Repairing Databases with Annotated Predicate Logic

Pablo Barcelo
P. Universidad Catdlica de Chile
Depto. Ciencia de Computacién
Santiago, Chile.
pbarcelo@ing.puc.cl

Abstract

Consistent answers from a relational
database that violates a given set of
integrity constraints are characterized
[Arenas et al. 1999] as ordinary answers
that can be obtained from every repaired
version of the database. In this paper we
address the problem of specifying the re-
pairs of a database as the minimal models
of a theory written in Annotated Predicate
Logic [Kifer et al. 1992a]. The specifica-
tion is then transformed into a disjunctive
logic program with annotation arguments
and a stable model semantics. From the
program, consistent answers to first order
queries are obtained.

1 Introduction

Integrity constraints (ICs) are important in the de-
sign and use of a relational database. They embody
the semantics of the application domain and help
maintain the correspondence between that applica-
tion domain and its model provided by the database.
Nevertheless, it is not strange for a database instance
to become inconsistent with respect to a given, ex-
pected set of ICs. This could happen due to dif-
ferent factors, being one of them the integration of
several data sources. The integration of consistent
databases may easily lead to an inconsistent inte-
grated database.

An important problem in databases consists in re-
trieving answers to queries that are “consistent”
with the given ICs, even when the database as a
whole does not satisfy those ICs. Very likely “most”
of the data is still consistent. The notion of consis-
tent answers to a first order (FO) query was defined

Leopoldo Bertossi
Carleton University
School of Computer Science
Ottawa, Canada.
bertossi@scs.carleton.ca

in [Arenas et al. 1999], where also a computational
mechanism for obtaining them was presented. In-
tuitively speaking, an ground tuple £ is a consistent
answer to a first order query Q(Z) in a, possibly in-
consistent, relational database instance DB if it is
an (ordinary) answer to Q(Z) in every minimal re-
pair of DB, that is in every database instance over
the same schema that differs from DB by a mini-
mal (under set inclusion) set of inserted or deleted
tuples.

That mechanism presented in [Arenas et al. 1999]
has some limitations in terms of the ICs and queries
that can be handled. In [Arenas et al. 2000b], a
more general methodology based on logic programs
with an stable model semantics was introduced.
More general queries could be considered, but ICs
were restricted to be “binary”, i.e. universal with at
most two database literals (plus built-in formulas).

For consistent query answering we need to deal with
all the repairs of a database. In consequence, a
natural approach consists in providing a manage-
able logical specification of the class of database re-
pairs. The specification must include information
about (from) the database and the information con-
tained in the ICs. Since these two pieces of infor-
mation are mutually inconsistent, we need a logic
that does not collapse in the presence of contradic-
tions. A logic like Annotated Predicate Logic (APC)
[Kifer et al. 1992a], for which a classically inconsis-
tent set of premises can still have a model, is a nat-
ural candidate.

In [Arenas et al. 2000a], a new declarative semantic
framework was introduced for studying the problem
of query answering in databases that are inconsistent
with integrity constraints. This was done by embed-
ding both the database instance and the integrity
constraints into a single theory written in APC),

with an appropriate non classical truth-values lat-
tice Latt. It was shown that, for universal ICs, there
is a one to one correspondence between some mini-
mal models of the annotated theory and the repairs
of the inconsistent database. In this way, a logical
specification of the database repairs was achieved.
The annotated theory was used to obtain some al-
gorithms for obtaining consistent answers to some
simple first order queries.

This paper extends the results presented in
[Arenas et al. 2000a] in several ways. First, in sec-
tion 3, we show how to annotate and integrate ref-
erential ICs (that contain existential quantifiers) in
addition to universal ICs into the annotated theory.
The correspondence between minimal models of the
theory and the database repairs is established. Next,
in section 4, we show how to annotate queries and
the formulation of the problem of consistent query
answering as a problem of non-monotonic (minimal)
entailment from the annotated theory. Then, in sec-
tion 5.1, on the basis of the generated annotated the-
ory, disjunctive logic programs with annotation ar-
guments are derived in such a way that they specify
the database repairs. After that, in section 5.2, we
show how to use those programs to obtain consistent
answers to first order queries. In section 5.3 the logic
programs are transformed into classical disjunctive
normal programs with a stable model semantics; and
the coherent stable models become the database re-
pairs. In section 2 we present the basic framework,
and in section 6 we draw some conclusions, mention
ongoing work, and consider related work.

The methodology presented here works for arbi-
trary first order queries and arbitrary universal ICs,
what considerable extends the cases that could be
handled in [Arenas et al. 1999, Arenas et al. 2000b,
Arenas et al. 2000a].

2 Preliminaries

2.1 Database repairs and consistent
answers

In the context of relational databases, we will con-
sider a fixed relational schema ¥ = (D,P U B)
that determines a first order language. It con-
sists of a fixed, possibly infinite, database domain
D = {c1,¢2,...}, a fixed set of database predicates
P ={py,... ,pn}, and a fixed set of built-in predi-
cates B ={ey,... ,em}.

