THE FORMAL LANGUAGE L_{1} AND TOPOLOGICAL PRODUCTS

by L. E. Bertossi in Santiago (Chile)

1. Preliminaries

We will consider topological structures of the form $\langle\mathfrak{A}, \sigma\rangle$, where \mathfrak{A} is a classical algebraic structure for first order logic and σ is a topology or a basis for a topology on the universe A of \mathfrak{A}. Given a set of symbols S compatible with the algebraic parts of the structures under consideration, we construct the formal language L_{t}^{S} for expressing properties of those topological structures. $\mathrm{L}_{\mathrm{t}}^{S}$ is constructed as the classical first-order language L^{S} adding to it the following rules for building formulas:
if t is a (first-order) term of L^{S}, then $t \in X$ (where X is a second-order variable for open sets) is an atomic formula;
if φ is a formula of L_{t}^{S} positive in X and t is a term of L^{S}, then $(\forall X \ni t) \varphi$ is a formula of L_{t}^{S};
if φ is a formula of L_{t}^{S} negative in X and t is a term of L^{S}, then $(\exists X \ni t) \varphi$ is a formula of L_{t}^{S}.

It is easy to show that the formulas of L_{t}^{S} are basis-invariant, i.e. for each $\varphi \in L_{t}^{S}$ and structure $\langle\mathfrak{A}, \sigma\rangle$:

$$
\langle\mathcal{H}, \sigma\rangle \vDash \varphi \quad \text { iff }\langle\hat{\mathcal{N}}, \tilde{\sigma}\rangle \vDash \varphi .
$$

Here $\tilde{\sigma}$ is the topology generated by $\sigma: \tilde{\sigma}=\{\bigcup s \mid s \subseteq \sigma\}$. For historical remarks, precise definitions and other interesting properties of L_{t}, see [4], [7].

2. The topologieal product

Let $\left(\left\langle\mathfrak{H}_{i}, \sigma_{i}\right\rangle\right)_{\text {ieI }}$ be topological structures and $D \subseteq P(I)$ a filter on I. We define the D-product of the $\left\langle\mathfrak{A}_{i}, \sigma_{i}\right\rangle$ as the topological structure $\left\langle\prod_{I} \mathfrak{X}_{i}, \tilde{\sigma}_{D}\right\rangle$, where $\prod_{I} \mathfrak{A}_{i}$ is the direct product of the \mathscr{A}_{i} and $\tilde{\sigma}_{D}$ is the topology generated by the basis

$$
\sigma_{D}=\left\{\prod_{I} U_{i} \mid C_{i} \in \sigma_{i} \text { and }\left\{i \in I \mid U_{t}=A_{i}\right\} \in D\right\}
$$

Some facts that are easy to verify are the following:
a) The projection maps p_{i} are continuous iff $D \supseteq C o(I)$, the filter of cofinite sets.
b) If $D=C o(I)$, then $\tilde{\sigma}_{D}$ is the Tychonov topology (the usual product topology).
c) If $D=\{I\}$ (the trivial filter), then $\bar{\sigma}_{D}$ is the trivial topology.
d) If $D=P(I)$ (the improper filter), then $\tilde{\sigma}_{D}$ is the box topology.
e) If D, E are filters on I and $D \subseteq E$, then $\tilde{\sigma}_{E}$ is finer than $\tilde{\sigma}_{D}$.
f) $\left\langle\prod_{i} A_{i}, \tilde{\sigma}_{D}\right\rangle$ is Hausdorff iff $D \supseteq C o(I)$ and all $\left\langle A_{i}, \sigma_{i}\right\rangle$ are Hausdorff.

[^0]If $\mathfrak{P}(I)$ is the Boolean algebra $\left\langle P(I), \cap, \cup,{ }^{c}, \emptyset, I\right\rangle$, then the structure $\langle\mathfrak{P}(I), D\rangle$ is a Boolean algebra with distinguished filter D. Let $L^{\text {BAF }}$ be the first-order language for such algebras.

