the form
m{Ai1} · · ·m{Ain}(R(t1, s̄

1), R(t2, s̄
2)), i.e., obtained by enforcing the MDs. Fur-

thermore, it holds r(t1) ≤ r(t) and r(t2) ≤ r(t).
Conversely, every enforcement of an MD in (10) is dominated by a tuple ob-

tained through the application of µ. More precisely, for tuples R(t1, s̄
1), R(t2, s̄

2)
in an instance D for which s1j ≈{Aj} s2j holds, it also holds M(t1(r), t2(r)), and

m{Aj}(R(t1, s̄
1), R(t2, s̄

2)) ≤ R(t, µ(t1(r), t2(r)) for some tuple id t (actually, t1
or t2).

Now, for (a), consider Dm↓ := {r(t) | R(t, s̄) ∈ Dm} (from where duplicates
are eliminated). It is good enough to prove that Ds ⊆ Dm↓. For this it suffices
to prove that Dm↓ satisfies conditions 1. and 2. on the entity resolution instance,
namely: 1. Dm↓ ⊆ D̄ and 2. D̄ ≤ Dm↓. The first condition follows from the
definition (or construction) of Dm as a stable instance obtained by minimally

36

applying the MDs and when justified only. The second condition follows from
the simulation and properties of µ as a finitely long enforcement of the MDs.

Now (b) follows from the domination of a tuple obtained by applying one
MD by a tuple obtained applying µ as described above. �

This result shows that in the special case of Swoosh, where the merge function
takes the union of two attribute value sets, the clean instance resulting from of
our chase procedure with matching dependencies is equivalent to the Swoosh
entity resolution (more precisely, they are equivalent if we look at the reduced
version of the clean instance). This is an interesting special case of Corollary 4,
where the least upper bound of clean instances is dominated by Swoosh entity
resolution, and the reverse does hold.

9 Discussion

9.1 Associativity of matching functions

Associativity of a matching function is a natural assumption, not only because
without it we cannot have a lattice and a terminating chase, etc., but also be-
cause it is an intuitive requirement in any entity resolution process such as ours.
That is, when during the process we identify three or more data values that are
representing the same entity, the result of collapsing them into one value should
not depend on the order in which we visit those values.

We have made the assumption of associativity, and have developed our theo-
retical framework under it. In particular, associativity is crucial for finite termi-
nation (cf. Example 14 below). It could be interesting to do something similar
without that assumption (but possibly with other assumptions).

Example 14. Consider the schema Salary(name, amount) and the matching de-
pendency Salary [name] ≈ Salary [name] → Salary [amount]
 Salary [amount],
Assume that the matching function is defined by mamount (n1, n2) := Avg(n1, n2).

Starting from the instance D0 on
the right-hand side, different computa-
tions are possible, depending on the or-
der in which the MD is applied.

Salary name amount
J. Doe 5000
J. Doe 3000
J. Doe 2000

The following is a possible computation:

Salary name amount
J. Doe 5000
J. Doe 3000
J. Doe 2000

7→

Salary name amount
J. Doe 4000
J. Doe 4000
J. Doe 2000

7→

Salary name amount
J. Doe 4000
J. Doe 3000
J. Doe 3000

· · ·

The underlined values indicating the tuples chosen for matching. An infinite (but
converging) computation is created in this case. �

37

Still in our setting, if a matching function is not associative, e.g. if it takes the
average of two numbers, we can always use the union of values and apply the
aggregate function at the end. The details deserve further investigation. (Cf. [18,
sec. 4.1] for a related discussion around the “union class”.)