A database instance over X is a finite collection DB
of facts of the form p(cy, ..., ¢,), where p is a predi-

cate in P and ¢y, ..., ¢, are constants in D. Built-in
predicates have a fixed and same extension in every
database instance, not subject to changes.

An integrity constraint (IC) is an implicitly quanti-
fied clause of the form

(Il(tl) V-V qn(fn) \4 _'pl(gl) V.-V _'pm(gm) (1)

in the F'O language of ¥, where each p;, g; is a pred-
icate in P U B and the t;,5; are tuples containing
constants and variables. We assume we have a fixed
set IC of ICs.

We will assume that DB and IC, separately, are
consistent theories. Nevertheless, it may be the case
that DB U IC is inconsistent. Equivalently, if we
associate to DB a first order structure, also de-
noted with DB, in the natural way, i.e. by applying
the closed world assumption that makes false any
ground atom not explicitly appearing in the set of
atoms DB, it may happen that DB, as a structure,
does not satisfy the IC'. We denote with DB |=5, IC
the fact that the database satisfies IC'. In this case
we say that DB is consistent wrt IC; otherwise we
say DB is inconsistent.

As in [Arenas et al. 1999], we define the distance
between two database instances DB; and DBs as
their symmetric difference A(DB;, DB2) = (DB, —
DB.) U (DB, — DBy).

Now, given a database instance DB, possibly in-
consistent wrt IC, we say that the instance DB’ is
a repair of DB iff DB' s IC and A(DB,DB')
is minimal under set inclusion in the class of in-
stances that satisfy IC' and conform to schema ¥
[Arenas et al. 1999].

Example 1. Consider the relational schema
Book(author, name, publYear), a database in-
stance DB = {Book(kafka, metamorph,1915),
Book(kafka, metamorph, 1919)}; and the
functional dependency FD author, name —
publYear, that can be expressed by e

= Book(z,y,z) V ~Book(z,y,w) V z = w. In-
stance DB is inconsistent with respect to
IC. The original instance has two possible re-
pairs: DBy = {Book(kafka, metamorph, 1915)},
and DBy = {Book(kafka, metamorph, 1919)}. O

Let DB be a database instance, possibly not sat-
isfying a set IC' of integrity constraints. Given a
query Q(Z) to DB, we say that a tuple of con-

stants t is a consistent answer to Q(Z) in DB

[Arenas et al. 1999], denoted DB |=. Q(?), if for ev-
ery repair DB’ of DB, DB’ |=x Q(f). If Q is a closed
formula, i.e. a sentence, then true is a consistent an-
swerto @, denoted DB |=. @, if for every repair DB’
of DB, DB' =5 Q.

Example 2. (example 1 continued) The query
Q1 : Book(kafka, metamorph, 1915) does not have
true as a consistent answer, because it is not true
in every repair. Query Q2(y) : JxIzBook(z,y, z)
has y = metamorph as a consistent answer. Query
Q3(x) : IzBook(x, metamorph, z) has x© = kafka as
a consistent answer. |

2.2 Annotating DBs and ICs

Annotated Predicate Calculus was introduced
in [Kifer et al. 1992a] and also studied in
[Blair et al. 1989] and [Kifer et al. 1992b]. It
constitutes a non classical logic, where classically
inconsistent information does not unravel logical
inference, reasoning about causes of inconsistency
becomes possible, making one of its goals to study
the differences in the contribution to the inconsis-
tency made by the different literals in a theory,
what is related to the the problem of consistent
query answers.

The syntax of APC is similar to that of classi-
cal logic, except for the fact that the atoms are
annotated with values drawn from a truth-values
lattice. The lattice Latt we will use throughout
this paper is shown in Figure 1, first introduced in
[Arenas et al. 2000a].

fa ta

L

Figure 1: Latt with constraints values, database val-
ues and advisory values

Intuitively, we can think of values t. and f. as

specifying what is needed for constraint satisfac-
tion. The values tq and fg represent the truth val-
ues according to the original database. Finally, t,
and f, are considered advisory truth values. These
are intended to solve conflicts between the original
database and what is needed for the satisfaction of
the integrity constraints. Notice that lub(tq,f.) =
fa and lub(fa, tc) = ta . The intuition behind is that,
in case of a conflict between the constraints and the
database, we should obey the constraints, because
the database instance only can be changed to re-
store consistency. This lack of symmetry between
data and ICs is captured by the lattice. Advisory
value t, is an indication that the atom annotated
with it must be inserted into the DB; and deleted
from the DB when annotated with f,.

Herbrand interpretations are now sets of annotated
ground atoms. The notion of formula satisfaction in
an Herbrand interpretation I is defined classically,
except for atomic formulas p, where we say that I =
p:s, with s € Latt, iff for some s’ such that s < s’
we have that p:s’ € I [Kifer et al. 1992a)].

Given an APC theory T, we say that an Herbrand
interpretation I is a A-minimal model of 7, with
A = {ta,fa}, if I is a model of 7 and no other
model of 7 has a proper subset of atoms annotated
with elements in A, i.e. the set of atoms annotated
with t, or f, in I is minimal under set inclusion.