It is also possible to extend the Feferman-Vaught-type theorem [3] given in [4] for usual topological products to our products:

Theorem. To each sentence $\varphi \in \mathrm{L}_{\mathrm{t}}^{S}$ there can be effectively associated a tuple $\left(\Phi ; \theta_{1}, \ldots, \theta_{n}\right)$, where $\Phi\left(z_{1}, \ldots, z_{n}\right) \in \mathrm{L}^{\mathrm{BAF}}$ and $\theta_{1}, \ldots, \theta_{n} \in \mathrm{~L}_{\mathrm{t}}^{S}$ are sentences, such that for all $I,\left(\left\langle\mathfrak{A}_{i}, \sigma_{i}\right\rangle\right)_{i \in I}, D$:

$$
\left\langle\prod_{i} \mathfrak{U}_{i}, \tilde{\sigma}_{D}\right\rangle \vDash \varphi \quad \text { iff }\langle\mathfrak{P}(I), D\rangle \vDash \Phi\left[S\left(\theta_{1}\right), \ldots, S\left(\theta_{n}\right)\right],
$$

where $S\left(\theta_{j}\right)=\left\{i \in I \mid\left\langle\mathfrak{H}_{i}, \sigma_{i}\right\rangle \vDash \theta_{j}\right\}$.
As in [3], we can everywhere assume that $\left(\Phi ; \theta_{1}, \ldots, \theta_{n}\right)$ is a partitioning tuple.
Combining this result with Ershov's theorem [2] on the decidability of the firstorder theory of all algebras of the form $\langle\mathfrak{P}(I), D\rangle$, we obtain

Theorem. If K is a class of topological structures with decidable $\mathrm{L}_{\mathrm{t}}^{S}$-theory, then the $\mathrm{L}_{\mathrm{t}} \mathrm{S}^{\text {-theory }}$ of the class of all products (in our sense) of structures in K is also decidable. T'he same is true if we restrict ourselves to the case where the index sets are infinite and/or the filters extend the corresponding filter of cofinite sets.

3. Examples

a) Let $K=\{\langle\mathbf{2}, \sigma\rangle\}$, where 2 is the Boolean algebra with two elements and σ is the discrete topology. Let $L^{B A}$ be the first-order language for Boolean algebras and $L_{t}^{B A}$ the topological language for Boolean algebras with topology. The $\mathrm{L}_{\mathrm{t}}^{\mathrm{BA}}$-theory of K is decidable since the unique structure contained in it is finite. Thus, the class $\left\{\left\langle 2^{I}, \tilde{\sigma}_{D}\right\rangle \mid\right.$ I is a set and D is a filter on $I\}$ has a decidable $\mathrm{L}_{\mathrm{t}}^{\mathrm{BA}}$-theory. Furthermore, we shall see that it is possible to classify all its structures according to elementary equivalence.
Theorem. For all filters D and E on I and J, respectively,

$$
\left\langle 2^{I}, \tilde{\sigma}_{D}\right\rangle \equiv{\underline{\mathbf{L}_{\mathbf{t}} \mathrm{BA}}}\left\langle 2^{J}, \tilde{\sigma}_{E}\right\rangle \quad \text { iff }\langle\mathfrak{B}(I), D\rangle \equiv_{\mathbf{L}^{\mathrm{BAF}}}\langle\mathfrak{P}(J), E\rangle .
$$

Proof. One direction follows from the Feferman-Vaught-type theorem. The other one is obtained interpreting the $\mathrm{L}^{\mathrm{BAF}}$-theory of $\langle\mathfrak{P}(I), D\rangle$ in the $\mathrm{L}_{\mathrm{t}}^{\mathrm{BA}}$-theory of $\left\langle 2^{I}, \tilde{\sigma}_{D}\right\rangle$. More precisely, to each formula $\varphi(x) \in \mathrm{L}^{\mathrm{BAF}}$ we associate a formula $\varphi^{*}(\boldsymbol{x}) \in \mathrm{L}_{\mathrm{t}}^{\mathrm{BA}}$, such that, for each $I, D, a \in 2^{I}$:

$$
\langle\mathfrak{P}(I), D\rangle \vDash \varphi[\boldsymbol{a}] \quad \text { iff }\left\langle\boldsymbol{2}^{I}, \tilde{\sigma}_{D}\right\rangle \vDash \varphi^{*}[\boldsymbol{a}],
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \cdot \varphi^{*}$ is constructed replacing each subformula of φ of the form $t \in D$ by the $\mathrm{L}_{\mathrm{t}}^{\mathrm{BA}}$-formula ($\exists X \ni t$) $\forall x(x \in X \rightarrow x \cap t=x$).

