THE FORMAL LANGUAGE L, AND TOPOLOGICAL PRODUCTS

by L. E. BERTOSSI in Santiago (Chile)

1. Preliminaries

We will consider topological structures of the form $\langle \mathfrak{A}, \sigma \rangle$, where \mathfrak{A} is a classical algebraic structure for first order logic and σ is a topology or a basis for a topology on the universe A of \mathfrak{A} . Given a set of symbols S compatible with the algebraic parts of the structures under consideration, we construct the formal language L_t^S for expressing properties of those topological structures. L_t^S is constructed as the classical first-order language L^S adding to it the following rules for building formulas:

if t is a (first-order) term of L^s , then $t \in X$ (where X is a second-order variable for open sets) is an atomic formula;

if φ is a formula of L_t^S positive in X and t is a term of L^S , then $(\forall X \ni t) \varphi$ is a formula of L_t^S ;

if φ is a formula of L_t^S negative in X and t is a term of L^S , then $(\exists X \ni t) \varphi$ is a formula of L_t^S .

It is easy to show that the formulas of L_t^S are basis-invariant, i.e. for each $\varphi \in L_t^S$ and structure $\langle \mathfrak{A}, \sigma \rangle$:

 $\langle \mathfrak{A}, \sigma \rangle \models \varphi$ iff $\langle \mathfrak{A}, \tilde{\sigma} \rangle \models \varphi$.

Here $\tilde{\sigma}$ is the topology generated by $\sigma: \tilde{\sigma} = \{\bigcup s \mid s \subseteq \sigma\}$. For historical remarks, precise definitions and other interesting properties of L_t , see [4], [7].

2. The topological product

Let $(\langle \mathfrak{A}_i, \sigma_i \rangle)_{i \in I}$ be topological structures and $D \subseteq P(I)$ a filter on I. We define the *D*-product of the $\langle \mathfrak{A}_i, \sigma_i \rangle$ as the topological structure $\langle \prod \mathfrak{A}_i, \sigma_D \rangle$, where $\prod \mathfrak{A}_i$ is

the direct product of the \mathfrak{A}_i and $\tilde{\sigma}_D$ is the topology generated by the basis

$$\sigma_D = \{\prod_i U_i \mid U_i \in \sigma_i \text{ and } \{i \in I \mid U_i = A_i\} \in D\}.$$

Some facts that are easy to verify are the following:

a) The projection maps p_i are continuous iff $D \supseteq Co(I)$, the filter of cofinite sets.

b) If D = Co(I), then σ_D is the Tychonov topology (the usual product topology).

c) If $D = \{I\}$ (the trivial filter), then $\tilde{\sigma}_D$ is the trivial topology.

d) If D = P(I) (the improper filter), then $\tilde{\sigma}_D$ is the box topology.

e) If D, E are filters on I and $D \subseteq E$, then $\tilde{\sigma}_E$ is finer than $\tilde{\sigma}_D$.

f) $\langle \prod A_i, \tilde{\sigma}_D \rangle$ is Hausdorff iff $D \supseteq Co(I)$ and all $\langle A_i, \sigma_i \rangle$ are Hausdorff.

7 Ztschr. f. math. Logik

90 L. E. BERTOSSI

If $\mathfrak{P}(I)$ is the Boolean algebra $\langle P(I), \cap, \cup, \circ, \emptyset, I \rangle$, then the structure $\langle \mathfrak{P}(I), D \rangle$ is a Boolean algebra with distinguished filter D. Let L^{BAF} be the first-order language for such algebras.

It is also possible to extend the Feferman-Vaught-type theorem [3] given in [4] for usual topological products to our products:

Theorem. To each sentence $\varphi \in L_t^S$ there can be effectively associated a tuple $(\Phi; \theta_1, \ldots, \theta_n)$, where $\Phi(z_1, \ldots, z_n) \in L^{BAF}$ and $\theta_1, \ldots, \theta_n \in L_t^S$ are sentences, such that for all I, $(\langle \mathfrak{A}_i, \sigma_i \rangle)_{i \in I}$, D:

$$\langle \prod_{i} \mathfrak{A}_{i}, \tilde{\sigma}_{D} \rangle \models \varphi \quad iff \quad \langle \mathfrak{P}(I), D \rangle \models \varPhi[S(\theta_{1}), \ldots, S(\theta_{n})],$$

where $S(\theta_i) = \{i \in I \mid \langle \mathfrak{A}_i, \sigma_i \rangle \models \theta_j\}$. \Box

As in [3], we can everywhere assume that $(\Phi; \theta_1, \ldots, \theta_n)$ is a partitioning tuple.

