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Explanations in Machine Learning

• Bank client e = ⟨john, 18, plumber, 70K, harlem, . . .⟩
As an entity represented as a record of values for features
Name, Age, Activity, Income, ...

• e requests a loan from a bank that uses a classifier

classifier

e
loan?

No!

• The client asks Why?

• What kind of explanation?

How?

From what?
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• Some of them are causal explanations, some are explanation
scores a.k.a. attribution scores

• They quantify the relevance of each feature value in e for the
assigned label

• Here two of them:

• Shap (based on Shapley value of Coalition Game Theory)

• Resp (Responsibility, based on Actual Causality)

• We will consider only binary features and a binary classifier

Entity population E = {0, 1}N

Classifier L : E → {0, 1}
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Shap Score

• Set of players F contain features, relative to classified entity e

• An appropriate e-dependent game function (shared
wealth-function) mapping subsets of players to real numbers

• For S ⊆ F , and eS the projection of e on S :

Ge(S) := E( L(e′ ) | e′ ∈ E and e′S = eS)

• For a feature F ⋆ ∈ F , compute: Shap(F ,Ge,F ⋆)∑
S⊆F\{F⋆}

|S|!(|F|−|S|−1)!
|F|! [E(L(e′|e′S∪{F⋆} = eS∪{F⋆})︸ ︷︷ ︸

Ge(S∪{F⋆})

−E(L(e′)|e′S = eS)︸ ︷︷ ︸
Ge(S)

]

(Lee & Lundberg, 2017)

• Assumes a probability distribution on entity population E
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• Shap: Exponentially many subsets of players, and multiple
passes through a possibly black-box classifier

Shap computation is #P-hard in general

• Can we do better with an open-box classifier?

classifier

e
loan?

No!

X1

X2

Xn
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FIGURE 3.1 
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree 
to the appropriate leaf node, then returning the classification associated with this leaf (in this case, 
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for 
playing tennis. 

from that node corresponds to one of the possible values for this attribute. An 
instance is classified by starting at the root node of the tree, testing the attribute 
specified by this node, then moving down the tree branch corresponding to the 
value of the attribute in the given example. This process is then repeated for the 
subtree rooted at the new node. 

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas- 
sifies Saturday mornings according to whether they are suitable for playing tennis. 
For example, the instance 

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong) 

would be sorted down the leftmost branch of this decision tree and would therefore 
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no). 
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm 
are adapted from (Quinlan 1986). 

In general, decision trees represent a disjunction of conjunctions of con- 
straints on the attribute values of instances. Each path from the tree root to a leaf 
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc- 
tion of these conjunctions. For example, the decision tree shown in Figure 3.1 
corresponds to the expression 

(Outlook = Sunny A Humidity = Normal) 

V (Outlook = Overcast)  

v (Outlook = Rain A Wind = Weak)  

;

Exploiting its elements and internal structure?

• A decision tree, or a random forest, or a Boolean circuit?

• Can we compute Shap in polynomial time?
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Tractability for BC-Classifiers

• Theorem: Shap can be computed in polynomial time for
dDBCs under the uniform distribution1

More specifically, we investigate Boolean classifiers de-
fined as deterministic and decomposable Boolean circuits, a
widely studied model in knowledge compilation (Darwiche
2001; Darwiche and Marquis 2002). Such circuits encom-
pass a wide range of Boolean models and binary deci-
sion diagrams classes that are considered in knowledge
compilation, and in AI more generally. For instance, they
generalize binary decision trees, ordered binary decision
diagrams (OBDDs), free binary decision diagrams (FB-
DDs), and deterministic and decomposable negation normal
norms (d-DNNFs) (Darwiche 2001; Amarilli et al. 2020;
Darwiche and Hirth 2020). These circuits are also known
under the name of tractable Boolean circuits, that is used in
recent literature (Shih, Darwiche, and Choi 2019; Shi et al.
2020; Shih, Choi, and Darwiche 2018b,a; Shih et al. 2019;
Peharz et al. 2020). We provide an example of a determin-
istic and decomposable Boolean circuit next (and give the
formal definition in Section 2).

Example 1.1. We want to classify papers submitted to
a conference as rejected (Boolean value 0) or accepted
(Boolean value 1). Papers are described by features fg, dtr,
nf and na, which stand for “follows guidelines”, “deep the-
oretical result”, “new framework” and “nice applications”,
respectively. The Boolean classifier for the papers is given
by the Boolean circuit in Figure 1. The input of this cir-
cuit are the features fg, dtr, nf and na, each of which can
take value either 0 or 1, depending on whether the feature is
present (1) or absent (0). The nodes with labels ¬, ∨ or ∧ are
logic gates, and the associated Boolean value of each one of
them depends on the logical connective represented by its
label and the Boolean values of its inputs. The output value
of the circuit is given by the top node in the figure.

The Boolean circuit in Figure 1 is said to be decompos-
able, because for each ∧-gate, the sets of features of its in-
puts are pairwise disjoint. For instance, in the case of the top
node in Figure 1, the left-hand side input has {fg} as its set
of features, while its right-hand side input has {dtr, nf, na}
as its set of features, which are disjoint. Also, this circuit is
said to be deterministic, which means that for every ∨-gate,
two (or more) of its inputs cannot be given value 1 by the
same Boolean assignment for the features. For instance, in
the case of the only ∨-gate in Figure 1, if a Boolean assign-
ment for the features gives value 1 to its left-hand side input,
then feature dtr has to be given value 1 and, thus, such an as-
signment gives value 0 to the right-hand side input of the ∨-
gate. In the same way, it can be shown that if a Boolean
assignment for the features gives value 1 to the right-hand
side input of this ∨-gate, then it gives value 0 to its left-hand
side input.