Example 15. (example 14 continued) If instead of applying mamount as above, we
apply a new matching function defined by m ′

amount
(n1, n2) := {n1, n2}, we obtain

a clean instance after a finite computation:

Salary name amount
J. Doe 5000
J. Doe 3000
J. Doe 2000

7→

Salary name amount
J. Doe {5000, 3000}
J. Doe {5000, 3000}
J. Doe 2000

7→

Salary name amount
J. Doe {5000, 3000}
J. Doe {5000, 3000, 2000}
J. Doe {5000, 3000, 2000}

7→

Salary name amount
J. Doe {5000, 3000,2000}
J. Doe {5000, 3000, 2000}
J. Doe {5000, 3000, 2000}

Now, if we are interested in average
as an aggregate function, we can apply
it to the set-value in common, namely
{5000, 3000, 2000}, obtaining the in-
stance on the right-hand side.

Salary name amount
J. Doe 3333.3
J. Doe 3333.3
J. Doe 3333.3

�
The next example shows a non-convergent behavior in the absence of asso-

ciativity.

Example 16. Consider the schema R(A,B) and the matching dependency φ :
R[A] ≈ R[A] → R[B]
 R[B]. In the following instance D0, assume that
a1 ≈ a2 and a2 ≈ a3. Furthermore, let mB be an idempotent, commutative,
and non-associative matching function, partially defined as follows:

mB(b1, b2) = mB(b2, b1) = b4, mB(b3, b4) = mB(b4, b3) = b2,
mB(b2, b4) = mB(b4, b2) = b1, mB(b1, b4) = mB(b4, b1) = b3,
mB(b2, b3) = mB(b3, b2) = b1.

Observe that the chase sequence that starts from D0 and alternates between
enforcing φ on the first two tuples and the last two tuples gets into a non-
terminating loop (D6 is the same as D3).

D0 A B
a1 b1
a2 b2
a3 b3

7→

D1 A B
a1 b4
a2 b4
a3 b3

7→

D2 A B
a1 b4
a2 b2
a3 b2

7→

D3 A B
a1 b1
a2 b1
a3 b2

7→

D4 A B
a1 b1
a2 b4
a3 b4

7→

D5 A B
a1 b3
a2 b3
a3 b4

7→

D6 A B
a1 b3
a2 b2
a3 b2

7→

D6 A B
a1 b1
a2 b1
a3 b2

7→ . . .

38

�

9.2 Data management with partially ordered domains

The domination-monotone relational query language introduced uses the lattice-
theoretic structure of the domains, which is interesting in its own right. It cer-
tainly deserves further investigation, independently from data cleaning under
matching dependencies.

It is interesting to explore its connections with querying databases over par-
tially ordered domains, with incomplete or partial information [38, 29, 34, 33],
with query relaxation in general [32, 23], and with relational languages based on
similarity relations [30].

9.3 Logic programs for data cleaning under MDs

The class of repairs of an inconsistent database (w.r.t. integrity constraints)
[10, 11] has been specified by means of logic programs with the stable model
semantics. That is, the repairs are represented by, and computed as, the stable
models of the logic program. In consistent query answering this approach has led
to useful insights and implementations [6, 26, 16, 14]. In particular, consistent
answers to queries can be obtained by cautiously reasoning from the program.

We are currently investigating the use of logic programs with stable model
semantics for the specification of clean instances, and for doing clean query an-
swering. In particular, the programs can be used to provide declarative versions
of the Swoosh algorithms.

9.4 Related work

As indicated above, much work has been done around entity resolution (data
fusion, record linkage, etc.) [17, 12], and much of that work has concentrated on
algorithms and measures for duplicate detection [37]. In our work we have not
considered detection. Rather, we abstract away duplicate detection by means of
the similarity relations.

Matching dependencies are introduced in [19, 20], which provide the basis
of our work. Their approach is both generic, in the sense that different ways
of capturing the similarities between data items and of matching them can be
accommodated in that framework. It is also declarative in the sense that the
results of the matching processes are specified by means of logical formulas,
and not by means of an algorithm (generic or ad hoc). Actually, the declarative
specification could be implemented in different ways. We enriched this framework
by introducing matching functions, which are still generic, and the specification
is still declarative.