Therefore, using the classification in elementary-equivalence types of all algebras of the form $\langle\mathfrak{P}(I), D\rangle$ made by ERSHOv [2], it is possible to classify the algebras of the form $\left\langle 2^{I}, \tilde{\sigma}_{D}\right\rangle$. In particular, we can see that there are many pairs of them which are not elementary equivalent.
b) Let $\left(\left\langle A_{i}, \sigma_{i}\right\rangle\right)_{i \in I},\left(\left\langle B_{j}, \tau_{j}\right\rangle\right)_{j_{\epsilon J} J}$, be T_{3}-spaces (regular and Hausdorff) which are not singletons. In contrast with that obtained in a), we have

Theorem. If I, J are infinite and $D \supseteq C o(I), E \supseteqq C o(J)$, then

$$
\left\langle\prod_{I} A_{i}, \tilde{\sigma}_{D}\right\rangle \equiv_{\mathbf{L}_{t}}\left\langle\prod_{I} B_{j}, \tilde{\tau}_{E}\right\rangle .
$$

Proof. $\left\langle\prod_{I} A_{i}, \tilde{\sigma}_{D}\right\rangle$ and $\left\langle\prod_{J} B_{j}, \tilde{\tau}_{E}\right\rangle$ are T_{3}-spaces without isolated points. It is known [4] that all T_{3}-spaces without isolated points are L_{t}-equivalent.
c) Let us consider the non-regular T_{2} topological space $\langle\mathrm{R}, \sigma\rangle$, where the basic neighbourhoods of points different from 0 are as usual, but the basic neighbourhoods of 0 are of the form $(c, d) \backslash\{ \pm 1 / k \mid k \in \mathrm{~N}\}$. It is possible to show that the L_{t}-theory of $\langle R, \sigma\rangle$ is decidable. Consequently, the theory of all topological powers $\left\langle R^{I}, \tilde{\sigma}_{D}\right\rangle$ is also decidable. Not all these powers are elementary equivalent; for example, $\langle R, \sigma\rangle$ and $\left\langle\mathrm{R}^{I}, \tilde{\sigma}_{D}\right\rangle$, with $|I|>2$, are not elementary equivalent since "there exists a unique non-regular point" is expressible in L_{t}. It is an open problem to classify all these powers according to elementary equivalence; in particular, for infinite index sets and filters that extend the filter of cofinite sets. In this context, it may be of interest to recall that the L_{t}-theory of all Hausdorff spaces is undecidable [4].

4. Properties of formulas which are preserved under topological products

A sentence $\varphi \in \mathrm{L}_{\mathrm{t}}^{S}$ is preserved (under topological products) if for all $I,\left(\left\langle\mathfrak{U}_{i}, \sigma_{t}\right\rangle\right)_{t \in I}$, filter D on I : for all $i \in I,\left\langle\mathfrak{A}_{i}, \sigma_{i}\right\rangle \vDash \varphi$ implies $\left\langle\prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D}\right\rangle \vDash \varphi$.

From now on, the set of symbols S will be finite.
Theorem. The class of all preserved sentences of $\mathrm{L}_{\mathrm{t}}^{S}$ is recursively enumerable.
Proof. By the Feferman-Vaught-type theorem, we can associate effectively to each sentence $q \in L_{\mathrm{t}}^{S}$ a partitioning tuple $\left(\Phi ; \theta_{1}, \ldots, \theta_{n}\right)$ with $\Phi\left(x_{0}, \ldots, x_{n-1}\right) \in \mathrm{L}^{\text {baF }}$ and $\theta_{1}, \ldots, \theta_{n} \mathrm{~L}_{\mathrm{q}}^{S}$-sentences.

If $\hat{\varphi}$ is the $\mathrm{L}^{\mathrm{BAF}}$-sentence

$$
\begin{aligned}
& \forall x_{0} \ldots \forall x_{n-1}\left(\bigwedge_{i<j<n} x_{i} \cap x_{j}=0 \wedge x_{0} \cup \ldots \cup x_{n-1}=1\right. \wedge \\
& j \in C(\varphi)
\end{aligned} \bigwedge_{j} x_{j}=0 .
$$

where $C(\varphi)=\left\{j \mid 0 \leqq j<n\right.$ and $\left.k_{\mathbf{L}_{t} s} \varphi \rightarrow \neg \theta_{j}\right\}$, then it is easy to verify that φ is preserved iff $\hat{\varphi}$ belongs to the $\mathrm{L}^{\mathrm{BAF}}$-theory of all algebras of the form $\langle\mathfrak{P}(I), D\rangle$. As we have seen, this theory is decidable; furthermore, $\left\{\theta \in L_{t}^{S} \mid F_{L_{t}}\right.$ s $\left.\rightarrow \neg \theta\right\}$ is recursively enumerable and $\hat{\phi}$ can be obtained effectively from φ and $C(\varphi)$. From this we can conclude that the class of all preserved sentences is recursively enumerable.