Readers who are not familiar with knowledge compila-
tion can simply think about deterministic and decomposable
circuits as a tool for establishing in a uniform manner the
tractability of computing SHAP-scores on several Boolean
classifier classes. Our main contributions are the following:

1. We provide a polynomial time algorithm that com-
putes the SHAP-score for deterministic and decompos-
able Boolean circuits, in the special case of uniform prob-

¬

∧

∨

∧

Figure 1: A deterministic and decomposable Boolean Circuit
as a classifier.

ability distributions (that is, when each p(x) is 1
2 ). In par-

ticular, this provides a precise proof of the claim made in
(Lundberg et al. 2020) that the SHAP-score for Boolean
classifiers given as decision trees can be computed in
polynomial time. Moreover, we also obtain as a corollary
that the SHAP-score for Boolean classifiers given as OB-
DDs, FBDDs and d-DNNFs can be computed in polyno-
mial time.

2. We observe that computing the SHAP-score on Boolean
circuits in a class is always polynomially as hard as the
model counting problem for that class (under a mild con-
dition). By using this observation, we obtain that each one
of the determinism assumption and the decomposability
assumption is necessary for tractability.

3. Last, we show that the results above (and most interest-
ingly, the polynomial-time algorithm) can be extended to
the SHAP-score defined on product distributions for the
entity population.

Our contributions should be compared to the results ob-
tained in the contemporaneous paper (Van den Broeck et al.
2020). There, the authors establish the following theorem:
for every class C of classifiers and under product distribu-
tions, the problem of computing the SHAP-score for C is
polynomial-time equivalent to the problem of computing the
expected value for the models in C. Since computing expec-
tations is in polynomial time for tractable Boolean circuits,
this in particular implies that computing the SHAP-score is
in polynomial time for the circuits that we consider; in other
words, their results capture ours. However, there is a funda-
mental difference in the approach taken to show tractability:
their reduction uses multiple oracle calls to the problem of
computing expectations, whereas we provide a more direct
algorithm to compute the SHAP-score on these circuits.

Our algorithm for computing the SHAP-score could be
used in practical scenarios. Indeed, recently, some classes
of classifiers have been compiled into tractable Boolean cir-
cuits. This is the case, for instance, of Bayesian Classi-
fiers (Shih, Choi, and Darwiche 2018a), Binary Neural Net-
works (Shi et al. 2020), and Random Forests (Choi et al.
2020). The idea is to start with a Boolean classifier M given
in a formalism that is hard to interpret – for instance a Bi-
nary neural network – and to compute a tractable Boolean
circuit M ′ that is equivalent to M (this computation can be
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Deterministic and Decomposable Boolean Circuit

• Can be extended to a product distribution on E = {0, 1}N

• They (and related models) are relevant in Knowledge
Compilation

1
Arenas, Bertossi, Barcelo, Monet; AAAI’21; JMLR’23
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• Corollary: Via polynomial time transformations, under the
uniform and product distributions, Shap can be computed in
polynomial time for

• Decision trees (and random forests)

• Ordered binary decision diagrams (OBDDs)

Binary decision tree and truth table for the function

, described in notation for

Boolean operators.

BDD for the function f

Diagram of a binary decision

diagram represented using

complemented edges.

to a low child, while solid lines represent edges to a high child. Therefore, to find , begin at x1, traverse down
the dotted line to x2 (since x1 has an assignment to 0),  then down two solid lines (since x2 and x3 each have an
assignment to one). This leads to the terminal 1, which is the value of .

The binary decision tree of the left figure can be transformed into a binary decision diagram by maximally reducing it
according to the two reduction rules. The resulting BDD is shown in the right figure.

Another notation for writing this Boolean function is .

An ROBDD can be represented even more compactly, using complemented edges.
[2][3] Complemented edges are formed by annotating low edges as complemented or
not.  If  an  edge  is  complemented,  then  it  refers  to  the  negation  of  the  Boolean
function that corresponds to the node that the edge points to (the Boolean function
represented by the BDD with root that node). High edges are not complemented, in
order to ensure that the resulting BDD representation is a canonical form. In this
representation, BDDs have a single leaf node, for reasons explained below.

Two advantages of using complemented edges when representing BDDs are:

computing the negation of a BDD takes constant time

space usage (i.e., required memory) is reduced

A reference to a BDD in this representation is a (possibly complemented) "edge"
that points to the root of the BDD. This is in contrast to a reference to a BDD in the
representation without use of complemented edges, which is the root node of the
BDD. The reason why a reference in this representation needs to be an edge is that
for each Boolean function, the function and its negation are represented by an edge
to the root of a BDD, and a complemented edge to the root of the same BDD. This is
why negation takes constant time. It also explains why a single leaf node suffices:
FALSE is represented by a complemented edge that points to the leaf node, and
TRUE is represented by an ordinary edge (i.e., not complemented) that points to
the leaf node.

