
Consistent Query Answering in Databases

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

bertossi@scs.carleton.ca
www.scs.carleton.ca/∼bertossi

University of Akureyri, Iceland, April 2005.

2

The Context

There are situations when we want/need to live with inconsis-
tent information in a database

With information that contradicts given integrity constraints

The DBMS does not fully support data maintenance or
integrity checking/enforcing

The consistency of the database will be restored by exe-
cuting further compensating transactions or future trans-
actions

Integration of heterogeneous databases without a cen-
tral/global maintenance mechanism

3

Inconsistency wrt “soft” or “informational” integrity con-
straints we hope or expect to see satisfied, but are not
maintained

User constraints than cannot be checked

Legacy data on which we want to impose (new) semantic
constraints

It may be impossible/undesirable to repair the database (to
restore consistency)

No permission

Inconsistent information can be useful

Restoring consistency can be a complex and non deter-
ministic process

4

The Problem

Not all data participate in the violation of the ICs

The inconsistent database can still give us “correct” or consis-
tent answers to queries!

We need:

A precise definition of consistent answer to a query in an
inconsistent database

Mechanisms for obtaining such consistent information from
the inconsistent database

Understanding of the computational complexity of the
problem

5

Example

A database instance D

Employee Name Salary
J .Page 5,000
J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

FD : Name → Salary

D violates FD , by the tuples with J .Page in Name

There are two possible ways to repair the database in a minimal
way if only deletions/insertions of whole tuples are allowed

6
D1

Employee Name Salary
J .Page 5,000
V .Smith 3,000
M .Stowe 7,000

D2

Employee Name Salary
J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

(M .Stowe, 7, 000) persists in all repairs, and it does not par-
ticipate in the violation of FD ; it is invariant under minimal
forms of restoration of consisency

(J .Page, 8, 000) does not persist in all repairs, and it does
participate in the violation of FD

7

Repairs and Consistent Answers

Fixed: DB schema and (infinite) domain; a set of first order
integrity constraints IC

Definition: (Arenas, Bertossi, Chomicki; PODS 99)

A repair of a database instance D is a database instance D′

over the same schema and domain

satisfies IC

differs from D by a minimal set of changes (insertions or
deletions of tuples) wrt set inclusion

8

Given a query Q(x̄) to D, we want as answers all and only
those tuples obtained from D that are “consistent” wrt IC
(even when D globally violates IC)

Definition: (Arenas, Bertossi, Chomicki; PODS 99)

A tuple t̄ is a consistent answer to query Q(x̄) in D iff
t̄ is an answer to query Q(x̄) in every repair D′ of D:

D |=
IC

Q[t̄] :⇐⇒ D′ |= Q[t̄] for every repair D′ of D

A model theoretic definition ...

9

Example

Inconsistent DB instance D wrt FD : Name → Salary

Employee Name Salary
J .Page 5,000
J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

Repairs D1, resp. D2

Employee Name Salary

J .Page 5,000
V .Smith 3,000
M .Stowe 7,000

Employee Name Salary

J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

D |=
FD

Employee(M.Stowe, 7, 000)

10

D |=
FD

(Employee(J .Page, 5, 000) ∨Employee(J .Page, 8, 000))

D |=
FD

∃XEmployee(J .Page, X)

We can see this is not the same as getting rid of the tuples
that participates in the violation of the IC

More information is preserved than with (naive) data cleaning

11

Computing Consistent Answers

We want to compute consistent answers, but not by comput-
ing all possible repairs and checking answers in common

Retrieving consistent answers via computation of all database
repairs is not possible/sensible/feasible

Example: An inconsistent instance wrt FD : X → Y

D X Y

1 0
1 1
2 0
2 1
· ·
n 0
n 1 It has 2n possible repairs!

12

Query Transformation

First-Order queries and constraints

Idea:

Do not compute the repairs

Query only the available inconsistent database instance

Transform the query and pose the new query (as usual)

(Arenas, Bertossi, Chomicki; PODS 99)
(Celle, Bertossi; DOOD 00)

13

DBMS

New Query (enh'd SQL):

 SELECT ...
 FROM ...
 WHERE ...

