
Query Rewriting in Datalog
for On-The-Fly Entity

Resolution
Leopoldo Bertossi�

Carleton University
School of Computer Science

Ottawa, Canada

Joint work with Jaffer Gardezi (SITE, Ottawa U.)

�: Faculty Fellow of the IBM CAS

L. Bertossi. BIN Meeting, Nov. 2012

Duplicate Resolution and MDs

A (relational) database may contain several representations of
the same external entity

The database contains “duplicates”, which is in general consid-
ered to be undesirable

The database has to be cleaned ...

The problem of duplicate- or entity-resolution is about:

(a) detecting duplicates, and

(b) merging duplicate representations into single ones

This is a classic and complex problem in data management, and
data cleaning in particular

We concentrate on the merging part of the problem

L. Bertossi. BIN Meeting, Nov. 2012 2

A generic way to approach the problem consists in specifying
attribute values that have to be matched (made identical) under
certain conditions

A declarative language with a precise semantics could be used
for this purpose

In this direction, matching dependencies (MDs) were recently
introduced (Fan et al., PODS’08, VLDB’09)

They represent rules for resolving pairs of duplicate representa-
tions (two tuples at a time)

An MD indicates attribute values that have to be matched when
certain similarities between attribute values hold

L. Bertossi. BIN Meeting, Nov. 2012 3

Example: The similarities of phone and address indicate that
the tuples refer to the same person, and the names should be
matched

People (P) Name Phone Address

John Smith 723-9583 10-43 Oak St.
J. Smith (750) 723-9583 43 Oak St. Ap. 10

Here: 723-9583 ≈ (750) 723-9583 and 10-43 Oak St. ≈ 43 Oak St. Ap. 10

An MD capturing this cleaning policy:

P [Phone] ≈ P [Phone] ∧ P [Address] ≈ P [Address] →
P [Name]

.
= P [Name]

(an MD may involve two different relations)

L. Bertossi. BIN Meeting, Nov. 2012 4

Matching Dependencies

MDs are rules of the form
∧

i,j

R[Ai] ≈ij S[Bj] →
∧

k,l

R[Ak]
.
= S[Bl]

LHS captures a similarity condition on pairs of tuples, in relations
R and S

Abbreviation: R[Ā] ≈ S[B̄] → R[C̄]
.
= S[Ē]

Static interpretation: If antecedent is true for a pair of tuples,
then the values R[Ak] and S[Bl] should be the same

Dynamic interpretation: Those values on the RHS should be
updated to some (unspecified) common value

Hence, attributes on a RHS are called changeable attributes

L. Bertossi. BIN Meeting, Nov. 2012 5

The similarity operators ≈ satisfy:

(a) Symmetry: If x ≈ y, then y ≈ x

(b) Equality Subsumption: If x = y, then x ≈ y

Transitivity is not assumed (and usually does not hold)

MDs are to be “applied” iteratively until duplicates are solved

To keep track of changes and comparing tuples and instances,
we use global tuple identifiers (a non-changeable surrogate key)

This attribute (when shown) appears as the first attribute in a
relation, e.g. t is the identifier in R(t, x̄)

A position: A pair (t, A) with t a tuple id, A an attribute

The position’s value is t[A], the value for A in tuple (with id) t

L. Bertossi. BIN Meeting, Nov. 2012 6

MD Semantics

A semantics for MDs acting on database instances was intro-
duced in (Gardezi and Bertossi; LID’11; FofCS’12)

It is based on a chase procedure iteratively applied to the original
instance D

A resolved instance D′ is obtained from a finitely terminating
sequence of instances D �→ D1 �→ D2 �→ · · · �→ D′

D′ satisfies the MDs in the sense of the static interpretation,
seeing MDs as “FDs” (EGDs)

The semantics specifies the one-step transitions (�→), i.e. the
updates used/allowed to go from Di−1 to Di

Only modifiable positions within the instance are allowed to
change their values in such a step, and as forced by the MDs

L. Bertossi. BIN Meeting, Nov. 2012 7

Modifiable positions depend on a whole setM of MDs and the
instance at hand

They are recursively defined, but intuitively

Position (t, A) is modifiable iff:

1. There is a t′ such that the pair {t, t′} satisfies the
similarity condition of an MD with A on the RHS

2. t[A] has not already been resolved, i.e. it is different from
one of its other duplicates