For the usual first-order logic there is a theorem by Vaught [3] that establishes that a formula is preserved under direct products iff it is preserved under products of two factors. In [4] it is shown that this fact, which simplifies the study of preserved first-order formulas, does not hold for L_{t} and Tychonov topological products. In our case, we have the following lemma as a substitute for VAUGHT's theorem. This lemma can be proved using Skolem's decision method for the L^{BA}-theory of all algebras of the form $\mathfrak{P}(I)$ (see e.g. [6]).

Lemma. To each sentence $\varphi \in \mathrm{L}_{\mathrm{t}}^{S}$ there can be effectively associated a naliiral number n_{0}, such that for all $\langle\mathfrak{A}, \sigma\rangle$ if $\langle\mathfrak{A}, \sigma\rangle^{n_{0}} \vDash \varphi$, then for all $m \geqq n_{0}\langle\mathfrak{A}, \sigma\rangle^{m} \vDash \varphi$. $\left\langle\langle\mathfrak{U}, \sigma\rangle^{m}\right.$ is the usual topological power).

From this lemma and a series of technical results with classical analogues, it follows, as in [5] for first-order logic and reduced products, the following theorem:

Theorem. Each sentence of $\mathrm{L}_{\mathrm{t}}^{S}$ is logically equivalent to a Boolean combination of sentences which are preserved under topological products with respect to non-trivial filters.

In what follows, we assume that the filters extend the corresponding filter of cofinite sets. The next two theorems give us a large syntactical class of formulas of L_{t} which are preserved. The first one can be proved by induction.

Theorem.

a) Atomic formulas and negations of atomic formulas are preserved.
b) If φ is preserved, then $\exists x \varphi$ and $\forall x \varphi$ are preserved.
c) If φ and ψ are preserved, then $\varphi \wedge \psi$ is preserved.
d) If φ is preserved and positive in X, then $(\forall X \ni t) \varphi$ is preserved.

Theorem. If $\varphi \in \mathrm{L}_{\mathrm{t}}^{S}$ is positive, without second-order quantifiers and Q is a block of second-order existential quantifiers, then the following formulas of $\mathrm{L}_{\mathrm{l}}^{S}$ are preserved:
a) $\varphi \rightarrow \theta$ if φ is preserved.
b) $\mathrm{Q}(\varphi \rightarrow \theta)$ if θ is preserved and positive.
c) $\mathrm{Q} \forall \boldsymbol{y}(\varphi \rightarrow \theta)$ if θ is a second-order atomic formula, i.e. of the form $t \in X$.

Proof.
a) It is possible to show that the formulas of $\mathrm{L}_{\mathrm{t}}^{S}$ which are preserved under contin. uous surjective homomorphisms are those that are equivalent to positive formulas without second-order existential quantifiers. On the other hand, by the hypothesis on the filters, the projection maps are continuous. The combination of these facts gives the proof.
b) As $\mathrm{Q}(\varphi \rightarrow \theta) \in \mathrm{L}_{\mathrm{t}}^{S}$, the second-order variables in Q do not appear in θ; hence $\mathrm{Q}(\varphi \rightarrow \theta)+\vdash \mathrm{Q}^{\prime} \varphi \rightarrow \theta$, where Q^{\prime} is a block of second-order universal quantifiers. Therefore we can apply a).
c) For simplicity, we restrict ourselves to the case $\mathrm{Q}=(\exists Y \ni t), y=y$, that is, we have to prove that

$$
\psi:=(\exists Y \ni t(x, \ldots)) \forall y(\varphi(y, x, \ldots, Y, X, \ldots) \rightarrow \theta(y, x, \ldots, X))
$$

is preserved.
Let us suppose that for all $i \in I$

$$
\left\langle\mathfrak{A}_{i}, \sigma_{i}\right\rangle \vDash \psi(x, \ldots, X, \ldots)\left[b_{i}, \ldots, U_{i}, \ldots\right]
$$

(here $\left.b, \ldots \in \prod_{I} A_{i}, \prod_{I} U_{i}, \ldots \in \sigma_{D}\right)$. Then, for each $i \in I$, let $Y \in \sigma_{i}$ be such that $t^{2}\left[b_{i}, \ldots\right] \in Y_{i}$ and
(1) $\left\langle\mathfrak{H}_{i}, \sigma_{i}\right\rangle \vDash \forall y(\varphi(y, x, \ldots, Y, X, \ldots) \rightarrow \theta(y, x, \ldots, X))\left[b_{i}, \ldots, Y_{i}, U_{i}, \ldots\right]$.