CONSIS WITH ICs

Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...
 ICs

?????Query
Preprocessor

14

Given a query Q to the inconsistent DB D, qualify Q with
appropriate information derived from the interaction between
Q and the ICs

To locally satisfy the ICs

To discriminate between tuples in the answer set

Inspired by “Semantic Query Optimization” techniques

Consistent answers to Q(x̄) in D??

Rewrite query: Q(x̄) �−→ Q′(x̄)

Q′(x̄) is a new first order query

Retrieve from D the (ordinary) answers to Q′(x̄)

15

Example

IC : ∀x(P (x) → Q(x)) D = {P (a), P (b), Q(b), Q(c)}

1. Query to D: Q(x)?

If Q(x) holds in D, then P (x) → Q(x) holds in D

Elements in Q do not participate in a violation of IC

2. Query: P (x)?

If P (x) holds in D, then Q(x) must hold in D in order to
satisfy P (x) → Q(x)

16

An answer x to “P (x)?” is consistent if x is also in table Q

Transform query 2. into: P (x) ∧ Q(x)?

Pose this query instead

Q(x) is a residue of P (x) wrt ∀x(P (x) → Q(x))

Residue can be obtained by resolution between the query literal
and IC

Posing new query to D we get only answer {b}

For query Q(x)? there is no residue, i.e. every answer to query
Q(x)? is also a consistent answer, i.e. we get {b, c}

17

3. Query ¬Q(x)? (not safe, just for illustration)

Residue wrt ∀x(P (x) → Q(x)) is ¬P (x)

New query: ¬Q(x) ∧ ¬P (x)?

Answers to this new query (in the active domain): ∅

No consistent answers ...

18

Example

FD : ∀XY Z (¬Employee(X, Y) ∨ ¬Employee(X,Z) ∨
Y = Z)

Query: Employee(X,Y)?

Consistent answers: (V .Smith, 3,000), (M .Stowe, 7,000)
(but not (J .Page, 5,000), (J .Page, 8,000))

Can be obtained by means of the transformed query

T (Q(X,Y)) := Employee(X, Y) ∧
∀Z (¬Employee(X, Z) ∨ Y = Z)

... those tuples (X,Y) in the relation for which X does not
have and associated Z different from Y ...

19

SELECT Name, Salary

FROM Employee

CONSISTENT WITH

 FD(Name;Salary) r

SELECT Name, Salary

FROM Employee E

WHERE Not exists (

 SELECT E.Salary

 FROM E

 WHERE E.Name = Name

 AND E.Salary <> Salary)

r

Again, the residue ∀Z (¬Employee(X, Z) ∨ Y = Z) can be
automatically obtained by applying resolution to the query and
FD

In general, T is an iterative operator

20

Example

IC : {R(x) ∨ ¬P (x) ∨ ¬Q(x), P (x) ∨ ¬Q(x)}

Query: Q(x)?

T 1(Q(x)) := Q(x) ∧ (R(x) ∨ ¬P (x)) ∧ P (x)

Apply T again, now to the appended residues

T 2(Q(x)) := Q(x) ∧ (T (R(x)) ∨ T (¬P (x))) ∧ T (P (x))

T 2(ϕ(x)) = Q(x) ∧ (R(x) ∨ (¬P (x) ∧ ¬Q(x))) ∧ P (x)∧
(R(x) ∨ ¬Q(x))

And again:

21

T 3(Q(x)) := Q(x) ∧ (R(x) ∨ (¬P (x) ∧ T (¬Q(x)))) ∧
P (x) ∧ (T (R(x)) ∨ T (¬Q(x)))

Since T (¬Q(x)) = ¬Q(x) and T (R(x)) = R(x), we obtain

T 3(Q(x)) = T 2(Q(x))

A finite fixed point! Does it always exist?

In general, an infinitary query: T ω(ϕ(x)) :=
⋃

n<ω

{Tn(ϕ(x))}

In the example, T ω(Q(x)) = {T1(Q(x)), T2(Q(x))}

Always finite?