Combining this result with ERSHOV's theorem [2] on the decidability of the firstorder theory of all algebras of the form $\langle \mathfrak{P}(I), D \rangle$, we obtain

Theorem. If K is a class of topological structures with decidable L_t^S -theory, then the L_t^S -theory of the class of all products (in our sense) of structures in K is also decidable. The same is true if we restrict ourselves to the case where the index sets are infinite and/or the filters extend the corresponding filter of cofinite sets. \Box

3. Examples

a) Let $K = \{\langle 2, \sigma \rangle\}$, where 2 is the Boolean algebra with two elements and σ is the discrete topology. Let L^{BA} be the first-order language for Boolean algebras and L_t^{BA} the topological language for Boolean algebras with topology. The L_t^{BA} -theory of K is decidable since the unique structure contained in it is finite. Thus, the class $\{\langle 2^I, \tilde{\sigma}_D \rangle \mid I \text{ is a set and } D \text{ is a filter on } I\}$ has a decidable L_t^{BA} -theory. Furthermore, we shall see that it is possible to classify all its structures according to elementary equivalence.

Theorem. For all filters D and E on I and J, respectively,

$$\langle 2^{I}, \tilde{\sigma}_{D} \rangle \equiv_{\mathbf{L}^{BA}} \langle 2^{J}, \tilde{\sigma}_{E} \rangle \quad iff \quad \langle \mathfrak{P}(I), D \rangle \equiv_{\mathbf{L}^{BAF}} \langle \mathfrak{P}(J), E \rangle.$$

Proof. One direction follows from the Feferman-Vaught-type theorem. The other one is obtained interpreting the L^{BAF} -theory of $\langle \mathfrak{P}(I), D \rangle$ in the L_t^{BA} -theory of $\langle 2^I, \bar{\sigma}_D \rangle$. More precisely, to each formula $\varphi(\mathbf{x}) \in L^{BAF}$ we associate a formula $\varphi^*(\mathbf{x}) \in L_t^{BA}$, such that, for each $I, D, \mathbf{a} \in 2^I$:

$$\langle \mathfrak{P}(I), D \rangle \models \varphi[\mathbf{a}] \quad \text{iff} \quad \langle 2^{I}, \tilde{\sigma}_{D} \rangle \models \varphi^{*}[\mathbf{a}],$$

where $\mathbf{x} = (x_1, \ldots, x_n)$, $\mathbf{a} = (a_1, \ldots, a_n)$. φ^* is constructed replacing each subformula of φ of the form $t \in D$ by the L^{BA}-formula $(\exists X \ni t) \forall x (x \in X \to x \cap t = x)$. \Box

Therefore, using the classification in elementary-equivalence types of all algebras of the form $\langle \mathfrak{P}(I), D \rangle$ made by ERSHOV [2], it is possible to classify the algebras of the form $\langle 2^{I}, \tilde{\sigma}_{D} \rangle$. In particular, we can see that there are many pairs of them which are not elementary equivalent.

b) Let $(\langle A_i, \sigma_i \rangle)_{i \in I}$, $(\langle B_j, \tau_j \rangle)_{j \in J}$, be T₃-spaces (regular and Hausdorff) which are not singletons. In contrast with that obtained in a), we have

Theorem. If I, J are infinite and $D \supseteq Co(I)$, $E \supseteq Co(J)$, then

$$\langle \prod_{i} A_{i}, \tilde{\sigma}_{D} \rangle \equiv_{\mathbf{L}_{i}} \langle \prod_{i} B_{j}, \tilde{\tau}_{E} \rangle$$

Proof. $\langle \prod_{I} A_{i}, \tilde{\sigma}_{D} \rangle$ and $\langle \prod_{J} B_{J}, \tilde{\tau}_{E} \rangle$ are T₃-spaces without isolated points. It is known [4] that all T₃-spaces without isolated points are L_t-equivalent. \Box

c) Let us consider the non-regular T_2 topological space $\langle R, \sigma \rangle$, where the basic neighbourhoods of points different from 0 are as usual, but the basic neighbourhoods of 0 are of the form $(c, d) \setminus \{\pm 1/k \mid k \in N\}$. It is possible to show that the L_t -theory of $\langle R, \sigma \rangle$ is decidable. Consequently, the theory of all topological powers $\langle R^I, \tilde{\sigma}_D \rangle$ is also decidable. Not all these powers are elementary equivalent; for example, $\langle R, \sigma \rangle$ and $\langle R^I, \tilde{\sigma}_D \rangle$, with |I| > 2, are not elementary equivalent since "there exists a unique non-regular point" is expressible in L_t . It is an open problem to classify all these powers according to elementary equivalence; in particular, for infinite index sets and filters that extend the filter of cofinite sets. In this context, it may be of interest to recall that the L_t -theory of all Hausdorff spaces is undecidable [4].