If, for all $i \in I$, one has $\left\langle\mathfrak{A}_{i}, \sigma_{i}\right\rangle \vDash \forall y \theta(y, x, \ldots, X)\left[b_{i}, \ldots, U_{i}\right]$, then, by the preceding theorem, $\left\langle\prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D}\right\rangle \vDash \forall y \theta(y, x, \ldots, X)\left[b, \ldots, \prod_{I} U_{i}\right]$. Taking $Y=\prod_{I} A_{i}$, it follows that $\left\langle\prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D}\right\rangle \vDash \psi\left[b, \ldots, \prod_{I} U_{i}, \ldots\right]$.

Otherwise, there exist sets $I_{0} \subseteq I_{1} \in D$ such that

$$
i_{0} \in I_{0} \quad \text { iff } \quad\left(\mathscr{A}_{i_{0}}, \sigma_{i_{0}}\right) \vDash \exists y \neg \theta\left[b_{i_{0}}, \ldots, U_{i_{0}}\right]
$$

Then, for all $i_{0} \in I_{0}$ and all $a_{i_{0}} \in A_{i_{0}}$ such that $\left\langle\mathfrak{H}_{i_{0}}, \sigma_{i_{0}}\right\rangle \vDash \neg \theta\left[a_{i_{0}}, b_{i_{0}}, \ldots, U_{i_{0}}\right]$, one has by (1) that $\left\langle\mathscr{A}_{i_{0}}, \sigma_{i_{0}}\right\rangle \vDash \neg \varphi(y, x, \ldots, Y, X)\left[a_{i_{0}}, b_{i_{0}}, \ldots, Y_{i_{0}}, U_{i_{0}}, \ldots\right]$.

As $\neg \varphi$ is negative without second-order universal quantifiers, $\neg \varphi$ is preserved under preimages of continuous surjective homomorphisms, hence

$$
\left\langle\prod_{I} \mathfrak{U}_{i}, \tilde{\sigma}_{D}\right\rangle \vDash \neg \varphi(y, x, \ldots, Y, X, \ldots)\left[\tilde{a}_{i_{0}}, \tilde{b}_{i_{0}}, \ldots, p_{i_{0}}^{-1}\left(Y_{i_{0}}\right), p_{i_{0}}^{-1}\left(U_{i_{0}}\right), \ldots\right]
$$

where $\tilde{a}_{i_{0}}, \tilde{b}_{i_{0}}, \ldots \in \prod_{I} A_{i}$ are preimages of $a_{i_{0}}, b_{i_{0}}, \ldots$ under $p_{i_{0}}^{-1}$ (in particular, we can take $\left.\tilde{b}_{i_{0}}, \ldots=b, \ldots\right)$. In consequence, letting $V:=\bigcap_{i \in I_{1}} p_{i}^{-1}\left(Y_{i}\right) \cong \bigcap_{i \in I_{0}} p_{i}^{-1}\left(Y_{i}\right) \cong$
$\cong p_{i_{0}}^{-1}\left(Y_{i_{0}}\right)$, we obtain (2)

$$
\left\langle\prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D}\right\rangle \vDash \neg \varphi\left[\tilde{a}_{i_{0}}, b, \ldots, V, \prod_{I} U_{i}, \ldots\right]
$$

Notice that $V \in \sigma_{D}$ and therefore we can replace $p_{i_{0}}^{-1}\left(Y_{i_{0}}\right)$ by V because $\neg \varphi$ is negative.
Now let us suppose that $\left\langle\prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D}\right\rangle \not \equiv \psi\left[b, \ldots, \prod_{I} U_{i}, \ldots\right]$; then

$$
\begin{aligned}
\left\langle\prod_{I} \mathfrak{U}_{i}, \tilde{\sigma}_{D}\right\rangle \vDash(\forall Y \ni t(x, \ldots)) \exists y(\varphi(y, x, & \ldots, Y, X, \ldots) \wedge \\
& \wedge \neg \theta(y, x, \ldots, X))\left[b, \ldots, \prod_{I} U_{i}, \ldots\right] .
\end{aligned}
$$