The Swoosh methodology for entity resolution [9] is also generic, but not
declarative, in the sense that the semantics of the system is not captured in
terms of models of a logical specification of the instances resulting from the

39

cleaning process.8 Several algorithms are presented for different cases. One of
them, instead of working at the full record level (cf. Section 8.2), considers
doing the matching on the basis of values for features, which, consider certain
combinations of attributes [9, sec. 4]. This is in some sense close to the spirit of
MDs. However, since the semantics of features is not fully developed, it is difficult
to make a precise comparison. The authors of [9] acknowledge inspiration by the
generic and declarative aspects of [28] and [24], resp.

Swoosh has been extended in [18] with negative rules. They are used to avoid
inconsistencies (e.g. w.r.t. semantic constraints) that could be introduced by
indiscriminate matching. From this point of view, certain elements of database
repairs [10] are introduced into the picture (cf. [18, sec. 2.4]). In this direction,
the combination of database repairing and MDs is studied in [21].

A declarative framework for collective entity matching of large data sets using
domain-specific soft and hard constraints is proposed in [4]. The constraints
specify the matchings. They use a novel Datalog style language, Dedupalog, to
write the constraints as rules. The matching process tries to satisfy all the hard
constraints, but minimizing the number of violations to the soft constraints.
Dedupalog is used for identifying groups of tuples that could be merged. They
do not do the merging or base their work on MDs.

Another declarative approach to ER is presented in [39]. The emphasis is
placed mainly on the detection of duplicates rather than on the actual merging.
An ontology expressed in a logical language based on RDF-S, OWL-DL and
SWRL [2] is used for this task. Reconciliation rules are captured by SWRL.
Also negative rules that prevent reconciliation of certain values can be expressed,
much in the spirit of Swoosh with negative rules [18].

A treatment of entity resolution via matching dependencies that does not
use matching matching functions, but a minimal number of arbitrary changes
to do the matchings is presented in [25]. A semantics for clean instances and a
corresponding chase procedure are proposed. Some connections with database
repairs and consistent query answering are established.

10 Conclusions

The introduction of matching dependencies (MDs) in [19] has been a valuable
addition to data quality and data cleaning research. They can be regarded as
data quality constraints that are declarative in nature and are based on a precise
model-theoretic semantics. They are bound to play an important role in database
research and practice, together (and in combination) with classical integrity
constraints.

In this work we have made several contributions to the semantics of matching
dependencies. We have refined the original semantics introduced in [20], address-
ing some important open issues, but we have also introduced into the semantic

8 In our MD framework the sets of MDs provide a logical specification, and the seman-
tics is model-theoretic, as captured by the clean instances. Admittedly, the latter
have a procedural component.

40

framework the notion of matching function. For entity resolution we need to
know and spell out how attribute values have to be merged or identified, a key
piece missing from the proposal of [20]. Matching functions fill this void.

The matching functions, under certain natural assumptions, induce lattice-
theoretic structures in the attribute domains. This led us to introduce a partial
order of domination between instances, and allowed us to compare them in terms
of information content. The same domination order was then applied to sets of
query answers. We also investigated the interaction of matching functions with
similarity relations in the attribute domains.

On the basis of all these notions, we defined the class of clean instances
for a given dirty instance. They are the intended and admissible instances that
could be obtained after enforcing the matching dependencies. The clean instances
were defined by means of a chase-like procedure that enforces the MDs, while
not making unjustified changes on other attribute values, thereby capturing an
essence of “minimality” of changes. W.r.t. the “lens” of domination order, the
chase procedure improves the information content stepwise.

The notion of clean answer to a query posed to the dirty database was defined
as a pair formed by a lower and an upper bound in terms of information content
for the query answers. In this context we studied the notion of monotone query
w.r.t. the domination order and how to relax a query into a monotone one that
provides more informative answer than the original one.