Given a database instance DB and a set of in-
tegrity constraints IC' of the form (1), an embed-
ding T(DB,IC) of DB and IC into a new APC
theory can be defined [Arenas et al. 2000a] in order
to restore consistency using the annotations in the
lattice. It was shown in [Arenas et al. 2000a] that
there is a one-to-one correspondence between the A-
minimal models (we will simply say “minimal” in the
rest of the paper) of theory 7(DB, IC) and the re-
pairs of the original database instance. Repairs can
be obtained from minimal models as follows:

Definition 1. Given a minimal model M of
T(DB, IC), the corresponding DB instance is de-
fined by DBy = {p(a) | M |= p(a):t V p(a):ta}.
O

Example 3. (example 1 cont.) The embedding
T(DB) of DB into APC is given by the following
formulas:

1. Book(kafka, metamorph, 1915):ta
Book (kafka, metamorph, 1919):tq.

2. Predicate closure axioms:

((x = kafka)ta A (y = metamorph):tg A
(z = 1915)tq) V

((x = kafka)ta A (y = metamorph):tg A
(z = 1919)tq) V

Book(z,y, z)fa.

Every ground atom that is not in DB is (possi-
bly implicitly) annotated with fg.

The embedding T (IC) of IC into APC' is given by:

3. Book(z,y,z)f. V Book(z,y,w)fe V (z = w)ite.

4. Book(z,y,z)f. V Book(x,y, z)t.
—Book(z,y, z)f. V ~Book (z,y, z)tc.!

These formulas specify that every fact must
have one and just one constraint value.

Furthermore

5. For every true built-in atom ¢ we include ¢:t
in T(B), and ¢:f for every false built-in atom,
e.g. (1915 = 1915), but (1915 = 1919).

The A-minimal models of T(DB,IC) = T(DB) U
T(IC)UT(B) are:

M = {Book(kafka, metamorph, 1915):t,
Book (kafka, metamorph, 1919)£,},
):

My = {Book(kafka, metamorph, 1915)£,,
Book(kafka, metamorph, 1919):t},

plus annotated false DB atoms and built-ins in
both cases . The correspondent database instances,
DBa,, DBy, are the repairs of DB shown in
example 1. O

From the definition of the lattice and the fact that
no atom from the database is annotated with both
tq and fy, it is possible to show that, in the minimal
models of the annotated theory, a DB atom may get
the annotations either t or f, if the atom was an-
notated with tq, and either f or t, if the atom was
annotated with fg. In the transition from the anno-
tated theory to its minimal models, the annotations
ta, fq “disappear”, as we wished the atoms to be an-
notated in the highest possible layer in the lattice,
except for T if possible. Actually, in the minimal
models T can always be avoided.

!Since only atomic formulas are annotated, the non
atomic formula —p(Z):s is to be read as —(p(Z):s). We
will omit the parenthesis though.

3 Annotating Referential ICs

Referential integrity constraints (RICs) like

p(®) = Jyq(z',y), (2)

where the variables in Z' are a subset of the variables
in Z, cannot be expressed as an equivalent clause of
the form (1). RICs are important and common in
databases. For that reason, we need to extend our
embedding methodology. Actually, we embed (2)
into APC' by means of

p(@)fe vV Iy (q(F', y)te). (3)

Now we allow the given set of ICs to contain, in
addition to ICs of the form (1), RICs like (2). The
one-to-one correspondence between minimal models
of the new theory 7 (DB, IC) and the repairs of DB
still holds. Most important for us is to obtain repairs
from minimal models.

Proposition 1. Let M be a model of T(DB, IC).
If M is minimal and DB, is finite, then DB 4 is a
repair of DB with respect to IC. a

Example 4. Consider the relational schema
of Example 1 extended with table Awuthor(name,
citizenship). Now, IC also contains the RIC:
Book(z,y,z) — JwAuthor(z,w), expressing that
every writer of a book in the database instance must
be registered as an author. The theory 7 (IC) now
also contains:

Book(z,y, z)fe V Jw(Author(z, w)itc),
Author(z, w)fe V Author(z, w):t.,
—Author(z, w)f. V = Author(z, w)tc.

We might also have the functional depen-
dency FD name — citizenship, that
in conjunction with the RIC, produces a
foreign key constraint. The database in-
stance {Book(neruda, 20lovepoems, 1924)} s
inconsistent wrt the given RIC. If we have the
following subdomain D(Author.citizenship) =
{chilean, canadian} for the attribute “citizenship”,

we obtain the following database theory:

T (DB) = {Book(neruda, 20lovepoems, 1924):tq,
Author(neruda, chilean)fa,
Author(neruda, canadian)fy, . .. }.