4. Properties of formulas which are preserved under topological products

A sentence $\varphi \in L_t^S$ is preserved (under topological products) if for all I, $(\langle \mathfrak{A}_i, \sigma_i \rangle)_{i \in I}$, filter D on I: for all $i \in I$, $\langle \mathfrak{A}_i, \sigma_i \rangle \models \varphi$ implies $\langle \prod_i \mathfrak{A}_i, \tilde{\sigma}_D \rangle \models \varphi$.

From now on, the set of symbols S will be finite.

Theorem. The class of all preserved sentences of L_t^S is recursively enumerable.

Proof. By the Feferman-Vaught-type theorem, we can associate effectively to each sentence $q \in L_t^S$ a partitioning tuple $(\Phi; \theta_1, \ldots, \theta_n)$ with $\Phi(x_0, \ldots, x_{n-1}) \in L^{BAF}$ and $\theta_1, \ldots, \theta_n L_t^S$ -sentences.

If $\hat{\varphi}$ is the L^{BAF}-sentence

$$\forall x_0 \dots \forall x_{n-1} (\bigwedge_{i < j < n} x_i \cap x_j = 0 \land x_0 \cup \dots \cup x_{n-1} = 1 \land \bigwedge_{j \in C(\varphi)} x_j = 0$$
$$\rightarrow \Phi(x_0, \dots, x_{n-1}))$$

where $C(\varphi) = \{j \mid 0 \leq j < n \text{ and } \models_{L_t} \varphi \to \neg \theta_j\}$, then it is easy to verify that φ is preserved iff $\hat{\varphi}$ belongs to the L^{BAF}-theory of all algebras of the form $\langle \mathfrak{P}(I), D \rangle$. As we have seen, this theory is decidable; furthermore, $\{\theta \in L_t^S \mid \models_{L_t} \varphi \to \neg \theta\}$ is recursively enumerable and $\hat{\varphi}$ can be obtained effectively from φ and $C(\varphi)$. From this we can conclude that the class of all preserved sentences is recursively enumerable. \Box

For the usual first-order logic there is a theorem by VAUGHT [3] that establishes that a formula is preserved under direct products iff it is preserved under products of two factors. In [4] it is shown that this fact, which simplifies the study of preserved first-order formulas, does not hold for L_t and Tychonov topological products. In our case, we have the following lemma as a substitute for VAUGHT's theorem. This lemma can be proved using SKOLEM's decision method for the L^{BA}-theory of all algebras of the form $\mathfrak{P}(I)$ (see e.g. [6]).

7*

92 L. E. BERTOSSI

Lemma. To each sentence $\varphi \in \mathbf{L}^S_t$ there can be effectively associated a natural number n_0 , such that for all $\langle \mathfrak{A}, \sigma \rangle$ if $\langle \mathfrak{A}, \sigma \rangle^{n_0} \models \varphi$, then for all $m \ge n_0 \langle \mathfrak{A}, \sigma \rangle^m \models \varphi$. ($\langle \mathfrak{A}, \sigma \rangle^m$ is the usual topological power). \square

From this lemma and a series of technical results with classical analogues, it follows, as in [5] for first-order logic and reduced products, the following theorem:

Theorem. Each sentence of L_t^S is logically equivalent to a Boolean combination of sentences which are preserved under topological products with respect to non-trivial filters. \Box

In what follows, we assume that the filters extend the corresponding filter of cofinite sets. The next two theorems give us a large syntactical class of formulas of L_t which are preserved. The first one can be proved by induction.

Theorem.

a) Atomic formulas and negations of atomic formulas are preserved.

b) If φ is preserved, then $\exists x \varphi$ and $\forall x \varphi$ are preserved.

c) If φ and ψ are preserved, then $\varphi \wedge \psi$ is preserved.

d) If φ is preserved and positive in X, then $(\forall X \ni t) \varphi$ is preserved.

Theorem. If $\varphi \in \mathbf{L}_{t}^{S}$ is positive, without second-order quantifiers and Q is a block of second-order existential quantifiers, then the following formulas of \mathbf{L}_{t}^{S} are preserved:

a) $\varphi \rightarrow \theta$ if φ is preserved.

b) $Q(\varphi \rightarrow \theta)$ if θ is preserved and positive.

c) $Q \forall y(\varphi \rightarrow \theta)$ if θ is a second-order atomic formula, i.e. of the form $t \in X$.