For example, assume that a Boolean function is represented with a BDD represented using complemented edges. To
find the value of the Boolean function for a given assignment of (Boolean) values to the variables,  we start at  the
reference  edge,  which  points  to  the  BDD's  root,  and  follow the  path  that  is  defined  by  the  given  variable  values
(following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable that

Complemented edges

(¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2) ∨ (x2 ∧ x3)

Compatible variable orders along full paths

Compact representation of Boolean formulas

• Sentential decision diagrams (SDDs)

Generalization of OBDDs

• Deterministic-decomposable negation normal-form (dDNNFs)

As dDBC, with negations affecting only input variables

• An optimized efficient algorithm for Shap computation can be
applied to all of these
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Shap on Neural Networks

• Binary Neural Networks (BNNs) are commonly considered
black-box models

• We experimented with Shap computation with a black-box
BNN and with its compilation into a dDBC2

• Even if the compilation is not entirely of polynomial time, it
may be worth performing this one-time computation

• Particularly if the target dDBC will be used multiple times, as
is the case for explanations

2
Bertossi, Leon; JELIA’23
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ϕg (ī) = sp(w̄g • ī + bg )

:=

{
1 if w̄g • ī + bg ≥ 0,
−1 otherwise,

• BNN described by a
propositional formula,
which is further transformed
into an optimized CNF

is used as one of the inputs to gates next to the right. In this
way, we eventually obtain a defining formula for the output
gate. The formula is converted into CNF. The participating
propositional variables are logically treated as true or false,
even if they take numerical values 1 or −1, resp.

Example 2. (example 1 cont.) Consider gate h1, with pa-
rameters w̄ = ⟨−1,−1, 1⟩ and b = 0.16, and input ī =
⟨x1, x2, x3⟩. An input xj is said to be conveniently instanti-
ated if it has the same sign as wj , and then, contributing to
having a larger number on the LHS of the comparison in (4).
E.g., this is the case of x1 = −1. In order to represent as a
propositional formula its output variable, also denoted with
h1, we first compute the number, d, of conveniently instanti-
ated inputs that are necessary and sufficient to make the LHS
of the comparison in (4) greater than or equal to 0. This is
the (only) case when h1 becomes true; otherwise, it is false.
This number can be computed in general by: (Narodytska
et al. 2018)

d =



(−b+

|̄i|∑

j=1

wj)/2



+# of negative weights in w̄. (5)

In the case of h1, with 2 negative weights: d =
⌈(−0.16 + (−1− 1 + 1))/2⌉ + 2 = 2. With this, we can
impose conditions on two input variables with the right sign
at a time, considering all possible convenient pairs. For h1
we obtain its condition to be true:

h1 ←→ (−x1 ∧ −x2) ∨ (−x1 ∧ x3) ∨ (−x2 ∧ x3). (6)

This is DNF formula, directly obtained from considering all
possible convenient pairs (which is already better that trying
all cases of three variables at a time). However, there is a
more expedite, iterative method that still uses the number
of convenient inputs. In order to convey the bigger picture,
we postpone the detailed description of this method (that is
also used in our experiments) until Appendix A. Using this
algorithm, we obtain an equivalent formula defining h1:

h1 ←→ (x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1). (7)

Similarly, we obtain defining formulas for gates h2 and
h3, and o: (for all of them, d = 2)

h2 ←→ (−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1),
h3 ←→ (x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1),
o←→ (−h3 ∧ (h2 ∨ h1)) ∨ (h2 ∧ h1). (8)

Replacing the definitions of h1, h2, h3 into (8), we finally
obtain:

o←→ (−[(x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1)] ∧
([(−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)] ∨
[(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)])) ∨
([(−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)] ∧
[(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)]). (9)

The final part of step (a) in path (3), requires transform-
ing this formula into CNF. In this example, it can be taken

Figure 3: An SDD (a) and a vtree (b).

straightforwardly into CNF.4 The resulting CNF formula
is, in its turn, simplified into a shorter and simpler new CNF
formula by means of the Confer SAT solver (Manthey 2017).
For this example, the simplified CNF formula is as follows:

o ←→ (−x1∨−x2)∧ (−x1∨−x3)∧ (−x2∨−x3). (10)

Having a CNF formula will be convenient for the next
conversion steps along path (3). 2

Following with step (b) along path (3), the resulting CNF
formula is transformed into a Sentential Decision Diagram
(SDD) (Darwiche 2011b; Van den Broeck and Darwiche
2015), which, as a particular kind of decision diagram (Bol-
lig and Buttkus 2019), is a directed acyclic graph. So as the
popular OBDDs (Bryant 1986), that SDDs generalize, they
can be used to represent general Boolean formulas, in partic-
ular, propositional formulas (but without necessarily being
per se propositional formulas).
Example 3. (example 2 cont.) Figure 3(a) shows an
SDD, S, to be used for illustration. (C.f. (Bova 2016;
Nakamura, Denzumi, and Nishino 2020) for precise defi-
nitions.) An SDD has different kinds of nodes. Those repre-
sented with encircled numbers are decision nodes (Van den
Broeck and Darwiche 2015), e.g. 1⃝ and 3⃝, that consider
alternatives for the inputs (in essence, disjunctions). There
are also nodes called elements. They are labeled with con-
structs of the form [ℓ1|ℓ2], where ℓ1, ℓ2, called the prime and
the sub, resp., are Boolean literals, e.g. x1 and ¬x2, includ-
ing ⊤ and ⊥, for 1 or 0, resp. E.g. [¬x2|⊤] is one of them.
The sub can also be a pointer, •, with an edge to a decision
node. [ℓ1|ℓ2] represents two conditions that have to be satis-
fied simultaneously (in essence, a conjunction). An element
without • is a terminal.
An SDD represents (or defines) a total Boolean function
FS : ⟨x1, x2, x3⟩ ∈ {0, 1}3 7→ {0, 1}. For example,
FS(0, 1, 1) is evaluated by following the graph downwards.
Since x1 = 0, we descent to the right; next via node 3⃝
underneath, with x2 = 1, we reach the instantiated leaf
node labeled with [1|0], a “conjunction”, with the second

4For our experiments, we programmed a simple algorithm that
does this job, while making sure the generated CNF does not grow
too much (c.f. Appendix A).