We addressed some problems around the enforcement of a set of matching
dependencies for purposes of data cleaning based on the original proposal of [19,
20], by explicitly making use of matching functions. We studied issues such as the
existence and uniqueness of clean instances, the computational cost of computing
them, and the complexity of computing clean answers. We identified cases where
clean query answering is tractable, e.g., when there is a single clean instance.
However, we established that this problem is intractable in general. We proposed
polynomial time approximations. The assessment of these approximations and
experimentation with them are part of our ongoing research, which also includes
identifying other tractable cases, and developing efficient and more accurate
approximations to the intractable cases.

Acknowledgments. This work was supported by NSERC Strategic Network
on Business Intelligence (BIN ADC01, Years 1 and 2) and (BIN ADC05, Year
3); and NSERC/IBM CRDPJ/371084-2008, which is gratefully acknowledged.
L. Bertossi is a Faculty Fellow of the IBM Center for Advanced Studies.

References

[1] Abiteboul, S., Kanellakis, P.C., Grahne, G. On the Representation and Querying
of Sets of Possible Worlds. Theoretical Computer Science, 1991, 78(1):158-187.

[2] Antoniou, G. and van Harmelen, F. A Semantic Web Primer, 2nd ed. The MIT
Press, 2008.

41

[3] Afrati, F. and Kolaities, Ph. Answering Aggregate Queries in Data Exchange. In
Proc. ACM PODS, 2008, pp. 129-138.

[4] Arasu, A., Re, Ch. and Suciu, D. Large-Scale Deduplication with Constraints
Using Dedupalog. In Proc. ICDE, 2009, pp. 952-963.

[5] Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query Answers in Inconsis-
tent Databases. In Proc. ACM PODS, 1999, pp. 68-79.

[6] Arenas, M., Bertossi, L. and Chomicki, J. Answer Sets for Consistent Query An-
swering in Inconsistent Databases. Theory and Practice of Logic Programming,
2003, 3(4-5):393-424.

[7] Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V. and Spinrad, J.
Scalar Aggregation in Inconsistent Databases. Theoretical Computer Science,
2003, 296(3):405-434.

[8] Bancilhon, F. and Khoshafian, S. A Calculus for Complex Objects. Journal of
Computer ans Systems Sciences, 1989, 38(2):326-340.

[9] Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Euijong Whang, S. and
Widom, J. Swoosh: A Generic Approach to Entity Resolution. VLDB Journal,
2009, 18(1):255-276.

[10] Bertossi, L. Consistent Query Answering in Databases. ACM Sigmod Record, 2006,
35(2):68-76.

[11] Bertossi, L.Database Repairing and Consistent Query Answering. Morgan & Clay-
pool Publishers. Synthesis Lectures on Data Management, 2011.

[12] Bleiholder, J. and Naumann, F. Data Fusion. ACM Computing Surveys, 2008,
41(1).

[13] Buneman, P., Jung, A. and Ohori, A. Using Powerdomains to Generalize Rela-
tional Databases. Theoretical Computer Science, 1991, 91(1):23-55.

[14] Caniupan, M. and Bertossi, L. The Consistency Extractor System: Answer Set
Programs for Consistent Query Answering in Databases. Data & Knowledge En-
gineering, 2010, 69(6):545-572.

[15] Chomicki, J. Consistent Query Answering: Five Easy Pieces. In Proc. ICDT,
2007, Springer LNCS 4353, pp. 1-17.

[16] Eiter, T., Fink, M., Greco, G. and Lembo, D. Repair Localization for Query
Answering from Inconsistent Databases. ACM Transactions on Database Systems,
2008, 33(2).

[17] Elmagarmid, A., Ipeirotis, P. and Verykios, V. Duplicate Record Detection: A
Survey. IEEE Transactions in Knowledge and Data Engineering, 2007, 19(1):1-
16.

[18] Whang, S.E., Benjelloun, O. and Garcia-Molina, H. Generic Entity Resolution
with Negative Rules. VLDB Journal, 2009, 18(6):1261-1277.