Proof.

a) It is possible to show that the formulas of L_t^S which are preserved under continuous surjective homomorphisms are those that are equivalent to positive formulas without second-order existential quantifiers. On the other hand, by the hypothesis on the filters, the projection maps are continuous. The combination of these facts gives the proof.

b) As $Q(\varphi \to \theta) \in L_t^S$, the second-order variables in Q do not appear in θ ; hence $Q(\varphi \to \theta) \dashv \vdash Q'\varphi \to \theta$, where Q' is a block of second-order universal quantifiers. Therefore we can apply a).

c) For simplicity, we restrict ourselves to the case $Q = (\exists Y \ni t), y = y$, that is, we have to prove that

$$\psi := (\exists Y \ni t(x, \ldots)) \; \forall y(\varphi(y, x, \ldots, Y, X, \ldots) \to \theta(y, x, \ldots, X))$$

is preserved.

Let us suppose that for all $i \in I$

 $\langle \mathfrak{A}_i, \sigma_i \rangle \models \psi(x, \ldots, X, \ldots) [b_i, \ldots, U_i, \ldots]$

(here $b, \ldots \in \prod_{I} A_{i}, \prod_{I} U_{i}, \ldots \in \sigma_{D}$). Then, for each $i \in I$, let $Y \in \sigma_{i}$ be such that $t^{\mathfrak{V}_{i}}[b_{i}, \ldots] \in Y_{i}$ and

(1) $\langle \mathfrak{A}_i, \sigma_i \rangle \models \forall y(\varphi(y, x, \ldots, Y, X, \ldots)) \rightarrow \theta(y, x, \ldots, X)) [b_i, \ldots, Y_i, U_i, \ldots].$

If, for all $i \in I$, one has $\langle \mathfrak{A}_i, \sigma_i \rangle \models \forall y \theta(y, x, \ldots, X) [b_i, \ldots, U_i]$, then, by the preceding theorem, $\langle \prod_I \mathfrak{A}_i, \tilde{\sigma}_D \rangle \models \forall y \theta(y, x, \ldots, X) [b_i, \ldots, \prod_I U_i]$. Taking $Y = \prod_I A_i$, it follows that $\langle \prod_I \mathfrak{A}_i, \tilde{\sigma}_D \rangle \models \psi[b, \ldots, \prod_I U_i, \ldots]$.

Otherwise, there exist sets $I_0 \subseteq I_1 \in D$ such that

$$i_0 \in I_0$$
 iff $(\mathfrak{A}_{i_0}, \sigma_{i_0}) \models \exists y \neg \theta[b_{i_0}, \ldots, U_{i_0}].$

Then, for all $i_0 \in I_0$ and all $a_{i_0} \in A_{i_0}$ such that $\langle \mathfrak{A}_{i_0}, \sigma_{i_0} \rangle \models \neg \theta[a_{i_0}, b_{i_0}, \ldots, U_{i_0}]$, one has by (1) that $\langle \mathfrak{A}_{i_0}, \sigma_{i_0} \rangle \models \neg \varphi(y, x, \ldots, Y, X) [a_{i_0}, b_{i_0}, \ldots, Y_{i_0}, U_{i_0}, \ldots]$.

As $\neg \varphi$ is negative without second-order universal quantifiers, $\neg \varphi$ is preserved under preimages of continuous surjective homomorphisms, hence

$$\langle \prod_{I} \mathfrak{A}_{t}, \tilde{\sigma}_{D} \rangle \models \neg \varphi(y, x, \ldots, Y, X, \ldots) [\tilde{a}_{t_{0}}, \tilde{b}_{t_{0}}, \ldots, p_{t_{0}}^{-1}(Y_{t_{0}}), p_{t_{0}}^{-1}(U_{t_{0}}), \ldots],$$

where $\tilde{a}_{i_0}, \tilde{b}_{i_0}, \ldots \in \prod_I A_i$ are preimages of a_{i_0}, b_{i_0}, \ldots under $p_{i_0}^{-1}$ (in particular, we can take $\tilde{b}_{i_0}, \ldots = b, \ldots$). In consequence, letting $V := \bigcap_{i \in I_1} p_i^{-1}(Y_i) \subseteq \bigcap_{i \in I_0} p_i^{-1}(Y_i) \subseteq \sum_{i \in I_0$

(2)
$$\langle \prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D} \rangle \models \neg \varphi[\tilde{a}_{i_{0}}, b, \ldots, V, \prod_{I} U_{i}, \ldots].$$

Notice that $V \in \sigma_D$ and therefore we can replace $p_{i_0}^{-1}(Y_{i_0})$ by V because $\neg \varphi$ is negative.