4

• Actually, done using always CNFs and keeping them “short” ...
(room for optimizations)

• In CNF: o ←→ (−x1 ∨ −x2) ∧ (−x1 ∨ −x3) ∧ (−x2 ∨ −x3)
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• The CNF is transformed into an SDD

Succinctly representing the CNF
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straightforwardly into CNF.4 The resulting CNF formula
is, in its turn, simplified into a shorter and simpler new CNF
formula by means of the Confer SAT solver (Manthey 2017).
For this example, the simplified CNF formula is as follows:

o ←→ (−x1∨−x2)∧ (−x1∨−x3)∧ (−x2∨−x3). (10)

Having a CNF formula will be convenient for the next
conversion steps along path (3). 2

Following with step (b) along path (3), the resulting CNF
formula is transformed into a Sentential Decision Diagram
(SDD) (Darwiche 2011b; Van den Broeck and Darwiche
2015), which, as a particular kind of decision diagram (Bol-
lig and Buttkus 2019), is a directed acyclic graph. So as the
popular OBDDs (Bryant 1986), that SDDs generalize, they
can be used to represent general Boolean formulas, in partic-
ular, propositional formulas (but without necessarily being
per se propositional formulas).
Example 3. (example 2 cont.) Figure 3(a) shows an
SDD, S, to be used for illustration. (C.f. (Bova 2016;
Nakamura, Denzumi, and Nishino 2020) for precise defi-
nitions.) An SDD has different kinds of nodes. Those repre-
sented with encircled numbers are decision nodes (Van den
Broeck and Darwiche 2015), e.g. 1⃝ and 3⃝, that consider
alternatives for the inputs (in essence, disjunctions). There
are also nodes called elements. They are labeled with con-
structs of the form [ℓ1|ℓ2], where ℓ1, ℓ2, called the prime and
the sub, resp., are Boolean literals, e.g. x1 and ¬x2, includ-
ing ⊤ and ⊥, for 1 or 0, resp. E.g. [¬x2|⊤] is one of them.
The sub can also be a pointer, •, with an edge to a decision
node. [ℓ1|ℓ2] represents two conditions that have to be satis-
fied simultaneously (in essence, a conjunction). An element
without • is a terminal.
An SDD represents (or defines) a total Boolean function
FS : ⟨x1, x2, x3⟩ ∈ {0, 1}3 7→ {0, 1}. For example,
FS(0, 1, 1) is evaluated by following the graph downwards.
Since x1 = 0, we descent to the right; next via node 3⃝
underneath, with x2 = 1, we reach the instantiated leaf
node labeled with [1|0], a “conjunction”, with the second

4For our experiments, we programmed a simple algorithm that
does this job, while making sure the generated CNF does not grow
too much (c.f. Appendix A).

4

conjunction

disjunction

• The expensive compilation step

But upper-bounded by an
exponential only in the tree-width
of the CNF

TW of the associated undirected graph:
an edge between variables if together in
a clause
(In example, graph is clique, TW is #vars -1 =2)

• The SDD is easily transformed
into a dDBC

• Shap computed on it, possibly multiple times

• The uniform distribution was used
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• In our experiments, we used a BNN with 14 gates

• Compiled into dDBC with 18,670 nodes (room for optimizations)

• A one-time computation that fully replaces the BNN

• Compared Shap computation time for: black-box BNN,
open-box dDBC, and black-box dDBC

• Total time for computing all Shap scores for all entities, with
increasing numbers of them

(logarithmic scale)
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Resp: Causal Responsibility

• Actual Causality is based on counterfactual interventions
(Halpern & Pearl, 2001)

• Hypothetical changes of values in a causal model to detect
other changes ... identifying then actual causes

• Do changes of feature values change the label from 0 to 1?

• A measure of causal contribution: Responsibility
(Chockler & Halpern, 2004)

C L
X1
X2
X3
X4

1
0
0
1

0

C L
X1
X2
X3
X4

0
0
0
1

1

C L
X1
X2
X3
X4

0
1
0
1

0

Counterfactual cause for
L = 0: x1 = 1

Resp(x1) := 1
maximum responsibility
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C L
X1
X2
X3
X4

1
0
0
1

0

C L
X1
X2
X3
X4

0
0
0
1

1

C L
X1
X2
X3
X4

1
1
0
1

0

C L
X1
X2
X3
X4

1
0
1
0

0

C L
X1
X2
X3
X4

1
1
1
0

1
+

contingency set

concentrate on x2: not
counterfactual cause

changes on x3, x4 do not change
label

change on x2 accompanied by
changes on x3, x4 does change
label!

• Γ = {x3, x4} is contingency set for x2

• x2 is actual cause for L = 0

• If Γ is minimum-size contingency set for x2:

Resp(x2) :=
1

1+|Γ| =
1
3

• We call ⟨1, 1, 1, 0⟩ a counterfactual (version) of original entity
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The Need for Reasoning

• Logical specification of counterfactual interventions and Resp

• Logical reasoning for interaction with attribution-score
spec/algorithm and classifier for further exploration

• Reason about interventions and counterfactuals

• Compute responsibility scores, and reason about them

• Impose semantic constraints on counterfactuals

• Counterfactuals can be queried or reasoned about

- Specification of actionable counterfactuals?