22

Some Results

There are sufficient conditions on queries and ICs for soundness
and completeness of operator T (ABC; PODS 99)

Soundness: every tuple computed via T is consistent in
the semantic sense

D |= Tω(ϕ)[t̄] =⇒ D |=
IC

ϕ[t̄]

Completeness: every semantically consistent tuple can be
obtained via T

D |=
IC

ϕ[t̄] =⇒ D |= Tω(ϕ)[t̄]

Natural and useful syntactical classes satisfy the conditions

23

There are necessary and sufficient conditions for syntactic
termination

In the iteration process to determine T ω(Q) nothing
syntactically new is obtained beyond some finite step

There are sufficient conditions for semantic termination

From some finite step on, only logically equivalent formu-
las are obtained

In these favorable cases, a FO SQL query can be translated in-
to a new FO SQL query that is posed as usual to the database

In these cases CQA can be computed in polynomial time in
data complexity

24

Some Limitations

First-order query rewriting based approaches to CQA provably
have intrinsic limitations (see later)

They are incomplete for full FO queries and ICs, which applies
in particular to T

T is defined and works for some special classes of queries
and integrity constraints

ICs are universal, which excludes referential ICs; and queries
are quantifier-free conjunctions of literals

T does not work for disjunctive or existential queries, e.g.
∃Y Employee(J .Page, Y)?

25

FO query reformulation has been slightly extended using other
methods; still keeping polynomial time data complexity

Hypergraph representation of the DB (the vertices) and
its semantic conflicts (the hyperedges) under denial ICs

Graph based algorithms on original query can be trans-
lated into SQL queries
(Chomicki, Marcinkowski, Staworko; demos at EDBT 04)

Specific methods for conjunctive queries containing re-
stricted projections (existential quantifiers) and FDs
(Fuxman, Miller; ICDT05)

In the general case of FO ICs and queries, rewriting based
approaches to CQA must appeal to languages that are much
more expressive than FO logic (see later)

26

From the logical point of view:

We have not logically specified the database repairs

We have a model-theoretic definition plus an incomplete
computational mechanism

From such a specification Spec we might:

• Reason from Spec

• Consistently answer queries: Spec
?

|= Q(x̄)

• Derive algorithms for consistent query answering

Consistent query answering is non-monotonic; then a non-
monotonic semantics for Spec is expected

27

Specifying Repairs with Logic Programs

The collection of all database repairs can be represented in a
compact form

Use disjunctive logic programs with stable model semantics
(Barcelo, Bertossi; PADL 03)

Repairs correspond to distinguished models of the program,
namely to its stable models

The programs use annotation constants in an extra attribute
in the database relations

28

To keep track of the atomic repair actions (ta, fa), use them
to give feedback to the program in case additional changes be-
come necessary (t�, f�); and to collect the tuples in the final,
repaired instances (t��, f��)

Annotation Atom The tuple P (ā) is ...
td P (ā, td) a fact of the database
fd P (ā, fd) not a fact in the database
ta P (ā, ta) advised to be made true
fa P (ā, fa) advised to be made false
t� P (ā, t�) true or becomes true
f� P (ā, f�) false or becomes false
t�� P (ā, t��) true in the repair
f�� P (ā, f��) false in the repair

29

Example: Full inclusion dependency IC : ∀x̄(P (x̄) → Q(x̄))

Inconsistent instance D = {P (c̄), P (d̄), Q(d̄), Q(ē)}

Repair program Π(D, IC):

1. Original data as facts: P (c̄, td), P (d̄, td), Q(d̄, td), Q(ē, td)

2. Whatever was true (false) or becomes true (false), gets
annotated with t� (f�):

P (x̄, t�) ← P (x̄, td)

P (x̄, t�) ← P (x̄, ta)

P (x̄, f�) ← not P (x̄, td)

P (x̄, f�) ← P (x̄, fa)

... the same for Q ...