In particular, taking the above defined V as assignment for Y, we obtain an $a \in \prod_{I} A_{t}$ such that

$$
\begin{align*}
& \left\langle\prod_{I} \mathfrak{H}_{i}, \tilde{\sigma}_{D}\right\rangle \vDash \varphi(y, x, \ldots, Y, X, \ldots)\left[a, b, \ldots, V, \prod_{I} U_{i}, \ldots\right] \text { and } \tag{3}\\
& \left\langle\prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D}\right\rangle \vDash \neg \theta(y, x, \ldots, X)\left[a, b, \ldots, \prod_{I} U_{i}\right] .
\end{align*}
$$

From this last fact there follows the existence of $i_{0} \in I_{0}$ such that $\left\langle\mathfrak{A}_{i_{0}}, \sigma_{i_{0}}\right\rangle \vDash$ $\vDash \neg \theta(y, x, \ldots, X)\left[a_{i_{0}}, b_{i_{0}}, \ldots, U_{i_{0}}\right]$. As we now are in the situation that led us to (2), we conclude that

$$
\left\langle\prod_{I} \mathscr{A}_{i}, \tilde{\sigma}_{D}\right\rangle \vDash \neg \varphi(y, x, \ldots, Y, X, \ldots)\left[\tilde{a}_{i_{0}}, b, \ldots, V, \prod_{I} U_{i}, \ldots\right]
$$

In particular, with $\tilde{a}_{i_{0}}=a$, it follows

$$
\left\langle\prod_{I} \mathfrak{A}_{i}, \bar{\sigma}_{D}\right\rangle \vDash \neg \varphi(y, x, \ldots, Y, X, \ldots)\left[a, b, \ldots, V, \prod_{I} U_{i}, \ldots\right]
$$

which contradicts (3).
Applying systematically the two preceding theorems it is possible to verify syntactically that the following topological properties expressable in L_{t} are preserved:

$$
\begin{array}{lr}
\forall x \forall y(((\forall X \ni x) y \in X \wedge(\forall Y \ni y) x \in Y) \rightarrow x=y) & \text { (" } \left.\mathrm{T}_{0}{ }^{\prime \prime}\right), \\
\forall x \forall y((\forall X \ni x) y \in X \rightarrow x=y) & \left(" \mathrm{~T}_{1}{ }^{\prime \prime}\right), \\
\forall x \forall y(\exists X \ni x)(\exists Y \ni y)(\exists z(z \in X \wedge z \in Y) \rightarrow x=y) & \text { ("Hausdorff"), }
\end{array}
$$

$$
\begin{array}{lr}
\forall x(\forall X \ni x)(\exists Y \ni x) \forall y((\forall W \ni y) \exists z(z \in W \wedge z \in Y) \rightarrow y \in X) \quad \text { ("regular"'), } \\
\forall x(\forall X \ni f(x))(\exists Y \ni x) \forall z(z \in Y \rightarrow f(z) \in X) \quad \text { (" } f \text { is continuous"), } \\
\forall x((\forall X \ni x) \exists y(P y \wedge y \in X) \rightarrow P x) \quad \text { (" } P \text { is closed"). } .
\end{array}
$$

References

[1] Bertossi, L. E., El lenguage formal $\mathrm{L}_{\mathbf{t}}$ y productos topológicos. Tesis de Doctorado en Matemática, Pontificia Universidad Católica de Chile, 1987.
[2] Ershov, Y. L., Theorie der Numerierungen III. This Zeitschrift 23 (1977), 289-371.
[3] Feferman, S., and R. L. Vaught, The first order properties of products of algebraic systems. Fund. Math. 47 (1959), $57-103$.
[4] Flum, J., and M. Ziegler, Topological Model Theory. Springer Lecture Notes in Mathematics 769 (1980).
[5] Galvin, F., Horn sentences. Annals Math. Logic 1 (1970), 389-422.
[6] Graetzer, G., Universal Algebra. Springer-Verlag, Berlin-Heidelberg-New York 1979.
[7] Ziegler, M., Topological model theory. In: Model Theoretic Logics (J. Barwise and S. Feferman, eds.), Springer-Verlag, Berlin-Heidelberg-New York 1985, pp. $557-577$.
L. E. Bertossi
(Eingegangen am 14. Oktober 1988)
Pontificia Universidad Católica de Chile
Facultad de Matemática
Casilla 6177
Santiago 22
Chile

[^0]: 7 Ztschr. \&. math. Logik

