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Missingness Mechanisms

• The general problem is about doing meaningful statistical inference from
datasets that suffer from missing values (MVs)

• A “model” of MVs: Missingness Mechanisms (MMs) (Donald Rubin; [12, 7])

• MMs allow us to characterize, classify, investigate and attack problems related
to MVs in datasets [4, 2]

• Think of census-like data: set of records (units) with attribute values

Attributes are “variables”, possibly taking na under certain conditions, and
possibly according to a (possibly unknown) probability law

X Y Z
r1: x11 y12 · · · z1,M
r2: x21 y22 · · · z2,M

· · ·
rN : xN1 y12 · · · zN,M

←− na

Dependencies w.r.t. MVs at
intra-record level, as usual

Having a MV for Z may

stochastically depend on X

IZ denotes Bernouilli variable taking value 1 iff Z takes value na: IZ may depend on X
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• An MM (partially) describes why and how there are MVs, and under
what conditions

“Employees making more that 200K are likely to hide (not provide) their
salaries”

“People not providing marital status are prone not to provide number of

children” (and maybe viceversa)

• Missingness Mechanisms:

1. Missing Completely at Random: (MCAR)

For each record and each attribute there is a fixed and same probability that
the value is na

E.g. each respondent throws the same dice and returns na if 6 is obtained
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2. Missing at Random: (MAR)

Missingness of an attribute value depends randomly on other non-missing
attribute values

“MV for Salary randomly depends on non-missing values for Age, Education,
and Race”

“CTO’s are less likely to reveal their salaries”

(observed variable “position” influences observation of quantitative “salary”)

3. Missing Not Completely at Random: (MNCAR)

None of the above

Some relevant special cases appear ...
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3.1. Missing Depending on Variable Itself

� The likelihood of a MV for the variable depends only on the variable itself

“People with high salary are less prone to reveal their salaries”

� A.k.a. “censorship” when all people with high salaries are likely not to report
their salaries

� A usually difficult scenario

� Mitigate the problem by adding predictors for this variable that explain it

Say variables that explain the high salaries, such as education level, race,
etc.; falling back to case 2.

May have to extrapolate beyond the spectrum of observed variables
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3.2. Missing Depending on Unobserved Predictors

� Missingness for the outcome variable depends on variables that are not
recorded at all or contain MVs

“Disposition to provide the salary depends on paranoia, which is not
considered in the study”

“Disposition to provide the salary depends on education level, for which

there are non-responses”
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• MMs not about fixing MVs, but can can be used as a basis for it

• MMs can be detected, learned, modeled, and used

• MMs can be used for MV imputation, for statistical inferences, model building,
e.g. ML models, under MVs, etc.

• Imputation: Filling in for MVs

There are different techniques

Not without problems ...

• Much of what follows has to do with modeling and using MMs for correct
statistical inference
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General Goal

• Develop, implement and apply ML models/algorithm that are based on
incomplete training data or incomplete input data

Values for variables (features) are unobserved

Avoid discarding records with MVs or doing imputation

Incomplete data participate as such in training process

• Avoid if possible expensive methods, such as EM, sampling, etc.

• Use light-weight methods that appeal to an extra source of information

• Additional knowledge comes in the form of MMs

They have to be properly modeled, specified and used
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Specifying MMs via Missingness Graphs

• MMs can be represented as “missingness graphs” (MGs) (Mohan and Pearl [8])

• MGs are graphical models, like Bayesian Networks, representing directional
stochastic dependencies, in particular, in relation to MVs

• Notation:

Always observed variable X denoted with Xo

Variable X that may have na-values denoted with Xm

The variable does have values, but they may not be observed; as such it
does not exhibit MVs

Xm⋆ denotes its proxy showing observed and non-observed values (as na)

Variables Xm have associated missingness indicator functions IX
returning 1 or 0 depending on X’s value being non-observed or observed
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Example: X is a person’s salary that may not be observed when below 100K:

Xm : xm
1 = 40, xm

2 = 120, xm
3 = 80 (has values, but not all observed)

Xm⋆ : x⋆
1 = na, x⋆

2 = 120, x⋆
3 = na (coincides with Xm when observed)

IX : IX(x1) = 1, IX(x2) = 0, IX(x3) = 1

• In general, IX represents causal MM for Xm
(better, its modelling represents ...)