The minimal models of T(DB, IC) are:

M, = {Book(neruda, 20lovepoems, 1924) £,
Author(neruda, chilean):f,

Author(neruda, canadian)f, ...}
My = {Book(neruda, 20 lovepoems, 1924)t,
Author(neruda, chilean):ta,
Author(neruda, canadian)f, ...}
M3 = {Book(neruda, 20 lovepoems, 1924):t,
Author(neruda, chilean):f,
Author(neruda, canadian)t,, . .. }.

We obtain DBaq, = 0, DBag, = {Book(neruda,
20lovepoems, 1924), Author(neruda, chilean)} and
DBy, similar to DBay,, but with a Canadian
Neruda. According to proposition 1, these are
repairs of the original database instance, actually
the only ones. |

As in [Arenas et al. 2000a], it can be proved that
when the original instance is consistent, then it is its

only repair and it corresponds to a unique minimal
model of the APC theory.

4 Annotation of Queries

According to proposition 1, a ground tuple % is a
consistent answer to a FO query Q(Z) iff Q (%) is true
of every minimal model of 7 (DB, IC). However, if
we want to pose the query directly to the theory, it is
necessary to reformulate it as an annotated formula.

Definition 2. Given a FO query Q(Z) in language
Y, we denote by Q°*(Z) the annotated formula
obtained from @ by simultaneously replacing, for
p € P, the negative literal —p(5) by the APC
formula p(5):f V p(8):fa, and the positive literal p(3)
by the APC formula p(3):t V p(5):t,. For p € B, the
literal p(35) is replaced by the APC formula p(5):t. O

According to this definition, logically equivalent ver-
sions of a query could have different annotated ver-
sions, but it can be shown (proposition 2), that they
retrieve the same consistent answers.

Example 5. (example 1 cont.) If we want
the consistent answers to the query Q(z)

—3JyIzFw3t(Book(z,y, z) A Book(z,w,t) Ny # w),
asking for those authors that have at most one book
in DB, we generate the annotated query Q%"(Z) :
—3JyIzIw3t((Book(z,y, 2) : t V Book(z,y,z) :ta) A
(Book(z,w,t):t V Book(z,w,t):ta) A (y # w):t),
to be posed to the annotated theory with its mini-
mal model semantics. |

Definition 3. If ¢ is a sentence in the language of
T(DB,IC), we say that 7(DB,IC) A-minimally

entails o, written 7(DB,IC) [Ea ¢, iff every
A-minimal model M of T(DB,IC), such that
DBy, is finite, satisfies @, i.e. M | . |

Now we characterize consistent query answers wrt,
the annotated theory.

Proposition 2. Let DB be a database instance,
IC a set of integrity constraints and Q(Z) a query
in FO language X. It holds:

DB . Q(f) iff T(DB,IC) Ea Qo (f). O

Example 6. (example 5 continued) For consis-
tently answering the query Q(x), we pose the query
Q" (z) to the minimal models of 7T(DB, IC). The
answer we obtain from every minimal model is
x = kafka. a

According to this proposition, in order to consis-
tently answer queries, we are left with the problem
of evaluating minimal entailment wrt the annotated
theory. In [Arenas et al. 2000a] some limited FO
queries were evaluated, but no annotated queries
were generated. The original query were answered
using ad hoc algorithms that were extracted from
theory T(DB,IC). No advantage was taken from
a characterization of consistent answers in terms of
minimal entailment from 7(DB,IC). In the next
section we will address this issue by taking the orig-
inal DB instance with the ICs into a logic program
that is generated taking advantage of the annota-
tions provided by T(DB,IC). The query to be
posed to the logic program will be built from Q*".

5 Query Answering

In this section we will consider ICs of the form (1),
more precisely of the form

Vi) v V a(5) v e, 4)

where, for every ¢ and j, p; and g; are predicates
in P, and ¢ is a formula containing predicates in B
only.

5.1 Logic programming specification of
repairs

In order to generate a first order logic program that
gives an account of annotations, for each predicate

p(Z) € P, we introduce a new, predicate p(Z, -), with
an extra argument for annotations. This defines a
new FO language, X%, for extended ¥. The re-
pair logic program, II(DB, IC), for DB and IC, is
written with predicates from X°* and contains the
following clauses:

1. For every atom p(a) € DB, II(DB, IC) contains
the fact p(a,tq) <.

2. For every predicate p € P, II(DB, IC) contains
the clauses:

p(Z,t*) < p(Z,ta)
P(Z,t*) < p(Z,ta)
p(Z,f%) « p(Z,1a),

where t*, f* are new, auxiliary elements in the
domain of annotations.

3. For every constraint of the form (4), II(DB, IC)
contains the clause:

\/?:1 pl(flafa) V7 \/;nzl q‘7(87‘77ta) —
Ai:lpi(ti’t*) A /\j:l (55, %) A @,

where @ represents the negation of .

Intuitively, the clauses in 3. say that when the IC
is violated (the body), then the DB has to be re-
paired according to one of the alternatives shown in
the head. Since there may be interactions between
constraints, these single repairing steps may not be
enough to restore the consistency of the DB. We
have to make sure that the repairing process con-
tinues and stabilizes in a state where all the ICs
hold?. This is the role of the clauses in 2. containing
the new annotations t*, that groups together those
atoms annotated with tq and t,, and f*, that does
the same with fg and f, (with the help of Definition 4
below).