- Some actionable high-score feature value?

- Specs of other counterfactuals of interest? Computing them?

- What if I leave some feature values fixed?

- Do I get same high-score feature with this “similar” entity?

- Any high-score counterfactual version that changes this
feature?

Or never changes that one? ETC.
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• Usually interested in maximum-responsibility feature values
(associated to minimum-cardinality contingency sets)

• We have used Answer-Set Programming (ASP)

• Declarative language, and reasoning via QA

• Possibly several answer-sets (models)

• Each counterfactual version leading to a new label corresponds
to an answer set (model)

• Minimality of answer-sets, and closed-world assumption

• Non-monotonicity, and commonsense reasoning (persistence)

• Program and semantic constraints (the latter on
counterfactuals)

• Required expressive power and computational complexity

• Weak constraints (useful for specifying minimum cardinalities)

• Set and numerical aggregations (useful for score computation)

• Predicates for interaction with external classifiers
• Reasoning is enabled by cautious and brave query answering

True in all models vs. true in some model
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ASPs for Counterfactual Interventions

• Here, decision-trees (also done for external naive-Bayes via Python)

• A decision tree
CHAPTER 3 DECISION TREE LEARNING 53 

Noma1 Strong Weak 

No 
\ 

Yes 
/ 

No 
\ 

Yes 

FIGURE 3.1 
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree 
to the appropriate leaf node, then returning the classification associated with this leaf (in this case, 
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for 
playing tennis. 

from that node corresponds to one of the possible values for this attribute. An 
instance is classified by starting at the root node of the tree, testing the attribute 
specified by this node, then moving down the tree branch corresponding to the 
value of the attribute in the given example. This process is then repeated for the 
subtree rooted at the new node. 

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas- 
sifies Saturday mornings according to whether they are suitable for playing tennis. 
For example, the instance 

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong) 

would be sorted down the leftmost branch of this decision tree and would therefore 
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no). 
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm 
are adapted from (Quinlan 1986). 

In general, decision trees represent a disjunction of conjunctions of con- 
straints on the attribute values of instances. Each path from the tree root to a leaf 
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc- 
tion of these conjunctions. For example, the decision tree shown in Figure 3.1 
corresponds to the expression 

(Outlook = Sunny A Humidity = Normal) 

V (Outlook = Overcast)  

v (Outlook = Rain A Wind = Weak)  

Features F = {Outlook,Humidity,Wind}
Dom(Outlook) = {sunny, overcast, rain}
Dom(Humidity) = {high, normal}
Dom(Wind) = {strong, weak}
Entity e = ent(sunny, normal,weak) gets label 1

• Counterfactual Intervention Programs (CIPs) specify
counterfactual interventions on a given entity under
classification

• We use DLV and DLV-Complex notation (the system we used)

• Use annotation constants: Annotation Intended Meaning
o original entity
do do counterfactual intervention
tr entity in transition
s stop, label has changed

(single change of feature value)
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• Specifying domains, entity, classification tree, annotations:

Example 22. (example 20 continued) We present now the CIP for the classi-
fier based on the decision-tree, in DLV-Complex notation. We use annotation
constants o, for “original entity”, do, for “do a counterfactual intervention” (a
single change of feature value), tr, for “entity in transition”, and s, for “stop,
the label has changed”. We explain the program as we present it, and also by
inserting comments in the DLV code.

Notice that after the facts, that include the domains and the input entity,
we find the rule-based specification of the decision tree. The ent predicate, for
“entity”, uses an entity identifier (eid) in its first argument.

% facts:

dom1(sunny). dom1(overcast). dom1(rain). dom2(high). dom2(normal).

dom3(strong). dom3(weak).

ent(e,sunny,normal,weak,o). % original entity at hand

% specification of the decision-tree classifier:

cls(X,Y,Z,1) :- Y = normal, X = sunny, dom1(X), dom3(Z).

cls(X,Y,Z,1) :- X = overcast, dom2(Y), dom3(Z).

cls(X,Y,Z,1) :- Z = weak, X = rain, dom2(Y).

cls(X,Y,Z,0) :- dom1(X), dom2(Y), dom3(Z), not cls(X,Y,Z,1).

% transition rules: the initial entity or one affected by a value change

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,o).

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).

% counterfactual rule: alternative single-value changes

ent(E,Xp,Y,Z,do) v ent(E,X,Yp,Z,do) v ent(E,X,Y,Zp,do) :-

ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp),

dom3(Zp), X != Xp, Y != Yp, Z!= Zp,

chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),

chosen3(X,Y,Z,Zp).

In this rule’s body we find the “choice operator”. It is a predicate (to de
defined next in the program), say chosen1(x, y, z, x′), that, for each combination
of values (x, y, z) “chooses” a single value for x′. This new value can be used to
replace a value in the first argument of the entity. Similarly for chosen2(x, y, z, y′)
and chosen3(x, y, z, z′). They can be defined by means of the next rules in the
program [24].

% definitions of "chosen" predicates:

chosen1(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(U), U != X,

not diffchoice1(X,Y,Z,U).

diffchoice1(X,Y,Z, U) :- chosen1(X,Y,Z, Up), U != Up, dom1(U).

chosen2(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom2(U), U != Y,

not diffchoice2(X,Y,Z,U).

diffchoice2(X,Y,Z, U) :- chosen2(X,Y,Z, Up), U != Up, dom2(U).

chosen3(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom3(U), U != Z,

not diffchoice3(X,Y,Z,U).