Fully observed variables: Of the form Xo, Y m⋆, IZ

Partially observed variables: Of the form V m

• For example, for variables X,Y :

Y o Xm Xm⋆ IX
y1 x1 x1 0
y2 ? na 1
y2 x2 x2 0
y1 ? na 1

Observed distribution (sample) is for Y o, Xm⋆, IX

• In general, we have observations for joint variables Yo,Xm⋆, IX

There can be dependencies among Yo,Xm,Xm⋆, IX
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Example: (cont.)

Yo Xm Xm⋆ IX
y1 x1 x1 0
y2 ? na 1
y2 x2 x2 0
y1 ? na 1 IX

Y Xm

Xm*

Xm depends on Y , and observed proxy Xm⋆ depends upon Xm and IX
(fully observed variables encircled)

MVs in X depend only on X itself, and randomly, in that IX does not depend on
anything

• Analysis of MGs allows decision about correct recoverability/estimation of
probabilities, and do the job in positive cases [8]

Analysis of a MG tells us what kind of MMs we are confronting

• Some common dependencies:

Xm⋆ =

{
na if IX = 1

Xm if IX = 0 IX

Xm

Xm* IX

Xm

Xm*

real salary

fully observed
salary (poss. w/na)

as above censorship
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• MMs can be expressed and characterized via MGs:

MCAR: Missing Completely at Random (example: previous page, top)

MVs independent from variables with MVs and fully observed: (Yo,Xm) ⊥⊥ IX

MAR: Missing at Random

MVs may depend on observed variables, but not on
those with MVs

MVs are independent from partially observed variables
given the fully observed variables: (Xm⊥⊥ IX)|Yo

IX

Y Xm

Xm*

(Xm ⊥⊥ IX)|Y

MNCAR: Missing Not Completely at Random

None of the above

Example on previous page, for salary, bottom-right

IX depends on not fully observed Xm

Another example: IX

Ym Xm

Xm*

IYYm*
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• MMs can be identified from the structure of a MG

• Notion of d-separation plays a role here

Syntactic, graphical analysis of BNs to detect/identify (in)dependencies [10]

Exploit independence assumptions represented by MGs

• Language of MGs is more expressive, formal and precise than that of MMs

• MGs allow to decide what “queries” (P (X,Y ), P (Y ), P (Y |X)) can be correctly
estimated (unbiased, convergent to real value) from a dataset and how [8, 9]

• Problem: How to estimate distributions that involve the Xm?

Most prominently: Overall join distribution P (Yo,Xm)?

• Particulary appropriate for MCAR and MAR

Most prominently, this can also be applied to MNCAR cases
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• Sufficient conditions for recovering P (Yo,Xm) from joint distribution
P (Yo,Xm⋆, IX) or estimating it from sample for fully-observed P (Yo,Xm⋆, IX)?

[8, 9]

D

ID Ageo Gendero Obesitym⋆ IOb

1 16 F yes 0
2 15 F na 1
3 15 M na 1
4 14 F no 0
5 13 M no 0
6 15 M yes 0
7 14 F yes 0

Empirical data
distribution

with |D| = N

PD(a, g, obm⋆, iOb) := number of records of form ⟨a,g,obm⋆,iOb⟩
N =: #D(⟨id;a,g,obm⋆,iOb⟩)

N

• Reformulation: How to use PD(Yo,Xm⋆, IX) to estimate P (Yo,Xm︸ ︷︷ ︸
Z

)?

