
Consistent Answers from Integrated Data
Sources

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

bertossi@scs.carleton.ca
www.scs.carleton.ca/∼bertossi

University at Buffalo, April 2005.

2

Virtual Data Integration

Number of available on-line information sources has increased
dramatically

How can users confront such a large and increasing number of
information sources?

In particular, when information has to be integrated?

DB2

DB3DB1

DB4

?

3

Interacting with each of the sources independently?

Considering all available sources?

Selecting only those to be queried?

Querying the relevant sources on an individual basis?

Handcraft the combination of results from different sources?

A long, tedious, complex and error prone process

4

An approach: Virtual integration of sources via a mediator

DB3DB1 DB2

MEDIATOR

DBn

A software system that offers a common user interface to query
a set of heterogeneous and independent data sources

System offers a single integrated, global schema

User feels like interacting with a single database

5

Sources are mutually independent and non cooperative

Data kept in sources, and extracted at mediator’s request

Interaction from the system to the sources via queries

Mediator composes query results for the user

Update operations are not supported via the mediator

System should allow sources to get in and out

DB3DB1 DB2 DBn

Wrapper Wrapper Wrapper Wrapper

Global Schema Source Descriptions

Plan Generator

Execution Engine

User Interface
Answers

General Architecture of an Integration System

6

User poses queries in terms of global schema

Relationship between global schema and local, source
schemas specified in the mediator, as source descriptions

Mediator is responsible of solving problems of data:

• redundancy: to avoid unnecessary computations
• complementarity: data of the same kind may be spread
through different sources

• inconsistency: sources, independently, may be consis-
tent, but together, possibly not

E.g. Same ID card number may be assigned to dif-
ferent people in different sources

7

Description of the Sources:

Mediator needs to know what data is in the sources and
how it relates to the global schema

Sources are described by means of logical formulas; like
those used to express queries and define views

Those formulas define the mappings between the global
schema and the local schemas

There are two main approaches (and a combination of
them):

8

• Global-as-View (GAV): Relations in the global schema
are described as views over the tables in the local
schemas

• Local-as-View (LAV): Relations in the local schemas
(at the source level) are described as views over the
global schema

S

P Q
R

T

mediator

GAV LAV

9

Plan Generator:

Gets a user query in terms of global relations

Uses the source descriptions and rewrites the query as a
query plan

Which involves a set of queries expressed in terms of local
relations

Rewriting process depends on LAV or GAV approach

Query plan includes a specification of how to combine the
results from the local sources

10

LAV

LAV is more flexible wrt participation of sources; but more
complex for query answering

A global data schema is designed, and contributors of data
(sources) describe how their data fits into the integration sys-
tem

Example: Definition of tables at the sources:

S1(Title, Year ,Director) ←
Movie(Title,Year ,Director ,Genre),

American(Director),Genre = comedy ,

Year ≥ 1960.

S1: comedies, after 1960, with American directors and years

11

S2(Title, Review) ←
Movie(Title,Year ,Director ,Genre),

Review(Title,Review),Year ≥ 1990.

S2: movies after 1990 with their reviews, but no directors

Here, sources defined as conjunctive queries (views) with built-
ins

Definition of each source does not depend on other sources

From the perspective of S2, there could be other sources con-
taining information about comedies after 1990 with their re-
views, i.e. data in the sources could be “incomplete”

12

Query posed to G: “Comedies with their reviews produced
since 1950?”

Ans(Title, Review) ←
Movie(Title,Year ,Director , comedy),

Review(Title,Review),Year ≥ 1950.

Query expressed in terms of relations in global schema only

Not possible to obtain answers by a simple and direct compu-
tation of the RHS of the query: Information is in the sources,
now, views ...

A plan is a rewriting of the query as a set of queries to the
sources and a prescription on how to combine their answers

13

A possible query plan for our query (more on this later):

Ans ′(Title,Review) ← S1(Title,Year ,Director),

S2(Title,Review).