30

3. There may be interacting ICs (not here), and the repair
process may take several steps, changes could trigger oth-
er changes

We need annotation constants for the local changes (ta, fa),
but also annotations (t�, f�) to provide feedback to the
rules that produce local repair steps

P (x̄, fa) ∨ Q(x̄, ta) ← P (x̄, t�), Q(x̄, f�)

One rule per IC; that says how to repair the IC (c.f. the
head) in case of a violation (c.f. the body)

Passing to annotations t� and f� allows to keep repairing
the DB wrt to all the ICs until the process stabilizes

31

4. Repairs must be coherent: Use denial constraints at the
program level to prune undesirable models

← P (x̄, ta), P (x̄, fa)

← Q(x̄, ta), Q(x̄, fa)

5. Annotations constants t�� and f�� are used to read off
the literals that are inside (outside) a repair

P (x̄, t��) ← P (x̄, ta)

P (x̄, t��) ← P (x̄, td), not P (x̄, fa)

P (x̄, f��) ← P (x̄, fa)

P (x̄, f��) ← not P (x̄, td), not P (x̄, ta) ... etc.

32

The program has two stable models (and two repairs):

{P (c̄, td), ..., P (c̄, t�), Q(c̄, f�), Q(c̄, ta), P (c̄, t��), Q(c̄, t�),
P (d, t��), Q(d, t��), . . . , Q(c̄, t��), ...} ≡

{P (c̄), Q(c̄), P (d̄), Q(d̄), Q(ē)}

... insert Q(c̄)!!

{P (c̄, td), ..., P (c̄, t�), P (c̄, f�), Q(c̄, f�), P (c̄, f��), Q(c̄, f��),
P (d, t��), Q(d, t��), . . . , P (c̄, fa), ...} ≡

{P (d̄), Q(d̄), Q(ē)}

... delete P (c̄)!!

33

To obtain consistent answers to a FO query:

1. Transform or provide the query as a logic program
(a standard process)

2. Run the query program together with the specification
program

... under the skeptical or cautious stable model semantics
that sanctions as true of a program what is true of all its
stable models

34

Example: (continued)

Consistent answers to query P (x̄) ∧ ¬Q(x̄)?

Run repair program Π(D, IC) together with query program

Ans(x̄) ← P (x̄, t��), Q(x̄, f��)

The two previous stable models become extended with ground
Ans atoms

None of them in the intersection of the two models

In consequence, under the skeptical stable model semantics,
Ans = ∅, i.e. no consistent answers, as expected ...

35

Remarks:

Use of DLP is a general methodology that works for gen-
eral FO queries, universal ICs and referential ICs

One to one correspondence between repairs and stable
models of the program

Existential ICs, like referential ICs, can be handled, with
different repair policies, e.g. introduction of null values,
cascaded deletions, ...
(Barcelo,Bertossi,Bravo; LNCS 2582)
(Bravo,Bertossi; CASCON 04)

The same repair program can be used for all the queries,
the same applies to the computed stable models

The query at hand adds a final layer on top (obtaining a
split program)

36

The program can be optimized in several ways; e.g. avoid-
ing materialization of CWA (Barcelo,Bertossi,Bravo; LNCS
2582), annotations of DB facts, etc.

We have successfully experimented with the DLV system
for computing the stable models semantics
(N. Leone et al.; ACM Transactions on Comp. Logic)

Related methodologies:
(Arenas, Bertossi, Chomicki; TPLP 03)
(Greco, Greco, Zumpano; IEEE TKDE 03)

37

DBMS

Query (Logic) Program:

Ans (x) :-
.... :-
.... :-

Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...

DLV

ICs

Specification of Repairs:

.... :-

.... :-

.... :-

Consistent Answers

38

Complexity of CQA

When the first order query rewriting approach works (sound,
complete and finitely terminating), consistent answers to FO
queries can be obtained in PTIME (data complexity)

This applies to the T operator, its finite extensions, some graph
theoretic techniques for CQA, and other specific techniques

(Chomicki, Marcinkowski; Inf. Comp. 2005): In those cases
where CQA can be done in PTIME, the problem of repair
checking can be solved in PTIME

Repair checking is also PTIME for arbitrary FDs and acyclic
inclusion dependencies (deletions only)

P

NPco-NP

II2
P

PSPACE
.
.
. second level of the

polynomial hierarchy

NP complete
co-NP complete

39

However: (deletions only)

For arbitrary FDs and inclusion dependencies, repair check-
ing becomes coNP-complete

For arbitrary FDs and inclusion dependencies, CQA, i.e.
deciding if a tuple is CA, becomes ΠP

2 -complete

More complexity results: (Cali, Lembo, Rosati; PODS 03)