• Can be done (or not) for cases identified on page 12 expressed via MGs
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MCAR: P (Z) = P (Yo,Xm|IX = 0) = P (Yo,Xm⋆|IX = 0) ≈ PD(Yo,Xm⋆|IX = 0)

(recall: IX = 0 iff X observed iff Xm, Xm⋆ coincide)

Example: Assume for variables in table on page 14: IOb ⊥⊥ (Ageo,Gendero,Obesitym⋆):

P (Ageo,Gendero,Obesitym) ≈ PD(Ageo,Gendero,Obesitym, IOb = 0)/PD(IOb = 0)

P (16, F, yes) ≈
1
7
×#

D
(⟨16, F, yes, 0⟩)
1
7
×#

D
(⟨0⟩)

= 1
5

P (14, F, no) ≈ #
D

(⟨14, F, no, 0⟩)
#
D

(⟨0⟩) = 1
5

P (13, M, no) ≈ #
D

(⟨13, M, no, 0⟩)
#
D

(⟨0⟩) = 1
5

P (15, M, yes) ≈ #
D

(⟨15, M, yes, 0⟩)
#
D

(⟨0⟩) = 1
5

P (14, F, yes ) ≈ #
D

(⟨14, F, yes , 0⟩)
#
D

(⟨0⟩) = 1
5

Here we obtain the same estimates as with listwise deletion, i.e. of tuples containing MVs, and

then estimating with complete data

If we had two variables with MVs, the result could be different, corresponding to available-case

analysis, i.e. deleting records only when both variables have MVs
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MAR: Xo is all observed; Y = Yo ∪Ym; Xo′ := Xo ∖Yo; equivalently Xo = Yo ∪Xo′

Marginal of Y?

P (Y) =
∑

Xo′ P (Yo,Ym,Xo′) =
∑

Xo′ ( P (Ym|Yo,Xo′)︸ ︷︷ ︸
?

× P (Yo,Xo′)︸ ︷︷ ︸
easy, fully observed, with data

)

Under MAR, partially observed Ym are conditioned to fully observed variables

Computing P (Ym|Yo,Xo′) depends on the MGs (or MMs)

MAR ⇒ each subset of data that fixes a value for Xo is locally MCAR

Continue locally as above with MCAR: P (Ym|Yo,Xo′) = P (Ym⋆|Yo,Xo′, IYm

= 0)

So, P (Y) can be recovered from distributions for fully observed variables, and
estimated therethrough: (closed form)

P (Y) ≈
∑
Xo′

PD(Ym⋆|Yo,Xo′, IY
m

= 0)× PD(Yo,Xo′) (1)
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Example:

G A Om⋆ IO P (G,A,Om⋆, IO)

M 10 - 13 Y 0 p1
M 13 - 15 Y 0 p2
M 15 - 18 Y 0 p3
M 10 - 13 N 0 p4
M 13 - 15 N 0 p5
M 15 - 18 N 0 p6
F 10 - 13 Y 0 p7
F 13 - 15 Y 0 p8
F 15 - 18 Y 0 p9
F 10 - 13 N 0 p10
F 13 - 15 N 0 p11
F 15 - 18 N 0 p12
M 10 - 13 na 1 p13
M 13 - 15 na 1 p14
M 15 - 18 na 1 p15
F 10 - 13 na 1 p16
F 13 - 15 na 1 p17
F 15 - 18 na 1 p18

G A

Om IO

O*

A MAR case

pi’s can be real (asymptotic
frequencies) or empirical
frequencies of the form
#record in D

N with sample size
N >> 18

Want to recover/estimate P (Go, Ao, Om) from P (Go, Ao, Om⋆, IO)
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Going ad hoc: [8]

P (Go, Ao, Om) = P (Go, Om|Ao)× P (Ao)︸ ︷︷ ︸
observed, easy marginal

(factorization suggested by MG)

=︸︷︷︸
MAR, check MG

P (Go, Om|Ao, IO = 0)P (Ao)=P (Go, Om⋆|Ao, IO = 0)︸ ︷︷ ︸
all observed

P (Ao)

≈ PD(Go, Om⋆|Ao, IO = 0)PD(Ao) (2)

E.g. P (M,10-13,Y) ≈PD(M,Y|10-13, IO = 0)PD(10-13) = PD(M,Y,10-13,IO=0)

PD(10-13,IO=0)
PD(10-13)