Query was rewritten in terms of the views; and now can be
easily computed

Due to the limited contents of the sources, we obtain comedies
by American directors with their reviews filmed after 1990

We get correct answers; and also the most we can get ...

Meaning?

14

Semantics of a LAV Data Integration System

We assume source relations are open or incomplete

Example: Global system G1 with source definitions and sources
extensions

S1(X,Y) ← R(X,Y) with s1 = {(a, b), (c, d)}
S2(X,Y) ← R(Y,X) with s2 = {(c, a), (e, d)}

The global relations can be materialized in different ways, still
satisfying the source descriptions, so different global instances
are possible

A global (material) instance D is legal if the view defini-
tions applied to it compute extensions S1(D), S2(D) such that
s1 ⊆ S1(D) and s2 ⊆ S2(D)

15

That is, each source relation contains a subset of the data of
its kind in the global system

D = {R(a, b), R(c, d), R(a, c), R(d, e)} and its supersets are
the legal instances

Global query Q: R(X,Y)?

What is a correct answer to the query, considering that there
are many possible legal global instances?

The intended answers to a global query are the certain answers,
those that can be obtained from all the legal instances

CertainG1(Q) = {(a, b), (c, d), (a, c), (d, e)}
Certain answers to a query are true in all the legal instances

16

Consistency in Virtual Data Integration

Usually one assumes that certain ICs hold at the global level;
and they are used in the generation of query plans

How can we be sure that those global ICs hold?

They are not maintained at the global level

Most likely they are not fully satisfied

The goal is to retrieve answers to global queries from the vir-
tual integration system that are “consistent with the ICs”

We need a characterization of consistent answers and a mech-
anism to obtain them ... at query time ...

17

Example: (continued) Global system G1

What if we had a global functional dependency R : X → Y ?

(local FDs S1 : X → Y , S2 : X → Y satisfied in the sources)

Global FD not satisfied by D = {(a, b), (c, d), (a, c), (d, e)}
(nor by its supersets)

From the certain answers to the query Q: R(X, Y)?, i.e. from

CertainG1(Q) = {(a, b), (c, d), (a, c), (d, e)}
only (c, d), (d, e) should be consistent answers

18

Minimal Legal Instances and Consistent Answers

There are algorithms for generating plans to obtain the certain
answers (with some limitations)

Not much for obtaining consistent answers

Here we do both, in stages ...

First concentrating on the minimal legal instances of a virtual
systems, i.e. those that do not properly contain any other legal
instance

Minimal legal instances do not contain unnecessary infor-
mation; that could, unnecessarily, violate global ICs

19

In the example, D = {R(a, b), R(c, d), R(a, c), R(d, e)} is the
only minimal instance

The minimal answers to a query are those that can be obtained
from every minimal legal instance:

CertainG(Q) � MinimalG(Q)

For monotone queries they coincide

By definition, consistent answers to a global query wrt IC are
those obtained from all the repairs of all the minimal legal in-
stances wrt IC

(Bertossi, Chomicki, Cortes, Gutierrez; FQAS 02)

20

In the example:

The only minimal legal instance

D = {R(a, b), R(c, d), R(a, c), R(d, e)}
violates the FD R : X → Y

Its repairs wrt FD are

D1 = {R(a, b), R(c, d), R(d, e)} and

D2 = {R(c, d), R(a, c), R(d, e)}
A repair of an instance D wrt a set of ICs is an instance
D′ that satisfies the ICs and minimally differs from D
(under set inclusion, considering a DB as a set of facts)

Consistent answers to query Q: R(X, Y)?