L. Bertossi. BIN Meeting, Nov. 2012 8

Example 1: R[A] = R[A]→ R[B]
.
= R[B]

The positions of the values in red in D are modifiable, because
their values are unresolved (wrt the MD)

R(D) A B
t1 a b
t2 a c

�→
R(D′) A B
t1 a d
t2 a d

D′ is a resolved instance since it satisfies the MD interpreted as
an FD (the update value d is arbitrary)

D′ has no modifiable positions with unresolved values: the val-
ues for B are already the same, so no reason to change them

L. Bertossi. BIN Meeting, Nov. 2012 9

Example 2:

R[A] = R[A] → R[B]
.
= R[B]

R[B] = R[B] → R[C]
.
= R[C]

R(D) A B C
t1 a b d
t2 a c e
t3 a b e

Attribute R(C) is changeable

Position (t2, C) is not modifiable wrtM andD: No justification
to change its value in one step on the basis of an MD and D

Position (t1, C) is modifiable

With the restrictions (to be) imposed, two resolved instances:

R(D1) A B C

t1 a b d
t2 a b d
t3 a b d

R(D2) A B C

t1 a b e
t2 a b e
t3 a b e

D1 cannot be obtained in a single (one step) update: the red
value is for a non-modifiable position D2 can ...

L. Bertossi. BIN Meeting, Nov. 2012 10

Single Step Semantics: (�→)

Each ordered pair Di, Di+1 in an update sequence (a chase
step) must satisfy the setM of MDs

Denoted (Di, Di+1) �M
(Di, Di+1) �M holds iff:

1. For every MD, say R[Ā] ≈ S[B̄]→ R[C̄]
.
= S[D̄] and

pair of tuples tR and tS, if tR[Ā] ≈ tS[B̄] in Di, then
tR[C̄] = tS[D̄] in Di+1

2. The value of a position can only differ between Di and
Di+1 if it is modifiable wrt Di

This semantics stays as close as possible to the spirit of the MDs
as originally introduced, and also uncommitted

L. Bertossi. BIN Meeting, Nov. 2012 11

Other semantics have been proposed and investigated:

• As above, but modifying the chase conditions, e.g. one
MD at a time, previous resolutions cannot be unresolved,
etc.

• Using matching functions to choose a value for a match

(Bertossi, Kolahi, Lakshmanan; ICDT’11, TofCSs),

(Bahmani, Bertossi, Kolahi, Lakshmanan; KR’12)

Back to the previously defined resolved instances ...

L. Bertossi. BIN Meeting, Nov. 2012 12

Minimally Resolved Instances:

Among the resolved instances we prefer those that are the closest
to the original instance

A minimally resolved instance (MRI) of D is a resolved instance
D′ such that the number of changes of attribute values com-
paring D with D′ is a minimum

Instance D2 in Example 2 is an MRI, but not D1 (2 vs. 3)

Resolved Answers:

Given a conjunctive query Q, a set of MDsM, and an instance
D, resolved answers are invariant under the ER process

That is, the resolved answers are those answers to Q that are
returned by each of MRIs of D

Resolved answers are “semantically correct and certain”

L. Bertossi. BIN Meeting, Nov. 2012 13

Similar in spirit to consistent query answering (CQA) from
an instance that fails to satisfy a set of integrity constraints

(Arenas, Bertossi, Chomicki; PODS’99)

Developing (polynomial-time) query rewriting methodologies for
CQA has been the focus of intensive research

Such rewritings, in cases when CQA is polynomial-time, have
all been first-order

With the rewriting into Q′ of an initial query Q, we answer
Q′ from the dirty instance D as usual, obtaining the resolved
answers to Q from D

Avoiding generation, materialization and querying of possibly
many MRIs ...