= p1
p1+p4+p7+p10

(p1 + p4 + p7 + p10 + p13 + p16) (̸= p1)

Can be seen as deleting certain records, but re-weighting the remaining ones

Called “direct-deletion” approaches
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(2) can be obtained from general (1): Y = {Go, Ao, Om}, Xo′ = Xo ∖Yo = ∅

P (Y) ≈
∑

Xo′ PD(Ym⋆|Yo,Xo′, IYm
= 0)× PD(Yo,Xo′)

In fact: P (Go, Ao, Om) ≈ PD(Om⋆|Go, Ao, IOm

= 0)PD(Go, Ao) (from (1))

= PD(Om⋆,Go,Ao,IO
m

=0)
PD(Go,Ao,IOm=0)

PD(Go, Ao)

=︸︷︷︸
MG

PD(Om⋆,Go,Ao,IO
m

=0)
PD(Go)PD(Ao,IOm=0)

PD(Go)PD(Ao) = PD(Om⋆,Go,Ao,IO
m

=0)
PD(Ao,IOm=0)

PD(Ao)

= PD(Om⋆, Go|Ao, IOm

= 0)PD(Ao), which coincides with (2)

• Recoverability/estimation methods based on MGs can be applied to MNCAR
cases that are out of reach from other approaches [8, 14]
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Bayesian Networks and Incomplete Data

• Bayesian Networks (BNs) have probability distribution associated to the nodes

 ! "#!$"# $

% &
"#&'(' !$

) "#)'('%&$

* "#*'(')$

Fixed the structure, they become the parameters to be
estimated from data, possibly incomplete

• MGs representing MMs can be applied as above, and
integrated with the BNs being learned [14]

Estimation can be efficiently done on the expanded
neighborhoods (with local MGs) of BN and sample

Avoiding inference or complex local iterative processes

• Excellent performance and accuracy is shown in [14]

Based on MG-based estimation and network factorization
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Some Remarks

• MG-based methods for MCAR and MAR are quite general

Method can handle vast classes of MNCAR cases (still work to do)

Some cases for BNs in [8] (not in [14])

• When MG analysis tells us unbiased recoverability/estimation impossible, no
statistical method will do

Put up with it or enrich the model by bringing in auxiliary variables

(not quite clear how to proceed about this)

• Analysis of MG also tells us if its assumptions and consequences are “testable”
or not [8]
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Ongoing Research: Directions and Issues

• Learning Bayesian Network and Decision Tree Classifiers with Incomplete Data

• Data in the form of labeled examples
for training may have MVs

X3

X1 X2

X5 X2 X4 X4 X1

X5 C2C2C1
…..

v1 v2

v2

v3

learned 
from data 

new entity?

• DTs inductively and iteratively built,
determining tree-levels for placing variables

E.g. on the basis of “information gain”
(depends on data at hand)

• DT algorithms can be extended to obtain
probabilities for class membership

• Develop algorithms for DT building with MV under different MMs (MGs)

• What about inputs with MVs?
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• Develop a declarative language to specify MMs (and MGs)

And reason with them

And algorithms on those specifications to identify (in)dependencies and cases
of MMs, e.g. in relation to d-separation

In some cases, e.g. BNs, they could be integrated with initial (in)dependencies

E.g. in the BN above: V ⊥⊥ S, (Z ⊥⊥ V, S)|Y

• Develop a “calculus of MMs” to reason with MMs and infer from them

There are some approaches in relation to (in)dependence [11]

• Detecting/learning MMs?

• How much computation as above can be profitably done inside a relational DB?

As In-DB ML [1]
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• Impact of MV (and system building/use) on fairness requires much more
research [5, 3]

• Aside ML and more generally:

Apply all of above to deal with MVs in relational DBs, but not as usual SQL
nulls with certain answers

Take MVs in RDBs seriously and do statistical estimation (whenever possible)

• And in probabilistic DBs? [13]

And Probabilistic DBs extended with probabilistic schemas? [6]

Valuable conversations with Long Nguyen, Foula Vagena and Guy Van den Broeck are much appreciated
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