31

• The main, counterfactual rule:

Example 22. (example 20 continued) We present now the CIP for the classi-
fier based on the decision-tree, in DLV-Complex notation. We use annotation
constants o, for “original entity”, do, for “do a counterfactual intervention” (a
single change of feature value), tr, for “entity in transition”, and s, for “stop,
the label has changed”. We explain the program as we present it, and also by
inserting comments in the DLV code.

Notice that after the facts, that include the domains and the input entity,
we find the rule-based specification of the decision tree. The ent predicate, for
“entity”, uses an entity identifier (eid) in its first argument.

% facts:

dom1(sunny). dom1(overcast). dom1(rain). dom2(high). dom2(normal).

dom3(strong). dom3(weak).

ent(e,sunny,normal,weak,o). % original entity at hand

% specification of the decision-tree classifier:

cls(X,Y,Z,1) :- Y = normal, X = sunny, dom1(X), dom3(Z).

cls(X,Y,Z,1) :- X = overcast, dom2(Y), dom3(Z).

cls(X,Y,Z,1) :- Z = weak, X = rain, dom2(Y).

cls(X,Y,Z,0) :- dom1(X), dom2(Y), dom3(Z), not cls(X,Y,Z,1).

% transition rules: the initial entity or one affected by a value change

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,o).

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).

% counterfactual rule: alternative single-value changes

ent(E,Xp,Y,Z,do) v ent(E,X,Yp,Z,do) v ent(E,X,Y,Zp,do) :-

ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp),

dom3(Zp), X != Xp, Y != Yp, Z!= Zp,

chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),

chosen3(X,Y,Z,Zp).

In this rule’s body we find the “choice operator”. It is a predicate (to de
defined next in the program), say chosen1(x, y, z, x′), that, for each combination
of values (x, y, z) “chooses” a single value for x′. This new value can be used to
replace a value in the first argument of the entity. Similarly for chosen2(x, y, z, y′)
and chosen3(x, y, z, z′). They can be defined by means of the next rules in the
program [24].

% definitions of "chosen" predicates:

chosen1(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(U), U != X,

not diffchoice1(X,Y,Z,U).

diffchoice1(X,Y,Z, U) :- chosen1(X,Y,Z, Up), U != Up, dom1(U).

chosen2(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom2(U), U != Y,

not diffchoice2(X,Y,Z,U).

diffchoice2(X,Y,Z, U) :- chosen2(X,Y,Z, Up), U != Up, dom2(U).

chosen3(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom3(U), U != Z,

not diffchoice3(X,Y,Z,U).

31

- Only one disjunct in the head becomes true; one per feature

- Uses three non-deterministic choice predicates

Chooses a new value in last argument for each combination
of the first three

- While the label stays 1
17 / 22



• Choice predicate can be specified

Choice makes the program non-stratified

• A program constraint prohibiting going back to initial entity:diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32

Acts by eliminating models that violate it

Also contributes to non-stratification

• Non-stratified negation is what makes ASP necessary

• Each counterfactual version represented by a model

• Next rule defines “stop” annotation, when label becomes 0

diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32
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diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32

• Rules above for collecting changes, leading to score
computation

• Sets of changes (in each model) is minimal (for free with ASP)

• Second last is program constraint: gets rid of models with
unchanged label

• Last rule contains aggregation for counting number of feature
value changes

• For each counterfactual version (or model) this is a “local”
Resp-score associated to a minimal set of changes

Not necessarily the “global” Resp-score yet
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diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}
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• Two stable models of the CIP

• Two counterfactuals with minimal contingency sets

• Only first is minimum counterfactual version: Resp(e) = 1

More precisely: Resp(e↓Humidity) = 1

• Want only maximum responsibility counterfactuals?
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• Introduce weak program constraints

The first model shows the classifiers as a set of atoms, and, in its second last
line, that ent(e,sunny,high,weak,s) is a counterfactual version (with label 0)
of the original entity e, and is obtained from the latter by means of changes of val-
ues in feature Humidity, leading to an inverse score of 1. The second model shows
a different counterfactual version of e, namely ent(e,rain,normal,strong,s),
now obtained by changing values for features Outlook and Wind, leading to an
inverse score of 2.

Let us now add, at the end of the program the following weak constraints:

% Weak constraints to minimize number of changes: (*)

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

If we run the program with them, the number of changes is minimized, and we
basically obtain only the first model above, corresponding to the counterfactual
entity e′ = ent(sunny, high,weak). This is a maximum-responsibility counterfac-
tual explanation. �
As can be seen at the light of this example, more complex rule-based classifiers
could be defined inside a CIP. It is also possible to invoke the classifier as an
external predicate [10].

10.1 Bringing-in domain knowledge

The CIP-based specifications we have considered so far allow all kinds of coun-
terfactual interventions on feature values. However, this may be undesirable or
unrealistic in certain applications. For, example, we may not end up producing,
and even less, using for score computation, some entities representing people who
have the combination of values yes and yes for the propositional features Married
and YoungerThan5. Declarative approaches to specification and computation of
counterfactual explanations have the nice feature that domain knowledge and
semantic constraints can be easily integrated with the base specification. Pro-
cedural approaches may, most likely, require changing the underlying code. We
use an example to illustrate the point. For more details and a discussion see [10].

Example 23. (example 22 continued) It could be that in a particular geographic
region, “raining with a strong wind at the same time” is never possible. When
producing counterfactual interventions for the entity e, such a combination
should not be produced or considered.