The following example shows the interaction of a
FD and an inclusion dependency. When atoms are
deleted in order to satisfy the FD, the inclusion de-
pendency could be violated, and in a second step it
should be repaired. At that second step, the annota-
tions t* and f*, computed at the first step where the
FD was repaired, will detect the violation of the in-
clusion dependency and perform the corresponding
repairing process.

’In [Arenas et al. 2000b] a direct specification of
database repairs by means of disjunctive logic programs
with a stable model semantics was presented. Those pro-
grams contained both repair triggering rules and “stabi-
lizing” rules.

Example 7. (example 1 cont.) We ex-
tend the schema with table Furbook(author, name,
publYear), for European books. Now, DB also
contains the literal FEurbook(kafka, metamorph,
1919)}. If in addition to the ICs we had be-
fore, we include in IC' the set inclusion dependency
Vzyz (Eurbook(z,y,z) — Book(z,y,z)), we obtain
the following program II(DB, IC):

1. EurBook(kafka, metamorph, 1919, ta) <
Book(kafka, metamorph, 1919, t4) +
Book(kafka, metamorph, 1915, tq) <.

2. Book(z,y,z,t*) + Book(z,y, z,ta)
Book(z,y, z,t*) < Book(z,y, z,ta)
Book(z,y, z,f*) < Book(z,y,z,f,)
Eurbook(x, y, z,t*) < Eurbook(z,y, z,ta)
Eurbook(z, y, z,t*) < Eurbook(z,y, z,ta)
Eurbook(z, y, z,£*) < Eurbook(z,y, z,fa).

3. Book(z,y,2,fa) V Book(z,y,w,fa) «
Book(z,y, z,t*) A Book(z,y, w,t*) Az #w

Eurbook(x,y, z,fa) V Book(z,y, z,ta)
Eurbook(z, y, z,t*) A Book(z, y, z,f*). m|

In order to have a semantics for our repair programs,
we define their models. Since the negative informa-
tion in a database instance is only implicitly avail-
able and we want to avoid explicitly representing it,
we need to specify when negative information of the
form p(¢, f*) is true of a model.

Definition 4. (a) Let I be an Herbrand interpreta-
tion for ¥ and ¢ a FO formula in ¥¢%. The def-
inition of x-satisfaction of ¢ by I, denoted I =, ¢,
is as usual, except that for a ground atomic formula
p(a,f*) it holds: I =, p(a,f*) iff p(a,f*)el
or pla,ta) & I.

(b) An Herbrand interpretation M is a x-model of
II(DB, IC) if for every (ground instantiation of a)
clause (Vi_, a; + AL, b;) € I(DB,IC), M [,

/\;n:1 bj or M =, Vi, a. -

Definition 5. (a) An atom p(a) in a model M
of a program is plausible if it belongs to the head
of a clause in II(DB,IC) such that M x*-satisfies
the body of the clause. A model of a program is
plausible if every atom in it is plausible.

(b) A model is coherent if it does not contain both
p(a,ta) and p(a, f,). O

We will be interested only in the Herbrand x-models
of the program that are minimal wrt set inclusion®
and plausible and coherent. Notice that in a coher-
ent model we may still find both atoms p(a, t*) and
p(a,f*). Notice also that a plausible atom may be-
long to a supported disjunctive head [Lobo 199§],
without the other disjuncts being forced to be false.

It is possible to prove that every minimal, plausible
and coherent x-model of II(DB, IC) is a model of
II(DB, IC) (in the usual sense). Furthermore, it is
easy to see from the definition of a x-model of a pro-
gram that we could keep the classical notion of sat-
isfaction by including in the program the additional
clauses p(Z,f*) « not p(T,ta), that would include
in the models all the negative information we usu-
ally keep implicit via the closed world assumption.
Moreover, we would be left with a normal disjunc-
tive program, for which a stable model semantics
could be used [Gelfond et al. 1988] (see section 5.3
below).

Example 8. (example 7 cont.) The coherent plau-
sible minimal x-models of the program presented in
example 7 are:

My = {Eurbook(kafka, metamorph, 1919,t4),
Eurbook (kafka, metamorph, 1919, t*),
Book(kafka, metamorph, 1919 ,tq),
Book(kafka, metamorph, 1919, t*),
Book (kafka, metamorph, 1915, tq),
Book (kafka, metamorph, 1915, t*),
Book (kafka, metamorph, 1915, £,),

Book(kafka, metamorph, 1915, £*)}.