Now let us suppose that $\langle \prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D} \rangle \neq \psi[b, \ldots, \prod_{I} U_{i}, \ldots];$ then

$$\langle \prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D} \rangle \models (\forall Y \ni t(x, \ldots)) \exists y(\varphi(y, x, \ldots, Y, X, \ldots) \land \land \neg \theta(y, x, \ldots, X)) [b, \ldots, \prod U_{i}, \ldots]$$

In particular, taking the above defined V as assignment for Y, we obtain an $a \in \prod_{I} A_{t}$ such that

(3)
$$\langle \prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D} \rangle \models \varphi(y, x, \ldots, Y, X, \ldots) [a, b, \ldots, V, \prod_{I} U_{i}, \ldots]$$
 and $\langle \prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D} \rangle \models \neg \theta(y, x, \ldots, X) [a, b, \ldots, \prod_{I} U_{i}].$

From this last fact there follows the existence of $i_0 \in I_0$ such that $\langle \mathfrak{A}_{i_0}, \sigma_{i_0} \rangle \models \neg \theta(y, x, \ldots, X) [a_{i_0}, b_{i_0}, \ldots, U_{i_0}]$. As we now are in the situation that led us to (2), we conclude that

$$\langle \prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D} \rangle \models \neg \varphi(y, x, \ldots, Y, X, \ldots) [\tilde{a}_{i_{0}}, b, \ldots, V, \prod_{I} U_{i}, \ldots]$$

In particular, with $\tilde{a}_{i_0} = a$, it follows

$$\langle \prod_{I} \mathfrak{A}_{i}, \tilde{\sigma}_{D} \rangle \models \neg \varphi(y, x, \ldots, Y, X, \ldots) [a, b, \ldots, V, \prod_{I} U_{i}, \ldots],$$

which contradicts (3).

Applying systematically the two preceding theorems it is possible to verify syntactically that the following topological properties expressable in L_t are preserved:

$$\forall x \forall y (((\forall X \ni x) \ y \in X \land (\forall Y \ni y) \ x \in Y) \to x = y) \tag{``T_0''},$$

$$\forall x \forall y ((\forall X \ni x) \ y \in X \to x = y) \tag{``T,``)}.$$

$$\forall x \forall y (\exists X \ni x) \ (\exists Y \ni y) \ (\exists z (z \in X \land z \in Y) \to x = y)$$
 ("Hausdorff"),

 $\begin{aligned} \forall x (\forall X \ni x) \ (\exists Y \ni x) \ \forall y ((\forall W \ni y) \ \exists z (z \in W \land z \in Y) \rightarrow y \in X) & (\text{``regular''}), \\ \forall x (\forall X \ni f(x)) \ (\exists Y \ni x) \ \forall z (z \in Y \rightarrow f(z) \in X) & (\text{``f is continuous''}), \\ \forall x ((\forall X \ni x) \ \exists y (Py \land y \in X) \rightarrow Px) & (\text{``P is closed''}). \end{aligned}$

References

- [1] BERTOSSI, L. E., El lenguage formal L_t y productos topológicos. Tesis de Doctorado en Matemática, Pontificia Universidad Católica de Chile, 1987.
- [2] ERSHOV, Y. L., Theorie der Numerierungen III. This Zeitschrift 23 (1977), 289-371.
- [3] FEFERMAN, S., and R. L. VAUGHT, The first order properties of products of algebraic systems. Fund. Math. 47 (1959), 57-103.
- [4] FLUM, J., and M. ZIEGLER, Topological Model Theory. Springer Lecture Notes in Mathematics 769 (1980).
- [5] GALVIN, F., Horn sentences. Annals Math. Logic 1 (1970), 389-422.
- [6] GRAETZER, G., Universal Algebra. Springer-Verlag, Berlin-Heidelberg-New York 1979.
- [7] ZIEGLER, M., Topological model theory. In: Model Theoretic Logics (J. BARWISE and S. FEFER-MAN, eds.), Springer-Verlag, Berlin-Heidelberg-New York 1985, pp. 557-577.

L. E. Bertossi Pontificia Universidad Católica de Chile Facultad de Matemática Casilla 6177 Santiago 22 Chile (Eingegangen am 14. Oktober 1988)