This can be done by imposing a hard program constraint

% hard constraint disallowing a particular combination

:- ent(E,rain,X,strong,tr).

that we add to the program in Example 22, from which we previously remove
the weak constraints we had in (*) (in order not to discard any model for
cardinality reasons). If we run the new program with DLV, we obtain only
the first model in Example 22, corresponding to the counterfactual entity e′ =
ent(sunny, high,weak). �
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• Weak program constraints can be violated, but only a
minimum number of times

• Minimize number of feature value differences between e and
its counterfactuals

• Only first model is kept (as on preceding slide)
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• Reasoning enabled by query answering

Under cautious and brave semantics:

- Responsibility of feature Outlook?

- A counterfactual version with less than 3 changes?

(brave semantics)invResp(e,outlook,R)? %Q1

fullExpl(E,U,R,S), R<3? %Q2

Q1 returns 2, 3, and 4, then the responsibility for Outlook is 1
2 . Q2 returns all

the full explanations with inverse score 1 or 2, e.g. e,outlook,2,{humidity}.
We can also ask, under the brave semantics, if there is an intervened entity
exhibiting the combination of sunny outlook with strong wind, and its label
(Q3). Or perhaps, all the intervened entities that obtained label no (Q4):

cls(E,O,T,H,W,_), O = sunny, W = strong? %Q3

cls(E,O,T,H,W,no)? %Q4

For Q3 we obtain, for example, e,sunny,low,normal,strong,yes; and for
Q4, for example e,sunny,low,high,strong. We can ask, under the cautions
semantics, whether the wind does not change under every counterfactual version:

ent(e,_,_,_,Wp,s), ent(e,_,_,_,W,o), W = Wp? %Q5

We obtain the empty output, meaning Wind is indeed changed in at least
one counterfactual version (i.e. stable model). In fact, the same query under
the brave semantics returns the records where Wind remained unchanged, e.g.
rain,high,high,weak, along with the original entity rain,high,normal,weak.

7 Final Remarks

Explainable data management and explainable AI (XAI) are effervescent areas
of research. The relevance of explanations can only grow, as observed from- and
due to the legislation and regulations that are being produced and enforced in
relation to explainability, transparency and fairness of data management and
AI/ML systems.

Still fundamental research is needed in relation to the notions of explanation
and interpretation. An always present question is: What is a good explanation?.
This is not a new question, and in AI (and other disciplines) it has been in-
vestigated. In particular in AI, areas such as diagnosis and causality have much
to contribute. In relation to explanations scores, there is still a question to be
answered: What are the desired properties of an explanation score?

Our work is about interacting with classifiers via answer-set programs. For
our work it is crucial to be able to use an implementation of the ASP semantics.
We have used DLV, with which we are more familiar. In principle, we could have
used Clingo instead [20]. Those classifiers can be specified directly as a part of
the program, as we did in our running example, or they can be invoked by a
program as a external predicate [5]. From this point of view, our work is not
about learning programs.

We have used in this paper a responsibility score that has a direct origin
in actual causality and responsibility. When the features have many possible
values, it makes sense to consider the proportions of value changes that lead
to counterfactual versions of the entity at hand, and that of those that do not
change the label. In this case, the responsibility score can be generalized to
become an average or expected value of label differences [3, 5].

There are different approaches and methodologies in relation to explanations,
with causality, counterfactuals and scores being prominent approaches that have
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- An intervened entity with combination of sunny outlook and
strong wind, and its label?

- All intervened entities that obtain label No?

invResp(e,outlook,R)? %Q1

fullExpl(E,U,R,S), R<3? %Q2

Q1 returns 2, 3, and 4, then the responsibility for Outlook is 1
2 . Q2 returns all

the full explanations with inverse score 1 or 2, e.g. e,outlook,2,{humidity}.
We can also ask, under the brave semantics, if there is an intervened entity
exhibiting the combination of sunny outlook with strong wind, and its label
(Q3). Or perhaps, all the intervened entities that obtained label no (Q4):

cls(E,O,T,H,W,_), O = sunny, W = strong? %Q3

cls(E,O,T,H,W,no)? %Q4

For Q3 we obtain, for example, e,sunny,low,normal,strong,yes; and for
Q4, for example e,sunny,low,high,strong. We can ask, under the cautions
semantics, whether the wind does not change under every counterfactual version:

ent(e,_,_,_,Wp,s), ent(e,_,_,_,W,o), W = Wp? %Q5

We obtain the empty output, meaning Wind is indeed changed in at least
one counterfactual version (i.e. stable model). In fact, the same query under
the brave semantics returns the records where Wind remained unchanged, e.g.
rain,high,high,weak, along with the original entity rain,high,normal,weak.

7 Final Remarks

Explainable data management and explainable AI (XAI) are effervescent areas
of research. The relevance of explanations can only grow, as observed from- and
due to the legislation and regulations that are being produced and enforced in
relation to explainability, transparency and fairness of data management and
AI/ML systems.

Still fundamental research is needed in relation to the notions of explanation
and interpretation. An always present question is: What is a good explanation?.
This is not a new question, and in AI (and other disciplines) it has been in-
vestigated. In particular in AI, areas such as diagnosis and causality have much
to contribute. In relation to explanations scores, there is still a question to be
answered: What are the desired properties of an explanation score?

Our work is about interacting with classifiers via answer-set programs. For
our work it is crucial to be able to use an implementation of the ASP semantics.
We have used DLV, with which we are more familiar. In principle, we could have
used Clingo instead [20]. Those classifiers can be specified directly as a part of
the program, as we did in our running example, or they can be invoked by a
program as a external predicate [5]. From this point of view, our work is not
about learning programs.