Only {(c, d), (d, e)}

21

Computing consistent answers? (Idea)

(Bravo, Bertossi; IJCAI 03)

Answer set programming (ASP) gives a semantics to dat-
alog (logic) programs with negation (and possibly disjunc-
tion in the heads)

ASP based specification of minimal instances of a virtual
data integration system

ASP based specification of repairs of minimal instances

Global query in Datalog (or its extensions) to be answered
consistently

Run the three combined programs above under skeptical
answer set semantics (stable model semantics)

22

Methodology works for first-order queries (and Datalog
extensions), and universal ICs combined with (acyclic)
referential ICs

Important subproduct: A methodology to compute cer-
tain answers to monotone queries

23

Specifying Minimal Instances

Example: Domain: D = {a, b, c, . . . } Global system G2

S1(X,Z) ← P (X,Y), R(Y, Z) s1 = {(a, b)} open
S2(X,Y) ← P (X,Y) s2 = {(a, c)} open

MinInst(G2) = {{P (a, c), P (a, z), R(z, b)} | z ∈ D}

Specification of minimal instances: Π(G2)

P (X,Z) ← S1(X,Y), F ((X, Y), Z)
P (X,Y) ← S2(X,Y)
R(Z, Y) ← S1(X,Y), F ((X, Y), Z)
F ((X,Y), Z) ← S1(X,Y), dom(Z), choice((X, Y), (Z))
dom(a)., dom(b)., dom(c)., . . . , S1(a, b)., S2(a, c).

24

Inspired by inverse rules algorithm for computing certain an-
swers (Duschka, Genesereth, Levy; JLP 00)

Now the global relations are being defined in terms of the local
relations

F is a functional predicate, whose functionality on the second
argument is imposed by the choice operator

choice((X,Y)), (Z)): non-deterministically chooses a unique
value for Z for each combination of values for X,Y
(Giannotti, Pedreschi, Sacca, Zaniolo; DOOD 91)

Models of Π(G2) are the choice models, but the program can
be transformed into one with stable models semantics

25

Mb = {dom(a), . . . , S1(a, b), S2(a, c), P (a, c), choice((a, b), b),

F (a, b, b), R(b, b), P (a, b)}

Ma = {dom(a), . . . , S1(a, b), S2(a, c), P (a, c), choice(a, b, a),

F ((a, b), a), R(a, b), P (a, a)}

Mc = {dom(a), . . . , S1(a, b), S2(a, c), P (a, c), choice((a, b), c),

F (a, b, c), R(c, b)}

· · ·

Here: 1-1 correspondence between stable models and minimal
instances of G2

26

In general:

The minimal instances are all among the stable models
of the program

All the models of the program are (determine) legal in-
stances

In consequence, the program can be used to compute all
the certain answers to monotone queries

The program can be refined to compute all and only the
minimal legal instances (appendix 1)

The program can also be used to compute certain an-
swers to monotone queries; more general than any other
algorithm for LAV

Specification programs can be produced when there are
also closed or clopen sources (appendix 2)

27

Repairs and Consistent Answers

Intuitively, consistent answers are invariant under minimal restora-
tions of consistency

Definition based on notion of repair
(Arenas, Bertossi, Chomicki; PODS 99)

A repair is a global instance that minimally differs from a min-
imal legal instance

Example: Global system G1 (extended)

S1(X,Y) ← R(X,Y) with s1 = {(a, b), (c, d)} open

S2(X,Y) ← R(Y,X) with s2 = {(c, a), (e, d)} open

S3(X) ← P (X) with s3 = {(a), (d)} open

28

MiniInst(G1) = {{R(a, b), R(c, d), R(a, c), R(d, e), P (a), P (d)}}

G1 is inconsistent wrt FD : X → Y

RepairsFD(G1):

D1 = {R(a, b), R(c, d), R(d, e), P (a), P (d)}
D2 = {R(c, d), R(a, c), R(d, e), P (a), P (d)}

(we relax legality for repairs)
Queries:

Q(X,Y) : R(X,Y)?