L. Bertossi. BIN Meeting, Nov. 2012 14

Doing something similar for MDs has not been attempted before
and brings new challenges:

• MDs contain the non-transitive similarity predicates

• Enforcing consistency of updates requires computing their
transitive closures (TC)

• The minimality of number of value changes
(not considered for rewriting in CQA)

Example: R[A] ≈ R[A] → R[B]
.
= R[B]

R(D) A B
t1 a e
t2 b f
t3 c g

It holds a ≈ b ≈ c, but a �≈ c

Consistent updates requires
considering ≈’s TC

Duplicate resolution requires
t1[B] and t3[B] to be updated
to the same value

L. Bertossi. BIN Meeting, Nov. 2012 15

Query Rewriting

We developed a query rewriting methodology (G&B; Datalog 2.0’12)

The rewritten queries turn out to be Datalog queries

There are two main classes of sets of MDs for which query
rewriting can be applied: (G&B; SUM’12)

1. Sets where MDs do not depend on each other
(non-interacting sets of MDs)

2. Sets where MDs depend cyclically on each other

E.g. But not

R[A] ≈ R[A] → R[B]
.
= R[B]

R[B] ≈ R[B] → R[A]
.
= R[A]

R[A] ≈ R[A] → R[B]
.
= R[B]

R[B] ≈ R[B] → R[C]
.
= R[C]

(actually, intractable for simple queries)

L. Bertossi. BIN Meeting, Nov. 2012 16

Cycles help: chase termination condition imposes a simple form
on the minimally resolved instances (easier to capture and char-
acterize)

For these sets of MDs a conjunctive query can be rewritten to
retrieve the resolved answers

Provided there are no joins on existentially quantified variables
corresponding to changeable attributes: unchangeable attribute
join conjunctive queries (UJCQ) (G&B; SUM’12)

L. Bertossi. BIN Meeting, Nov. 2012 17

Tuple-Attribute Closure:

Given instance D and MDsM
TAM,D, the tuple-attribute closure, is the transitive closure of
a binary relation ≈′ on positions

≈′ depends on D,M, and ≈
≈′ and its TC can be defined in Datalog

TAM,D turns out to be an equivalence relation

For an equivalence class E of TAM,D:

freqD(a,E) := | {(t, A) | (t, A) ∈ E, t[A] = a in D} |
In an MRI, all positions in each equivalence class E must take
a common value a that maximizes freqD(a,E)

L. Bertossi. BIN Meeting, Nov. 2012 18

Example: M : R[A] ≈ R[A]→ R[B]
.
= R[B]

It holds a ≈ b ≈ c

R(D) A B
t1 a e
t2 b e
t3 c g

→
R(D′) A B
t1 a e
t2 b e
t3 c e

TAM,D is TC of the relation (t1, B) ≈′ (t2, B) ≈′ (t3, B)

D′ is the only MRI

L. Bertossi. BIN Meeting, Nov. 2012 19

The Rewriting:

Input: A conjunctive query in UJCQ

Output: A stratified Datalognot program with recursion and
aggregation (no disjunction)

Recursion arises in the computation of the TC TAM,D

Aggregation is needed to compute freqD(a,E)

Negation is needed to minimize the frequency

L. Bertossi. BIN Meeting, Nov. 2012 20

To retrieve the resolved answers to Q from D:

1. Generate a query rule defining auxiliary query predicate Q′

from Q
2. Combine with the Datalog program mentioned above

3. Run on top of (possibly dirty) D as usual

Resolved answers can be obtained in polynomial time (in data)

L. Bertossi. BIN Meeting, Nov. 2012 21

Query Rewriting Example

Example: (the gist)

Schema: R[A,B] Query: Q(x, y) ← R(x, y)

M:
R[A] ≈ R[A]→ R[B]

.
= R[B]

R[B] ≈ R[B]→ R[A]
.
= R[A]

Resolved answers to original query are the (usual) answers to:

Q′(x, y) ← R(t, x′, y′),not CompareA(t, x),

not CompareB(t, y), CA(t, x, z1), C
B(t, y, z2)

Four new predicates in the body are defined using TC and
aggregation, independently from the query

L. Bertossi. BIN Meeting, Nov. 2012 22

Final Remarks

• In general, query rewriting cannot be applied when the MDs
have a non-cyclic dependence on each other: retrieving the
resolved answers is intractable (G&B; SUM’12)

• Next step: Experiments ...

• Other definitions of resolved answer can be considered in our
setting, such as

(a) Answers that are true in all resolved instances (not neces-
sarily minimal)

In some cases the chase rules can be expressed directly as
Datalog rules

L. Bertossi. BIN Meeting, Nov. 2012 23

(b) Answers in all (minimally) resolved instances obtained with
a modified chase procedure

Adding the requirement that two values, once made equal,
cannot subsequently be made unequal

The same rewriting technique applies, but it applies to all
sets of MDs

L. Bertossi. BIN Meeting, Nov. 2012 24