We have used in this paper a responsibility score that has a direct origin
in actual causality and responsibility. When the features have many possible
values, it makes sense to consider the proportions of value changes that lead
to counterfactual versions of the entity at hand, and that of those that do not
change the label. In this case, the responsibility score can be generalized to
become an average or expected value of label differences [3, 5].

There are different approaches and methodologies in relation to explanations,
with causality, counterfactuals and scores being prominent approaches that have
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- Does the wind not change under every counterfactual version?

(cautious semantics)

invResp(e,outlook,R)? %Q1

fullExpl(E,U,R,S), R<3? %Q2

Q1 returns 2, 3, and 4, then the responsibility for Outlook is 1
2 . Q2 returns all

the full explanations with inverse score 1 or 2, e.g. e,outlook,2,{humidity}.
We can also ask, under the brave semantics, if there is an intervened entity
exhibiting the combination of sunny outlook with strong wind, and its label
(Q3). Or perhaps, all the intervened entities that obtained label no (Q4):

cls(E,O,T,H,W,_), O = sunny, W = strong? %Q3

cls(E,O,T,H,W,no)? %Q4

For Q3 we obtain, for example, e,sunny,low,normal,strong,yes; and for
Q4, for example e,sunny,low,high,strong. We can ask, under the cautions
semantics, whether the wind does not change under every counterfactual version:

ent(e,_,_,_,Wp,s), ent(e,_,_,_,W,o), W = Wp? %Q5

We obtain the empty output, meaning Wind is indeed changed in at least
one counterfactual version (i.e. stable model). In fact, the same query under
the brave semantics returns the records where Wind remained unchanged, e.g.
rain,high,high,weak, along with the original entity rain,high,normal,weak.

7 Final Remarks

Explainable data management and explainable AI (XAI) are effervescent areas
of research. The relevance of explanations can only grow, as observed from- and
due to the legislation and regulations that are being produced and enforced in
relation to explainability, transparency and fairness of data management and
AI/ML systems.

Still fundamental research is needed in relation to the notions of explanation
and interpretation. An always present question is: What is a good explanation?.
This is not a new question, and in AI (and other disciplines) it has been in-
vestigated. In particular in AI, areas such as diagnosis and causality have much
to contribute. In relation to explanations scores, there is still a question to be
answered: What are the desired properties of an explanation score?

Our work is about interacting with classifiers via answer-set programs. For
our work it is crucial to be able to use an implementation of the ASP semantics.
We have used DLV, with which we are more familiar. In principle, we could have
used Clingo instead [20]. Those classifiers can be specified directly as a part of
the program, as we did in our running example, or they can be invoked by a
program as a external predicate [5]. From this point of view, our work is not
about learning programs.

We have used in this paper a responsibility score that has a direct origin
in actual causality and responsibility. When the features have many possible
values, it makes sense to consider the proportions of value changes that lead
to counterfactual versions of the entity at hand, and that of those that do not
change the label. In this case, the responsibility score can be generalized to
become an average or expected value of label differences [3, 5].

There are different approaches and methodologies in relation to explanations,
with causality, counterfactuals and scores being prominent approaches that have
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• Adding domain knowledge very easy

• In a particular domain, there may never be rain with strong
wind Discard such a model!

The first model shows the classifiers as a set of atoms, and, in its second last
line, that ent(e,sunny,high,weak,s) is a counterfactual version (with label 0)
of the original entity e, and is obtained from the latter by means of changes of val-
ues in feature Humidity, leading to an inverse score of 1. The second model shows
a different counterfactual version of e, namely ent(e,rain,normal,strong,s),
now obtained by changing values for features Outlook and Wind, leading to an
inverse score of 2.

Let us now add, at the end of the program the following weak constraints:

% Weak constraints to minimize number of changes: (*)

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

If we run the program with them, the number of changes is minimized, and we
basically obtain only the first model above, corresponding to the counterfactual
entity e′ = ent(sunny, high,weak). This is a maximum-responsibility counterfac-
tual explanation. �
As can be seen at the light of this example, more complex rule-based classifiers
could be defined inside a CIP. It is also possible to invoke the classifier as an
external predicate [10].

10.1 Bringing-in domain knowledge

The CIP-based specifications we have considered so far allow all kinds of coun-
terfactual interventions on feature values. However, this may be undesirable or
unrealistic in certain applications. For, example, we may not end up producing,
and even less, using for score computation, some entities representing people who
have the combination of values yes and yes for the propositional features Married
and YoungerThan5. Declarative approaches to specification and computation of
counterfactual explanations have the nice feature that domain knowledge and
semantic constraints can be easily integrated with the base specification. Pro-
cedural approaches may, most likely, require changing the underlying code. We
use an example to illustrate the point. For more details and a discussion see [10].

Example 23. (example 22 continued) It could be that in a particular geographic
region, “raining with a strong wind at the same time” is never possible. When
producing counterfactual interventions for the entity e, such a combination
should not be produced or considered.

This can be done by imposing a hard program constraint

% hard constraint disallowing a particular combination

:- ent(E,rain,X,strong,tr).

that we add to the program in Example 22, from which we previously remove
the weak constraints we had in (*) (in order not to discard any model for
cardinality reasons). If we run the new program with DLV, we obtain only
the first model in Example 22, corresponding to the counterfactual entity e′ =
ent(sunny, high,weak). �
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