[19] Fan, W. Dependencies Revisited for Improving Data Quality. In Proc. ACM
PODS, 2008, 159-170.

[20] Fan, W., Jia, X., Li, J. and Ma, S. Reasoning about Record Matching Rules. In
Proc. VLDB, 2009, 2(1):407-418.

[21] Fan, W., Li, J., Ma, Sh., Tang, N. and Yu, W.. Interaction between Record Match-
ing and Data Repairing. In Proc. ACM SIGMOD, 2011, pp. 469-480.

[22] Fuxman, A., Fazli, E. and Miller, R. ConQuer: Efficient Management of Incon-
sistent Databases. In Proc. ACM SIGMOD, 2005, pp. 155-166.

[23] Gaasterland, T., Godfrey, P. and Minker, J. Relaxation as a Platform for Coop-
erative Answering. J. Intelligent Information Systems, 1992, 1(3/4):293-321.

[24] Galhardas, H., Florescu, D., Shasha, D., Simon, E. and Saita, C-A.. Declarative
Data Cleaning: Language, Model, and Algorithms. In Proc. VLDB, 2001, pp.
371-380.

42

[25] Gardezi, J., Bertossi, L. and Kiringa, I. Matching Dependencies with Arbitrary
Attribute Values: Semantics, Query Answering and Integrity Constraints”. Proc.
of the International Workshop on Logic in Databases (LID’11), ACM Press, 2011.

[26] Greco, G., Greco, S. and Zumpano, E. A Logical Framework for Querying and
Repairing Inconsistent Databases. IEEE Transactions on Knowledge and Data
Engineering, 2003, 15(6):1389-1408.

[27] Gunter, C.A. and Scott, D.S. Semantic Domains. Chapter 12 in Handbook of
Theoretical Computer Science, Vol. B, Elsevier, 1990.

[28] Hernndez, M. and Stolfo, S. The Merge/Purge Problem for Large Databases. In
Proc. ACM SIGMOD, 1995, pp. 127-138.

[29] Imielinski, T. and Lipski Jr., W. Incomplete Information in Relational Databases.
Journal of the ACM, 1984, 31(4):761-791.

[30] Jagadish, H., Mendelzon, A., and Milo, T. Similarity-Based Queries. Proc. ACM
PODS, 1995, pp. 36-45.

[31] Kifer, M. and Lausen, G. F-Logic: A Higher-Order language for Reasoning about
Objects, Inheritance, and Scheme. In Proc. ACM SIGMOD, 1989, pp. 134-146.

[32] Koudas, N., Li, Ch., Tung, A. and Vernica. R. Relaxing Join and Selection Queries.
In Proc. VLDB, 2006, pp. 199-210.

[33] Levene, M. and Loizou, G. Database Design of Incomplete Relations. ACM Trans-
actions on Database Systems, 1999, 24:35-68.

[34] Libkin, L. A Semantics-Based Approach to Design of Query Languages for Partial
Information. In Semantics in Databases, 1998, Springer LNCS 1358, pp. 170-208.

[35] Libkin, L. Data Exchange and Incomplete Information. In Proc. ACM PODS,
2006, pp. 60-69.

[36] Lipski Jr., W. On Semantic Issues Connected with Incomplete Information
Databases. ACM Transactions on Database Systems, 1979, 4(3):262-296.

[37] Naumann, F. and Herschel, M. An Introduction to Duplicate Detection. Morgan
& Claypool Publishers. Synthesis Lectures on Data Management, 2010.

[38] Ng, W., Levene, M. and Fenner, T. On the Expressive Power of the Relational Al-
gebra with Partially Ordered Domains. International Journal of Computer Math-
ematics, 2000, 71:53-62.

[39] Säıs, F., Pernelle, N. and Rousset, M.-Ch. L2R: A Logical Method for Reference
Reconciliation. In Proc. AAAI, 2007, pp. 329-334.

43