(c, d), (d, e) are the consistent answers

Q1(X) : ∃Y R(X,Y)?

a is a consistent answer, together with c, d

29

Specification of Repairs

So far: specification of minimal instances of an integration
system; they can be inconsistent

Now: Specify their repairs

Idea: Combine the program that specifies the minimal instances
with the “repair program” that specifies the repairs of each
minimal instance

Repairs of single databases are specified using disjunctive logic
programs with stable model semantics and are used to compute
consistent answers to queries (Barcelo, Bertossi; PADL03)

30

The high expressive power of such logic programs in needed in
the general case of CQA under first-order queries and ICs due
to the intrinsic complexity of the problem
(Chomicki, Marcinkowski; Inf. & Comp. 2005)

(Cali, Lembo, Rosati; PODS03) (Fuxman, Miller; ICDT05)

However, for restricted but useful classes of queries and ICs,
specialized and more efficient methods have been developed
(Arenas,Bertossi,Chomicki; PODS99) (Celle,Bertossi; DOOD00)

(Chomicki,Marcinkowski,Staworko; CIKM04) (Fuxman, Miller; ICDT05)

Π(G, IC) is the program with annotations constants that spec-
ifies the repairs of an integration system G wrt IC

If a repair can be obtained by inserting a tuple P (t̄) into the
DB, then the program makes the atom P (t̄, ta) true

31

If P (t̄) has to be deleted from the DB, then the program makes
the atom P (t̄, fa) true ...

Example: G3 S1(X) ← P (X, Y) {s1(a)} open
S2(X,Y) ← P (X, Y) {s2(a, c)} open

IC : ∀x∀y(P (x, y) → P (y, x))

MinInst(G3) = {{P (a, c)}} ... inconsistent system

In the program, the P (·, ·, td) are the output of the first layer,
that specifies the minimal instances

They are taken by the second layer specifying the repairs, whose
output are the P (·, ·, t��)

A third layer can be the query program, that uses the P (·, ·, t��)

32

Repair Program:

First Layer is refined program for minimal instances (w/standard
version of Choice, as used by DLV)

dom(a). dom(c). S1(a). S2(a, c).

P (X, Y, td) ← P (X, Y, s1)

P (X, Y, td) ← P (X, Y, to)

P (X, Y,ns1) ← P (X, Y, to)

addS1(X) ← S1(X), not auxS1(X)

auxS1(X) ← P (X, Z,ns1)

fz (X, Z) ← addS1(X), dom(Z), chosens1z (X, Z)

chosens1z (X, Z) ← addS1(X), dom(Z), not diffchoices1z (X, Z)

diffchoices1z (X, Z) ← chosens1z (X, U), dom(Z), U �= Z

P (X, Z, s1) ← addS1(X), fz (X, Z)

P (X, Y, to) ← S2(X, Y)

33

Second Layer computes the repairs

P (X,Y, t�) ← P (X, Y, td)

P (X,Y, t�) ← P (X, Y, ta)

P (X,Y, fa) ∨ P (Y,X, ta) ← P (X, Y, t�),

not P (Y,X, td)

P (X,Y, fa) ∨ P (Y,X, ta) ← P (X, Y, t�), P (Y,X, fa)

P (X,Y, t��) ← P (X, Y, ta)

P (X,Y, t��) ← P (X, Y, td), not P (X,Y, fa)

← P (X, Y, ta), P (X, Y, fa).

Disjunctive rules are crucial; they repair: If a violation of IC
occurs (c.f. body), then either delete or insert tuples (c.f. head)

34

Stable models obtained with DLV: (parts of them)

Mr
1 = {dom(a), dom(c), S1(a), S2(a,c), P(a,c,ns1),

P(a,c,s2), P(a,c,td), P(a,c,t*), auxS1(a),
P(c,a,ta), P(a,c,t**), P(c,a,t*), P(c,a,t**)}
≡ {P (a, c), P (c, a)}

Mr
2 = {dom(a),dom(c), S1(a), S2(a,c), P(a,c,ns1),

P(a,c,s2), P(a,c,td), P(a,c,t*), auxS1(a),
P(a,c,fa)} ≡ ∅

Repair programs specify exactly the repairs of an integration
system for universal and simple (non cyclic) referential ICs

35

Computing Consistent Answers

Consistent answers t̄ to a query Q(x̄) posed to a VDIS?