My = {Eurbook(kafka, metamorph, 1919, t
Eurbook (kafka, metamorph, 1919t
Eurbook (kafka, metamorph, 1919, 1,),
Eurbook (kafka, metamorph, 1919, £*)
Book(kafka, metamorph, 1919, tq),
Book(kafka, metamorph, 1919, t*),
Book (kafka, metamorph, 1919, £,),

Book (kafka, metamorph, 1919, £*),

()
)

),
),

)

Book(kafka, metamorph, 1915 ,tq),
Book(kafka, metamorph, 1915,t*)}. a
Notice that, in contrast to the minimal models of
the annotated theory 7T (DB, IC), the x-models of
the program will include the database contents with
its original annotations (tq). Every time there is an
atom in a model annotated with tq or t,, it will
appear annotated with t*. From these models we
should be able to “read” database repairs. Every

3To distinguish them from the A-minimal model of
the annotated theory.

*-model of the logic program has to be interpreted.

Definition 6. Given a coherent plausible x-model
M of TI(DB, IC), its interpretation, i(M), is a new
Herbrand interpretation obtained from M as fol-
lows:

1. If p(a, fa) belongs to M, then p(a, f**) belongs
to i(M).

2. If neither p(a,tq) nor p(a,ta) belongs to M,
then p(a, f**) belongs to i(M).

3. If p(a,tq) belongs to M and p(a,f,) does not
belong to M, then p(a, t**) belongs to i(M).

4. If p(a, ta) belongs to M, then p(a, t**) belongs
to i(M). O

Notice that the interpreted models contain two new
annotations, t** f** in the last arguments. The
first one groups together those atoms annotated ei-
ther with t, or with tq but not f,. Intuitively, the
latter correspond to those annotated with t in the
models of T(DB,IC). A similar role plays the other
new annotation wrt the “false” annotations. These
new annotations will simplify the expression of the
queries to be posed to the program (see section 5.2).
Without them, instead of simply asking p(Z, t**) (for
the tuples in a repair), we would have to ask for

p(i‘, ta) \ (p(i’, td) A _'p(ja fa))'
Example 9. (example 8 cont.)
models are:

i(M1) = {Eurbook(kafka, metamorph, 1919, t**),
Book (kafka, metamorph, 1919, t**),
Book (kafka, metamorph, 1915 ,£**)}

i(My) = {Eurbook (kafka, metamorph, 1919, £**),
Book(kafka, metamorph, 1919, £**),
Book(kafka, metamorph, 1915,t**)}. O

The interpreted

The interpreted models could be easily obtained by
adding new rules to the program II(DB, IC). This
will be shown in section 5.2. From an interpreted
model of the program we can obtain a database in-
stance:

Definition 7.
DBi(py = {p(@) | i(M) [p(a, t**)}. O
Example 10. (example 9 cont.) The following

database instances obtained from definition 7 are the
repairs of DB:

DBng) = {Eurbook (kafka, metamorph, 1919),
Book(kafka, metamorph, 1919) },

DBZI{MZ) = {Book(kafka, metamorph, 1915) }. =

Theorem 1. If M is a coherent minimal plausible
*model of II(DB,IC), and DBj{) is finite, then
DB{{M) is a repair of DB with respect to IC. Fur-
thermore, the repairs obtained in this way are all the
repairs of DB. O

5.2 The query program

Given a first order query (), we want the consistent
answers from DB. In consequence, we need those
atoms that are simultaneously true in every inter-
preted coherent minimal plausible x-model of the
program II(DB,IC). They are obtained through
the query @Q**, obtained from) by replacing, for
p € P, every positive literal p(5) by p(s,t**) and
every negative literal —p(s) by p(5, £**). This query
corresponds to the annotated version Q*" of @) (see
section 4). Now Q** can be transformed into a
query program II(Q**) by a standard transforma-
tion [Lloyd 1987, Abiteboul et al. 1995]. This query
program will be run in combination with a program,
I that specifies the interpreted models. This pro-
gram can be obtained extending II(DB, IC) with the
following rules:

p(T,t**) < p(Z,ta),

p(T,t**) < p(Z,ta), not p(z,fa),

p(Z,£%) « p(Z, fa),

p(Z, 1) < not p(Z,ta), not p(T,t,).

The extended program, that now contains weak
negation, is basically stratified due to the differ-
ent ground annotations in the predicates. Thus, its
models can be computed by extending the models of
the original program in a uniform manner.

Example 11. (example 7 cont.) The program IT**
is obtained adding to the program II(DB, IC) of ex-
ample 7 the following clauses:

Eurbook(x, y, z,t**) < Eurbook(z,y, z,ta)
Eurbook(z, y, z,£**) < Eurbook(z,y, z,fa)

Eurbook(x, y, z,t**) < Eurbook(z,y, z,ta),
not Eurbook(z,y, z,fa)

Eurbook(x, y, z,£**) < not Eurbook(z,y, z,ta),
not Eurbook(z,y, z,ta)

Book(z,y, z,t**) < Book(z,y,z,ta)
Book(z,y, z,£*) < Book(x,y, z,fa)

Book(z,y, z,t**) < Book(z,y, z,ta),
not Book(z,y,z,f,)

Book(z,y, z,£**) < not Book(z,y,z,ta),
not Book(z,y, z,ta).