For arbitrary FDs and inclusion dependencies (in particu-
lar, referential ICs), CQA becomes undecidable

• Inclusion dependencies repaired through insertions

• Cycles in the set of inclusion dependencies

• Infinite underlying domain that can be used for in-
sertions

40

Remarks:

Complexity of query evaluation from DLPs under skeptical
stable model semantics coincides with the complexity of
CQA (ΠP

2 -complete in data complexity)

From this point of view the problem of CQA is not being
overkilled by the use of the DLP approach

However, it is known that for wide but restricted classes
of queries and ICs, CQA has lower complexity, e.g. in
polynomial time in data complexity
(Chomicki, Marcinkowski; Inf. Comp., to appear)
(Fuxman, Miller; ICDT 05)

It becomes relevant to identify classes of ICs and queries
for which the DLP can be “simplified” into a FO query, a
lower complexity program, or can be evaluated with the
well-founded semantics

41

Important Application: Virtual Data Integration

Mediator-based virtual data integration system G, integrating
a collection of material data sources S1, . . . , Sn

Each data source has a local schema and is assumed to be
consistent wrt local ICs

G offers a database-like interaction schema, but data remains
in the sources

Queries can be posed to G: Given a (global) query Q to G,
a “query plan” is generated that extracts and combines infor-
mation from the sources

Usually one assumes that certain ICs hold at the global level,
and they are used in the generation of the query plan

42

DBMS

Global Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...

DBMS DBMS

Plan Generator

data sources

global, virtual

database

Query
Plan

MEDIATOR

global ICs??

43

BUT, how can we be sure that such global ICs hold?

They are not maintained at the global level

A natural scenario for applying CQA: retrieve only information
from the global system that is consistent with global ICs

New issues appear:

What is a repair of the global but virtual database?

What is a consistent answer to a global query?

How to retrieve consistent information from the global,
virtual DB G? At query time ...

44

DBM S

Global Query (SQL):

 SELECT ...
 FRO M ...
 W H ERE ...
 CONSISTENT W ITH

DBM S DBM S

Plan Generator

data sources

global, virtual

database

Q uery
Plan

ENHANCED
M EDIATOR

global

ICs

45

Work in this direction:

CQA for monotone queries under “local-as-view” and open
sources (Bravo, Bertossi; IJCAI 03),
(Bravo, Bertossi; J. Appl. Logic, to appear)

Extension to open, closed and clopen sources
(Bertossi, Bravo; LNCS 3300)

Mappings

Global Relations

Answer Set
Programming(ASP)

specification of a set of
Legal Global Instances

ASP specification of the
repairs

Global ICs

Query
Query Program

(Datalog)

Sources

DLV
Run under skeptical

answer set
semantics

Consistent Answers to
Query

46

Other approaches:

Repairs and CQA under different semantics under “global-
as-view” and open sources
(Lembo, Lenzerini, Rosati; KRDB 02)
(Cali, Lembo,Rosati; IJCAI 03)

47

Discussion

The area of CQA in databases is an active area of research now

Many advances have been achieved since 1999

Many open problems are still open or are subject of ongoing
research

Several implementation issues, in particular in the case of
most common SQL queries and constraints

Specially for ICs that are not maintained by commercial
DBMSs

Research on many issues related to the evaluation of logic
programs for consistent query answering (CQA) in the
context of databases

48

• Existing implementations of stable models semantics
are based on grounding the rules

In database applications, this may lead to huge ground
programs

• Implementations are geared to computing (some) sta-
ble model(s) and answering ground queries

For database applications, posing and answering open
queries is more natural

• Computing all the the stable models completely is
undesirable

Better try generation of “partial” repairs, relative to
the ICs that are “relevant” to the query at hand

49

• Query evaluation based on skeptical stable model se-
mantics should be guided by the query and its rele-
vant information in the database
(Eiter, Fink, G.Greco, Lembo; ICLP 03)

• Magic sets (or similar query-directed methodologies)
for evaluating logic programs for CQA
(S.Greco et. al)

• Optimization of the access to the DB, to the relevant
portions of it

• Efficient integration of relational databases and an-
swer set programming environments