Methodology:

1. Q(· · ·P (ū) · · ·) �−→ Q′ := Q(· · ·P (ū, t��) · · ·)
2. Q′(x̄) �−→ (Π(Q′), Ans(X̄))

(Lloyd-Topor transformation)

- Π(Q′) is a query program (the Third Layer)

- Ans(X̄) is a query atom defined in Π(Q′)

3. “Run” Π := Π(Q′) ∪ Π(G, IC)

4. Collect ground atoms

Ans(t̄) ∈ ⋂{S | S is a stable model of Π}

36

Example: G3 Query Q : P (x, y)

1. Q′ : P (x, y, t��)

2. Π(Q′) : Ans(X,Y) ← P (X, Y, t��)

3. Π(G3, IC) as before; form Π = Π(G3, IC) ∪ Π(Q′)

4. Repairs corresponding to the stable models of the pro-
gram Π become extended with query atoms

Mr

1 = Mr
1 ∪ {Ans(a, c), Ans(c, a)};

Mr

2 = Mr
2

5. No Ans atoms in common, then query has no consistent
answers (as expected)

37

Example: Repair program for G1 with the FD

domd(a). domd(b). domd(c). %begin subprogram for minimal instances

domd(d). domd(e). v1(a,b).

v1(c,d). v2(c,a). v2(e,d).

R(X,Y,td) :- v1(X,Y).

R(Y,X,td) :- v2(X,Y).

R(X,Y,ts) :- R(X,Y,ta), domd(X), domd(Y). %begin repair subprogram

R(X,Y,ts) :- R(X,Y,td), domd(X), domd(Y).

R(X,Y,fs) :- domd(X), domd(Y), not R(X,Y,td).

R(X,Y,fs) :- R(X,Y,fa), domd(X), domd(Y).

R(X,Y,fa) v R(X,Z,fa) :- R(X,Y,ts), R(X,Z,ts), Y!=Z, domd(X),domd(Y),domd(Z).

R(X,Y,tss) :- R(X,Y,ta), domd(X), domd(Y).

R(X,Y,tss) :- R(X,Y,td), domd(X), domd(Y), not R(X,Y,fa).

:- R(X,Y,fa), R(X,Y,ta).

Ans(X,Y) :- R(X,Y,tss). %query subprogram

The consistent answers obtained for the query Q: R(X,Y),
correspond to the expected ones, i.e., {(c, d), (d, e)}

38

Conclusions

Alternative semantics for query answering in virtual data inte-
gration systems under ICs have been introduced and studied
(Cali, Calvanese, De Giacomo, Lenzerini; CAISE02)

(Lembo, Lenzerini, Rosati; KRDB02) (Cali, Lembo, Rosati; PODS 03)

There are many open problems

Several implementation issues, in particular in the case of
most common SQL queries and constraints

Research on many issues related to the evaluation of logic
programs for consistent query answering (CQA) in the
context of databases

• Optimization of the logic programs for CQA

39

• Existing implementations of stable models semantics
are based on grounding the rules

• In database applications, this may lead to huge ground
programs; so “intelligent grounding” is applied

• Implementations are geared to computing (some) sta-
ble model(s) and answering ground queries

• For database applications, posing and answering open
queries is more natural

• Computing all the the stable models completely is
undesirable

• Generation of “partial” repairs, relative to the ICs
that are “relevant” to the query at hand
(Eiter, Fink, G.Greco, Lembo; ICLP 03)

• Magic sets, query-directed methodologies, for evalu-
ating logic programs for CQA (S.Greco et al.)