For the query Q(y) 3zBook(kafka,y, z), we
generate Q**(y) 3zBook(kafka,y, z,t**), that
is transformed into the query program II(Q**):
Answer(y) < Book(kafka, y, z, t**).

The coherent minimal plausible *-models of
mmt u m(Q*) are M = M; U i(My) U
{Answer(metamorph)} and My = My U i(Msz) U
{Answer(metamorph)}, where M, M> and
i(My),i(Ms) are given in examples 8 and 9, resp.
We can see that y = metamorph is a consistent
answer. O

5.3 Computing from the program

The repair programs II(DB, IC') introduced in sec-
tion 5.1 are based on a non classical notion of satis-
faction (definition 4). In order to compute from the
program using a stable model semantics for disjunc-
tive programs, we build a new program II7 (DB, IC),
obtained from the original one by adding the clause
p(Z,f*) < not p(T,ta) that gives an account of the
closed world assumption. It holds:

Proposition 3. If M is a coherent stable model
of II"(DB, IC), then DBY, is a repair of DB with
respect to IC; and every repair can be obtained in
this way. O

In consequence, the database repairs can be
specified using disjunctive logic programs with
a stable model semantics [Gelfond et al. 1988,
Gelfond et al. 1991], and an implementation of this
semantics, like DLV [Eiter et al. 2000], can be used
to compute both repairs and consistent answers.
Notice that DLV implements denial constraints
[Buccafurri et al. 2000], which can be used to keep
the coherent stable models only, by pruning those
models that do not satisfy <+ p(Z,ta),p(Z,fa).

Example 12. Consider the database instance
{p(a)} that is inconsistent wrt the set inclusion
dependency Vz (p(x) — g¢(z)). The program
II7 (DB, IC) contains the following clauses:

1. The following rules do not depend on ICs
p(z,£%) < p(z,fa)
p(z,t*) < p(z, ta)

2. A single rule capturing the IC
p(z,fa) Vq(z, ta) < p(a, t*), g(z, £%).
3. Database contents
pla,tq) «
4. The new rules for the closed world assumption
p(x,£*) < not p(x,ta)
q(z,£*) < not q(z,tq).

5. Denial constraints for coherence
— p(Z,ta),p(Z, fa)
— q(7,ta),q(z, fa).

6. Rules for interpreting the models

p(z, t*) < p(z, ta)

p
p .’I:, f** <_ p(',I:7 fa

(
(
(
(
(
(
(
(

x
x, t**) « p(xz,ta), not p(x,fs)

)
p(z, £*) < not p(x,ta), not p(z,ta)

q
q l’,t** « q(x)td , not q(l’, fa)

)
)
)

x, t**) + q(z,ta)
))
)
)

)
q(z,£%*) < not q(x,ta), not q(z,t,). a

It can be seen that the programs with annotations
we have obtained are very simple in terms of their
dependency on the ICs.

As mentioned before, consistent answers can be ob-
tained “running” the query program introduced in
section 5.2 in combination with the repair program
™ (DB, IC), under the skeptical stable model se-
mantics, that sanctions as true what is true of all
stable models.

6 Conclusions

Extending work presented in [Arenas et al. 2000a],
we have shown how to annotate referential ICs in
order to obtain a specification in annotated pred-
icate logic of the class of repairs of a relational
database. The correspondence between the mini-
mal models of the annotated first order specification
and the database repairs is established. Ongoing

work considers the extension of the annotated em-
bedding methodology to the class of all ICs found in
DB praxis [Abiteboul et al. 1995, chap. 10].

We formulated the problem of consistent query an-
swering as a problem of non monotonic entailment
of a modified query from the annotated theory.

We have presented a general treatment of consistent
query answering for first order queries and universal
ICs. This is done by means of disjunctive logic pro-
grams with a stable model semantics, where annota-
tions are now arguments, that specify the database
repairs in the case of universal ICs. In consequence,
consistent query answers can be obtained by “run-
ning” the program. Ongoing work considers the ex-
tension of the logic programs to include referential
(and more general) ICs.

In [Greco et al. 2001], a general methodology for
specifying database repairs wrt universal ICs is pre-
sented. There, disjunctive logic programs with sta-
ble model semantics are used. They also consider
the problem of specifying preferences between pos-
sible repairs. Independently, [Arenas et al. 2000b]
also presents a specification of database repairs by
means of disjunctive logic programs with a stable
model semantics. The programs capture the repairs
for binary universal ICs. The programs presented
here also work for the whole class of universal ICs,
but they are much simpler than those presented in
[Greco et al. 2001, Arenas et al. 2000b]; this is due
to the simplicity of the stabilizing rules, that take
full advantage of the relationship between the an-
notations. The simplicity is expressed in a much
smaller number of rules and the syntactic properties
of the programs.

In [Blair et al. 1989, Kifer et al. 1992b,
Leach et al. 1996] paraconsistent and annotated
logic programs are introduced. In particular, in
[Subrahmanian 1994] those programs are used to
integrate databases, a problem closely related to
inconsistency handling. It is not clear how to use
those definitive non disjunctive programs to capture
database repairs. Furthermore, notice that the
programs presented in this paper have a completely
classical semantics.

In [Gaasterland 1994], annotated logic (programs)
were used to specify and obtain answers matching
user needs and preferences. Deeper relationships to
our work deserve to be explored.

Acknowledgments: Work supported by DIPUC,
FONDECYT Grant 1000593, and Carleton Univer-
sity Start-Up Grant 9364-01. We are grateful to Al-
berto Mendelzon and Marcelo Arenas for stimulating
and useful conversations, and comments.

References

[Abiteboul et al. 1995] Abiteboul, S.; Hull, R.
and Vianu, V. “Foundations of Databases”.
Addison-Wesley, 1995.

[Arenas et al. 1999] Arenas, M.; Bertossi, L. and
Chomicki, J. “Consistent Query Answers in In-
consistent Databases”. In Proc. ACM Sympo-
sium on Principles of Database Systems (ACM
PODS’99), Philadelphia), pages 68-79, 1999.

[Arenas et al. 2000a] Arenas, M.; Bertossi, L. and
Kifer, M. “Applications of Annotated Predicate
Calculus to Querying Inconsistent Databases”.
In ‘Computational Logic - CL2000° Stream: 6th
International Conference on Rules and Objects
in Databases (DOOD’2000). Springer Lecture
Notes in Artificial Intelligence 1861, pages 926-
941.

[Arenas et al. 2000b] Arenas, M.; Bertossi, L.
and Chomicki, J. “Specifying and Querying
Database Repairs using Logic Programs with
Exceptions”. In Flexible Query Answering Sys-
tems. Recent Developments, H.L. Larsen, J.
Kacprzyk, S. Zadrozny, H. Christiansen (eds.),
Springer, 2000, pp. 27—41.

[Blair et al. 1989] Blair, H.A. and Subrahmanian,
V.S. “Paraconsistent Logic Programming”.
Theoretical Computer Science, 68:135-154,
1989.

[Buccafurri et al. 2000] Buccafurri, F.; Leone, N.
and Rullo, P. “Enhancing Disjunctive Datalog
by Constraints”. IEEE Transactions on Knowl-
edge and Data Engineering, 2000, 12(5) : 845-
860.

[Eiter et al. 2000] Eiter, T.; Faber, W.; Leone, N.
and Pfeifer, G. “Declarative Problem-Solving in
DLV”. In Logic-Based Artificial Intelligence, J.
Minker (ed.), Kluwer, 2000, pp. 79-103.

[Gaasterland 1994] Gaasterland, T. and Lobo, J.
“Qualified Answers That Reflect User Needs
and Preferences”. In Proc. 20th Interna-
tional Conference of Very Large Databases

(VLDB’94). Morgan Kaufmann Publishers,
1994, pages 309-320.

[Gelfond et al. 1988] Gelfond, M. and Lifschitz, V.
“The Stable Model Semantics for Logic Pro-
gramming”. In Logic Programming, Proceedings
of the Fifth International Conference and Sym-
posium, R. A. Kowalski and K. A. Bowen (eds.),
MIT Press 1988, pp. 1070-1080.

[Gelfond et al. 1991] Gelfond, M. and Lifschitz, V.
“Classical Negation in Logic Programs and Dis-
junctive Databases”. New Generation Comput-
ing, 1991, 9:365-385.

[Greco et al. 2001] Greco, G.; Greco, S. and
Zumpano, E. “A Logic Programming Approach
to the Integration, Repairing and Querying of
Inconsistent Databases”. In Proc. 17th Inter-
national Conference on Logic Programming,
ICLP’01, Ph. Codognet (ed.), LNCS 2237,
Springer, 2001, pp. 348-364.

[Kifer et al. 1992a] Kifer, M. and Lozinskii, E.L.
“A Logic for Reasoning with Inconsistency”.
Journal of Automated reasoning, 9(2):179-215,
November 1992.

[Kifer et al. 1992b] Kifer, M. and Subrahmanian,
V.S. “Theory of Generalized Annotated Logic
Programming and its Applications”. Journal of
Logic Programming, 12(4):335-368, April 1992.

[Leach et al. 1996] Leach, S.M. and Lu, J.J. “Query
Processing in Annotated Logic Programming;:
Theory and Implementation”. Journal of Intel-
ligent Information Systems, 6, January 1996,
pp- 33-58.

[Lloyd 1987] Lloyd, J.W. “Foundations of Logic
Programming”. Springer Verlag, 1987.

[Lobo 1998] Lobo, J.; Minker, J. and Rajasekar,
A. “Semantics for Disjunctive and Normal Dis-
junctive Logic Programs”. In Handbook of Logic
in Artificial Intelligence and Logic Program-
ming, Vol. 5, D. Gabbay et al. (eds.). Oxford
University Press, 1998.

[Subrahmanian 1994] Subrahmanian, V.S. “Amal-
gamating Knowledge Bases”. ACM Transac-
tions on Database Systems, 1994, 19(2):291-
331.