40

• Efficient integration of database management sys-
tems and logic programs (e.g. DLV)

• Recent experiments with consistent query answering
in virtual data integration systems are encouraging
(INFOMIX Project)

41

Appendix 1: The Refined Program

Example: G3

S1(X) ← P (X,Y) {s1(a)} open
S2(X,Y) ← P (X,Y) {s2(a, c)} open

MinInst(G3) = {{P (a, c)}}

However, the legal global instances corresponding to stable
models of Π(G3) are of the form {{P (a, c), P (a, z)} | z ∈ D}

More legal instances (or stable models) than minimal instances

As S2 is open, it forces P (a, c) to be in all legal instances

42

What makes the same condition on S1 automatically satisfied
(no other values for Y needed)

Choice operator, as used above, may still choose other values
z ∈ D

We want Π(G) to capture only the minimal instances

A refined version of Π(G) detects in which cases it is necessary
to use the function predicates

F (X,Y) ← add S1(X), dom(X), choice((X), Y)

where add S1(X) is true only when the openness of S1 is not
satisfied through other views (which has to be specified)

stable models of Π(G) ≡ MinInst(G)

43

This program not only specifies the minimal instances, but can
be also used to compute certain answers to monotone queries

More general than any other algorithm for LAV ...

Specification programs can be produced for case where sources
may be closed or clopen

44

Appendix 2: Minimal Instances for Mixed Sources

Example: D = {a, b, c, . . . } G4

S1(X,Z) ← P (X,Y), R(Y, Z) {s1(a, b)} open
S2(X,Y) ← P (X,Y) {s2(a, c)} clopen

Like G2, that had the same sources but open; before:

MinInst(G2) = {{P (a, c), P (a, z), R(z, b)} | z ∈ {a, b, c, ...}}

Now second source restricts P to (a, c), so in this case:

MinInst(G4) = {{P (a, c), R(c, b)}}

Closure condition restricts the tuples in the legal instances, but
does not add new tuples

45

In general: Π(G)mix built as follows:

The same clauses asΠ(G) considering the open and clopen
sources as open

For every view predicate V of a clopen or closed source
with description S(X̄) ← P1(X̄1), . . . , Pn(X̄n), add the
denial constraint:

← P1(X̄1), . . . , Pn(X̄n), not S(X̄).

It says it is not possible for a model to satisfy the conjunction at
the RHS of the arrow; then it filters out models of the program

It captures closure of the source that for legal instances D:

S(D) = PD
1 (X̄1), . . . , P

D
n (X̄n) ⊆ s = set of facts for S in Π(G)

46

If the simple version of Π(G) is considered, it holds:

MinInst(G) ⊆ stable models of Π(G)mix ⊆ LegInst(G)

If the refined version of Π(G) is used we have:

stable models of Π(G)mix ≡ MinInst(G)

47

Example: (continued) D = {a, b, c, . . . } G4

S1(X,Z) ← P (X,Y), R(Y, Z) {s1(a, b)} open
S2(X,Y) ← P (X,Y) {s2(a, c)} clopen

Π(G4)
mix : (simple version, refined not needed here)

dom(a)., dom(b)., dom(c)., . . . , S1(a, b)., S2(a, c).
P (X,Z) ← S1(X,Y), F ((X, Y), Z)
R(Z, Y) ← S1(X,Y), F ((X, Y), Z)
P (X,Y) ← S2(X,Y)
F ((X,Y), Z) ← S1(X, Y), dom(Z), choice((X,Y), (Z))
← P (X,Y), not S2(X, Y)

(S2 stores the source contents, and P is used to compute the
view extension, so we are requiring that P ⊆ S2)

48

The only stable model of Π(G4)
mix is:

{domd(a), . . . , s1(a, b), s2(a, c), P (a, c), diffchoice(a, b, a),

diffchoice(a, b, b), chosen(a, b, c), f(a, b, c), R(c, b)}

Corresponding, as expected, to the fact that

MinInst(G4) = {{P (a, c), R(c, b)}}

49

Relation between answers obtained from different types of queries
and programs (the same applies to the mixed case):

Π(G) Query CertainG(Q) MinimalG(Q)

Refined Monotone = =
General �= =

Simple Monotone = =
General �= �=

